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Abstract. We consider an inhomogeneous Poisson process X on [0, T']. The intensity function of
X is supposed to be regular on [0, T'] except at the point 6, in which it has a singularity (a cusp) of
order p. We suppose that we know the shape of the intensity function, but not the location (given by
the parameter ) of the point of cusp. We consider the problem of estimation of this location (shift)
parameter 6 based on n observations of the process X. We study the maximum likelihood estimator
and the Bayesian estimators. We show that these estimators are consistent, their rate of convergence
is n1/@p+D), they have different limit distributions, and the Bayesian estimators are asymptotically
efficient.

AMS Mathematics Subject Classification (2000): 62MO05.

Key words: inhomogeneous Poisson process, cusp, parameter estimation, Bayesian estimators,
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1. Introduction

In this paper, we consider the following parameter estimation problem. Suppose we
observe n realizations of a Poisson process X on some fixed interval [0, T']. The
intensity function of the process is supposed to be of the form Sy(t) = s(r — 0),
where s(-) is some known strictly positive function and 6 € (0, T) is some un-
known parameter.

In the case where the problem is regular (e.g. if the function s(-) has a bounded
derivative) the model is locally asymptotically normal (LAN), and both the max-
imum likelihood estimator (MLE) and the Bayesian estimators (BE) consistent,
asymptotically normal and asymptotically efficient (see, e.g. [5, 6]). Here we deal
with the case where the intensity function Sy(-) is regular everywhere on [0, T']
except at the point 6, in which it has a singularity (a cusp) of order p. More
precisely, we suppose that

$)() = alt —0|1P + ¢t —60) ifr<é,
T bl —601P + vyt —0) ifr>=6,

where a®> 4+ b*> > 0, and ¥ (-) is regular. If the singularity is of order higher than
1/2, then, in spite of the non-regularity of the intensity function in 6, the Fisher
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information is finite. That is why the case p > 1/2 can be treated as the regular
one, and in the present work we study the case 0 < p < 1/2 only. In this case
we study the asymptotic behavior of the MLE and the BE and we prove that the
rate of convergence of the estimators is faster than in the regular case (n'/@P+D),
the estimators are consistent, they have different limit distributions, and the BE are
asymptotically efficient. We verify as well the convergence of moments.

A similar problem of parameter estimation is the problem of estimation of a
cusp location of the density for the i.i.d. model of observations. This problem was
first considered by Prakasa Rao in [7]. Further developments were carried out by
Ermakov in [1] and by Ibragimov and Khasminskii [2—4]. An exhaustive exposition
of the results can be found in Chapter 6 of their book [4], but one can also refer
to the previous works [2, 3] of the authors. More precisely, in Chapter 6 of [4],
the problem of estimation of a shift parameter 6 by n independent observations
of a random variable is considered in three different situations (three types of
singularities). Our type of parameter estimation problem corresponds to the case
where the density fy(x) of the observed random variable has a singularity ‘of the
second type’ at the point 6, that is,

[ h(x —0) expla(x —6) |x — 0P} if x <0,
Fo@) =1 hix — 0 explb(x — 0) |x — 0|7} ifx>0

with some regularity conditions on functions 4(-), a(-) and b(-). The asymptotic
behavior of the MLE and of a wide class of BE obtained for this (i.i.d.) model is
similar to the one obtained here for the model of Poisson observations. Particularly,
the rate of convergence of the estimators is n!/©??™1_and the BE are asymptotically
efficient.

Finally, let us mention here that for the study of the asymptotic behavior of
the estimators we use the method of Ibragimov and Khasminskii presented by the
authors in [4] (see as well [6], where this method is applied to inhomogeneous
Poisson process).

2. Main Results

Suppose we observe n realizations (X, ..., X,) = X" of the Poisson process
X = {X(t), 0<t < T} of intensity function Sy(t) = s(t — 6), where 0 is some
unknown parameter, 6 € ©® = (o, B) < (0, T), and s(-) is some known strictly
positive function on [—7, T']. We suppose that the function s(-) can be written as
s(t) =d@®)|t|? + ¥ (t), where 0 < p < 1/2,

a ift <0,
d(’):{b ifr >0,

a’ + b*> > 0, and the function () is Holder continuous of order higher than
p+1/2, thatis, |[Y(x) — Y (y)|<L|x —y|* forall x,y € [T, T] with some
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fixed constants L > 0 and » > p + 1/2. Our aim is to estimate the parameter 6
and to study the asymptotic behavior of estimators as n — 0.
The likelihood ratio in our problem can be written (see, e.g. [6]) as

L, 0, X") = exp{i/Tln S (1) dX; (1) —
o i Jo " Sp ()

TT Se(2)
_n/o [Sel(f) —1] Se, () dt},

where 6, is some fixed value of 6. R
As usually, introduce the MLE 6, as one of the solutions of the equation

L®,,6,, X") =sup L(0, 6, X"),
0e®

and the BE 8, for prior density g (supposed to be positive and continuous) and
quadratic loss function as

- B
Qn:/ 0qO0|X") do,

where the posterior density

B —1

q@1X") = L(®,61, X")q(0) (f L(®,6:,X")q(0) d9>

To describe the properties of these estimators we need to introduce the stochastic
process

Z(u) = exp{WpH/z(u) — % |u|2p+l}, u € R.

Here and in the sequel W (.) denotes a standard fractional Brownian motion
(FBM) of the Hurst parameter H, that is a Gaussian random process with zero
mean and the covariance function

E[W" @)W )] = L[lui 7 + o — Juy — ua]?].

