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Abstract. We give necessary and sufficient conditions for infinite determi-
nacy of a smooth function germ whose critical locus contains a given set. This

set is assumed to be the zero variety X of some analytic map-germ having max-

imal rank on a dense subset of X. We obtain a result in terms of  Lojasiewicz
estimates which extends, in particular, previous works by Sun & Wilson on

line singularities, and by Grandjean on singularities of codimension 1 or 2.

Introduction

Infinite determinacy is a way to express the stability of smooth function-germs
under flat perturbations. Let En denote the ring of C∞ function-germs at the origin
in Rn and m its maximal ideal. Consider the ideal of flat germs m∞ =

⋂
k≥0m

k.
An element f of En is said to be infinitely determined if, for any element u of m∞,
there exists a germ Φ of C∞-diffeomorphism at the origin such that f + u = f ◦Φ.
In abbreviated form, this can be written

(1) f +m∞ ⊂ f ◦ R,

where R denotes the group of germs at the origin of C∞-diffeomorphisms of Rn.
In what follows, for any subset R′ of R, we shall always use the notation f ◦R′ to
denote the set {f ◦ Φ ; Φ ∈ R′}.

It is known (see [7], [12] or part II of [11]) that (1) holds if and only if

(2) m∞ ⊂ Jf ,

where Jf denotes the Jacobian ideal
(
∂f
∂x1

, . . . ∂f∂xn

)
En. Notice that condition (2)

implies that ∇f has at most an isolated singularity at 0.
The case of of non-isolated singularities is much less understood. Typically, one

considers germs with a prescribed critical locus X, or germs belonging to a given
ideal I. If X is a line, necessary and sufficient conditions for the corresponding
version of infinite determinacy have been stated first by Sun & Wilson [9]. The
main theorem of [9] appears as a nice extension of the pioneering work of Siersma
[8] on finite determinacy for line singularities. Unfortunately, the proof of the crucial
lemma 4.4 in the paper of Sun & Wilson is not correct, and there is currently no
known correction [13]. Among other applications, we shall provide here a complete
proof of a slightly modified version of their main statement. To be more precise, a
part of the results in [9] can be described as follows. The set X is the xn-axis and I
is the ideal generated in En by the n− 1 first coordinate functions x1, . . . , xn−1. It
is easy to see that the critical locus of an element f of En contains X (as a set germ)
if and only if f belongs to I2, and that the set of flat elements of I2 is precisely
the ideal m∞I2. Accordingly, an element f of I2 is said to be infinitely determined
relatively to I2 if

(3) f +m∞I2 ⊂ f ◦ RX ,
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where RX denotes the subgroup of R given by the elements which preserve X (or,
equivalently in this situation, which preserve I). It is stated in [9] that (3) holds if
and only if

(4) m∞I ⊂ Jf .
The “only if” part relies on another characterization of (3) involving  Lojasiewicz
inequalities for ∇f and for a suitable partial Hessian of f , in the spirit of the
classical formulation of (2) in terms of  Lojasiewicz estimates for ∇f . This is the
so-called real isolated line singularity condition in [9]. In order to show that (3)
implies this condition, some information on the non-degeneracy of partial Hessians
along the critical locus is required, and this is where a gap occurs1 in [9]. Our main
result implies, as a particular case, that the real isolated line singularity condition
characterizes a determinacy property which, instead of RX , involves the (smaller)
subgroup RXfix of diffeomorphisms preserving X pointwise.

Although quite attractive, the real isolated line singularity condition is not easy
to extend to wider classes of sets X. A first step towards more general situations
has been made by Grandjean [3], who studied the case of ideals I generated by
real-analytic germs ψ1, . . . , ψp defining a complete intersection variety X with at
most an isolated singular point at the origin. It is shown in [3] that the implication
(3)=⇒(4) essentially still holds in this setting, under the additional assumption
codimX ≤ 2. Notice that the proof of Grandjean is not affected by the defective
lemma in [9], since working in codimension 1 or 2 makes it possible to bypass the
argument. On the other hand, [3] adds an a priori assumption on the partial
Hessians, namely non-degeneracy on X \ {0}. As an other particular case of our
main result, this extra requirement can be suppressed, provided, once again, RX is
replaced by RXfix.

