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On Closed Ideals in Smooth Classes
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Abstract. We study closedness properties of ideals generated by real { analytic functions in some

subrings C of C1(
); where 
 is an open subset of Rn: In contrast with the case C = C1(
); which

has been clari�ed by famous works of H�ormander,  Lojasiewicz and Malgrange, it turns out that

such ideals are generally not closed when C is an ultradi�erentiable class. If C is suÆciently regular

and non { quasianalytic, and under the assumption that the real zero locus of the ideal reduces to a

single point, we obtain a sharp suÆcient condition of closedness, expressed in terms of the geometry

of common complex zeros for the germs of the generators at this point. This condition is shown to

be also necessary in dimension 2; when the ideal is principal. Some related questions about rings of

ultradi�erentiable germs and about ultradistributions are discussed.

1. Introduction

Let 
 be a connected open subset of Rn and ' be a non { zero real { analytic function
in 
: A famous result asserts that any distribution T in 
 can be divided by '; in
other words there exists a distribution S in 
 such that T = 'S: This has been proved
in the late �fties by H�ormander [11] for a polynomial '; and by  Lojasiewicz [14]
in the analytic situation. A possible approach to the division of distributions is to
view it as a dual fact of closedness properties for the ideal generated by ' among C1

functions. It is indeed a particular case of a deep result of Malgrange [15], stating
that any ideal generated in C1(
) by a �nite family of real { analytic functions is
closed in C1(
); endowed with its usual Fr�echet space topology.

In this paper, we are concerned with the study of ideals generated by analytic func-
tions in some special subrings of C1(
); namely ultradi�erentiable classes, a classical
example of which is given by the Gevrey classes familiar in the theory of partial di�er-
ential equations. The standard topology on ultradi�erentiable classes is stronger than
the C1 topology; however, in this context, ideals with analytic generators generally
fail to be closed [8], even in the simplest situation of principal ideals 'C1(
) with
'�1(0) reduced to a single point. It is then natural to ask for criteria to decide whether
such ideals are closed: a purpose of the present work is to give a partial answer to this
problem. Always assuming that the zero set of ' in 
 is an isolated point, say 0; we
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obtain a suÆcient condition which is valid for any number of variables: if the local
complexi�cation of ' near 0 in Cn has a zero set which is transversal to Rn in the
sense of regular separation, then the ideal generated by ' in any suÆciently regular
non { quasianalytic Carleman class (like Gevrey ones) is closed. Moreover, in the case
of two variables, some local geometry based on Puiseux expansions for ' allows us to
show that the former condition is also necessary, giving thus a complete characteri-
zation. Note also that our suÆcient condition extends, in a somewhat less pleasant
form, to the situation of ideals with several analytic generators '1; : : : ; 'p:

In fact, these results come here as byproducts of properties of ideals of germs at the
origin in Rn; namely ideals generated by a �nite family of real { analytic germs in a
given local ring CM (Rn; 0) of ultradi�erentiable germs (see De�nition 2.1 below). The
central question is to know whether this ideal is elliptic; in other words whether it
contains all the germs of CM (Rn; 0) which are 
at at the origin.

The paper is organized as follows. In Section 2, we introduce some notations and
state the main results concerning rings of ultradi�erentiable germs. A proof of a
suÆcient condition of ellipticity is given. Section 3 is devoted to proving the necessity
of this condition in the case of two variables and one generator ': This requires to
compute explicitly the  Lojasiewicz exponent for the regular separation between Rn

and the complex zeros of '; in terms of Puiseux expansions. Such a computation,
which may have an independent interest, has been inspired by a paper of Kuo [13].
In Section 4, we state and prove the results on closed ideals. We also apply them to
the division of ultradistributions.

Throughout the paper, for any multi { index L = (`1; : : : ; `n) in Nn; we will denote
by the corresponding lower case letter ` the length `1 + � � � + `n of L: We also put
L! = `1! : : : `n! and denote by DL the operator @`=@x`11 : : : @x`nn associated to L:

2. Local results

2.1. Notations and prerequisites

Denote by C1(Rn; 0) the ring of C1 function germs at the origin of Rn; and m its
maximal ideal. Let ' = ('1; : : : ; 'p) be a germ of real { analytic mapping from (Rn; 0)
to (Rp; 0): In the sequel, it will always be assumed that one has

fx 2 (Rn; 0) : '(x) = 0g = f0g :(2.1)

