Rechercher

Paramétrage

Thèmes

Accessibilité

Accessibilité

Erick Pruchnicki

Maître de conférences CNU : SECTION 60 - MECANIQUE, GENIE MECANIQUE, GENIE CIVIL Laboratoire / équipe

Publications

  1. Pruchnicki E, Shahrour I. (1991): Application de la théorie de l’homogénéisation aux colonnes ballastées. Annales de l’ITBTP. Vol. 496, pp. 119-127.
  2. Pruchnicki, E. and Shahrour, I. (1992) : Loi d’évolution homogénéisée du matériau multicouche à constituants élastoplastiques parfaits. C.R.Acad.Sci.Paris. Vol. 315 (II), pp. 137-142.
  3. Pruchnicki, E. and Shahrour, I. (1994) : A macroscopic elastoplastic law for multilayered media : Application to reinforced earth material. International Journal for numerical and analytical methods in Geomechanics. 18, 507- 518.
  4. Pruchnicki, E. (1998a) : Homogenized nonlinear constitutive law using Fourier Series expansion. Int.J.Solids Structures. Vol. 35, pp. 1895-1913.
  5. Pruchnicki, E. (1998b) : Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects. Acta mechanica, Vol. 129, pp. 139-162.
  6. Pruchnicki, E. (1998c) : Overall properties of thin hyperelastic plates with edge effects using asymptotic method. Int.J.Engng.Sci. Vol. 36, pp. 973-1000.
  7. Pruchnicki, E. (1998d) : Homogenized elastoplastic properties for a partially cohesive composite material. Z.Angew.Math.Phys. Vol. 49, pp. 568-589.
  8. Pruchnicki, E : (2002) : Nonlinearly elastic membrane model for heterogeneous plates : a formal asymptotic approach by using a new double scale variationnal formulation. Int.J.Engng.Sci. Vol. 40, pp. 2183-2202.
  9. Pruchnicki, E : (2006) : Nonlinearly elastic membrane model for heterogeneous shells : a formal asymptotic approach by using a new double scale variationnal formulation. J Elasticity. Vol. 84, pp. 245-280.
  10. Pruchnicki, E : (2009) : Two-dimensional nonlinear models for heterogeneous plates.  Comptes Rendus - Mecanique 337 (5) , pp. 297-302.
  11. Pruchnicki, E: (2011a). Derivation of a hierarchy of nonlinear two-dimensional models for heterogeneous plates. Mathematics and Mechanics of Solids. Vol. 16 (1) , pp. 77-108. 
  12. Pruchnicki, E: (2011b). Two-dimensional model for the combined bending, stretching and transverse shearing of laminated plates derived from three-dimensional elasticity. Mathematics and Mechanics of Solids. Vol. 16 (3) , pp. 304-316.
  13. Pruchnicki, E. (2012). One-dimensional model for the combined bending, stretching, shearing and torsion of rods derived from three-dimensional elasticity. Mathematics and Mechanics of Solids. Vol. 17 (4) , pp. 378-392. 
  14. Leszczynska, D. Pruchnicki, E. (2013). Mathematical Model of the Influence of Knowledge Transfer on the Location Choice of a Multinational Company,  British Journal of Economics, Management & Trade. Vol. 3(4), pp. 321-331.
  15. Pruchnicki, E. (2014 a). Two-dimensional model of order h5 for the combined bending, strechtching, transverse shearing and transverse normal stress effect of homogeneous plates derived from three-dimensional elasticity. Mathematics and Mechanics of Solids. 19 (5), pp. 477490.
  16. Pruchnicki, E. (2014 b). Two-dimensional model for the combined bending, stretching and shearing of shells :general approach and application to laminated cylindrical shells derived from three-dimensional elasticity.  Mathematics and Mechanics of Solids. Vol. 19 (5), pp. 491-501. 
  17. Leszczynska, D. Pruchnicki, E. (2015). The evolution of knowledge transfer and the location of a multinational corporation: theory and mathematical model. Multinational business review. Vol. 23(2), pp 111-129.
  18. Leszczynska, D. Pruchnicki, E. (2016 a). Location of a multinational corporation in a cluster : a theoretical model of knowledge transfer. Multinational business review. Vol. 24 (2), pp. 144-167. 