Beyond these adjustments, the main purpose of the present paper is to extend the
aforementioned results by removing the restrictive assumption on the codimension
of X and, to some extent, on its singular part. In order to achieve this latter point,
we involve flatness on a given closed set Y , maybe larger than the single point 0.
This viewpoint has been used recently in [5] to extend the equivalence (1)⇐⇒(2):
indeed, if m∞Y denotes the ideal of germs in En which are flat on Y , theorem 36
of [5] asserts that an element f of En satisfies f + m∞Y ⊂ f ◦ R if and only if
m∞Y ⊂ Jf . In order to generalize (3)⇐⇒(4) in the same way, we shall investigate
here the relationship between the conditions f +m∞Y I

2 ⊂ f ◦R′ (for some suitable
subgroup R′ of R) and m∞Y I ⊂ Jf . This will lead us to the statement of theorem
2.1. The geometric requirements are described precisely in subsection 1.2 below:
roughly speaking, the regular part of X has to be dense in X, and its singular part
has to be contained in Y . There is no restriction on codimX. Of course, the key
fact is that we are able to obtain a characterization of infinite determinacy in terms
of  Lojasiewicz estimates, quite in the same spirit as the real isolated line singularity
condition of Sun & Wilson.

1. Definitions and Technical Framework

1.1. Notations. For any multi-index J = (j1, . . . , jn) in Nn, of length j = j1 +
. . . + jn, we put DJ = ∂j/∂xj11 · · · ∂xjnn . For any finite family λ1, . . . , λp of real
numbers, we denote by Diag(λ1, . . . , λp) the p × p diagonal matrix whose j-th
diagonal coefficient is λj for j = 1, . . . , p. The differential of a map-germ G :
(Rn, 0) −→ (Rm, 0) will be denoted by dG and its jacobian matrix by G′.

1The computation of det A′
m in lemma 4.4 of [9] is erroneous because the addition of an extra

term det Am
det B

ymyl to the germ f modifies the Hessian symmetrically, and not only the coefficient

located at the m-th row and l-th column.
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Definition 1.1.1. Let Z be a germ of subset of Rn at the origin. We denote by
RZ (resp. RZfix) the set of elements Φ of R which preserve Z, that is Φ(Z) ⊂ Z
(resp. which preserve Z pointwise, that is Φ(x) = x for any x ∈ Z).

We recall, from the introduction, that R denotes the group of germs of C∞-
diffeomorphisms of (Rn, 0). The set RZfix is obviously a subgroup of R, whereas RZ
may not be such.

Definition 1.1.2. Let V and W be two germs of subsets at the origin in Rn. We
say that a function g : V −→ R satisfies the  Lojasiewicz inequality L(V,W ) if there
exist constants C > 0 and α ≥ 0 such that |g(x)| ≥ C dist(x,W )α for any x ∈ V .

Remark 1.1.3. Throughout the article, properties holding on a given subset V of
Rn are always understood in the sense of germs, that is on a sufficiently small
representative of V .

1.2. Non-isolated singularities. Let ψ = (ψ1, . . . , ψp) be a real-analytic map-
germ (Rn, 0) −→ (Rp, 0) with p ≤ n. With ψ we associate the zero variety X =
ψ−1({0}) and the ideal I = (ψ1, . . . , ψp)En. We define

Σ = {x ∈ X ; dψ1(x) ∧ · · · ∧ dψp(x) = 0}

and we make the following assumption:

(5) X \ Σ is dense in X.

Any sufficiently general version of the  Lojasiewicz inequality [1] shows that

(6)
∣∣dψ1 ∧ · · · ∧ dψp

∣∣ satisfies L(X,Σ).

The analyticity of ψ also ensures that I and its powers are closed [6]. Using section
V.4 of [10], we have therefore

(7) m∞X ⊂ I2.

For any germ of closed subset Y at the origin of Rn, we have also, by proposition
V.2.3 of [10],

(8) m∞Y ∩ I2 = m∞Y I
2.