We introduce also the random variables & and ¢ by the equations

Z(§) = sup Z(u),
ueR

+00 +00 -1
¢ :/ uZ(u) du (/ Z(u) du) .

Let us note here, that & is well defined since with probability one the process Z ()
attains its maximum in a unique point (see, e.g. [1]).

and
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Finally, we put

o0
,(a.b) =/ [ — Dlx — 117 = d(o)x PP dv,

and we introduce the constant
1,(a, b) 1/2p+1)
Bl ( ¥ (0) ) '
Note that 0 < I,(a, b) < +o0 since a*> + b* > 0 and p < 1/2, and that it has the

following representation (see Section V1.4 of [4])

1_
I,(a,b) = Ha+prG-p [a® + b* — 2ab cos(mp)]

2% Jm 2p + 1)

= B(p-l—l,p-i—l)[

a’ + b?
cos(mp)

— 2ab].

Now we can finally state the main results of this paper.

THEOREM 1. Under the maid assumptions, the following lower bound on the
risks of all estimators holds: for any 6y € ® we have

E¢?

lim lim inf sup Eg(nl/(2p+1)(§n—9))2>—2,
14

§=0 n=>00 g, |g—gy|<s

where inf is taken over all possible estimators 6, of 6.
This theorem leads us to introduce the following definition.

DEFINITION 2. We say that the estimator 6,, is asymptotically efficient if

1 QpiD) (G , E¢?
lim lim sup Eg(n'/*“’"@, —0)) = —
§=0 n=>0019_go <5 Y

for any 6) € ©.
For the MLE we have the following theorem.
THEOREM 3. The MLE @; has uniformly in 0 € K (for any compact K C ©) the

following properties:
- @1 is consistent, that is,

0, Lo, 0 (convergence in probability),
— the limit distribution of @1 is&/y, that is,

n'/Crth@, — 9) = & /y (convergence in law),
— for any k > 0 we have

lim Eg |n/@P*D@, — 6)

}k _ ElSlk
= yk .
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And for the BE we have the following theorem.

THEOREM 4. The BE 5,1 have uniformly in 6 € K (for any compact K C ©®) the
following properties:

— 0, is consistent, that is,

g, RN 0 (convergence in probability),
— the limit distribution of 0, is ¢/y, that is,

nV/@PED @G — 0) = ¢ /y (convergence in law),
— for any k > 0 we have

}k _ El;lk

lim Eg [n"/@P0(@, — 6) —,
n—oo )/

and, moreover, 0, is asymptotically efficient.

To prove the above stated theorems we apply the method of Ibragimov and
Khasminskii (see [4]). For this we denote 6, = 0 + un~"/@P*D forallu € U, =
(n'/CrtD(q — @), n'/Cr+tD(B — 0)), we introduce the normalized likelihood ratio

process as

Z,(u) =L(@6,,0,X"), uecl,,
the stochastic process Z,, (1) as

Zy ) = Z(yu) = exp{y " P W2 ) — 3y Pt u e R,
and we establish (the proofs are in the next section) the following three lemmas.

LEMMA 5. The finite-dimensional distributions of Z,(u) converge to the finite-
dimensional distributions of Z,(u) uniformly in 8 € K (for any compact
K C 0).

LEMMA 6. For any compact K C © there exists some positive constant C such
that

Eo|Z)2(u1) — Z,*(u2)|* < C luy — up P!
foralluy,u, e U,, 0 € Kandn € N.

LEMMA 7. For any compact K C © there exists some positive constant ¢ such
that

EoZ!/*(u) < exp{—c |u*"*"}

forallu e U,,0 € Kandn € N.




Estimation of Cusp Location by Poisson Observations

6 S. DACHIAN

Using these lemmas and applying Theorems 1.9.1, 1.10.1 and 1.10.2 of [4] we
get Theorems 1, 3, and 4, respectively.

3. Proofs of the Lemmas

For simplicity of exposition, the proofs will be carried out in the case a = b. The
general case proofs are similar. For convenience of notation, all throughout this
section C and ¢ denote generic positive constants which can differ from formula
to formula (and even in the same formula), and we putv = 1/2p + 1) and I' =
yp+1 /2.

In order to prove Lemma 5 we will study the convergence of the two-dimensional
(the general case can be considered similarly) distributions (In Z,(u1), In Z,,(u;))
of the process

"ot S, () /T [Se (1) ]
InZ, = 1 “ dX; — u —11S5 d
8 W>1§A "o KO S0 o(0) de

n T T
— Z/ de,-(t)—n/ g Sp(1) dr,
i=1 70

0

where we denote

So (1) B S0
T(T) and g=g0,t,u,n) = —Se(l) 1

The characteristic function of the vector (In Z,(u), In Z,,(#,)) can be written
as (see, e.g. Lemma 1.1 of [6])

f=f@,t,u,n)=In

On(A1, A2) = Egexp{ir; InZ,(uy) +iAy InZ, (uz)}

T

= exp {l’l/ |:eik1fl_|_i)\2f2 —1—-1x g1 —i)»zgz] So (1) dl},

0
and hence
T
m@ubh>=n/[J—1—m&de—
0
T
-thf[ﬁ—&munm+
0

T
+MM/[ﬁ—m&mw, )
0

where we denote f; = f(0,f,u;,n) and g; = g(0,1,uj,n) for j = 1,2, and
F =i\ f1+1) fa.
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To study this expression, let us at first establish the two following properties.