Then it is well { known [15] that there exist real constants a > 0 and r � 1 such that
the  Lojasiewicz inequality

j'(x)j � a jxjr(2.2)

holds for all x belonging to a suitable neighborhood of 0 in Rn: It is now also classical
(see e. g. [19]) that (2.2) is equivalent to the inclusion

m1 � I' ;(2.3)

where m1 stands for
T
k�0m

k; the ideal of germs which are 
at at the origin, and I'
is the ideal generated by '1; : : : ; 'p in C1(Rn; 0): Property (2.3) is known under the
terminology of ellipticity of the ideal I'; see [18].
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We turn now to the study of ultradi�erentiable germs. Let M = (M`)`�0 be an
increasing sequence of real numbers withM0 = 1: The sequenceM is said to be strongly
regular if there exists a positive constant A such that the following assumptions are
satis�ed:

M is logarithmically convex ;(2.4)

Mj+k � Aj+kMjMk for all (j; k) 2 N2 ;(2.5) X
j�`

Mj

(j + 1)Mj+1
� A

M`

M`+1
for all ` 2 N :(2.6)

Condition (2.4), which amounts to saying that M`+1=M` increases with `; implies

MjMk � Mj+k for all (j; k) 2 N2 :(2.7)

Thus (2.5), which is in some sense converse to (2.7), means that the growth of M is
not too wild. The role of condition (2.6) will be recalled later, after the de�nition
of ultradi�erentiable germs. To each strongly regular sequence M; one associates
the function hM de�ned by hM (t) = inf`�0 t

`M` for all t 2 R+: This function is
continuous, non { decreasing; we have hM (0) = 0 and hM (t) = 1 for t � 1: In virtue of
(2.4), the knowledge of hM fully determines the sequence M since we have then

M` = sup
t>0

t�`hM (t) for all ` 2 N :(2.8)

More precisely, for each ` 2 N; there is a unique real t(`) 2 ]0; 1] such that t 7! t�`hM (t)
increases on ]0; t(`)[ and decreases to zero on ]t(`);+1[ ; thus the supremum is attained
for t = t(`): Easy considerations show that t(`) tends to 0 as ` tends to in�nity.

Now let s be a real number with s � 1: Obviously, the sequence Ms =
�
Ms

`

�
`�0

is

also strongly regular, and we have hMs(ts) = (hM (t))s: Moreover, as pointed out in
[6], there exists a constant �(s) � 1; depending only on s and M; such that

hM (t) � (hM (�(s)t))s for all t 2 R+ :(2.9)

From (2.5), (2.8) and (2.9), it is straightforward to deduce that there exist positive
constants c(s) and d(s); depending only on s and M; such that we have

c(s)`Ms
` � M[s`] � d(s)`Ms

` for all ` 2 N ;(2.10)

where the brackets denote the integer part. A most classical example of strongly
regular sequence is given by the Gevrey sequences M` = `!� with � 2 R�+:

De�nition 2.1. For any strongly regular sequence M; let CM (Rn; 0) be the class
of germs f in C1(Rn; 0) for which there exist a neighborhood U of 0 in Rn and a
constant C > 0 such that the inequality��DLf(x)

�� � C`+1`!M`

holds for any x 2 U and any multi { index L:

By (2.4), (2.5) and standard results on ultradi�erentiable functions [10], the class
CM (Rn; 0) is easily seen to be a local ring, stable under derivation. The sequence M
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majorizes, in some sense, the defect of analyticity of its elements. Condition (2.6) is
the so { called strong non { quasianalyticity condition ensuring the existence of \good"
cuto� functions with CM regularity [4] (see also [3], [6]). For a more detailed interpre-
tation of (2.4), (2.5), (2.6) in terms of ultradi�erentiable classes, we refer the reader
to [4], [12]. Beware that the notations in [4], [12], are quite di�erent, since M` plays
there the role played by `!M` in the present paper. The latter notation, viewing M as
a defect of analyticity, is more convenient here, since it seems, as a rule, that any loss
of regularity involved by the various operations of di�erential analysis (division, etc.)
in the setting of ultradi�erentiable functions, acts only on their defect of analyticity.

Denote by mM the maximal ideal of CM (Rn; 0): Clearly, one has

mk
M = mk \ CM (Rn; 0) for all k 2 N [ f1g :(2.11)

The following de�nition comes now in the same way as for the C1 case:

De�nition 2.2. An ideal in CM (Rn; 0) is said to be elliptic if it contains m1
M :

Since any ring CM (Rn; 0) contains all the real { analytic germs, one can consider the
ideal

I';M = ('1; : : : ; 'p)CM (Rn; 0)

generated in CM (Rn; 0) by the germs '1; : : : ; 'p considered in Subsection 2.1 above.
In contrast with the C1 case, we shall see below that I';M is not elliptic in general.
When one looks, more generally, for conditions ensuring the inclusion of m1

M in I';Ms

for some suitable real s � 1; it quickly turns out that the problem depends heavily on
the geometry of the zero set of the complexi�cation of '; therefore it is necessary to
introduce corresponding tools before going further.