Let JX denote the set of germs f satisfying f(0) = 0 and whose critical locus
contains X. Using local coordinates on the smooth submanifold X \ Σ, it is easy
to show that any element f of JX vanishes on X \ Σ, hence on X by (5). Thus,
if IX denotes the ideal of elements of En vanishing on X, it follows that JX is the
so-called primitive ideal of IX . Obviously, JX contains I2. It coincides with I2

in certain situations, as in [9]. The following lemma provides a simple sufficient
condition for this equality.

Lemma 1.2.1. One has JX = I2 whenever IX = I.

Proof. Assume IX = I and let f be an element of JX . Then we have f =
∑p
j=1 fjψj

with
∑p
j=1 fj(x)dψj(x) = 0 for any x ∈ X. Since the differentials dψj(x) are

independent at any point x of X \ Σ, we derive that each fj vanishes on X \ Σ,
hence on X by (5). Thus each fj belongs to I and f belongs to I2. �

In what follows, just as in [3], [4], [8] and [9], the study will be limited to elements
f of I2. Beside technical considerations, the preceding lemma provides a motivation
for this approach. Notice that the difference of two elements of I2 is flat on Y if
and only if it belongs to m∞Y I

2, by virtue of (8). Thus, we are led to consider a
notion of determinacy involving f + m∞Y I

2, as it can be seen in the statement of
theorem 2.1 below.
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1.3. Transversal Hessians. The Hessian matrix of an element f of En will be
denoted by f ′′. Assuming that f belongs to I2, we can write f =

∑
1≤i,j≤p fijψiψj

for some suitable elements fij of En satisfying fij = fji. Of course, the fij are not
unique. However, uniqueness holds in restriction to X, as shown below.

Lemma 1.3.1. The matrix Hf = (fij)1≤i,j≤p satisfies

(9) t
(
ψ′(x)

)
Hf (x)ψ′(x) =

1
2
f ′′(x) for any x ∈ X.

In particular, for x ∈ X, the matrix Hf (x) is fully determined by ψ and f .

Proof. The identity (9) follows from a direct computation. The uniqueness state-
ment is an obvious consequence of (9) since ψ has maximal rank on a dense subset
of X, namely on X \ Σ. �

From now on, Hf will be considered in restriction to X. At any point of the
smooth submanifold X \ Σ, it can be viewed as a Hessian of f with respect to
transversal directions.

Definition 1.3.2. For x ∈ X, we put Df (x) = detHf (x).

As shown by lemma 1.3.1, the function Df : X −→ R depends only on ψ and
f . The following elementary property will play an important role in section 3.

Lemma 1.3.3. Let Z be a subset of X \Σ, let Φ be an element of RZ such that both
f and f ◦ Φ belong to I2, and let x be any point of Z. Then one has Df◦Φ(x) = 0
if and only if Df

(
Φ(x)

)
= 0.

Proof. Note first that Df

(
Φ(x)

)
makes sense since Φ(Z) ⊂ Z ⊂ X \Σ, in particular

both x and Φ(x) belong to X. A direct computation then yields (f ◦ Φ)′′(x) =
t
(
Φ′(x)

)
f ′′
(
Φ(x)

)
Φ′(x). Using lemma 1.3.1, we get t

(
ψ′(x)

)
Hf◦Φ(x)ψ′(x) = t

(
(ψ ◦

Φ)′(x)
)
Hf

(
Φ(x)

)
(ψ ◦ Φ)′(x). The result follows, since both ψ′(x) and (ψ ◦ Φ)′(x)

have maximal rank. �

1.4. Jacobian and Fitting ideals. In the setting of 1.2, consider the map σ :
Epn −→ En given by σ(f1, . . . , fp) =

∑p
i=1 fiψi. Since En is flat over the ring On

of analytic function-germs, the module of smooth relations between ψ1, . . . , ψp,
that is kerσ, admits a finite system of generators k1, . . . , kq belonging to Opn. We
can assume that this system includes all the trivial relations ψser − ψres, where
(e1, . . . , ep) is the canonical basis of Epn and r, s are integers with 1 ≤ r < s ≤ p.