(a) For any fixed u, we have lim,_, ., g(@, ¢, u,n) = 0 uniformly in 6 € K and
t €0, T].

(b) We have

n—oo

T

. 1

fim n/ 8182 Sp(6) dr = S T2y PP o Jua P — Juy — P41,
0

and particularly (taking u| = uy = u)

T
lim nf g% Sy(t) dt = T2 u?PT.
n—oo 0

To prove (a), let us consider separately two cases. First, if [t — 0| > n~"? forn
sufficiently large we have

st — 6,) —s(t —0)|
s(t —0)
< Clalt =0, +y @t —6,)—alt—0" — ¢t —0)
< Cllt—0—un™P — |t — 07| +
+ClYy@t—0—un"") — ¢y —0)

18O, 1, u,n)|

u p
< Clt—01P |1 - ———| —1|+Clun"""
(t —O)nY
|ul Iul"gC(u '
|t_9|1—pnv nvx ne

Finally, if |t — 6| <n~"/2, for n sufficiently large we get similarly

g0, t,u,n)| < Cllt =0 —un™” — |t = 0|"| + C |un""|"

i o)
* C
< C(n—”/2+|u|n—“)P+Cn—”P/2+C4< (u).
nvx n¢

So, (a) is proved.
To prove (b), let us write

T
”/ 8182 8¢(t) dt =nly +nly +nlz + nly
0
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with
nl, = / la]t = 6u|" —alt = 0"lla]t = bu,|" —alt = 0]7] d
s(t —0)
_ / (Y —60,) =y -0yt —0,) -y —0)]
l’l[2 = d
s(t —0)
nls — / [alt — 6,17 —alt —0|1P1[Y(t — 6,,) — ¥t —6)] a.
s —0)
f [a ]t = 6,17 —alt = 01" 1Yt —6,,) — ¥t = 0)]
I’l[4 = d
s(t —0)

In order to study I;, let us fix a sequence (A,) such that A, — oo and
A,n~" — 0 and separate the integral /; in three parts: integral J; over (0,6 —
A,n~"), integral J, over (0—A,n"" ,0+A,n"") and integral J; over (0+A,n~", T).

For J, we get

OFA )t — 0, 1P — |t — O1P1[|t — O, |P — |t — 0|7
nty — na2/ [| 07— IP1[] 1P = | ]Cl
O—A, n— s(t—0)
_ nasz‘""“ [y —wyn ™17 = pIPIly w1 = yI]
Apn=V alyl? + ¥ (y)
Ail
~ — .2 — 7P —us|? — |z|P1n~ V@t g
w<0)/ [z = w)? = 1217101z = ual? — 2|71 :
2 An 2
= [z —u1l” —|z|”] dz+/ [z — us|” — |z|P]° dz—
2 w<0) U_A : A, ’

Ay
—f [Iz—u1|p—lz—u2|”]2dz},
_A"[

where the symbol ‘>’ means equality of limits, and is true since A,n~" — 0 and
the function a|y|?” + ¥ (y) is continuous in 0. It is easy to see that

A 2 it [T 2
lim [ [z —ul” = [27] dz = |u"F f [l — 117 = [x|”]* dx.
n—oo J_ 4 oo
Hence we have clearly
- 1 271, 129+ 2p+1 2p+1
lim nJy = 5 T[|uy [P + ua |7 — Juy — ua|"PH]. (2)
n—oo

To study J3, let us at first note that

T —+00
n/ = 0,7 =t —O1PP dr < n/ [y — un™1” — [y’ dy
0 A

+A,n=v anV

400
=/ [z — ul” — |2 dz — 0,
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since A, — 400 and the integral is convergent. Therefore, using Cauchy—Schwarz
inequality, we easily get

T t — M P |t — Pt — » P |t — p
na2/ (1t =617 = 1t = 61711t = 6,1” — It —617]
+Ap n—v st —0)

InJ3| =

< C\/n/[lt — 6,17 = 1t = 61" di x n/nr — 0,17 — 1t =017 dr,

and hence lim,,_, ., nJ; = 0. Similarly, lim,_, . nJ; = 0, and combining with (2)
we obtain

: 1
lim nly = 5 D2[Juy PP+ Jup PP — Juy — up [P,
n—oo

So, to verify (b) it remains to show that

n—oo n—oo n—oo

For this, it 1s sufficient to remark that

T
n [ (=00 - v - 0P ar < aClun P
0
= Clul*n*—0,
and apply Cauchy—Schwarz inequality. So, (b) is proved.

Now, using (a), (b) and the representation (1) we can easily terminate the proof
of Lemma 5. Indeed, (a) and (b) imply clearly that

T
lim i Syt)dt =0

n—oo 0

in the case k + [ > 3, and hence, using (1), we have
1. ! 2 1. 4 2
11’1¢n()»1,)»2) ~ —51)\.171 g1 So (1) dl‘—il)»zn 85 Sp(t) dr +
0 0

1 T
+ —n/ F? Sy(t) dr
2 Jo

12

1 r 1 r
—Eikln/ gleg(t)dt—Eikzn/ g3 Sy(t) dt —
0 0
1 2 g 2 1 2 g 2
0 0

T
—?»1)»211/ 8182 Sp(1) dt,
0
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where the symbol ‘>’, as before, means equality of limits. So, using (b), we get
finally

1 1
lim ¢, (A1, 22) = exp{—iixl P2 |uy PP — S ik L2 |uy PP —
1 1
_5 )\‘% F2|I/l1|2p+1 _ 5 )\’% F2|u2|2p+1 _

—Ar T

o un PP+ PP — Juy — up PP }

2

The last expression is clearly the characteristic function of the two-dimensional
distribution (In Z,, (u1), In Z,, (u5)) of the process

InZ, () =T WPH/2@u) — 1 T2 [u]?PF,

and hence the two-dimensional distributions of Z,(u) converge to the two-
dimensional distributions of Z, (u). The case of higher-dimensional distributions
can be treated similarly. The uniformity in 6 on any compact set K C © is evident.
Lemma 5 is proved.

