Erick Pruchnicki
Publications
- Pruchnicki E, Shahrour I. (1991): Application de la théorie de l’homogénéisation aux colonnes ballastées. Annales de l’ITBTP. Vol. 496, pp. 119-127.
- Pruchnicki, E. and Shahrour, I. (1992) : Loi d’évolution homogénéisée du matériau multicouche à constituants élastoplastiques parfaits. C.R.Acad.Sci.Paris. Vol. 315 (II), pp. 137-142.
- Pruchnicki, E. and Shahrour, I. (1994) : A macroscopic elastoplastic law for multilayered media : Application to reinforced earth material. International Journal for numerical and analytical methods in Geomechanics. 18, 507- 518.
- Pruchnicki, E. (1998a) : Homogenized nonlinear constitutive law using Fourier Series expansion. Int.J.Solids Structures. Vol. 35, pp. 1895-1913.
- Pruchnicki, E. (1998b) : Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects. Acta mechanica, Vol. 129, pp. 139-162.
- Pruchnicki, E. (1998c) : Overall properties of thin hyperelastic plates with edge effects using asymptotic method. Int.J.Engng.Sci. Vol. 36, pp. 973-1000.
- Pruchnicki, E. (1998d) : Homogenized elastoplastic properties for a partially cohesive composite material. Z.Angew.Math.Phys. Vol. 49, pp. 568-589.
- Pruchnicki, E : (2002) : Nonlinearly elastic membrane model for heterogeneous plates : a formal asymptotic approach by using a new double scale variationnal formulation. Int.J.Engng.Sci. Vol. 40, pp. 2183-2202.
- Pruchnicki, E : (2006) : Nonlinearly elastic membrane model for heterogeneous shells : a formal asymptotic approach by using a new double scale variationnal formulation. J Elasticity. Vol. 84, pp. 245-280.
- Pruchnicki, E : (2009) : Two-dimensional nonlinear models for heterogeneous plates. Comptes Rendus - Mecanique 337 (5) , pp. 297-302.
- Pruchnicki, E: (2011a). Derivation of a hierarchy of nonlinear two-dimensional models for heterogeneous plates. Mathematics and Mechanics of Solids. Vol. 16 (1) , pp. 77-108.
- Pruchnicki, E: (2011b). Two-dimensional model for the combined bending, stretching and transverse shearing of laminated plates derived from three-dimensional elasticity. Mathematics and Mechanics of Solids. Vol. 16 (3) , pp. 304-316.
- Pruchnicki, E. (2012). One-dimensional model for the combined bending, stretching, shearing and torsion of rods derived from three-dimensional elasticity. Mathematics and Mechanics of Solids. Vol. 17 (4) , pp. 378-392.
- Leszczynska, D. Pruchnicki, E. (2013). Mathematical Model of the Influence of Knowledge Transfer on the Location Choice of a Multinational Company, British Journal of Economics, Management & Trade. Vol. 3(4), pp. 321-331.
- Pruchnicki, E. (2014 a). Two-dimensional model of order h5 for the combined bending, strechtching, transverse shearing and transverse normal stress effect of homogeneous plates derived from three-dimensional elasticity. Mathematics and Mechanics of Solids. 19 (5), pp. 477490.
- Pruchnicki, E. (2014 b). Two-dimensional model for the combined bending, stretching and shearing of shells :general approach and application to laminated cylindrical shells derived from three-dimensional elasticity. Mathematics and Mechanics of Solids. Vol. 19 (5), pp. 491-501.
- Leszczynska, D. Pruchnicki, E. (2015). The evolution of knowledge transfer and the location of a multinational corporation: theory and mathematical model. Multinational business review. Vol. 23(2), pp 111-129.
- Leszczynska, D. Pruchnicki, E. (2016 a). Location of a multinational corporation in a cluster : a theoretical model of knowledge transfer. Multinational business review. Vol. 24 (2), pp. 144-167.
- . Pruchnicki, E. (2016 b). A fifth-order model for shells which combines bending, stretching and transverse shearing deduced from three-dimensional elasticity. Mathematics and Mechanics of Solids 2016, Vol. 21(7), pp. 842–855.
