Rechercher

Paramétrage

Thèmes

Accessibilité

Accessibilité

Benoit Fresse

Professeur des universités CNU : SECTION 25 - MATHEMATIQUES Laboratoire / équipe

Enseignements

Forthcoming course "Operads, graph complexes and applications". Master de mathématiques 2024-2025

Mini course at the program "Higher structures in geometry and mathematical physics" (IHP, April 17 - July 14, 2023)

Operads, graph complexes, and Grothendieck-Teichmüller groups

The main purpose of this course is to give an introduction to the computation of the rational homotopy of mapping spaces of operads, with motivations coming from the calculus of embeddings and the study of Grothendieck-Teichmüller groups.

In short, an operad P is a structure formed by a collection of objects P(n) whose elements model operations with n inputs and one output. The structure of an operad can be used to define a category of algebras and one can observe that the usual categories of algebras, the category of commutative algebras, the category of associative algebras, the category of Lie algebras, are associated to operads in vector spaces.

For the motivating applications of the course, we consider the classes of En-operads, where n = 1,2,... is a dimension parameter. The class of En-operads consists of the operads in topological spaces that are (weakly) homotopy equivalent to a reference model, the operads of litlle n-cubes. This notion of operads was introduced for the study of iterated loop spaces. The relationship with the calculus of embeddings come from the Goodwillie-Weiss calculus, which implies that operadic mapping spaces associated to En-operads can be used to compute the homotopy of certain approximations embedding spaces and the homotopy of the embedding spaces themselves when the codimension of the embeddings is large enough. The relationship with the Grothendieck-Teichmüller groups comes from the observation that the rational (resp. profinite) Grothendieck-Teichmüller group represents the group of classes of homotopy equivalences of a rationalization (a profinite completion) of E2-operads. In a recent collaboration (with Victor Turchin and Thomas Willwacher), we proved that, in the realm of rational homotopy, we can compute the homotopy of these mapping spaces and of these homotopy automorphism spaces associated to En-operads in terms of spaces of Maurer-Cartan forms on graph complexes.

The mini-course consists of three lectures, recorded by IHP. The first lecture includes a survey of the motiviting result and a basic introduction to operads. The second lecture is a continuation of the study of operads, and an introduction to methods of homotopy theory. In the third lecture, I explain the applications of these methods of homotopy theory to operads, and the ideas which make graph complexes appear in the case of En-operads.

Recordings

Lecture 1 (May 3, 2023)

Part 1: Introduction. Motivating applications to embedding calculus and Grothendieck-Teichmüller groups. https://www.carmin.tv/en/video/operads-graph-complexes-and-grothendieck-teichmuller-groups-part-1

Part 2: The general definition of the notion of an operad. Trees and composition of operations. https://www.carmin.tv/en/video/operads-graph-complexes-and-grothendieck-teichmuller-groups-part-2

Lecture 2 (May 10, 2023)

Part 1: The general definition of the notion of an operad (continued). The construction of free objects. The definition of the operads governing commutative, associative an Lie algebras. https://www.carmin.tv/en/video/operads-graph-complexes-and-grothendieck-teichmuller-groups-part-3

Part 2: Methods of homotopy theory. The definition of the notion of a model category. The example of topological spaces, simplicial sets and differential graded modules. https://www.carmin.tv/en/video/operads-graph-complexes-and-grothendieck-teichmuller-groups-part-4

Lecture 3 (May 17, 2023)

Part 1. The applications of methods of homotopy theory to operads. The model categories of operads. https://www.carmin.tv/en/video/operads-graph-complexes-and-grothendieck-teichmuller-groups-part-5

Part 2. The graph operad as a model for the rationalization of En-operads. https://www.carmin.tv/en/video/operads-graph-complexes-and-grothendieck-teichmuller-groups-part-6

References

  1. BF, Homotopy of operads & Grothendieck-Teichmüller groups. Mathematical Surveys and Monographs 217, American Mathematical Society, 2017.
  2. BF, T. Willwacher, The intrinsic formality of En-operads. J. Eur. Math. Soc. (JEMS), 22 (2020), pp. 2047-2133.
  3. BF, T. Willwacher, Mapping spaces for dg Hopf cooperads and homotopy automorphisms of the rationalization of En-operads. Preprint arXiv:2003.02939 (2020).
  4. BF, V. Turchin, T. Willwacher, The rational homotopy of mapping spaces of En-operads. Preprint arXiv:1703.06123 (2017).
  5. BF, V. Turchin, T. Willwacher, On the rational homotopy of embedding spaces of manifolds in Rn. Preprint arXiv:2003.02939 (2020).

Online course (SPOC) "An introduction to operads in algebraic topology"

Introduction of the course

Information

This course is divided in three parts. In the first part, I explain the general definition of an operad and the applications of operads to the definition of categories of algebras. In the second part, I explain the applications of operads to the definition of homotopy commutative algebra structures on cochain complexes that underlie the classical commutative algebra structures of the cohomology of topological spaces. In the third part, I tackle applications of these homotopy commutative algebra to the definition of models of the homotopy theory of spaces, which extend the classical Sullivan model of the rational homotopy theory of spaces.

The course is available online in a SPOC version (SPOC = small private online course) and in a public version - for free consultation. The course comprises series of recorded lectures, accompanying notes and exercices. The SPOC version also includes discussion forums and workshop activities for online exchanges.

I am intending (after some delay) to relaunch a new SPOC session this year, with a beginning in March. Registrations will be open at any time of the semester. Feel free to e-mail operad-spoc-contact[chez]univ-lille[point].fr if you are interested in attending the SPOC.

The public version is available permanently on this moodle site (your can login as "utilisateurs Université de Lille" if you are a student of the university of Lille, as "utilisateurs d'autres établissements" if your university is registered, or anonymously through "autres utilisateurs" otherwise).