ON THE NON-EXTENDABILITY OF QUASIANALYTIC GERMS

VINCENT THILLIEZ

ABSTRACT. Let $\mathcal{E}_1(M)^+$ be the local ring of germs at 0 of functions belonging to a given Denjoy-Carleman quasianalytic class in a neighborhood of 0 in $[0, +\infty)$. We show that the ring $\mathcal{E}_1(M)^+$ contains elements that cannot be extended quasianalytically in a neighborhood of 0 in \mathbb{R} , unless it coincides with the ring of real-analytic germs.

INTRODUCTION

Let $\mathcal{E}_1(M)$ be the local ring of germs at 0 of functions that belong to the Denjoy-Carleman class associated with a suitable real sequence M in a neighborhood of 0 in \mathbb{R} (see Section 1 for the definitions). Denote by $\mathcal{F}_1(M)$ the associated ring of all formal series $F = \sum_{j\geq 0} F_j x^j$ such that $\sup_{j\geq 0} \nu^{-j} M_j^{-1} |F_j| < \infty$ for some integer $\nu \geq 1$, so that the Borel map T_0 , which to every smooth germ associates its Taylor series at 0, maps $\mathcal{E}_1(M)$ into $\mathcal{F}_1(M)$.

Assume that $\mathcal{E}_1(M)$ is quasianalytic and does not coincide with the ring \mathcal{O}_1 of real-analytic germs. Then, according to a classical theorem of Carleman ([1]; see [8] for a simple proof), the map $T_0: \mathcal{E}_1(M) \to \mathcal{F}_1(M)$ is not surjective, in other words there is no Borel extension theorem from $\mathcal{F}_1(M)$ to $\mathcal{E}_1(M)$. Up to minor modifications, the proof given in [8] actually shows that there is no extension from $\mathcal{F}_1(M)$ to the ring $\mathcal{E}_1(M)^+$ of germs at 0 of functions belonging to the quasianalytic Denjoy-Carleman class associated with M in some interval [0, b] with b > 0.

Thus, the Taylor series of elements of $\mathcal{E}_1(M)^+$ form a proper subspace of $\mathcal{F}_1(M)$, and it is now natural to ask whether the elements of this subspace can be extended to $\mathcal{E}_1(M)$. Equivalently, is it possible to obtain every element of $\mathcal{E}_1(M)^+$ as the restriction to the positive reals of an element of $\mathcal{E}_1(M)$ (or even of a larger quasianalytic local ring $\mathcal{E}_1(N)$)? The goal of this short paper is to establish a negative answer. Although this result could be expected, it doesn't seem to be explicitly stated, even less proven, in the literature¹. Moreover, it cannot be obtained by the same arguments as Carleman's theorem: roughly speaking, non-extendability from $\mathcal{F}_1(M)$ to $\mathcal{E}_1(M)$, and to $\mathcal{E}_1(M)^+$ as well,

 $^{2000\} Mathematics\ Subject\ Classification.\ 26E10,\ 46E10.$

¹After this note was written, the author found out that a similar result, albeit with a slightly different proof, already appeared in a paper by M. Langenbruch (Manuscripta Math. 83 (1994), 123-143; see the remark after Corollary 2.4).

VINCENT THILLIEZ

relies on the fact that a certain lacunarity condition on a given element F of $\mathcal{F}_1(M)$ is an obstruction for F to be the Taylor series of a germ in these rings, unless it is convergent (more precise versions of this phenomenon can be found in [5]). Therefore, when F is already supposed to be the Taylor series of an element of $\mathcal{E}_1(M)^+$, this condition is generally not fulfilled, and one has to find another idea to prove that it is not always possible to extend F as a quasianalytic function in some interval [a, 0] with a < 0. We will obtain the desired result by means of a functional-analytic argument inspired by the proof of the failure of quasianalytic Weierstrass division by non-hyperbolic polynomials in [4].

1. Quasianalytic germs

1.1. Local rings of ultradifferentiable germs. We recall several basic facts on ultradifferentiable germs. For a more detailed account, we refer the reader to [8], for instance.

Let $M = (M_j)_{j\geq 0}$ be an increasing, logarithmically convex sequence of real numbers, with $M_0 = 1$. Let I be a bounded interval in \mathbb{R} . For any integer $\nu \geq 1$, we consider the vector space $\mathcal{E}_{1,\nu}(M, I) = \{f \in C^{\infty}(I) : ||f||_{M,\nu,I} < \infty\}$, where

$$||f||_{M,\nu,I} = \sup_{j \in \mathbb{N}, \ x \in I} \frac{|f^{(j)}(x)|}{\nu^j j! M_j}.$$

Remark 1. As recalled in [8], the space $\mathcal{E}_{1,\nu}(M, I)$ is a Banach space, and for $\nu < \nu'$, the inclusion $\mathcal{E}_{1,\nu}(M, I) \hookrightarrow \mathcal{E}_{1,\nu'}(M, I)$ is compact.