2.2. Some  Lojasiewicz exponents

Denote by O(Rn; 0) (resp. O(Cn; 0)) the ring of real { analytic (resp. holomorphic)
function germs at the origin in Rn (resp. Cn). By means of the power series expansion,
O(Rn; 0) can obviously be viewed as the subset of elements of O(Cn; 0) taking real
values on Rn: Thus, to each real { analytic germ 
 one can associate the set of its
complex zeros Z
 = 
�1(0) as a germ of complex analytic set. Put

Z' =
\

1�j�p

Z'j :

The condition (2.1) on real zeros reads as

Z' \Rn = f0g :(2.12)

In view of (2.12), the regular separation [15] of the analytic sets Z' and Rn implies
that there exist real numbers c > 0 and � � 1 such that

d
�
x; Z'

� � c jxj� for any x close to 0 in Rn :(2.13)

The  Lojasiewicz exponent �(') for the separation of Z' and Rn is de�ned as the
in�mum of all numbers � for which there exists a constant c > 0 such that (2.13)
holds.
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Now denote by KR(') the ideal generated by '1; : : : ; 'p in O(Rn; 0) and let K0
R

(')
be the subset of those 
 2 KR(') such that Z
 \Rn = f0g: Then, just as for Z'; one
gets a  Lojasiewicz inequality

d
�
x; Z


� � c jxj� for any x close to 0 in Rn ;(2.14)

for some suitable constants c > 0 and � � 1: In the same way as precedingly, one
de�nes the  Lojasiewicz exponent �(
) for the regular separation of Z
 and Rn: In
virtue of [2], the numbers �(') (resp. �(
)) are rational and (2.13) (resp. (2.14))
holds with � = �(') (resp. � = �(
)), for some suitable constant c: Now a �rst result
can be stated as follows.

Theorem 2.3. Let s be a real number with s � 1: Then, given any element 
 of

K0
R

('); the inequality s � �(
) implies that for any strongly regular sequence M; one
has the inclusion m1

M � I';Ms :

Proof. Applying the classical  Lojasiewicz inequality [15] to the germ 
; one knows
that there exist a neighborhood V of 0 in Cn and real constants B1 > 0 and � � 1
such that

j
(z)j � B1d
�
z; Z


��
for all z 2 V :(2.15)

Put U = V \Rn and, for any x in Unf0g; consider the polydisc

P x =

�
z 2 Cn : jzi � xij � 1

2
p
n
d
�
x; Z


�
for i = 1; : : : ; n

�
:

Then, maybe after shrinking U; we get d
�
x; Z


� � 3
2 d
�
z; Z


�
for any x in Unf0g and

z in P x: Besides, we know that (2.14) holds with � = �(
); as mentioned above. Thus,
in view of (2.14) and (2.15), the Cauchy formula on P x gives the estimate����DJ

�
1


(x)

����� � Bj+1
2 j! jxj��(j+�)(2.16)

for any x 2 Unf0g; any multi { index J; and some suitable constant B2 > 0 depending
only on 
 and n: Now let h be an element of m1

M : We may assume h to be de�ned
in U; after shrinking it once more if necessary. Then, using the Taylor formula, the
elementary estimate k! p! � (k + p)! � 2k+pk! p! and condition (2.5), it is easy to see
that for any x 2 U; any multi { index K of length k and any non { negative integer q;
one has ��DKh(x)

�� � Bk+1
3 k!Mk(B3 jxj)qMq(2.17)

where B3 is a constant depending only on M; h and n: Consider the function g = h=
:
It belongs clearly to C1(Unf0g): Moreover, with the help of (2.5) and (2.10), the
application of (2.16) and (2.17) with q = [�(j + �)] + 2 yields����DJ

�
1


(x)

�
DKh(x)

���� � Bj+k+1
4 j!M�

j k!Mk jxj(2.18)

for some B4 > 0: Thus the germ g actually belongs to m1
M� since each product

DJ(1=
(x))DKh(x) occuring with J + K = L in the Leibniz formula for DLg(x) is,
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in virtue of (2.18), majorized by B`+1
5 `!M�

` jxj for some suitable B5: In particular, h
is equal to 
g with 
 2 ('1; : : : ; 'p)O(Rn; 0) and g 2 CM� (Rn; 0): The desired result
obviously follows. 2

Corollary 2.4. Assume that Z' = f0g: Then I';M is elliptic.

Proof. Using the Nullstellensatz in the same way as in Proposition 3.4 of [17], one
can �nd 
 in K0

R
(') such that �(
) = 1; thus Theorem 2.3 applies with s = 1: The

result follows. 2

Corollary 2.5. Assume that Z' has pure dimension n � 1: Then the inclusion

m1
M �I';Ms holds as soon as s��('); in particular, the ideal I';M is elliptic provided

�(') = 1:

Proof. As in Proposition 3.4 of [17], one can �nd a germ 
 in K0
R

(') such that
�(
) = �('): 2

Note that Corollary 2.5 applies to any ideal with one generator (' = '1): In this
situation, the special case of two variables is particularly interesting, as the following
theorem shows.

