Mladen Dimitrov
Professeur des universités
CNU : SECTION 25 - MATHEMATIQUES
Laboratoire / équipe
Publications
{
"response":{
"numFound":25,
"start":0,
"numFoundExact":true,
"docs":[{
"citationRef_s":"<i>Algebra & Number Theory</i>, 2024, 18 (8), pp.1465-1496. <a target=\"_blank\" href=\"https://dx.doi.org/10.2140/ant.2024.18.1465\">⟨10.2140/ant.2024.18.1465⟩</a>",
"citationFull_s":"Shaunak Deo, Mladen Dimitrov, Gabor Wiese. Unramifiedness of weight one Hilbert Hecke algebras. <i>Algebra & Number Theory</i>, 2024, 18 (8), pp.1465-1496. <a target=\"_blank\" href=\"https://dx.doi.org/10.2140/ant.2024.18.1465\">⟨10.2140/ant.2024.18.1465⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256163v1\">⟨hal-04256163⟩</a>",
"title_s":["Unramifiedness of weight one Hilbert Hecke algebras"],
"authFullName_s":["Shaunak Deo","Mladen Dimitrov","Gabor Wiese"],
"halId_s":"hal-04256163",
"docType_s":"ART",
"producedDateY_i":2024
},{
"citationRef_s":"2023",
"citationFull_s":"Daniel Barrera Salazar, Mladen Dimitrov, Chris Williams. On $p$-adic $L$-functions for $GL_{2n}$ in finite slope Shalika families. 2023. <a target=\"_blank\" href=\"https://hal.science/hal-04256176v1\">⟨hal-04256176⟩</a>",
"title_s":["On $p$-adic $L$-functions for $GL_{2n}$ in finite slope Shalika families"],
"authFullName_s":["Daniel Barrera Salazar","Mladen Dimitrov","Chris Williams"],
"halId_s":"hal-04256176",
"docType_s":"UNDEFINED",
"producedDateY_i":2023
},{
"citationRef_s":"2023",
"citationFull_s":"Daniel Barrera Salazar, Mladen Dimitrov, Andrew Graham, Andrei Jorza, Chris Williams. On the GL(2n) eigenvariety: branching laws, Shalika families and $p$-adic $L$-functions. 2023. <a target=\"_blank\" href=\"https://hal.science/hal-04256183v1\">⟨hal-04256183⟩</a>",
"title_s":["On the GL(2n) eigenvariety: branching laws, Shalika families and $p$-adic $L$-functions"],
"authFullName_s":["Daniel Barrera Salazar","Mladen Dimitrov","Andrew Graham","Andrei Jorza","Chris Williams"],
"halId_s":"hal-04256183",
"docType_s":"UNDEFINED",
"producedDateY_i":2023
},{
"citationRef_s":"<i>Annales mathématiques du Québec</i>, 2023, 47 (1), pp.49-71. <a target=\"_blank\" href=\"https://dx.doi.org/10.1007/s40316-022-00201-0\">⟨10.1007/s40316-022-00201-0⟩</a>",
"citationFull_s":"Mladen Dimitrov, Alexandre Maksoud. $\\pmb {\\mathscr {L}}$-invariants of Artin motives. <i>Annales mathématiques du Québec</i>, 2023, 47 (1), pp.49-71. <a target=\"_blank\" href=\"https://dx.doi.org/10.1007/s40316-022-00201-0\">⟨10.1007/s40316-022-00201-0⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256239v1\">⟨hal-04256239⟩</a>",
"title_s":["$\\pmb {\\mathscr {L}}$-invariants of Artin motives"],
"authFullName_s":["Mladen Dimitrov","Alexandre Maksoud"],
"halId_s":"hal-04256239",
"docType_s":"ART",
"producedDateY_i":2023
},{
"citationRef_s":"<i>American Journal of Mathematics</i>, 2022, 144 (1), pp.227-265. <a target=\"_blank\" href=\"https://dx.doi.org/10.1353/ajm.2022.0004\">⟨10.1353/ajm.2022.0004⟩</a>",