We denote by $\mathcal{E}_1(M)$ the set of germs of C^{∞} functions at 0 in \mathbb{R} that belong to $\mathcal{E}_{1,\nu}(M,I)$ for some integer $\nu \geq 1$ and some open interval I containing 0. As explained in [8], the set $\mathcal{E}_1(M)$ is a local ring, with maximal ideal $\underline{m}_M = \{f \in \mathcal{E}_1(M) : f(0) = 0\}$. This local ring contains the ring \mathcal{O}_1 of real analytic function germs at 0, and we have

(1)
$$\mathcal{E}_1(M) = \mathcal{O}_1 \iff \sup_{j \ge 1} (M_j)^{1/j} < \infty.$$

More generally, if N denotes another increasing, logarithmically convex, sequence of real numbers with $N_0 = 1$, we have the equivalence

$$\mathcal{E}_1(M) \subseteq \mathcal{E}_1(N) \iff \sup_{j \ge 1} (M_j/N_j)^{1/j} < \infty.$$

A C^{∞} function germ is said to be *flat* if it vanishes, together with all its derivatives, at the origin. The local ring $\mathcal{E}_1(M)$ is said to be *quasianalytic* if the only flat germ that it contains is 0. By the famous Denjoy-Carleman theorem, $\mathcal{E}_1(M)$ is quasianalytic if and only if

(2)
$$\sum_{j=0}^{+\infty} \frac{M_j}{(j+1)M_{j+1}} = +\infty.$$

Remark 2. In this case, it is easy to see that for any bounded intervals I and I' of \mathbb{R} , with $I' \subset I$, the natural restriction map $\mathcal{E}_{1,\nu}(M,I) \to \mathcal{E}_{1,\nu}(M,I')$ is injective.

We also define $\mathcal{E}_1(M)^+$ as the set of germs at 0 of C^∞ functions in $[0, +\infty[$ that belong to $\mathcal{E}_{1,\nu}(M, I)$ for some integer $\nu \geq 1$ and some interval I = [0, b[with b > 0. Finally, if is N is another increasing, logarithmically convex, sequence of real numbers with $N_0 = 1$ and $\sup_{j\geq 1} (M_j/N_j)^{1/j} < \infty$, we denote by $\mathcal{E}_1(M, N)$ the set of elements of $\mathcal{E}_1(N)$ whose restriction to the positive reals belongs to $\mathcal{E}_1(M)^+$. We have

(3)
$$\mathcal{E}_1(M) \subseteq \mathcal{E}_1(M, N) \subseteq \mathcal{E}_1(N).$$

1.2. Functional-analytic framework in the quasianalytic case. For any integer $\nu \geq 1$, put $I_{\nu} =] - 1/\nu, 1/\nu[, I_{\nu}^{-} =] - 1/\nu, 0]$ and $I_{\nu}^{+} = [0, 1/\nu[$. Let E_{ν} be the space of C^{∞} functions on I_{ν} whose restrictions to I_{ν}^{-} and to I_{ν}^{+} belong, respectively, to $\mathcal{E}_{1,\nu}(N, I_{\nu}^{-})$ and to $\mathcal{E}_{1,\nu}(M, I_{\nu}^{+})$. Clearly, E_{ν} is a Banach space for the norm $\|\cdot\|_{\nu}$ defined by

$$||f||_{\nu} = \max\left(||f_{|I_{\nu}^{-}}||_{N,\nu,I_{\nu}^{-}}, ||f_{|I_{\nu}^{+}}||_{M,\nu,I_{\nu}^{+}}\right).$$

Now, assume that N satisfies the quasianalyticity condition (2), and observe that (3) then implies that the same holds for M. From Remarks (1) and (2) with $\nu' = \nu + 1$, it is then easy to derive a compact injection $E_{\nu} \to E_{\nu+1}$. The space $\mathcal{E}_1(M, N)$ can be described as the inductive limit $\varinjlim E_{\nu}$ and is therefore endowed with a (DFS)-space topology (see e.g. Section 3.5 of [8] in the case M = N).

Analogously, the space $\mathcal{E}_1(M)^+$ is a (DFS)-space, since it can be written as the inductive limit of all Banach spaces $E_{\nu}^+ = \mathcal{E}_{1,\nu}(M, I_{\nu}^+)$ with $\nu \ge 1$ (indeed, an application of Remarks (1) and (2) with $\nu' = \nu + 1$, $I = I_{\nu}^+$ and $I' = I_{\nu+1}^+$ provides a compact injection $E_{\nu}^+ \to E_{\nu+1}^+$). Finally, we set $\|\cdot\|_{\nu}^+ = \|\cdot\|_{M,\nu,I_{\nu}^+}$.

2. Non extendability

2.1. The main result. As in Subsection 1.1, we consider two sequences M and N such that $\mathcal{E}_1(M) \subseteq \mathcal{E}_1(N)$. We then have the following statement.

Theorem 1. Assume that we have $\mathcal{O}_1 \subsetneq \mathcal{E}_1(M)$ and that $\mathcal{E}_1(N)$ is quasianalytic. Then there exist elements of $\mathcal{E}_1(M)^+$ that cannot be extended as elements of $\mathcal{E}_1(N)$.