Theorem 2.6. Assume that n = 2; p = 1 and let s be a real number with s � 1:
Then one has

m1
M � I';Ms(2.19)

if and only if

s � �(') :(2.20)

In particular, the ideal I';M is elliptic if and only if �(') = 1:

As remarked before, the \if" part of the result follows from Corollary 2.5. The \only
if" part is more involved and the whole Section 3 of the paper will be devoted to its
proof.

Problem 2.7. Does the converse part of Theorem 2.6 still hold for more than two
variables ? Since our proof relies heavily on Puiseux expansions, hence on a purely
two { dimensional technique, the case n � 3 is not clear; but it is very natural to
conjecture that the theorem should be valid in any dimension.

Remark 2.8. Note that all the results of the present paper are stated in the setting
of strongly regular classes for sake of simplicity. Nevertheless, as it can be seen on the
preceding proof, the particular statement of Theorem 2.3 doesn't need the full power
of (2.6), but only the weaker Denjoy { Carleman condition of non { quasianalyticity

X
j�0

Mj

(j + 1)Mj+1
< +1 ;

ensuring that m1
M is non { void.
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3. Computation of a  Lojasiewicz exponent

3.1. Preliminaries and notations

In this section, we turn to the proof of the \only if" part of Theorem 2.6 concerning
the special case n = 2 and p = 1: The �rst step consists in �nding how to relate the
 Lojasiewicz exponent �(') to certain numbers arising in a Puiseux factorization of '
at the origin. From now on, we denote by !(v) the order of any element v of O(C; 0);
that is the least degree of monomials occuring in the power series expansion of v; with
the convention !(0) = +1:

After a linear change of coordinates with real matrix, one can clearly assume, without
changing the fact that ' is real, that the z1 { axis is transversal to Z' at 0: Using
the factorization of ' in irreducible factors in O�C2; 0

�
and applying the Puiseux

theorem for irreducible factors (a nice proof of which can be found in [1]), it is readily
seen that there exist an integer m with m � 1; a unit u in O�C2; 0

�
and a �nite

family
�
vj
�

in O(C; 0); such that for all z near the origin in C2; we have '
�
z1; z

m
2

�
=

u
�
z1; z

m
2

�Q
j

�
z1 � vj(z2)

�mj
for some suitable mj 2 N�: The transversality of the

z1 { axis to Z' ensures that !
�
vj
� � m for all j: Since ' takes real values on R2 and

has no non { trivial real zero, we deduce that for any real x2; the roots vj(x2) are all
non { real and pairwise conjugate. Also, the germ ~u(z) = u

�
z1; z

m
2

�
is real { analytic

too. One gets thus a factorization

'
�
z1; z

m
2

�
= ~u(z1; z2)

Y
1�p�p0

�
 p(z1; z2)

�np
;(3.1)

where p0 and n1; : : : ; np0 are positive integers, and where each  p can be written

 p(z1; z2) =
�
z1 �Rp(z2)� iSp(z2)

��
z1 �Rp(z2) + iSp(z2)

�
(3.2)

for someRp and Sp belonging toO(R; 0) and satisfyingm � !(Rp); m � !(Sp) < +1:
De�ne now

�p = !(Sp) and �+p = �p=m for p = 1 ; : : : ; p0 ;

�+(') = max
�
�+p : p = 1; : : : ; p0

	
;

��(') = �+( �') where �'(z1; z2) = '(z1;�z2) :

Proposition 3.1. With the notations above, one has �(') = max
�
�+('); ��(')

�
:

Proof. Consider the principal determination of z
1=m
2 in CnR�: Then, for any z =

(z1; z2) with Re z2 � 0; one has '(z) = 0 if and only if there exists p 2 f1; : : : ; p0g
such that

z1 = Rp

�
z
1=m
2

�
� iSp

�
z
1=m
2

�
:

We put Z+
' = fz : Re z2 � 0 and '(z) = 0g and

Z 0p =
n
z : Re z2 � 0 and z1 = Rp

�
z
1=m
2

�
+ iSp

�
z
1=m
2

�o
Z 00p =

n
z : Re z2 � 0 and z1 = Rp

�
z
1=m
2

�
� iSp

�
z
1=m
2

�o
;
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in such a way that

Z+
' =

[
1�p�p0

�
Z 0p [ Z 00p

�
:(3.3)

Put also Z�' = fz : Re z2 � 0 and '(z) = 0g; then Z' can be written as

Z' = Z+
' [ Z�' :(3.4)

Now we break the proof into a series of lemmas. The following notation will be useful:
if A(t) and B(t) are two positive functions of a variable t belonging to a set T; one
writes A(t) . B(t)

�
or equivalently B(t) & A(t)

�
to say that there exists a real C;

not depending on t; such that the inequality A(t) � CB(t) holds for all t 2 T: The
notation A(t) � B(t) means that one has A(t) . B(t) and B(t) . A(t) simultaneously.