Now let us prove Lemma 6. For |u; — u;| > 1 the assertion is evident since for
all 6 and n we have

EolZ)* () — Z,*(u2) P <4< 4 |uy — up?PT.

Suppose now that |u; — u,| < 1. Using Lemma 1.5 of [6] we can write

r 2
E, |Z)u)) — 2V u)|” < f So,, (1) — /g, (1) | dt
|22 = 2wl < [0, 0 = 50,0 ]

T
< Cn f (S5, (1) — Sy, () di
0
T
< On [ =01 = It = 00 dr +
0

T
+ Cn/ (Wt = 6) — Y (t — 6T dr
0
= Cn]1 + Cn12

with evident notations.
For the first integral we have clearly

T
i = [ =0 =™ 0P
0

400
</ [z —ui|? — |z — ua|P1* dz

o0

+00

2p+1 2 2p+

= |ur — uy| p+/ [x — 117 = [x|"]° dx = C u; — up|*P*.
—00
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For the second one, taking into account that |u; — u;| < 1 we get

T
nl, = n/ [Vt —60 —uyn")—y@—6—un ")) de
0

< Cn(luy — up| n™")* < Cnluy — uy|n~")*P+!

2p+1
= Clu; — up|*"*".

So, in the case |u; — u,| < 1, for all 6 and n we get finally
Eo|Z,*(u1) — Z,”*(u2)|* < Cnly + Cnly < C |uy — upP*.

Lemma 6 is proved.

It remains to verify Lemma 7. Using Lemma 1.5 of [6], for any n, 0 and u € U,
we can write

Engll/Z(M) < exp{ — %n F(u n‘”)},

where forall u € (¢ — 6, B — 0) we denote

T 2 T
Fu) =f0 [\/Sgﬂ,(t —,/Se(t)] dt>c/0 [Spu (1) — So ()] dt

r—6 T—-6
= C/ [y —ul? — [yI”]* dy +Cf [W(y —u) — ¥ (] dy +

0 0

T—-6
+ c/ [y — ul? — [y1PI (y — ) — w(3)] dy

0
= CIl +C12:tC|13|

with evident notations.
For the first integral we have

+00
ol <Cf [y —ul” —|y|P1* dy = C |u|*P*!,

o0

and

(T—6)/u

oy = clut! sign(u)/ [z =117 —|z"* dz
—0/u

1
> c|u|2p+‘/ [z — 107 — |2|PP dz = c |u P+,
0

since foru € (0,8 — 0) we have —0/u < 0 and (T — 60)/u > 1, and for u €
(¢ —6,0) wehave —0/u > 1 and (T —6)/u < 0.
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For the second integral we get clearly ¢/, < C|u|**, and hence, using Cauchy—
Schwarz inequality, we obtain ¢ |I3| < C|u|P+!/2* for the last integral, and finally

F(u) > clul™ = Clu|PH2 = e u P (1 = Clul P72 > o ful?

for all u such that |u| < 8, where § > 0 is some fixed constant.
On the other hand, we have also

inf F(u)=c >0,

|uf 26

since otherwise we should have Sy, () = Sp(¢) for some fixed u* and almost all
t € [0, T], which is impossible. Hence, for all |u| > § we can write

| |2p+1
Fu)y>c>c T

So, forall@ andu € (¢« — 6, B — 60) we have
F(u) > clu?"*,
and hence for all n, 6 and u € U, we can write
EoZ,*(u) < exp{ — i nF(un™")} < exp{—c u|?"*!}.

Lemma 7 is proved.

4. Concluding Remarks

1. For simplicity of exposition, in this paper we considered the Bayesian esti-
mators and the notion of asymptotic efficiency in the case of quadratic loss
function. In fact, the results hold for a larger class of loss functions (see [4] for
more details).

2. Again for simplicity of exposition, we considered the case where the unknown
parameter 6 is a shift parameter, that is we supposed that Sy(t) = s(t — 6).
In fact, the results hold in a more general situation, for example, when the
intensity function is strictly positive and can be written as

Se(t)y =d(t —0)|t —0|1P +W(,1),
where 0 < p < 1/2, a*> + b*> > 0, and the function ¥ (8, ¢) is continuous, and
uniformly in # Holder continuous (of order higher than p + 1/2) with respect
to 6. It is not difficult to obtain for this case the same results as those presented
above. The only difference is the constant y, which now depends on 6 and is
given by

I,(a, b) 1/2p+1)
== (we,e))




Estimation of Cusp Location by Poisson Observations

15

ESTIMATION OF CUSP LOCATION BY POISSON OBSERVATIONS 13

3. Like in Chapter 6 of [4], one can consider a situation when the intensity func-
tion has several cusps of the same order. More precisely, we suppose that

Hh <--- <t witht, —t; < T, the unknown parameter 6 € ® = («, ) C
(—t;, T —t,), and the intensity function is strictly positive and can be written
as

So(t) =Y dit =60 — )|t — 60 — 1;]” + W (0, 1),
i=1

where 0 < p < 1/2,

a; ifx <O,

d;(x) =
x) {b,- ifx >0,

al.2 + bl.2 > 0, and the function W (6, t) is continuous, and uniformly in t Holder
continuous (of order higher than p + 1/2) with respect to 6. It is not difficult
to obtain for this problem the same results as those presented above. The only
difference is the constant y, which now depends on 6 and is given by

. 1/@2p+1)

y =v(6) = (Z—I”(a”b’)) .