"citationFull_s":"Adel Betina, Mladen Dimitrov, Alice Pozzi. On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve. <i>American Journal of Mathematics</i>, 2022, 144 (1), pp.227-265. <a target=\"_blank\" href=\"https://dx.doi.org/10.1353/ajm.2022.0004\">⟨10.1353/ajm.2022.0004⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256096v1\">⟨hal-04256096⟩</a>",
"title_s":["On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve"],
"authFullName_s":["Adel Betina","Mladen Dimitrov","Alice Pozzi"],
"halId_s":"hal-04256096",
"docType_s":"ART",
"producedDateY_i":2022
},{
"citationRef_s":"<i>Journal of the European Mathematical Society</i>, 2022, 24 (10), pp.3439-3503. <a target=\"_blank\" href=\"https://dx.doi.org/10.4171/JEMS/1165\">⟨10.4171/JEMS/1165⟩</a>",
"citationFull_s":"Daniel Barrera, Mladen Dimitrov, Andrei Jorza. $p$-adic $L$-functions of Hilbert cusp forms and the trivial zero conjecture. <i>Journal of the European Mathematical Society</i>, 2022, 24 (10), pp.3439-3503. <a target=\"_blank\" href=\"https://dx.doi.org/10.4171/JEMS/1165\">⟨10.4171/JEMS/1165⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256081v1\">⟨hal-04256081⟩</a>",
"title_s":["$p$-adic $L$-functions of Hilbert cusp forms and the trivial zero conjecture"],
"authFullName_s":["Daniel Barrera","Mladen Dimitrov","Andrei Jorza"],
"halId_s":"hal-04256081",
"docType_s":"ART",
"producedDateY_i":2022
},{
"citationRef_s":"<i>Advances in Mathematics</i>, 2021, 384, pp.107724. <a target=\"_blank\" href=\"https://dx.doi.org/10.1016/j.aim.2021.107724\">⟨10.1016/j.aim.2021.107724⟩</a>",
"citationFull_s":"Adel Betina, Mladen Dimitrov. Geometry of the eigencurve at CM points and trivial zeros of Katz p-adic L-functions. <i>Advances in Mathematics</i>, 2021, 384, pp.107724. <a target=\"_blank\" href=\"https://dx.doi.org/10.1016/j.aim.2021.107724\">⟨10.1016/j.aim.2021.107724⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256087v1\">⟨hal-04256087⟩</a>",
"title_s":["Geometry of the eigencurve at CM points and trivial zeros of Katz p-adic L-functions"],
"authFullName_s":["Adel Betina","Mladen Dimitrov"],
"halId_s":"hal-04256087",
"docType_s":"ART",
"producedDateY_i":2021
},{
"citationRef_s":"<i>Journal de Théorie des Nombres de Bordeaux</i>, 2021, 33 (3.1), pp.703-731. <a target=\"_blank\" href=\"https://dx.doi.org/10.5802/jtnb.1176\">⟨10.5802/jtnb.1176⟩</a>",
"citationFull_s":"Adel Betina, Mladen Dimitrov. A geometric view on Iwasawa theory. <i>Journal de Théorie des Nombres de Bordeaux</i>, 2021, 33 (3.1), pp.703-731. <a target=\"_blank\" href=\"https://dx.doi.org/10.5802/jtnb.1176\">⟨10.5802/jtnb.1176⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256089v1\">⟨hal-04256089⟩</a>",
"title_s":["A geometric view on Iwasawa theory"],
"authFullName_s":["Adel Betina","Mladen Dimitrov"],
"halId_s":"hal-04256089",
"docType_s":"ART",
"producedDateY_i":2021
},{
"citationRef_s":"<i>Compositio Mathematica</i>, 2020, 156 (12), pp.2437-2468. <a target=\"_blank\" href=\"https://dx.doi.org/10.1112/S0010437X20007551\">⟨10.1112/S0010437X20007551⟩</a>",
"citationFull_s":"Mladen Dimitrov, Fabian Januszewski, A. Raghuram. L -functions of GL 2 n : p -adic properties and non-vanishing of twists. <i>Compositio Mathematica</i>, 2020, 156 (12), pp.2437-2468. <a target=\"_blank\" href=\"https://dx.doi.org/10.1112/S0010437X20007551\">⟨10.1112/S0010437X20007551⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256068v1\">⟨hal-04256068⟩</a>",