Lemma 3.2. For p = 1; : : : ; p0 and x 2 �R�R+; 0
�
; one has d

�
x; Z 0p

�
& jxj�+p :

Proof. For z1 2 C and Re z2 � 0; we consider the complex { valued function

Tp(z) = z1 �Rp

�
z
1=m
2

�
� iSp

�
z
1=m
2

�
:

Since !
�
Rp

� � m and !
�
Sp
� � m; the function Tp is of class C1 up to the boundary

in the half space C�fz2 : Re z2 � 0g; hence it extends to a C1 function, still denoted
by Tp; on the whole of C2: Moreover, the expansion Tp(z) = z1 + O(z2) at the origin
implies clearly that T�1p (0) is a germ of (2 { dimensional, real) submanifold of C2 at
the origin. Thus we have

d
�
x; T�1p (0)

� � ��Tp(x)
��(3.5)

for x suÆciently close to 0 in R�R+: Besides, Z 0p is contained in T�1p (0); hence

d
�
x; Z 0p

� � d
�
x; T�1p (0)

�
:(3.6)

Finally, since x2 belongs to R+; we have jTp(x)j �
���x1 �Rp

�
x
1=m
2

����+���Sp�x1=m2

���� ; with���Rp

�
x
1=m
2

���� � A jx2j for some suitable constant A > 0; and
���Sp�x1=m2

���� � jx2j�+p in

view of the de�nitions given in Subsection 3.1 above. There are now two possibilities.

First case: jx1j > 2A jx2j: We get jxj � jx1j and
���x1 �Rp

�
x
1=m
2

���� � 1
2 jx1j; thus

jTp(x)j & jxj & jxj�+p :
Second case: jx1j � 2A jx2j:We get jxj � jx2j and jTp(x)j & jSp(x)j & jx2j�+p & jxj�

+
p :

Together with (3.5) and (3.6), this proves the lemma. 2

Lemma 3.3. For p = 1; : : : ; p0 and x 2 (R�R�; 0); one has d
�
x; Z 0p

�
& jxj:

Proof. Just as for Lemma 3.2, one has d
�
x; Z 0p

� � d
�
x; T�1p (0)

� � jTp(x)j; but there
is no explicit expression of Tp(x) for x2 < 0: Nevertheless, the expansion Tp(x) =
x1+O(x2) still holds; so one can clearly �nd a constant B > 0 such that the inequality
jx1j � B jx2j implies jTp(x)j � jx1j � jxj; hence d

�
x; Z 0p

�
& jxj: In the other case
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jx1j < B jx2j; we get immediately d
�
x; Z 0p

� � d(x;R � R+) = jx2j � jxj: The lemma
follows. 2

Lemma 3.4. For x 2 �R2; 0
�
; one has d

�
x; Z+

'

�
& jxj�+('):

Proof. Lemmas 3.2 and 3.3 show that d
�
x; Z 0p

�
& jxj�+p holds for all x 2 (R2; 0): By

the same arguments, one has also d
�
x; Z 00p

�
& jxj�+p ; �nally giving the estimate

d
�
x; Z 0p [ Z 00p

�
& jxj�+p & jxj�+(') :

Taking into account (3.3), the lemma is proved. 2

Lemma 3.5. For x 2 �R2; 0
�
; one has d

�
x; Z�'

�
& jxj��('):

Proof. For z 2 C2; put s(z) = (z1;�z2): Then it is obvious that Z�' = s
�
Z+
�'

�
and d

�
x; Z�'

�
= d

�
s(x); Z+

�'

�
: Lemma 3.4 applies to s(x) and �'; therefore we obtain

d
�
x; Z�'

�
& js(x)j�+( �') with js(x)j = jxj and �+( �') = ��('); hence the result. 2

3.2. End of the proof of Proposition 3.1

In view of (3.4), Lemmas 3.4 and 3.5 show that for x 2 �R2; 0
�
; we have

d
�
x; Z'

�
& jxjmax(�+(');��(')) :

The inequality �(') � max
�
�+('); ��(')

�
follows.