— Se(0 +1)

4. One can also consider similar problems of parameter estimation for the model
of spatial Poisson observations. An interesting and simple example is the fol-
lowing. Let us consider a two-dimensional Poisson process whose intensity
function has a cusp of order p along a circle of unknown radius p € («, B) C
(0, R) centered at the origin. More precisely, we suppose that the intensity
function is strictly positive and can be written in polar coordinates as

Sp(r, @) =d(r — p)Ir — pl” +¥(p, 1, 9),

where 0 < p < 1/2, a’ + b* > 0, and the function W is continuous, and uni-
formly in r and ¢ Holder continuous (of order higher than p+-1/2) with respect
to p. We observe n realizations of this Poisson process on the disk of radius
R centered at the origin, and we want to estimate p. This problem can arise in
image reconstruction theory, when we are given an optical detector counting
the photoelectrons emitted by a rough surface, and we want to estimate the
radius of a ‘crater’, whose location is known. It is not difficult to obtain for
this model the same results as those presented above. The only difference is
the constant y, which now depends on p and is given by

o | 1/Q@p+1)
J/=y(p)=(pl(a,b)/ —d<p) )
P o Y(p,p, )
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Abstract

The properties of the maximum-likelihood (MLE) and Bayesian (BE) estimators of the pa-
rameter of ergodic diffusion process are studied in the situation when the trend coefficient has a
cusp, i.e., it admits the representation S(¢,x) = d(x — ¥)|x — 9|” + h(x — ¥), where p € (0, 3),
d(x)=a for x <0, d(x) =>b for x > 0, and the function A(-) is regular. This problem of esti-
mation is not regular (Fisher information is equal to infinity), and it is shown that the rate of
convergence of the estimators is 7YVCPD | the estimators MLE and BE have different limit laws,
and the BE is asymptotically optimal.

(© 2002 Elsevier B.V. All rights reserved.

MSC: 62M05

Keywords: Ergodic diffusion process; Cusp estimation; Singular estimation problem; Maximum-likelihood
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1. Introduction

Let us consider the problem of parameter estimation by the observations of diffusion
process

dX, =S, X)) dt + o(X))dW:, X, 0<t<T, (1)

where ¥ € ©® = (o, f) with —oco < o < ff < + oo is some unknown one-dimensional
parameter. The trend coefficient S(1J,x) = s(x — 9), where the function s(-) is regular
everywhere except 0, and has a cusp in 0. More precisely, we suppose that

* Corresponding author. Tel.: +33-2-4383-3219; fax: +33-2-4383-3579.
E-mail addresses: serguei.dachian@math.univ-bpclermont.fr (S. Dachian), kutoyants@univ-lemans.fr
(Y.A. Kutoyants).
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(#) The function a(-) is strictly positive and continuous, and the function S(9,x)
admits the representation

S(6.5) alx — 9P + h(x —9) if x <
,X) =
blx = 9P +h(x—9) if x>

v,
v,

where p € (0, %), a# 0, b #0, and the function h(-) satisfies Hélder condition of
order u> p+ %

Therefore, in this parameter estimation problem the usual regularity conditions are not
fulfilled, Fisher information is equal infinity, and to describe the asymptotic (7 — o)
properties of the maximum-likelihood estimator (MLE) and the Bayes estimators (BE)
we need a special study. For this we use general results by Ibragimov and Khasminskii
(1981).

For the i.i.d. model of observations, a similar problem of parameter estimation for
the densities with singularities was studied by Parakasa Rao (1968) and Ibragimov and
Khasminskii (1981). More precisely, in Ibragimov and Khasminskii (1981, Chapter VI)
the problem of estimation of a shift parameter ¥ by n independent observations of a
random variable is considered in three different situations (three types of singularities).
Our type of parameter estimation problem corresponds to the case when the density
f(¥,x) of the observed random variables has a singularity “of the second type” at the
point ¥, that is

2

h(x — ¥)exp{a(x — I)|x — 9P} if x <
>

9
f(0,x) = { :

h(x — ¥)exp{b(x — I)|x =¥’} if x=9
with some regularity condition on functions A(-), a(-) and b(-). The asymptotic behavior
of the MLE and of a wide class of BE obtained for this (i.i.d.) model is similar to
those obtained here for the ergodic diffusion process model. Particularly, the rate of
convergence of the estimators is n'/?7*1) and the BE are asymptotically optimal.

Another similar problem of parameter estimation was studied in Dachian (2001) for
the model of Poisson observations. More precisely, the problem of estimation of a shift
parameter ¥ by n independent observations of the Poisson process of intensity Sy(7)
on a fixed interval [0, 7] was considered in the case when the intensity has a cusp in

the point ¢, that is

alt —=I9P +y(t —9), if t <9,
Sy(t) = ‘
blt =9 +y(t =), if t=70

with some regularity conditions on function y(-). Again, the results obtained for this
model are very similar to those presented here, the rate of convergence of the estimators
is n'/2P*1) and the BE are asymptotically optimal.