"title_s":["L -functions of GL 2 n : p -adic properties and non-vanishing of twists"],
"authFullName_s":["Mladen Dimitrov","Fabian Januszewski","A. Raghuram"],
"halId_s":"hal-04256068",
"docType_s":"ART",
"producedDateY_i":2020
},{
"citationRef_s":"<i>Journal of the Institute of Mathematics of Jussieu</i>, 2020, 19 (2), pp.281-306. <a target=\"_blank\" href=\"https://dx.doi.org/10.1017/S1474748018000026\">⟨10.1017/S1474748018000026⟩</a>",
"citationFull_s":"Mladen Dimitrov, Gabor Wiese. UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ATTACHED TO HILBERT MODULAR FORMS MOD OF WEIGHT 1. <i>Journal of the Institute of Mathematics of Jussieu</i>, 2020, 19 (2), pp.281-306. <a target=\"_blank\" href=\"https://dx.doi.org/10.1017/S1474748018000026\">⟨10.1017/S1474748018000026⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256060v1\">⟨hal-04256060⟩</a>",
"title_s":["UNRAMIFIEDNESS OF GALOIS REPRESENTATIONS ATTACHED TO HILBERT MODULAR FORMS MOD OF WEIGHT 1"],
"authFullName_s":["Mladen Dimitrov","Gabor Wiese"],
"halId_s":"hal-04256060",
"docType_s":"ART",
"producedDateY_i":2020
},{
"citationRef_s":"<i>p-Adic Aspects of Modular Forms</i>, WORLD SCIENTIFIC, pp.165-184, 2016, <a target=\"_blank\" href=\"https://dx.doi.org/10.1142/9789814719230_0005\">⟨10.1142/9789814719230_0005⟩</a>",
"citationFull_s":"Mladen Dimitrov. p-adic L-functions for Hilbert modular forms. <i>p-Adic Aspects of Modular Forms</i>, WORLD SCIENTIFIC, pp.165-184, 2016, <a target=\"_blank\" href=\"https://dx.doi.org/10.1142/9789814719230_0005\">⟨10.1142/9789814719230_0005⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04259108v1\">⟨hal-04259108⟩</a>",
"title_s":["p-adic L-functions for Hilbert modular forms"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"hal-04259108",
"docType_s":"COUV",
"producedDateY_i":2016
},{
"citationRef_s":"<i>Duke Mathematical Journal</i>, 2016, 165 (2), <a target=\"_blank\" href=\"https://dx.doi.org/10.1215/00127094-3165755\">⟨10.1215/00127094-3165755⟩</a>",
"citationFull_s":"Joël Bellaïche, Mladen Dimitrov. On the eigencurve at classical weight 1 points. <i>Duke Mathematical Journal</i>, 2016, 165 (2), <a target=\"_blank\" href=\"https://dx.doi.org/10.1215/00127094-3165755\">⟨10.1215/00127094-3165755⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256057v1\">⟨hal-04256057⟩</a>",
"title_s":["On the eigencurve at classical weight 1 points"],
"authFullName_s":["Joël Bellaïche","Mladen Dimitrov"],
"halId_s":"hal-04256057",
"docType_s":"ART",
"producedDateY_i":2016
},{
"citationRef_s":"<i>Documenta Mathematica</i>, 2015, 20, pp.1185-1205. <a target=\"_blank\" href=\"https://dx.doi.org/10.4171/DM/516\">⟨10.4171/DM/516⟩</a>",
"citationFull_s":"Mladen Dimitrov, Dinakar Ramakrishnan. Arithmetic quotients of the complex ball and a conjecture of Lang. <i>Documenta Mathematica</i>, 2015, 20, pp.1185-1205. <a target=\"_blank\" href=\"https://dx.doi.org/10.4171/DM/516\">⟨10.4171/DM/516⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256050v1\">⟨hal-04256050⟩</a>",
