Olivier Goubet

Professeur des universités - Mathématiques appliquées et Application des Mathématiques
CNU : SECTION 26 - MATHEMATIQUES APPLIQUEES ET APPLICATIONS DES MATHEMATIQUES
olivier_goubet.jpg

Olivier Goubet

Professeur des universités - Mathématiques appliquées et Application des Mathématiques

Publications

Article dans des revues

  • Gauthier Delvoye, Olivier Goubet, Frédéric Paccaut. Comparison principles and applications to mathematical modelling of vegetal meta-communities. Mathematics in Engineering, AIMS, 2022, 4 (5), pp.1-17. ⟨10.3934/mine.2022035⟩. ⟨hal-03588659⟩
  • Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2021, 14 (8), pp.2877-2891. ⟨10.3934/dcdss.2020456⟩. ⟨hal-02944262⟩
  • Serge Dumont, Olivier Goubet, Imen Manoubi. Decay of solutions to a water wave model with a nonlocal viscous term. Afrika Matematika, Springer, 2020, 31, pp.115-127. ⟨10.1007/s13370-019-00748-2⟩. ⟨hal-02068336⟩
  • Filippo Dell'Oro, Olivier Goubet, Youcef Mammeri, Vittorino Pata. Global Attractors for the Benjamin-Bona-Mahony Equation with Memory. Indiana University Mathematics Journal, 2020, 69 (3), pp.749-783. ⟨10.1512/iumj.2020.69.7906⟩. ⟨hal-03621773⟩
  • Guillaume Fenger, Olivier Goubet, Youcef Mammeri. Numerical Analysis of the Midpoint Scheme for the Generalized Benjamin-Bona-Mahony Equation with White Noise Dispersion. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (5, SI), pp.1397-1414. ⟨10.4208/cicp.2019.js60.02⟩. ⟨hal-03621774⟩
  • Filippo Dell'Oro, Olivier Goubet, Youcef Mammeri, Vittorino Pata. A SEMIDISCRETE SCHEME FOR EVOLUTION EQUATIONS WITH MEMORY. Discrete and Continuous Dynamical Systems, 2019, 39 (10), pp.5637-5658. ⟨10.3934/dcds.2019247⟩. ⟨hal-03621775⟩
  • M. Chen, Olivier Goubet, Youcef Mammeri. Generalized regularized long wave equation with white noise dispersion. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (3), pp.319-342. ⟨10.1007/s40072-016-0089-7⟩. ⟨hal-03621776⟩
  • Caterina Calgaro, Olivier Goubet, Ezzeddine Zahrouni. Finite dimensional global attractor for a semi-discrete fractional nonlinear Schrödinger equation. Mathematical Methods in the Applied Sciences, Wiley, 2017, ⟨10.1002/mma.4409⟩. ⟨hal-01388788⟩
  • Denys Dutykh, Olivier Goubet. Derivation of dissipative Boussinesq equations using the Dirichlet-to-Neumann operator approach. Mathematics and Computers in Simulation, Elsevier, 2016, Special Issue: Nonlinear Waves: Computation and Theory-IX, 127, pp.80-93. ⟨10.1016/j.matcom.2013.12.008⟩. ⟨hal-00596804v3⟩
  • Olivier Goubet, Simon Labrunie. The Dirichlet problem for $-\Delta \varphi= \mathrm{e}^{-\varphi}$ in an infinite sector. Application to plasma equilibria.. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2015, 119, pp.115-126. ⟨10.1016/j.na.2014.08.015⟩. ⟨hal-01009131v2⟩
  • Francoise Demengel, Olivier Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, AIMS American Institute of Mathematical Sciences, 2013, 2, pp.621-645. ⟨10.3934/cpaa.2013.12.621⟩. ⟨hal-02979373⟩
  • Françoise Demengel, Olivier Goubet. EXISTENCE OF BOUNDARY BLOW UP SOLUTIONS FOR SINGULAR OR DEGENERATE FULLY NONLINEAR EQUATIONS. Communications on Pure and Applied Mathematics, Wiley, 2013, 12 (2), pp.621-645. ⟨hal-00842108⟩
  • Laure Brisoux Devendeville, Serge Dumont, Olivier Goubet, Sylvain Lefebvre. Algorithms for Constrained Best-fit Alignment. Journal of Informatics and Mathematical Sciences, RGN Publications, 2013, 5 (2), pp.77-100. ⟨10.26713/jims.v5i2.180⟩. ⟨hal-00999255⟩