We also suppose that

(Zo) The functions o(-),a(-)"" and S(V,-) have polynomial majorants and

lim sup sgn(x) S, x)

< 0.
|x| =00 9co o(x)?
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By this condition process (1) has ergodic properties with invariant density

B 1 T S(9,v)
f(19,x)—Wexp{2/19 (0P dv}, xeR,

where

B 1 T S(9,v)
G(ﬁ)—/RWexp {2/19 (o) dv} dx

is the normalizing constant.

We consider the problem of estimation ¢ in the asymptotics of large samples, i.e., we
have the continuous-time observations X7 ={X,, 0 < ¢ < T} and describe the properties
of the MLE and BE as T — oo.

Remind that the likelihood ratio in this problem is

T p—
L(ﬁ,ﬂl,XT):eXp{/ S(9.X,) — S(91,.X%)
0

a(X;)?
11 SW,X%) =S, X%)
-3/ e dt}_

dx;

2

Here ¢, is some fixed value. ;
The MLE ¢7 and BE (for quadratic loss function) 7 are defined by the usual
relations

L(O7,91,XT) = sup L(®,91,XT) (2)
JVEO

and
g(O)L(Y, 9, XT)

q T TN
1= [ goTya0, gy = R ()

We suppose that the prior density g(-) is a positive and continuous on @ function.

To describe the asymptotics of these estimators we need the following quantities.
Let us put H = p + % (the Hurst parameter) and introduce the fractional Brownian
motion W' (.), i.e., the Gaussian random process with zero mean and the covariance
function

EW )W (un) = 5l [ + | — fur — ua*]
and the stochastic process
Z(u) =exp{W" () — Lul"}, ueR.
Further, let us define two random variables # and # by relations

Z(u) = sup Z(u),
ueER

fR uZ(u)du
JgZ(w)dv

U=
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We introduce as well the function

1 +oo
=— dix — Dlx =112 — d P12 A
= Gy | e D 11—l @
where
a if x <0,
d(x) =
b if x> 0.

Note that I'J < oo since p < %, and that it has the following representation (see
Ibragimov and Khasminskii, 1981, Section VI1.4):

1 T+ p)I;—p)
rj= 2 >+ b — 2ab
VT GWe(@)  2rm2p+ 1) [a” + ab cos(mp)]
or equally
B(p+1,p+1)[d®+b
;= — 2ab| .
' T T GMW)e(@Y |cosnp)

Finally, we put yy =1I" ng/H.

2. Main results
The first result concerns the lower minimax bound.

Theorem 1. Suppose that the conditions (/) and (¢) are fulfilled. Then, for any
190 €0,
lim lim inf sup T /7Ey(dr—19) > —,

N 2
0—0T—00 I |19_190|<5 Do

where inf is taken over all estimators Ur.

The proof of this theorem is based on the asymptotic behavior of the Bayesian
estimators, so we discuss it a bit later. The more general result can be found in
(Ibragimov and Khasminskii, 1981, Section 1.9).

This inequality allows us to define the asymptotically efficient estimators as follows:

Definition 2. Let the conditions (.Zy) and (#) be fulfilled. We call an estimator U7
asymptotically efficient if, for any vy € @

- Ei?

lim lim  sup TV7Ey (07 — 0) = —5—.

0=0T—=00 |1y_y| <5 V9%

The properties of the estimators are described in the following theorem:
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Theorem 3. Let the conditions (<) and ( ¢) be fulfilled, then the MLE and BE are,
uniformly on compacts K C O, consistent, have the following limits in distribution:

LATV (G —0)) = Ly {yi} ,
»

LATV (G —0)} = Ly {yi}
9

and for any k > 0 we have the convergence
k

Tk/ZHEg|1§T — 19|k — Ey l

b

~ 1k
Tk/zHEg‘@T — 19’]( — E19 l
70

Moreover, the BE are asymptotically efficient.

3. Proofs

For simplicity of exposition, the proofs will be carried out in the case a = b. The
general case proofs are similar. For convenience of notations, throughout this section
C and ¢ denote generic positive constants which can differ from formula to formula
and even in the same formula.

As we are going to apply the general results by Ibragimov and Khasminskii (1981),
we have to establish several properties of the likelihood ratio process

ZT(”) = L(ﬁuaﬁaXT)a uc UT = (TV(OC - 19)7 T}'(ﬁ - 19))7

where y = %H and 9, =9 + u/T’. These properties will be described below, in the
Lemmas 5-7. But before, let us establish the following:

Lemma 4. Let the conditions (/o) and () be fulfilled. Then

1. For any uy,u; € R, uniformly on compacts K C O, the limit of the integral

_ [S(Wuy>x) = S, 0)][S(Vuy,x) — S(V,x)]
T = T/R )2

f(¥,x)dx

is equal to
3 Dol P74 a7 = Jur — un*].

Particularly,

2
lim T/R (Sw“’x)_sw’x)> F(9,x)dx = I3 ul!. (5)

T—00 o‘(x)
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2. There exists a constant C > 0, such that

2
sup T/ (S(ﬁul,x) — S(ﬂuz,x)) F(Y,,x)dx < Cluy — ug | ©
JveK R G(X)

for all T > 1 and uy,uy € R such that |u; —uy| < 1.
3. There exists a constant c, = c+(K) > 0, such that

2
/ (S(zSl + u,x) — S(ﬁ,x)) P90y dx > e uf 7
R o(x)

for all €K and ue (a0 — 9, —9).

Proof. We start with 1. Let us write
TI=TL +ThL + ThK + Tl

with

[1 — / [a|‘x B 19“1 |p — (l’x B ’l9|p][(l’x B 19“2‘17 — a|‘x B 119’17] f(ﬁ,x) dx,
R

a(x)?