The reverse inequality �(') � max
�
�+('); ��(')

�
is simple and can be obtained

as follows. For p �xed, 1 � p � p0; and for � > 0; put x(�) = (Rp(�); �m): Then
x(�) belongs to R � R+ and satis�es jx(�)j � �m; since Rp(�) = O(�m): Moreover

x(�) + i(Sp(�); 0) belongs to Z'; hence d
�
x(�); Z'

� � jSp(�)j � ��p � jx(�)j�+p : This
implies �(') � �+p for all p = 1; : : : ; p0; thus �(') � �+('): The same argument applies
to obtain �(') � ��('): 2

We are now ready to prove the implication (2.19) ) (2.20) of Theorem 2.6. The
proof needs �rst a 
at function in CM satisfying some special estimates.

Lemma 3.6. For any strongly regular sequence M; one can �nd a positive function

� belonging to CM (R; 0); which is even, vanishes at in�nite order at the origin, and

satis�es

�(t) � hM (b jtj) for all t 2 R ;(3.7)

for some suitable constant b > 0 depending only on M:

Proof. Note that (3.7) means that � is, in some sense, extremal, because any func-
tion belonging to CM (R; 0) and 
at at 0 must be, by Taylor's formula, majorized by
ChM (C 0 jtj) for some constants C; C 0 depending on the function. In the special case
of Gevrey sequences M` = `!�; one can take explicitely �(t) = exp

� � jtj�1=��: For
general sequences, the construction of � uses more or less classical ideas, so we give
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only a sketch. First, let
�
tj
�

and
�
rj
�

be sequences of real numbers, with rj > 0 for
all j; chosen in such a way that for some constant Æ > 1; the families of intervals
Ij =

�
tj � rj ; tj + rj

�
and I�j =

�
tj � Ærj ; tj + Ærj

�
enjoy the following properties: the

Ij cover R�+; each I�j intersects at most a �xed �nite number of I�k with k 6= j; one has
t � rj for all j and all t 2 I�j : Using the cuto� functions of Bruna [4] (see also [3],
[6]), for any j one can �nd a smooth positive function �j supported in I�j ; taking its
values in [0; 1]; identically equal to 1 in Ij ; and such that the estimate

���(`)j (t)
�� � C`+1`!M`

�
hM
�
rj
���1

holds for all (j; `) 2 N2 and t 2 R; with a constant C depending only on M and Æ:
Put now

�(t) =
X
j

�
hM
�
rj
��2

�j(jtj) :

Playing with the properties of Ij ; I
�
j and �j described above, and using also (2.9)

(with s = 2), it is not diÆcult to see that � has all the required properties. 2

3.3. Proof of the \only if" part of Theorem 2.6

Let � be the function of Lemma 3.6. Assuming (2.19), there exists a germ g belonging
to CMs

�
R
2; 0
�

and satisfying

�(x2) = '(x1; x2)g(x1; x2) for all x 2 �R2; 0
�
:(3.8)

Since �(x2) does not depend on x1 (!), this implies that the identity

�
�
xm2
�

= '
�
x1; x

m
2

�
g
�
x1; x

m
2

�
= '

�
x1 +Rp(x2); xm2

�
g
�
x1 +Rp(x2); xm2

�
(3.9)

holds for all p = 1; : : : ; p0 and all x 2 �R2; 0
�
: Now consider the analytic germ ~'p

de�ned by

~'p(x1; x2) = ~u
�
x1 +Rp(x2); x2

� �
x21 + (Sp(x2))2

�np�1Y
`6=p

�
 `
�
x1 +Rp(x2); x2

��n` ;
in such a way that we have, in view of (3.1) and (3.2),

'
�
x1 +Rp(x2); xm2

�
=
�
x21 + (Sp(x2))2

�
~'p(x1; x2) :(3.10)

Put also ~gp(x1; x2) = ~'p(x1; x2)g
�
x1 + Rp(x2); xm2

�
: Then ~gp belongs clearly to the

ring CMs

�
R
2; 0
�

and, by (3.9) and (3.10), one gets

�
�
xm2
�

=
�
x21 + (Sp(x2))2

�
~gp(x1; x2) :(3.11)

We also know that there exists a constant c > 0 such that the inequality

jSp(x2)j � c jx2j�p(3.12)
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holds for all p = 1; : : : ; p0 and x2 suÆciently close to 0: From (3.11) and (3.12) it is
easy to deduce, for all x suÆciently close to 0 and satisfying 0 � x1 < c jx2j�p ; the
expansion

~gp(x1; x2) =
�
�
xm2
�

(Sp(x2))2

1X
j=0

(�1)j
�

x1
Sp(x2)

�2j
:

This gives in particular, for all j 2 N and x2 > 0 small enough,

@2j~gp

@x2j1
(0; x2) = (�1)j(2j)! (Sp(x2))�2j�2�

�
xm2
�
;

hence, by (3.7) and (3.12),�����@
2j~gp

@x2j1
(0; x2)

����� � (2j)!