  • L. Dupaigne, M. Ghergu, O. Goubet, Guillaume Warnault. The Gel'fand Problem for the Biharmonic Operator. Archive for Rational Mechanics and Analysis, Springer Verlag, 2013, 208 (3), pp.725-752. ⟨10.1007/s00205-013-0613-0⟩. ⟨hal-00866955⟩
  • M. Darbas, O. Goubet, S. Lohrengel. Exact boundary controllability of the second-order Maxwell system: Theory and numerical simulation. Computers & Mathematics with Applications, Elsevier, 2012, 63 (7), pp.1212 - 1237. ⟨10.1016/j.camwa.2011.12.046⟩. ⟨hal-01888367⟩
  • Min Chen, Serge Dumont, Olivier Goubet. Decay of solutions to a viscous asymptotical model for waterwaves: Kakutani–Matsuuchi model. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2012, 75 (5), pp.2883-2893. ⟨10.1016/j.na.2011.11.030⟩. ⟨hal-01113722⟩
  • L. Dupaigne, M. Ghergu, O. Goubet, Guillaume Warnault. Entire large solutions for semilinear elliptic equations. Journal of Differential Equations, Elsevier, 2012, 253 (7), pp.2224-2251. ⟨10.1016/j.jde.2012.05.024⟩. ⟨hal-00865025⟩
  • Pascal Poullet, Séverine Andouze-Bernard, Olivier Goubet. A Multilevel method for solving the Helmholtz equation: The analysis of the one-dimensional case. International Journal of Numerical Analysis and Modeling, Institute for Scientific Computing and Information, 2011, 8 (3), pp.365. ⟨hal-00601461⟩
  • Olivier Goubet, Louis Dupaigne, Serge Dumont, Min Chen. Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2010, 27 (4), pp.1473-1492. ⟨10.3934/dcds.2010.27.1473⟩. ⟨hal-01113773⟩
  • Emmanuelle Sebert-Cuvillier, Matthieu Simonet, Valérie Simon-Goyheneche, Frédéric Paccaut, Olivier Goubet, et al.. PRUNUS: a spatially explicit demographic model to study plant invasions in stochastic, heterogeneous environments. Biological Invasions, Springer Verlag, 2010, 12 (5), pp.1183-1206. ⟨10.1007/s10530-009-9539-8⟩. ⟨hal-03588651⟩
  • Olivier Goubet, Luc Molinet. Global attractor for weakly damped Nonlinear Schrödinger equations in $L^2(\R)$. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2009, 71, pp.317-320. ⟨hal-00421278⟩
  • Emmanuelle Sebert-Cuvillier, Valérie Simon-Goyheneche, Frédéric Paccaut, Olivier Chabrerie, Olivier Goubet, et al.. Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model. Landscape Ecology, Springer Verlag, 2008, 23 (7), pp.787-801. ⟨10.1007/s10980-008-9237-4⟩. ⟨hal-03588652⟩
  • Mostafa Abounouh, Hassan Moatassime, Jean-Paul Chehab, Serge Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure and Applied Analysis, AIMS American Institute of Mathematical Sciences, 2008, 7 (2), pp.211-227. ⟨10.3934/cpaa.2008.7.211⟩. ⟨hal-01113776⟩
  • Emmanuelle Sebert-Cuvillier, Frédéric Paccaut, Olivier Chabrerie, Patrick Endels, Olivier Goubet, et al.. Local population dynamics of an invasive tree species with a complex life-history cycle: A stochastic matrix model. Ecological Modelling, Elsevier, 2007, 201 (2), pp.127-143. ⟨10.1016/j.ecolmodel.2006.09.005⟩. ⟨hal-03588653⟩
  • Serge Dumont, Louis Dupaigne, Olivier Goubet, Vicentiu Radulescu. Back to the Keller-Osserman condition for boundary blow-up solutions. Advanced Nonlinear Studies, Walter de Gruyter GmbH, 2007, pp.271 298. ⟨hal-00204941⟩
  • Serge Dumont, Olivier Goubet, Tuong Ha-Duong, Pierre Villon. Meshfree methods and boundary conditions. International Journal for Numerical Methods in Engineering, Wiley, 2006, 67 (7), pp.989-1011. ⟨10.1002/nme.1659⟩. ⟨hal-01113782⟩