] f(9,x)dx,

o [ T = 0) = hGe = DG — D4,) — hx — 9)
2_/‘ a(x)?

R
I :/ [alx — 9, |” — alx — 9|71 — V) — hx — 9)]
R

e f(¥,x)dx,
_ [ lalx = 9y, |” — alx — I|P][A(x — Fu,) — h(x — I)]
1y _/R s f(9,x)dx.

In order to study /;, let us fix a function 4(7") such that A(T) — +oo and A(T)/T" —
0 and write the integral /; as a sum of two: integral J; over the interval L = (v —
A(T)/T?,9 + A(T)/T"), and integral J, over the set M = R\ L.

For J;, we have

T

~re [ PADIT [l — 9, |P — b = 9|7 = D] — x = 9]7]
9—A(T)/T? a(x)>?

f(9,x)dx

—re | ATy — /T — |17l — /717 — [y17)

9 9)d

_ @S9 (1
o a(9)?

[z — w|” = 2|71z — ua|” — |2|"1 T7CP* D dz
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a f(9,9) /A<T> , A(T)
=— 2 7 z—ul? —|z|? dZ—|—/ z —wp|? — |z|P1P dz
sni | |l EPaz s [ el e

A(T)
_/ [z —w|? — |z —wp|PTdz ¢,
—A(T)

where the symbol “~” means equality of limits, and is true since 4(7)/7" — 0 and
the functions f(1J,-) and o(-) are continuous in 0. It is easy to see that

A(T) 400
lim [z — ul? — |z|P1* dz = yu|2H/ [Ix — 117 — |x|?]* dx.
T=oo J 1) —o0

Hence, we have clearly
lim TJ; = 3T5[|u [P + |uo — |uy — un ], (8)
T—o0
To study J;, let us at first note that
+oo
T fe-ode -l olPax<ar [ gy—wr) - ety
M A(T)/T?

+00
_ 2/ [z — ul? — 2|7 dz — 0,
A(T)

since A(T) — +oo and the integral is finite. Hence, using Cauchy—Schwarz inequality,
we easily get

_ J — p — p _ — p
|TJ2‘ — TaZ/ [|x 79U1| |x 19| ][|x 19142| |x 19| ]f(ﬁ,X)dx
M o(x)?

<C\/T/ [|x—19u1|P—|x—19\P]2dx><T/ [|x—19u2|P—|x—19|P]2dx,
M M

therefore limy_, o 7/, = 0, and combining with (8),
lim 71 = 12w |27 + w2 — Juy — un ).
T—o00
So, it remains to show that
lim le = lim T]3 = lim TI4 =0.
T—o00 T—o00 T—o00

For this, it is sufficient to remark that

[h(x — 9,) — h(x — D) o [ @)
T/R f(,x)dx < TC |u/T"| /R o) dx

a(x)? o

< C]u|2”T_(“_H)/H 0

and apply Cauchy—Schwarz inequality. So, part 1 is proved.




24 On Cusp Estimation of Ergodic Diffusion Process

160  S. Dachian, Y.A. Kutoyants/|Journal of Statistical Planning and Inference 117 (2003) 153—166

To verify part 2 we write

S5 %) = S(Wy,x) Y’
(0

CT/ [Ix — 0y, | — |x — 9, [P dx
R

Zf(ﬁuzﬂx)

—|—CT/R[}Z(X—79u1)_h(x_79M2)] ( )2

=CThL + CTI,

with evident notations.
For the first integral, we have clearly

1, = T/ [y — w/T7? — |y — up/ TP d
R
:/ [z —u1|? — \z—u2|p]2dz
R

400
=y — P / e — 117 — 7P dx

— 0o
= C]ul — u2]2H
For the second one, taking into account that |u; —uy| <1 and 7 > 1, we get

S Wi X)
Co(x)?

< TC|(M1 — uz)/TY‘ZH = C\ul — u2|2H.

T < TC|(uy — uy)/T7 |

So, we get finally

S(Puy5%) = SWuox)
T/R( gy ) f(W,,x)dx

< CTIL + CL < CT|uy — up |

To prove part 3 we first write

ACA X)
()2
zf(19X)
o(x )2

2 f(W0.x) o
a(x)?

F(u):/R[S(ﬁ-I-u,x)—S(z?, x)]

:c/[|x—z9—u|p—\x—19|p]
R

+c/[h(x— “u)— hx— 9)]
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JW.x)
a(x)?

ic/nx— P — x — OPIhx — O — u) — h(x — 9)]

= C]] + CIZ + C[3
with evident notations. For the first integral we have
+00
ch<C [y =ul~ 1317F dy = CluP”
and
p]Z f(19 X)
a(x )2

chh Zc | [|x—09—ulf —|x—17

B
>c/ [Jx — 9 —ulP — |x — 9P dx

(B=1)/u
= c|u|2Hsign(u) [z —1]7 — |z|”]2 dz
(a—9)/u

1
¢ fup! / [l — 17 — 2P dz = ¢ |ul",
0

since for u € (0, —19) we have («—9)/u <0 and (f—9)/u > 1, and for u € (az—,0)
we have (« — ¢)/u > 1 and (f —9)/u < 0.