c2j+2
hM
�
bxm2

�
x
(2j+2)�p
2

�
�
b�p=m

c

�2j+2
(2j)!

 
hM
�
bxm2

�
�
bxm2

�2j+2
!�p=m

:

(3.13)

Now we use (3.13) with x2 = x2(j) = (t(2j + 2)=b)1=m; where the numbers t(`) have
been studied at the end of Subsection 2.1, ensuring in particular that x2(j) tends to
0 as j tends to in�nity. Taking again (2.5) into account, we see that there exists a
constant d > 0 such that we have�����@

2j~gp

@x2j1
(0; x2(j))

����� � d2j+1(2j)!M
�p=m
2j for all j 2 N :

Since each ~gp belongs to CMs

�
R
2; 0
�
; this inequality implies s � �p=m = �+p for all

p = 1; : : : ; p0; hence

s � �+(') :(3.14)

Now note that since � is even, (3.8) implies also that x 7! �(x2) belongs to I �';Ms : All
the previous work can therefore be done exactly in the same way with �' instead of ';
giving then

s � ��(') :(3.15)

By Proposition 3.1, the estimates (3.14) and (3.15) yield the desired fact, namely that
(2.19) implies (2.20). This completes our local results.

4. Conditions for closed ideals

4.1. Context

Let M be a given strongly regular sequence and 
 an open subset of Rn: To each
relatively compact, smoothly bounded, open subset X of 
 and each real � > 0; we
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associate the space CM;�

�
X
�

of those functions f belonging to C1
�
X
�

and such that
there exists a constant Cf > 0 for which we have��DLf(x)

�� � Cf �
``!M` for any L 2 Nn and any x 2 X :(4.1)

In the sequel, the class under study will be the Roumieu { Carleman class CM (
)
de�ned as the set of functions f belonging to C1(
) and such that for any X as before,
there exists a constant � for which the restriction of f to X belongs to CM;�

�
X
�
: This

algebra of functions may be topologized as follows: denote by kfkX;� the in�mum of

all constants Cf such that (4.1) holds. Then CM;�

�
X
�

is a Banach space with respect

to the norm k � kX;�: De�ne the Carleman class CM
�
X
�

as the inductive limit of all

spaces CM;�

�
X
�

for � > 0: Then CM (
) is the projective limit of the spaces CM
�
X
�
:

We refer the reader to [12] for a detailed topological study of such classes.
Now let ' = ('1; : : : ; 'p) be a real { analytic mapping from 
 to Rp: As speci�ed in

the introduction, assume that 0 belongs to 
 and '�1(0) = f0g: We still denote by '
the germ of the mapping at the origin, and we shall use the notations of Sections 2
and 3 concerning germs. Let I
';M be the ideal generated by '1; : : : ; 'p in CM (
):

The fact that I
';M is generally not closed in CM (
) is pointed out in [8] by a simple

example, with n = 2; p = 1
�
note that in [8] the zero set of the ideal is the curve

x21 + x32 = 0; but the computations work as well with '(x) = x21 + x42 which has an
isolated real zero at the origin

�
. The following proposition allows us to relate now the

closedness of ideals I
';M to the local results stated previously:

Proposition 4.1. Under the above assumptions, the ideal I
';M is closed in CM (
)

if and only if the ideal of germs I';M is elliptic in CM
�
R
n; 0
�
:

Proof. Multiplying by CM cuto� functions, we can consider germs in CM
�
R
n; 0
�

as functions in CM (
): The proposition reduces then to a rather simple application of
the CM version of Whitney's spectral theorem [7]. 2

Corollary 4.2. Assume that p = 1: Then I
';M is closed as soon as �(') = 1: The
condition is also necessary in the case n = 2:

Proof. Immediate by Corollary 2.5, Theorem 2.6 and Proposition 4.1. 2

Example 4.3. Let ' be a positive de�nite homogeneous polynomial. Then the ideal
generated by ' in any strongly regular Roumieu { Carleman class CM (Rn) is closed.

Example 4.4. For k 2 N� and x 2 R2; put '(x) = x21 +x2k2 : Then, for any strongly
regular Roumieu { Carleman class CM

�
R
2
�
; the ideal generated by ' in CM

�
R
2
�

is
closed if and only if k = 1:

We state now an application of Corollary 4.2 to the division of ultradistributions.
With the notations of Subsection 4.1, let DM;�

�
X
�

be the closed subspace of CM;�

�
X
�

given by those elements which extend to C1 functions in Rn; having compact support
contained in X ; and let DM

�
X
�

be the inductive limit of the spaces DM;�

�
X
�

for

� > 0: Denote �nally by DM (
) the inductive limit of all spaces DM

�
X
�

for X
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relatively compact, smoothly bounded, open subset of 
; and recall that Roumieu
ultradistributions of class CM are de�ned as the continuous linear forms on DM (
):
It seems that the only result previously known about division of ultradistributions by
functions is due to Droste [9], who proved that division of a Dirac mass at some
point a by an ultradi�erentiable function ' is possible in the corresponding class of
ultradistributions only if ' has a zero of �nite order at a: Assuming that 
 is connected,
this necessary condition is obviously satis�ed when ' is analytic, non identically zero.
In this setting, we have now a suÆcient condition, reading as follows.