Now let f be an element of I2 and put Mf = σ−1(Jf ), where Jf denotes the
Jacobian ideal of f , as in the introduction. For any j = 1, . . . , n, it is easy to check
that the element hj = (hj1, . . . , h

j
p) of Epn defined by

(10) hji =
p∑
k=1

(
2fik

∂ψk
∂xj

+
∂fik
∂xj

ψk

)
for i = 1, . . . , p

satisfies σ(hj) = ∂f/∂xj . Then, obviously, Mf is the submodule of Epn generated by
h1, . . . , hn, k1, . . . , kq, so that we can write Mf = λ(En+q

n ), where λ : En+q
n −→ Epn

is the morphism of free modules defined by

λ(ξ1, . . . , ξn+q) =
n∑
j=1

ξjh
j +

q∑
j=1

ξn+jk
j .

Denote by Λ the matrix of λ in the canonical bases of En+q
n and Epn and consider, as

in [3] or [9], the ideal Kf generated in En by the minors of order p of Λ. Following
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section 20.2 of [2], we see that Kf is precisely the Fitting ideal Fitt0
(
Epn/Mf

)
as

can be seen from the free presentation

En+q
n

λ−→ Epn −→ Epn/Mf −→ 0.

In particular, Kf depends only on ψ and f and it annihilates Epn/Mf , hence the
inclusion KfEpn ⊂Mf . Taking the image by σ, we get therefore

(11) KfI ⊂ Jf .

We have now all the tools required for the statement of our result.

2. A Theorem of Infinite Determinacy

Theorem 2.1. Let ψ, X and I be defined as in subsection 1.2, and let Y be a germ
of closed subset of Rn at the origin satisfying

(12) Σ ⊂ Y.

Then for any element f of I2, the following conditions are equivalent:

(13) f +m∞Y I
2 ⊂ f ◦ RX\Yfix ,

(14) m∞Y I ⊂ Jf ,

(15) m∞Y ⊂ Kf ,

(16) |∇f | satisfies L(Rn, X ∪ Y ) and Df satisfies L(X,Y ).

Moreover, if one assumes additionally

(17) D−1
f ({0}) ⊂ Y,

then (13) is equivalent to the (a priori weaker) condition

(18) f +m∞Y I
2 ⊂ f ◦ RX\Y .

All of section 3 will be devoted to proving the theorem. We shall first complete
section 2 with some comments and examples.

2.2. Comments.

Remark 2.2.1. The particular case Y = {0} corresponds to the natural notion of
determinacy by the Taylor jet at a single point. In view of (12), our result covers
this case provided X has at most an isolated singular point. Notice that we then
have obviously RX\Y = RX .

Remark 2.2.2. In this special situation, it would not be difficult to add to the
statement of theorem 2.1 another equivalent condition involving suitable substitutes
for the tangent spaces to group orbits which are customary in such problems. We
shall not describe this condition nor use it here (see, however, example 2.3.2 below).

2.3. Examples.

Example 2.3.1 (isolated critical points). From theorem 2.1, we can easily recover
the equivalence (1)⇐⇒(2) of the introduction, and more generally theorem 36 of
[5]. Indeed, take p = n and ψj(x) = xj so that I = m, X = {0} and Σ = ∅. Then
(12) is trivial, and it is easy to check that m∞Y I

2 = m∞Y I = m∞Y . The result follows.
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Example 2.3.2 (isolated critical lines). The situation studied in [9] corresponds to
p = n − 1, ψj(x) = xj , so that X is the xn-axis. For Y = {0}, condition (16)
coincides with the real isolated line singularity condition of Sun & Wilson. Taking
remark 2.2.1 into account, we recover, as announced in the introduction, the main
result of [9] with RX replaced by RXfix. Explicitly, an element Φ of R belongs to
RX if and only if the components Φ1, . . . ,Φn−1 belong to I, and an element Φ of
RX belongs to RXfix if and only if the component Φn satisfies Φn(x) = xn + θ(x)
with θ ∈ I. The corresponding tangent spaces are respectively given by

T Xf =
( ∂f
∂x1

, . . . ,
∂f

∂xn−1

)
I +

∂f

∂xn
m and T Xfixf = IJf .