  19. . Pruchnicki, E. (2016 b). A fifth-order model for shells which combines bending, stretching and transverse shearing deduced from three-dimensional elasticity. Mathematics and Mechanics of Solids 2016, Vol. 21(7), pp. 842–855.
  20. Pruchnicki, E. (2017 a). One-dimensional models of fourth and sixth orders for rods derived from three-dimensional elasticity. Mathematic and Mechanic of solid, Vol. 22(2), pp. 158-175. 
  21. Pruchnicki, E. (2017 b). One-dimensional model of fourth order for rods with loading on lateral boundary: The case of rectangular cross section. Mathematic and Mechanic of solid. Vol. 22(12), pp. 2269-2287.
  22. Leszczynska, D. and Pruchnicki, E. (2017 c). A simple criterion to locate a multinational corporation resulting from optimization of knowledge transfer. Journal of Management Development Vol. 36 No. 9,  pp. 1191-1202.
  23. Pruchnicki, E. (2018 a). Contribution to beam theory based on 3-D energy principle. Mathematic and Mechanic of solid, Vol. 23 (5), pp. 775-786 
  24. Pruchnicki, E. (2018 b). Homogenization of a second order plate model. Mathematic and Mechanic of solid. Mathematic and Mechanic of solid. Vol. 23(9), pp. 1323-1332.
  25. Pruchnicki, E. (2018 c). An exact two-dimensional model for heterogeneous plates. Mathematic and Mechanic of solid, 24(3), pp. 637-652.                      
  26. Pruchnicki, E. (2019 a). On the homogenization of nonlinear shell. Mathematic and Mechanic of solid. Vol. 24 (4), 1054–1064.
  27. Pruchnicki, E. (2019 b). Some specific aspects of linear homogenization shell theory. Mathematic and Mechanic of solid. 24(4), pp. 1116-1128.             
  28. Pruchnicki, E. and Dai, H.H. (2019 c). New refined models for curved beams in both linear and nonlinear settings. Mathematic and Mechanic of solid. 24(7), pp. 2295-2319.
  29. Leszczyńska, D. and Pruchnicki, E. (2020). A simple criterion for locating a multinational corporation to optimize technological knowledge transfer. International Journal of Technology and Human Interactions. Vol. 16, Issue 1, pp 63-76.
  30. Leszczyńska, D., Pruchnicki, E. and Małgorzata Domiter (2019). Interactive learning and innovation: conceptual and mathematical models. A district study. Journal of Economics, Management & Trade. 22 (3), pp 1-13.
  31. Pruchnicki,    E.         (2019 d).       On       the      Homogenization       of         Nonlinear       Shell.   Advanced       Strutural           Materials.       110,    pp.       525-539.
  32. Pruchnicki, E., 2020. Non linear homogenization of heterogeneous periodic plates of Reissner-Mindlin type. Journal of Theoretical and Applied Mechanics, 58(2):317–323.
  33. Chen, X., Dai H.H.     and Pruchnicki, E. On a consistent rod theory for a linearized anisotropic elastic material: I. Asymptotic reduction method. Math Mech Solids 2021, 26(2) : 217–229.       
  34. Pruchnicki,    E.         Xiaoyi, C.         and     Dai,     H.H.     New    refined           model for       curved            linear  anisotropic    rods           with    circular           cross   section.           Applications   in         Engineering   Science           2021,  6           doi.org/10.1016/j.apples.2021.100046.                    
  35. Chen, X., Dai H.H.     and Pruchnicki, E. On a consistent rod theory for a linearized anisotropic elastic material II. Examples and parametric study.       Accepté          pour   publication    aout    2021.  doi.org/10.1177/10812865211034905                     
  36.    Chen, X., Dai H.H. and Pruchnicki, E. On a consistent rod theory for a linearized anisotropic elastic material II. Examples and parametric study. Volume 27, Issue 4