"title_s":["Arithmetic quotients of the complex ball and a conjecture of Lang"],
"authFullName_s":["Mladen Dimitrov","Dinakar Ramakrishnan"],
"halId_s":"hal-04256050",
"docType_s":"ART",
"producedDateY_i":2015
},{
"citationRef_s":"<i>Automorphic Forms and Galois Representations</i>, 2, Cambridge University Press, pp.1-16, 2014, <a target=\"_blank\" href=\"https://dx.doi.org/10.1017/CBO9781107297524.002\">⟨10.1017/CBO9781107297524.002⟩</a>",
"citationFull_s":"Mladen Dimitrov. On the local structure of ordinary Hecke algebras at classical weight one points. <i>Automorphic Forms and Galois Representations</i>, 2, Cambridge University Press, pp.1-16, 2014, <a target=\"_blank\" href=\"https://dx.doi.org/10.1017/CBO9781107297524.002\">⟨10.1017/CBO9781107297524.002⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04259104v1\">⟨hal-04259104⟩</a>",
"title_s":["On the local structure of ordinary Hecke algebras at classical weight one points"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"hal-04259104",
"docType_s":"COUV",
"producedDateY_i":2014
},{
"citationRef_s":"<i>Elliptic Curves, Hilbert Modular Forms and Galois Deformations</i>, Springer Basel, pp.119-134, 2013, <a target=\"_blank\" href=\"https://dx.doi.org/10.1007/978-3-0348-0618-3_3\">⟨10.1007/978-3-0348-0618-3_3⟩</a>",
"citationFull_s":"Mladen Dimitrov. Arithmetic Aspects of Hilbert Modular Forms and Varieties. <i>Elliptic Curves, Hilbert Modular Forms and Galois Deformations</i>, Springer Basel, pp.119-134, 2013, <a target=\"_blank\" href=\"https://dx.doi.org/10.1007/978-3-0348-0618-3_3\">⟨10.1007/978-3-0348-0618-3_3⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04258050v1\">⟨hal-04258050⟩</a>",
"title_s":["Arithmetic Aspects of Hilbert Modular Forms and Varieties"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"hal-04258050",
"docType_s":"COUV",
"producedDateY_i":2013
},{
"citationRef_s":"<i>American Journal of Mathematics</i>, 2013, 135 (4), pp.1117-1155. <a target=\"_blank\" href=\"https://dx.doi.org/10.1353/ajm.2013.0035\">⟨10.1353/ajm.2013.0035⟩</a>",
"citationFull_s":"Mladen Dimitrov. Automorphic symbols, <i>p</i>-adic <i>L</i>-functions and ordinary cohomology of Hilbert modular varieties. <i>American Journal of Mathematics</i>, 2013, 135 (4), pp.1117-1155. <a target=\"_blank\" href=\"https://dx.doi.org/10.1353/ajm.2013.0035\">⟨10.1353/ajm.2013.0035⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256043v1\">⟨hal-04256043⟩</a>",
"title_s":["Automorphic symbols, <i>p</i>-adic <i>L</i>-functions and ordinary cohomology of Hilbert modular varieties"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"hal-04256043",
"docType_s":"ART",
"producedDateY_i":2013
},{
"citationRef_s":"<i>Journal de Théorie des Nombres de Bordeaux</i>, 2012, 24 (3), pp.669-690. <a target=\"_blank\" href=\"https://dx.doi.org/10.5802/jtnb.816\">⟨10.5802/jtnb.816⟩</a>",
"citationFull_s":"Mladen Dimitrov, Eknath Ghate. On classical weight one forms in Hida families. <i>Journal de Théorie des Nombres de Bordeaux</i>, 2012, 24 (3), pp.669-690. <a target=\"_blank\" href=\"https://dx.doi.org/10.5802/jtnb.816\">⟨10.5802/jtnb.816⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256039v1\">⟨hal-04256039⟩</a>",