Example 2.3.3 (complete intersections with isolated singularities). In the case stud-
ied in [3], one has Σ = {0} and Y = {0}. In this situation, [3] provides the impli-
cation (18)=⇒(16) under the additional assumptions (17) and codimX ≤ 2. Thus,
our theorem 2.1 removes the restriction on the codimension p of X. It also removes
the assumption on D−1

f ({0}) as soon as RX is replaced by RXfix.

Problem. Is it possible to show that (18) implies (16) without the extra assumption
(17), at least when Y = {0} ? One might also hope for a result involving the
subgroup of diffeomorphism-germs that induce bijections on X \ Y .

3. Proofs

3.1. Proof of (13)=⇒(16). We separate the estimates for ∇f and Df .

3.1.1.  Lojasiewicz estimate for ∇f . We follow, with suitable modifications, the
proof of the corresponding inequality in [9]. Assume that the estimate does not
hold. One can then find a sequence (xν)ν≥1 of points of Rn converging to 0 and
such that

(19) |∇f(xν)| < dist(xν , X ∪ Y )ν for any ν ≥ 1.

Extracting a subsequence if necessary, one can assume that |xν+1| < 1
3 dist(xν , X ∪

Y ) (which implies, in particular, that dist(xν , X ∪Y ) decreases). Denote by Bν the
open euclidean ball centered at xν , with radius 1

3 dist(xν , X ∪Y ). Then the Bν are
pairwise disjoint, the open set U =

⋃
ν≥1Bν is contained in Rn \ (X ∪ Y ) and we

have U ∩ (X ∪ Y ) = {0}. Using a classical construction of cutoff functions (see e.g.
[6], chapter I, lemma 4.2), we also have a sequence (χν)ν≥1 of C∞ functions such
that each χν is supported in Bν , identically equal to 1 in a neighborhood of the
center xν , and satisfies, for any integer j ≥ 0, any multi-index J of length j and
any point x in Rn, the estimate

(20) |DJχν(x)| ≤ C(j) dist(xν , X ∪ Y )−j

where C(j) is a constant depending only on j. Beside this, Sard’s lemma ensures
the existence of a regular value cν of f such that |f(xν) − cν | ≤ dist(xν , X ∪
Y )ν . Consider the affine function uν given by uν(x) = f(xν) − cν + 〈∇f(xν), x −
xν〉. Taking into account (19) and (20), as well as the support condition for χν ,
one checks that the series u =

∑
ν≥1 χνuν defines an element of m∞X∪Y such that

u(xν) = f(xν)−cν and ∇u(xν) = ∇f(xν) for any ν ≥ 1. Since m∞X∪Y = m∞X ∩m∞Y ,
we see, using (7) and (8), that u belongs to m∞Y I

2. By (13), one can therefore find
a germ of diffeomorphism Φ such that f ◦ Φ = f − u. But this is impossible since
each cν is a regular value of f and a singular value of f − u.
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3.1.2.  Lojasiewicz estimate for Df . Assume that Df does not satisfy L(X,Y ). One
can then find a sequence (yν)ν≥1 of points of X converging to 0 and such that

(21) |Df (yν)| < dist(yν , Y )ν for any ν ≥ 1.

Denote by λ(ν)
1 , . . . , λ

(ν)
p the eigenvalues of the symmetric matrix Hf (yν), counted

with multiplicities. Since we have Df (yν) = λ
(ν)
1 · · ·λ

(ν)
p , the estimate (21) implies,

for each ν ≥ 1, the existence of at least one index iν such that

(22)
∣∣λ(ν)
iν

∣∣ < dist(yν , Y )ν/p.

Beside this, one can also find an orthogonal matrix Pν such that

(23) P−1
ν Hf (yν)Pν = Diag

(
λ

(ν)
1 , . . . , λ(ν)

p

)
.

We define a p× p symmetric matrix Vν by putting

(24) P−1
ν VνPν = Diag

(
0, . . . , 0, λ(ν)

iν
, 0, . . . , 0

)
,

where λ(ν)
iν

is at the iν-th position. Using the fact that ‖P−1
ν ‖ = ‖Pν‖ = 1 for the

euclidean norm, it is easy to see that the coefficients v(ν)
ij of Vν satisfy

∣∣v(ν)
ij

∣∣ ≤ ∣∣λ(ν)
iν

∣∣,
hence, by virtue of (22),

(25)
∣∣v(ν)
ij

∣∣ ≤ dist(yν , Y )ν/p.