https://doi.org/10.1177/10812865211034905, 2021.

37. Pruchnicki, E. and Dai, H.H. (2019). New refined models for curved beams in both linear and nonlinear settings. Mathematic and Mechanic of solid. 24(7), pp. 2295-2319.

[38] Chen, X., Pruchnicki, E. Dai H.H. and  Xiang, Y. A uniform framework for the dynamic behavior of linearized anisotropic elastic rods. Volume 27 Issue 8, August 2022.

[39]  E. Pruchnicki, X. Chen and H.-H. Dai, A novel reduced model for a linearized anisotropic rod with double symmetric cross section: I. Theory, 2022, Math. Mech. Solids, 27, 1455-1479.

[40] Pruchnicki, E. Two New Models for Dynamic Linear Elastic Beams and Simplifications for Double Symmetric Cross-Sections. Symmetry, 2022, 14(6), 1093; https://doi.org/10.3390/sym14061093.

  Congrès nationaux avec proceeding

Pruchnicki E, Shahrour I. (1991): Un programme de calcul par éléments finis pour les matériaux composites ayant un comportement élastoplastique, Actes des conférences Strucome, Paris, pp. 907-917.

Pruchnicki E, Shahrour I. (1992): Validation d’un modèle élastoplastique homogénéisé destiné aux matériaux multicouches. Actes des conférences Strucome, Paris, pp. 731-740.

Pruchnicki E, Shahrour I. (1993): Etude des caractéristiques homogénéisés d’un matériau composite à comportement élastoplastique à l’aide d’un programme utilisant les développements en séries de Fourier. Actes des conférences Strucome, Paris, pp. 387-398.

Pruchnicki E, Shahrour I. (1993) : Formulation thermodynamique d’une loi élastoplastique homogénéisée pour les multicouches. Actes du 11ème Congrès français de mécanique, Vol 5, pp. 501-504.

Pruchnicki E, Shahrour I. (1995): Loi hyperélastique homogénéisée pour les composites à matrice élastomère en grandes déformations. Actes du 12ème Congrès français de mécanique, Vol 1, pp. 385-388.

 Congrès Internationaux avec proceedings

Pruchnicki E, Shahrour I. (1991): Description of the behaviour of reinforced soil using the homogenization method. 2 nd International Conference sur la plasticité, Grenoble, pp. 209-212.

Pruchnicki E. (1997) : Loi hyperélastique homogénéisée pour les structures composites à matrice élastomère en grandes déformations. In : Multiple scale analyses and coupled physical systems. Ponts & Chaussées St Venant Symposium (Salençon, J., ed.), Paris, pp. 275-282.

Pruchnicki E. (1997) : Loi hyperélastique homogénéisée pour les plaques composites en grandes déformations avec effets de bord. In : Multiple scale analyses and coupled physical systems. Ponts & Chaussées St Venant Symposium (Salençon, J., ed.), Paris, pp. 283-290.

Pruchnicki E. (2012). One-dimensional model for the combined bending, stretching, shearing and torsion of laminated rods derived from three-dimensional elasticity. ESMC 2012 8th european solid mechanics conference graz, austria.

 Pruchnicki E. (2014). Two-dimensional model of fifth order for the combined bending, stretching and shearing of shells derived from three-dimensional elasticity : general approach and application to cylindrical shells. 39 th solid mechanics conference zakopane. Poland. September 1-5.

Pruchnicki E. (2018). Homogenization of nonlinear highly heterogeneous shell. ICMAMS 2018 First International Conference on Mechanics of Advanced Materials and Structures Turin, 17-20 June 2018. 

Chen, X., Pruchnicki, E and Dai H.H.  A new type of undimensional optimized model for rod deduced from three dimensional elasticity. 16 éme international conference on dynamical systems theory and applications. 6-9 décembre 2021.               

Congrès Internationaux  avec publication dans un livre édité

Pruchnicki E. Two-dimensional model of fifth order in thickness for homogeneous plates. Pp. 145148. Shell Structures: Theory and Applications, Vol 3 – Pietraszkiewitcz & Gorki (Eds) 2014. Taylor & Francis Group, London.

Leszczynska, D. and Pruchnicki, E. Theory and mathematical model of the influence of knowledge transfer on the location of a multinational. pp 269-281. New directions in management and organization theory. Edited by Jeffrey A. Miles. (2014). Cambridge scholars publishing. 

Pruchnicki E. Homogenization of a second order plate model. Pp. 145-148. Shell Structures: Theory and Applications, Vol 4 – Pietraszkiewitcz & Witkowski (Eds) 2018. Taylor & Francis Group, London.

Conférences internationales invitées

Pruchnicki E. (2018). Homogenization of both linear and nonlinear highly heterogeneous periodic plate and shell and a related problematic. International conference on applied mathematics. Hong-Kong, 4-8 June 2018. 

Pruchnicki E. (2019). A new double scale variational formulation for homogenization of highly heterogeneous shells with possibility of taking into account of edge effects. International Conference on Elliptic and Parabolic Problems. Gaeta 20-24 May 2019.