Communication dans un congrès

  • Guillaume Warnault, Louis Dupaigne, Olivier Goubet, Marius Ghergu. Large solution for semilinear elliptice equations. Workshop on Nonlinear PDE and applications : Theoretical and Numerical Study, May 2014, Tanger, Morocco. ⟨hal-02137546⟩
  • L. Dupaigne, M. Ghergu, O. Goubet, Guillaume Warnault. Large solutions for semilinear elliptic equations. Workshop on nonlinear PDE and Applications : theorical and numerical study (Tanger), 2014, Unknown. ⟨hal-01051517⟩
  • Marion Darbas, Edouard Demaldent, Olivier Goubet, Vianney Real. Eddy current interaction between a probe coil and a conducting plate. 2nd ECCOMAS Young Investigators Conference (YIC 2013), Sep 2013, Bordeaux, France. ⟨hal-00855873⟩
  • Serge Dumont, Olivier Goubet, Min Chen. Non local dispersive and diffusive asymptotical models for waterwaves. 7th IMACS International Conference "Non linear evolution equations and wave phenomena : computational and theory", Apr 2011, Athens, United States. ⟨hal-01818009⟩
  • Serge Dumont, Laure Brisoux Devendeville, Olivier Goubet, Sylvain Lefebvre. Algorithms for Constrained Best-Fit Alignement. CPAIOR 2010, Jun 2010, Bologna, Italy. ⟨hal-01818038⟩
  • Serge Dumont, Olivier Goubet, Min Chen. Viscous Asymptotical Models for Waterwaves. 6th IMACS International Conference "Non Linear Evolution Equations and Wave Phenomena : Computational and Theory", Mar 2009, Athens, United States. ⟨hal-01818068⟩
  • Serge Dumont, Olivier Goubet, Tuong Ha-Duong, Pierre Villon. Méthodes sans maillage et conditions aux limites. 7e colloque national en calcul des structures, CSMA, May 2005, Giens, France. ⟨hal-01812994⟩

Pré-publication, Document de travail

  • Gauthier Delvoye, Olivier Goubet, Frédéric Paccaut. Comparison principles and applications to mathematical modelling of vegetal meta-communities. 2021. ⟨hal-03431483⟩
  • Nabil Bedjaoui, Vivien Desveaux, Olivier Goubet, Alice Masset. Initial value problem for one-dimensional rotating shallow water equations. 2021. ⟨hal-03162689⟩
  • Olivier Goubet, Imen Manoubi. Theoretical Analysis of a Water Wave Model using the Diffusive Approach. 2016. ⟨hal-01395790⟩
  • Louis Dupaigne, Olivier Goubet, Guillaume Warnault, Marius Ghergu. THE GEL'FAND PROBLEM FOR THE BIHARMONIC OPERATOR. 2012. ⟨hal-00718182v2⟩
  • Ovidiu Costin, Louis Dupaigne, Olivier Goubet. Uniqueness of large solutions. 2012. ⟨hal-00668535⟩
  • Min Chen, Olivier Goubet. Long-Time Asymptotic Behavior of Dissipative Boussinesq System. 2006. ⟨hal-00087896⟩
  • Mostafa Abounouh, Abdelghafour Atlas, Olivier Goubet. Large time behavior of solutions to a dissipative Boussinesq system. 2006. ⟨hal-00087558⟩
  • Olivier Goubet. Two remarks on solutions of Gross-Pitaevskii equations on Zhidkov spaces. 2006. ⟨hal-00085943⟩