Now choose real numbers ε(ν)
1 , . . . , ε

(ν)
p satisfying, for any i = 1, . . . , p,

(26) λ
(ν)
i 6= ε

(ν)
i and

∣∣ε(ν)
i

∣∣ < dist(yν , Y )ν ,

then define a p× p symmetric matrix Wν by putting

(27) P−1
ν WνPν = Diag

(
ε

(ν)
1 , . . . , ε(ν)

p

)
.

In view of the second condition in (26), the same argument as for Vν shows that
the coefficients w(ν)

ij of Wν satisfy

(28)
∣∣w(ν)
ij

∣∣ ≤ dist(yν , Y )ν .

We can also assume that |yν+1| < 1
3 dist(yν , Y ) and consider the open ball Cν

centered at yν with radius 1
3 dist(yν , Y ). With each Cν we associate a cutoff function

ην supported in Cν , identically equal to 1 in a neighborhood of yν , and such that

(29)
∣∣DJην(x)

∣∣ ≤ C(j) dist(yν , Y )−j

for any integer j ≥ 0, any multi-index J of length j and any x ∈ Rn. The open set
V =

⋃
ν≥1 Cν is contained in Rn \ Y and satisfies V ∩ Y = {0}. By (25), (28) and

the support properties of ην , both series V =
∑
ν≥1 ηνVν and W =

∑
ν≥1 ηνWν

define symmetric p× p matrices whose respective coefficients vij and wij all belong
to m∞Y . Therefore, the functions v =

∑
1≤i,j≤p vijψiψj and w =

∑
1≤i,j≤p wijψiψj

belong to m∞Y I
2 and, by assumption, one can then find Φv and Φw in RX\Yfix such

that

(30) f − v = f ◦ Φv and f − w = f ◦ Φw.

Beside this, we have Hf−v(yν) = Hf (yν) − V (yν) = Hf (yν) − Vν by contruc-
tion. Therefore, (23) and (24) imply that 0 is an eigenvalue of Hf−v(yν), hence
Df−v(yν) = 0. Thanks to (12), we can now use lemma 1.3.3 with Z = X \ Y and
x = yν . Thus, (30) implies

(31) Df

(
Φv(yν)

)
= 0 for any ν ≥ 1.
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We have similarly Hf−w(yν) = Hf (yν)−W (yν) = Hf (yν)−Wν , hence Df−w(yν) =∏p
i=1

(
λ

(ν)
i − ε

(ν)
i

)
6= 0 by (23), (27) and the first condition in (26). By (30) and

lemma 1.3.3, we get now

(32) Df

(
Φw(yν)

)
6= 0 for any ν ≥ 1.

Recall finally that the diffeomorphisms Φv and Φw provided by (13) preserve X \Y
pointwise, hence Φv(yν) = Φw(yν) = yν and (31) contradicts (32). The proof is
complete.

3.2. Proof of (16)=⇒(15). We follow the pattern of the corresponding proof in [9],
with some necessary adaptations. First, one checks that Kf contains all the germs
ψp−2
i ∂f/∂xj with 1 ≤ i ≤ p and 1 ≤ j ≤ n: it suffices to compute the determinant

whose first column is given by hj and the other columns by the trivial relations
ψiek − ψkei with k 6= i. Therefore, Kf contains the germ v = |ψ|2(p−2)|∇f |2. For
0 < ε < 1 and s ≥ 1, put now

Vε,s = {x ∈ Rn ; dist(x,X) ≥ εdist(x, Y )s} and Wε,s = Rn \ Vε,s.
Since |ψ|2 satisfies L(Rn, X) by the classical  Lojasiewicz inequality for analytic
functions, and since ∇f satisfies L(Rn, X ∪ Y ) by assumption, we see that for any
given choice of ε and s, the germ v satisfies L(Vε,s, Y ).