- Pruchnicki, E. (2017 a). One-dimensional models of fourth and sixth orders for rods derived from three-dimensional elasticity. Mathematic and Mechanic of solid, Vol. 22(2), pp. 158-175.
- Pruchnicki, E. (2017 b). One-dimensional model of fourth order for rods with loading on lateral boundary: The case of rectangular cross section. Mathematic and Mechanic of solid. Vol. 22(12), pp. 2269-2287.
- Leszczynska, D. and Pruchnicki, E. (2017 c). A simple criterion to locate a multinational corporation resulting from optimization of knowledge transfer. Journal of Management Development Vol. 36 No. 9, pp. 1191-1202.
- Pruchnicki, E. (2018 a). Contribution to beam theory based on 3-D energy principle. Mathematic and Mechanic of solid, Vol. 23 (5), pp. 775-786
- Pruchnicki, E. (2018 b). Homogenization of a second order plate model. Mathematic and Mechanic of solid. Mathematic and Mechanic of solid. Vol. 23(9), pp. 1323-1332.
- Pruchnicki, E. (2018 c). An exact two-dimensional model for heterogeneous plates. Mathematic and Mechanic of solid, 24(3), pp. 637-652.
- Pruchnicki, E. (2019 a). On the homogenization of nonlinear shell. Mathematic and Mechanic of solid. Vol. 24 (4), 1054–1064.
- Pruchnicki, E. (2019 b). Some specific aspects of linear homogenization shell theory. Mathematic and Mechanic of solid. 24(4), pp. 1116-1128.
- Pruchnicki, E. and Dai, H.H. (2019 c). New refined models for curved beams in both linear and nonlinear settings. Mathematic and Mechanic of solid. 24(7), pp. 2295-2319.
- Leszczyńska, D. and Pruchnicki, E. (2020). A simple criterion for locating a multinational corporation to optimize technological knowledge transfer. International Journal of Technology and Human Interactions. Vol. 16, Issue 1, pp 63-76.
- Leszczyńska, D., Pruchnicki, E. and Małgorzata Domiter (2019). Interactive learning and innovation: conceptual and mathematical models. A district study. Journal of Economics, Management & Trade. 22 (3), pp 1-13.
- Pruchnicki, E. (2019 d). On the Homogenization of Nonlinear Shell. Advanced Strutural Materials. 110, pp. 525-539.
- Pruchnicki, E., 2020. Non linear homogenization of heterogeneous periodic plates of Reissner-Mindlin type. Journal of Theoretical and Applied Mechanics, 58(2):317–323.
- Chen, X., Dai H.H. and Pruchnicki, E. On a consistent rod theory for a linearized anisotropic elastic material: I. Asymptotic reduction method. Math Mech Solids 2021, 26(2) : 217–229.
- Pruchnicki, E. Xiaoyi, C. and Dai, H.H. New refined model for curved linear anisotropic rods with circular cross section. Applications in Engineering Science 2021, 6 doi.org/10.1016/j.apples.2021.100046.
- Chen, X., Dai H.H. and Pruchnicki, E. On a consistent rod theory for a linearized anisotropic elastic material II. Examples and parametric study. Accepté pour publication aout 2021. doi.org/10.1177/10812865211034905
- Chen, X., Dai H.H. and Pruchnicki, E. On a consistent rod theory for a linearized anisotropic elastic material II. Examples and parametric study. Volume 27, Issue 4
https://doi.org/10.1177/10812865211034905, 2021.
37. Pruchnicki, E. and Dai, H.H. (2019). New refined models for curved beams in both linear and nonlinear settings. Mathematic and Mechanic of solid. 24(7), pp. 2295-2319.
[38] Chen, X., Pruchnicki, E. Dai H.H. and Xiang, Y. A uniform framework for the dynamic behavior of linearized anisotropic elastic rods. Volume 27 Issue 8, August 2022.
[39] E. Pruchnicki, X. Chen and H.-H. Dai, A novel reduced model for a linearized anisotropic rod with double symmetric cross section: I. Theory, 2022, Math. Mech. Solids, 27, 1455-1479.
[40] Pruchnicki, E. Two New Models for Dynamic Linear Elastic Beams and Simplifications for Double Symmetric Cross-Sections. Symmetry, 2022, 14(6), 1093; https://doi.org/10.3390/sym14061093.