Proof. Consider the space $\mathcal{E}_1(M, N)$ defined in Subsection 1.1. The result amounts to proving that the restriction map $R : \mathcal{E}_1(M, N) \to \mathcal{E}_1(M)^+$, which to each element of $\mathcal{E}_1(M, N)$ associates its restriction to the positive reals, is not surjective. We proceed by contradiction. Assume that R is surjective. The quasianalyticity assumption on $\mathcal{E}_1(N)$ implies that it is injective as well. Since R is obviously continuous for the (DFS)-space topologies on $\mathcal{E}_1(M, N)$ and $\mathcal{E}_1(M)^+$, the Grothendieck version of the open mapping theorem ([6], Theorem 24.33) then implies that it is a topological isomorphism. The continuity of R^{-1}

VINCENT THILLIEZ

is equivalent to the statement that for any integer $\nu \geq 1$, there is an integer $\lambda_{\nu} \geq 1$ and a positive constant C_{ν} such that we have $||R^{-1}f||_{\lambda_{\nu}} \leq C_{\nu}||f||_{\nu}^{+}$ for any $f \in E_{\nu}^{+}$. In particular this must be true when f is polynomial, and we therefore get $||P||_{\lambda_{\nu}} \leq C_{\nu}||P||_{\nu}^{+}$ for any $P \in \mathbb{C}[x]$. Set $\nu = 1$, $a = -1/\lambda_{1}$ and $A = C_{1}$. The preceding estimates then yield, in particular,

(4)
$$|P(a)| \le A ||P||_1^+ \text{ for any } P \in \mathbb{C}[x].$$

We proceed to get a majorization of $||P||_1^+$. For any $x \in [0, 1[$, we apply the Cauchy formula on the closed disc D_x centered at x, with radius |a|/2. We obtain, for any integer $j \ge 0$, the bound $|P^{(j)}(x)| \le (2/|a|)^j j! \sup_W |P|$ with $W = \{z \in \mathbb{C} : \operatorname{dist}(z, [0, 1]) \le |a|/2\}$. This implies

$$\|P\|_1^+ \le B \sup_W |P|$$

with $B = \sup_{j\geq 0} (2/|a|)^j/M_j$. Observe that, since we have assumed $\mathcal{O}_1 \subsetneq \mathcal{E}_1(M)$, property (1) implies $\sup_{j\geq 1} (M_j)^{1/j} = \infty$, hence B is finite. Now, gathering (4) and (5) and setting C = AB, we obtain

(6)
$$|P(a)| \le C \sup_{W} |P|$$
 for any $P \in \mathbb{C}[x]$.

It is now possible to conclude. The point a does not belong to W, and $W \cup \{a\}$ is a compact subset with connected complement in \mathbb{C} . By Runge's approximation theorem, there is a sequence of polynomials $(P_k)_{k\geq 0}$ converging uniformly to 0 on W, and such that $\lim_{k\to\infty} P_k(a) = 1$. This obviously contradicts (6).

2.2. Extension to non-quasianalytic germs. The conclusion of Theorem 1 is no longer true without the quasianalyticity assumption on the larger space $\mathcal{E}_1(N)$. For example, when $M_j = \ln(j+e)$, the local ring $\mathcal{E}_1(M)$ is quasianalytic but, according to a result of Carleson [2], every element of $\mathcal{E}_1(M)^+$ can be extended as an element of the non-quasianalytic ring $\mathcal{E}_1(N)$ with $N_j = (\ln(j+e))^2$. For more recent and more general results in this direction, we refer the reader to [3] and [7].

References

- [1] CARLEMAN, T., Les fonctions quasi-analytiques, Gauthier Villars, Paris, 1926.
- [2] CARLESON, L., On universal moment problems, Math. Scand. 9 (1961), 197–206.
- [3] CHAUMAT, J.; CHOLLET, A.-M., Surjectivité de l'application restriction à un compact dans des classes de fonctions ultradifférentiables, Math. Ann. 298 (1994), 7–40.
- [4] CHAUMAT, J.; CHOLLET, A.-M., Division par un polynôme hyperbolique, Canad. J. Math. 56 (2004), 1121–1144.
- [5] MALLIAVIN, P., La quasi-analyticité généralisée sur un intervalle borné, Ann. Sci. École Norm. Sup. 72 (1955), 93–110.
- [6] MEISE, R.; VOGT, D., Introduction to Functional Analysis, Oxford University Press (1997).
- SCHMETS, J.; VALDIVIA, M., On certain extension theorems in the mixed Borel setting, J. Math. Anal. Appl. 297 (2004), 384–403.
- [8] THILLIEZ, V., On quasianalytic local rings, Expo. Math. 26 (2008), 1–23.

MATHÉMATIQUES - BÂTIMENT M2, UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE LILLE, F-59655 VILLENEUVE D'ASCQ CEDEX, FRANCE *E-mail address*: thilliez@math.univ-lille1.fr