Now, letM be the set of p×p minors of the jacobian matrix ψ′. Using (10) and
elementary linear algebra, one obtains, for any µ in M,

(33) 2pµdet(fij) = aµ + bµ

where aµ is a suitable p× p minor of the matrix Λ defined in 1.4, hence an element
of Kf , and bµ is an element of I. Put w =

∑
µ∈M a2

µ and, for any x ∈ (Rn, 0),
denote by x̂ a point of X such that |x− x̂| = dist(x,X). We have obviously

(34) |w(x)− w(x̂)| ≤ C dist(x,X)

for some constant C > 0. By (33), we have also

(35) w(x̂) = 22p
(
Df (x̂)

)2 ∑
µ∈M

(
µ(x̂)

)2
since each bµ vanishes on X. Now, by (6) and (12), there exist constants C ′ > 0
and α ≥ 1 such that

∑
µ∈M

(
µ(x̂)

)2 ≥ C ′ dist(x̂,Σ)α ≥ C ′ dist(x̂, Y )α. Beside this,
Df satisfies L(X,Y ) by assumption. From (35) and these remarks, we get

(36) |w(x̂)| ≥ C ′′ dist(x̂, Y )β

for some suitable constants C ′′ > 0 and β ≥ 1. Assume now that x belongs to some
set Wε,s. In this situation, we have

∣∣dist(x, Y )−dist(x̂, Y )
∣∣ ≤ |x−x̂| ≤ εdist(x, Y )s,

therefore dist(x̂, Y )β can be replaced by dist(x, Y )β in (36), up to a modification
of C ′′. From (34) and (36), we derive that w satisfies L(Wε,s, Y ) for s > β. Finally
v + w is an element of Kf which satisfies L(Rn, Y ), and proposition V.4.3 of [10]
yields the conclusion.

3.3. Proof of (15)=⇒(14). It is an immediate consequence of (11).

3.4. Proof of (14)=⇒(13). This can be proved by a Mather-type homotopy ar-
gument, using Nakayama’s lemma and tangent spaces as in [4] for instance. Alter-
natively, we use here the somewhat shorter approach based on Tougeron’s implicit
function theorem, see [10], theorem III.3.2 and remark VIII.3.7.1. Let u be an
element of m∞Y I

2 and put g = f + u. For x and y in (Rn, 0), define F (x, y) =
f(x + y) − g(x). Put Fi(x) = ∂F/∂yi(x, 0) for i = 1, . . . , n. Since Fi = ∂f/∂xi, it
turns out that (F1, . . . , Fn)En = Jf . Now remark that m∞Y = m∞Y m

∞
Y by propo-

sition V.2.3 of [10], hence m∞Y I
2 = m∞Y (m∞Y I)2. Therefore, (14) implies that
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F ( · , 0) belongs to m∞Y J
2
f . Tougeron’s implicit function theorem yields a map

ϕ : (Rn, 0) −→ (Rn, 0) with components in m∞Y Jf , hence in m∞Y I, such that
F (x, ϕ(x)) = 0. Put Φ(x) = x + ϕ(x). Clearly Φ is a germ of diffeomorphism at
the origin, and it coincides with the identity on X ∪ Y . In particular it belongs to
RX\Yfix . This ends the proof, since we have also f ◦ Φ = g by construction.

3.5. Proof of (13)⇐⇒(18) under the extra assumption (17). The implication
(13)=⇒(18) is obvious (and does not require (17)). In order to prove the converse,
it suffices to show that (17) together with (18) imply (16). Now, a simple inspection
of the proof of the implication (13)=⇒(16) reveals that the pointwise preservation
of X \ Y is used only to obtain a contradiction between (31) and (32). If (13) is
replaced by (18), we obtain in the same way (31) for some Φv preserving X \ Y
globally. Taking (17) into account, we obtain another contradiction, since Df has
no zero on X \ Y , hence no zero at Φv(yν). The result follows.
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iment déterminés, C. R. Acad. Sci. Paris 285 (1977), 1045–1048.

[8] D. Siersma, Isolated line singularities, Proc. Symp. Pure Math. 40 (1983), 485–495.

[9] B. Sun & L.C. Wilson, Determinacy of smooth germs with real isolated line singularities,
Proc. Amer. Math. Soc. 129 (2001), 2789–2797.
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