"title_s":["On classical weight one forms in Hida families"],
"authFullName_s":["Mladen Dimitrov","Eknath Ghate"],
"halId_s":"hal-04256039",
"docType_s":"ART",
"producedDateY_i":2012
},{
"citationRef_s":"<i>Manuscripta mathematica</i>, 2010, 133 (3-4), pp.479-504. <a target=\"_blank\" href=\"https://dx.doi.org/10.1007/s00229-010-0382-0\">⟨10.1007/s00229-010-0382-0⟩</a>",
"citationFull_s":"Mladen Dimitrov, Louise Nyssen. Test vectors for trilinear forms when at least one representation is not supercuspidal. <i>Manuscripta mathematica</i>, 2010, 133 (3-4), pp.479-504. <a target=\"_blank\" href=\"https://dx.doi.org/10.1007/s00229-010-0382-0\">⟨10.1007/s00229-010-0382-0⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-00480599v1\">⟨hal-00480599⟩</a>",
"title_s":["Test vectors for trilinear forms when at least one representation is not supercuspidal"],
"authFullName_s":["Mladen Dimitrov","Louise Nyssen"],
"halId_s":"hal-00480599",
"docType_s":"ART",
"producedDateY_i":2010
},{
"citationRef_s":"<i>Compositio Mathematica</i>, 2009, 145 (5), pp.1114-1146. <a target=\"_blank\" href=\"https://dx.doi.org/10.1112/S0010437X09004205\">⟨10.1112/S0010437X09004205⟩</a>",
"citationFull_s":"Mladen Dimitrov. On Ihara’s lemma for Hilbert modular varieties. <i>Compositio Mathematica</i>, 2009, 145 (5), pp.1114-1146. <a target=\"_blank\" href=\"https://dx.doi.org/10.1112/S0010437X09004205\">⟨10.1112/S0010437X09004205⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256035v1\">⟨hal-04256035⟩</a>",
"title_s":["On Ihara’s lemma for Hilbert modular varieties"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"hal-04256035",
"docType_s":"ART",
"producedDateY_i":2009
},{
"citationRef_s":"<i>Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres</i>, 2009, pp.1-12. <a target=\"_blank\" href=\"https://dx.doi.org/10.5802/pmb.a-121\">⟨10.5802/pmb.a-121⟩</a>",
"citationFull_s":"Mladen Dimitrov. Applications arithmétiques de la cohomologie ℓ -adique des variété modulaires de Hilbert. <i>Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres</i>, 2009, pp.1-12. <a target=\"_blank\" href=\"https://dx.doi.org/10.5802/pmb.a-121\">⟨10.5802/pmb.a-121⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04257800v1\">⟨hal-04257800⟩</a>",
"title_s":["Applications arithmétiques de la cohomologie ℓ -adique des variété modulaires de Hilbert"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"hal-04257800",
"docType_s":"ART",
"producedDateY_i":2009
},{
"citationRef_s":"2008",
"citationFull_s":"Mladen Dimitrov, Louise Nyssen. Test vectors for trilinear forms : the case of two principal series. 2008. <a target=\"_blank\" href=\"https://hal.science/hal-00328183v1\">⟨hal-00328183⟩</a>",
"title_s":["Test vectors for trilinear forms : the case of two principal series"],
"authFullName_s":["Mladen Dimitrov","Louise Nyssen"],
"halId_s":"hal-00328183",
"docType_s":"UNDEFINED",
"producedDateY_i":2008
},{
"citationRef_s":"<i>Journal of Number Theory</i>, 2006, 117 (2), pp.397-405. <a target=\"_blank\" href=\"https://dx.doi.org/10.1016/j.jnt.2005.07.003\">⟨10.1016/j.jnt.2005.07.003⟩</a>",