Proposition 4.5. Assume that p = 1 and �(') = 1: Then any ultradistribution T
of class CM in 
 can be divided by '; in the sense that there exists another ultradis-

tribution S of class CM such that T = 'S:

Proof. The basic scheme is the same as for distributions, but the more complicated
topological structure of the test space DM (
) requires here some technical devices.
We shall use a Beurling class version for the \if" part of Corollary 4.2. The Beurling
class BM (
) is the projective limit of all classes BM

�
X
�
; being themselves de�ned

as the projective limits of the Banach spaces CM;�

�
X
�

for � > 0: The nice feature
of Beurling classes is their natural Fr�echet topology. We claim also that in the case
p = 1 and �(') = 1; the ideal 'BM (
) generated by ' in BM (
) is closed. To see
this, the argument of Proposition 4.1 may be adapted as follows: if f belongs to the
closure of this ideal in BM (
); the spectral theorem of [7] shows that there exists f0
belonging to 'BM (
) and such that f � f0 is 
at at the origin. Pick a small ball X
centered at 0: By Proposition 11 of [5] (see also [6]), one can �nd a strongly regular
sequence M 0 such that f � f0 belongs to CM 0

�
X
�

and CM 0

�
X
� � BM

�
X
�
: Using

the ellipticity of I';M 0 ; it is readily seen that f � f0 belongs to 'CM 0

�
X
�
; hence to

'BM

�
X
�
; and the claim follows easily, by suitable truncations. Now let T be a given

Roumieu ultradistribution of class CM : By partitions of unity, we may assume that T
has compact support in 
: Following an idea of [7], we use Komatsu's �rst structure
theorem (Section 8 of [12]) together with Proposition 14 of [5] (see also [6]) to construct

a strongly regular sequence M 00; depending on T; such that
�
M`=M

00
`

�1=` ! 0; which
ensures the set inclusion DM (
) � BM 00(
); and such that, moreover, T extends to a
linear continuous form on BM 00 (
) (this is not obvious, since the previous inclusion is
not topological). Consider the mapping P : BM 00 (
) ! BM 00 (
) de�ned by Pf = 'f:
It is obviously injective; and its range 'BM 00(
) is closed, as claimed just above. The
open mapping theorem can be applied in BM 00 (
) to derive that P has a continuous
inverse Q: The linear form S = TQ is thus continuous on 'BM 00 (
); so it extends to
the whole of BM 00 (
) by the Hahn { Banach theorem. Remark now that the restriction
of S to DM (
) is still continuous with respect to the corresponding (stronger) topology.
This is enough to conclude, since we have hS; 'fi = hS;Pfi = hT;QPfi = hT; fi for
any test function f 2 DM (
): 2

4.2. Concluding remarks and questions

(i) Although essentially optimal regarding the regularity of the functions, the pre-
vious approach of the problem of closed ideals is currently working well only in the
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setting of ideals with isolated real zeros. A completely di�erent viewpoint on such
problems is to be found in [8]: in this paper, desingularization techniques enable the
authors to deal with zero sets of principal ideals in full generality; but in counterpart,
most of the information on the regularity disappears, so that suÆciently good results
can be obtained only in classes de�ned as, roughly speaking, intersections of all rings
CMs for s > 0: Therefore it would be interesting to know how to extend our precise
results to the case of ideals with general zero sets.

(ii) Another feature of [8] is that the classes under consideration may be quasian-
alytic. In contrast, Proposition 4.1 relies heavily on non { quasianalyticity, since the
CM version of Borel's lemma [16], as well as considerations of 
at functions, are
hiding behind its proof. But does Corollary 4.2 still hold in the quasianalytic case ?

(iii) In the whole Section 4, we have mostly restricted ourselves to the considera-
tion of a particular type of ultradi�erentiable class (namely local Roumieu { Carleman
classes) but, up to a lengthy discussion of various cases, similar results can be obtained
in the same way for other ones, like Roumieu { Carleman up to the boundary of 
; or
Beurling classes, and so on. See e. g. [9], [12] for the de�nitions.
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Note added in proof: E. Bierstone (personal communication) has recently shown to the author

how to reduce Problem 2.7 to the arguments of Section 3; therefore the answer to that question is:

yes. Details will appear elsewhere.
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