Congrès nationaux avec proceeding
Pruchnicki E, Shahrour I. (1991): Un programme de calcul par éléments finis pour les matériaux composites ayant un comportement élastoplastique, Actes des conférences Strucome, Paris, pp. 907-917.
Pruchnicki E, Shahrour I. (1992): Validation d’un modèle élastoplastique homogénéisé destiné aux matériaux multicouches. Actes des conférences Strucome, Paris, pp. 731-740.
Pruchnicki E, Shahrour I. (1993): Etude des caractéristiques homogénéisés d’un matériau composite à comportement élastoplastique à l’aide d’un programme utilisant les développements en séries de Fourier. Actes des conférences Strucome, Paris, pp. 387-398.
Pruchnicki E, Shahrour I. (1993) : Formulation thermodynamique d’une loi élastoplastique homogénéisée pour les multicouches. Actes du 11ème Congrès français de mécanique, Vol 5, pp. 501-504.
Pruchnicki E, Shahrour I. (1995): Loi hyperélastique homogénéisée pour les composites à matrice élastomère en grandes déformations. Actes du 12ème Congrès français de mécanique, Vol 1, pp. 385-388.
Congrès Internationaux avec proceedings
Pruchnicki E, Shahrour I. (1991): Description of the behaviour of reinforced soil using the homogenization method. 2 nd International Conference sur la plasticité, Grenoble, pp. 209-212.
Pruchnicki E. (1997) : Loi hyperélastique homogénéisée pour les structures composites à matrice élastomère en grandes déformations. In : Multiple scale analyses and coupled physical systems. Ponts & Chaussées St Venant Symposium (Salençon, J., ed.), Paris, pp. 275-282.
Pruchnicki E. (1997) : Loi hyperélastique homogénéisée pour les plaques composites en grandes déformations avec effets de bord. In : Multiple scale analyses and coupled physical systems. Ponts & Chaussées St Venant Symposium (Salençon, J., ed.), Paris, pp. 283-290.
Pruchnicki E. (2012). One-dimensional model for the combined bending, stretching, shearing and torsion of laminated rods derived from three-dimensional elasticity. ESMC 2012 8th european solid mechanics conference graz, austria.
Pruchnicki E. (2014). Two-dimensional model of fifth order for the combined bending, stretching and shearing of shells derived from three-dimensional elasticity : general approach and application to cylindrical shells. 39 th solid mechanics conference zakopane. Poland. September 1-5.
Pruchnicki E. (2018). Homogenization of nonlinear highly heterogeneous shell. ICMAMS 2018 First International Conference on Mechanics of Advanced Materials and Structures Turin, 17-20 June 2018.
Chen, X., Pruchnicki, E and Dai H.H. A new type of undimensional optimized model for rod deduced from three dimensional elasticity. 16 éme international conference on dynamical systems theory and applications. 6-9 décembre 2021.
Congrès Internationaux avec publication dans un livre édité
Pruchnicki E. Two-dimensional model of fifth order in thickness for homogeneous plates. Pp. 145148. Shell Structures: Theory and Applications, Vol 3 – Pietraszkiewitcz & Gorki (Eds) 2014. Taylor & Francis Group, London.
Leszczynska, D. and Pruchnicki, E. Theory and mathematical model of the influence of knowledge transfer on the location of a multinational. pp 269-281. New directions in management and organization theory. Edited by Jeffrey A. Miles. (2014). Cambridge scholars publishing.
Pruchnicki E. Homogenization of a second order plate model. Pp. 145-148. Shell Structures: Theory and Applications, Vol 4 – Pietraszkiewitcz & Witkowski (Eds) 2018. Taylor & Francis Group, London.
Conférences internationales invitées
Pruchnicki E. (2018). Homogenization of both linear and nonlinear highly heterogeneous periodic plate and shell and a related problematic. International conference on applied mathematics. Hong-Kong, 4-8 June 2018.
Pruchnicki E. (2019). A new double scale variational formulation for homogenization of highly heterogeneous shells with possibility of taking into account of edge effects. International Conference on Elliptic and Parabolic Problems. Gaeta 20-24 May 2019.