"citationFull_s":"Luis Dieulefait, Mladen Dimitrov. Explicit determination of images of Galois representations attached to Hilbert modular forms. <i>Journal of Number Theory</i>, 2006, 117 (2), pp.397-405. <a target=\"_blank\" href=\"https://dx.doi.org/10.1016/j.jnt.2005.07.003\">⟨10.1016/j.jnt.2005.07.003⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256031v1\">⟨hal-04256031⟩</a>",
"title_s":["Explicit determination of images of Galois representations attached to Hilbert modular forms"],
"authFullName_s":["Luis Dieulefait","Mladen Dimitrov"],
"halId_s":"hal-04256031",
"docType_s":"ART",
"producedDateY_i":2006
},{
"citationRef_s":"In Geometric Aspects of Dwork Theory, Walter de Gruyter, pp.555-614, 2004, <a target=\"_blank\" href=\"https://dx.doi.org/10.1515/9783110198133.2.555\">⟨10.1515/9783110198133.2.555⟩</a>",
"citationFull_s":"Mladen Dimitrov, Jacques Tilouine. Variétés et formes modulaires de Hilbert arithmétiques pour Γ1(c, n). In Geometric Aspects of Dwork Theory, Walter de Gruyter, pp.555-614, 2004, <a target=\"_blank\" href=\"https://dx.doi.org/10.1515/9783110198133.2.555\">⟨10.1515/9783110198133.2.555⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256817v1\">⟨hal-04256817⟩</a>",
"title_s":["Variétés et formes modulaires de Hilbert arithmétiques pour Γ1(c, n)"],
"authFullName_s":["Mladen Dimitrov","Jacques Tilouine"],
"halId_s":"hal-04256817",
"docType_s":"PROCEEDINGS",
"producedDateY_i":2004
},{
"citationRef_s":"In Geometric Aspects of Dwork Theory, Walter de Gruyter, pp.527-554, 2004, <a target=\"_blank\" href=\"https://dx.doi.org/10.1515/9783110198133.1.527\">⟨10.1515/9783110198133.1.527⟩</a>",
"citationFull_s":"Mladen Dimitrov. Compactifications arithmétiques des variétés de Hilbert et formes modulaires de Hilbert pour Γ1(c, n). In Geometric Aspects of Dwork Theory, Walter de Gruyter, pp.527-554, 2004, <a target=\"_blank\" href=\"https://dx.doi.org/10.1515/9783110198133.1.527\">⟨10.1515/9783110198133.1.527⟩</a>. <a target=\"_blank\" href=\"https://hal.science/hal-04256821v1\">⟨hal-04256821⟩</a>",
"title_s":["Compactifications arithmétiques des variétés de Hilbert et formes modulaires de Hilbert pour Γ1(c, n)"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"hal-04256821",
"docType_s":"PROCEEDINGS",
"producedDateY_i":2004
},{
"citationRef_s":"Mathématiques [math]. Université Paris-Nord - Paris XIII, 2003. Français. <a target=\"_blank\" href=\"https://www.theses.fr/\">⟨NNT : ⟩</a>",
"citationFull_s":"Mladen Dimitrov. Valeur critique de la fonction L adjointe d'une forme modulaire de Hilbert et arithmétique du motif correspondant. Mathématiques [math]. Université Paris-Nord - Paris XIII, 2003. Français. <a target=\"_blank\" href=\"https://www.theses.fr/\">⟨NNT : ⟩</a>. <a target=\"_blank\" href=\"https://theses.hal.science/tel-00005179v1\">⟨tel-00005179⟩</a>",
"title_s":["Valeur critique de la fonction L adjointe d'une forme modulaire de Hilbert et arithmétique du motif correspondant","Special value of the adjoint L-function of a Hilbert modular form and arithmetic of the corresponding motive"],
"authFullName_s":["Mladen Dimitrov"],
"halId_s":"tel-00005179",
"docType_s":"THESE",
"producedDateY_i":2003
}]
}
}