For the second integral we get clearly ¢/, < C|ul*, and hence, using Cauchy—
Schwarz inequality, we obtain |c/3] < Clu[T# for the last integral, and finally

Fu) = clul™ = Clu™" = c[ulP(1 = Clul"™") = c1ful*”

for all u such that |u| < J where 6 > 0 is some fixed constant.
On the other hand, we have also

inf F(u)=c, >0,

|u| =5
since otherwise we should have S(¥ + u*,x) = S(¥,x) for some fixed u* and almost
all x € R, which is impossible. Hence, for all |u| > 6 we can write
‘M‘ZH
(B — o)
So, for all ¥ and u € (o — ¥, f — ) we have

F(u) > c.|u)*

Fu)>=c =c =3 MZH.

with ¢, = min(cy, c3). Therefore, Lemma 4 is proved. [

Now let us turn to the properties of the likelihood ratio process Z7(-). Put Zy(u) =
Z(ygu), ueR, ie.,

Zg(u) = exp {rﬁWH(u)— I3u |2H} ucR.
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Lemma 5. Let the conditions (/o) and (¢) be fulfilled. Then the marginal dis-
tributions of the likelihood ratio Zy(-) converge to the marginal distributions of the
stochastic process Zy(+) and this convergence is uniform in ¥ on the compacts K C 0.

Proof. As before, we put ¥, =9 + u/T?. The function Z7(-) can be written as

0 X,) — S, X,
InZr(u) = /S( ;(XS( ’)dW,
t

SWnXy) — SW, X))\
_5/0 < (X)) ) ae

Using local time A7(v,x) of this diffusion process (Karatzas and Shreve, 1991), we
can write the second integral as

/T (S(ﬂu,xt) - S(ﬂ,xz))z i
0 a(X;)

[ ISWx) — S, x)]
_» /R e Ar(9,x) dx

B S0, x) — S(9,x)\*
—T/R< o) )f(ﬁ,x)dx

[S(Dusx) — S0, %)\ [ 247(9,x)
T /R< o) )(Ta(x>2 -/ w’”) d

For the random function

2A7(9,x)
nr(0.x)= VT (# - fw,x))

and any m > 2, under condition (.27y) we have the estimate

Sup Eﬁl’?T(ﬁ,xﬂm < Cme_cm|x| (9)
JeO

with some positive constants C,, ¢, (see Kutoyants, 2001, Proposition 1.6). Hence, we

can write

Ey

S(0,,x) — S(0,x)\
/R<( xc)r(x>( X)> 1 (V) dx

S(Wu,x) — S, %)\
< [ (A2 0) Ealirtooax

SWu,x) = S(W,x) " _eoiy
<C/R< o ) 2 dx.
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For the last integral, according to (6) we have

2
T2 / <S(ﬁ“’x;(;)5w’x)> M2 dx < TPt 0.
R

Hence (see (5))

T (50w X) — SW, X))\
P— li w i — 2y
e ), < o(X,) ) de = Iylul

and by the central limit theorem (see Kutoyants, 1984, Theorem 3.3.3) the stochastic
integral is asymptotically normal:

/T SV, Xz) — S(9,X;)
0 o(Xy)

dw, = (0, T5|u)*).

Therefore, we have the convergence of one-dimensional distributions of Zr(u) to
those of Zy(u). The proof of the convergence of the multi-dimensional distributions
is based on part 1 of Lemma 4 and the mentioned central limit theorem. It is quite
similar to the given one, so we omit it. []

Lemma 6. Let the conditions (/o) and (¢) be fulfilled. Then, for any compact
K C O, there exist some constant C > 0 such that

Ey|Z) (1) — 2 (2)? < Cluy — wy

for all T > 1, 9 €K and uy,u; € Uy.

Proof. For |u; —uy| > 1 the assertion is evident since for all ¥ and 7 we have
12 12
Ez?‘ZT/ (u) — ZT/ (u2)|2 <4< 4|u1 - u2]2H.

Suppose now that |u; — u,| < 1. Remind that the stochastic process

. Zi(u2) 2
o= (2" occn

by the It6 formula admits the representation (with Py, probability 1)

1 /r 5 1 /7
V(=14 /O V(a0 de - /O V(OS(X) A,

where
S(Wy,,x) — S(9y,,x)

o(x) = o)

Hence

Ey|Z (u)) — 2} ()P = 2 — 2Ey, V(T)

1 T
<3 / Ey, V(1) 8(X)? dr
0
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T T
1
< —/ Ey, 5()Q)zdt-|-—/ Ey, 0(X,)*dt
20, e 2 Jy W

T / S VLS (Punr) + £ (Do) dx < Cluty — P,
2 ),

where we used estimate (6). The lemma is proved. [J

Lemma 7. Let the conditions (/o) and (¢) be fulfilled. Then, for any compact
K C O, there exist some constant k > 0 and some function C(N) defined for all
N > 0, such that

sup Py{Zy(u) = e ™} < =0
¥€K |u|

Proof. We follow the proof of Lemma 2.4 in Kutoyants (2001). Below 0 < ¢; <1
and
S(u,x) — S(0,x)

o(u,x) = 00)

We have

Po{Zr(u) = e 14"}

T T
zpﬁ{cl/ 5(u,)<;)dm—%/ S(u, X,)* dt > —01K|u|2H}
0 0
T C2 T
<Py {cl / S(u, X)) dw, — 31/ S(u, X;)* dt > 01K|u|2H}
0 0

2 T
1 — uyN 2
+P19{ . [TF(TV> /0 5w, X;) dt}

_ 2
> 1 . “l e (%) —201K|u|2H}

C1—C%
2

T
{/ [Eyo(u, X )" — 0(u, X; )] dz}
0

2
C1 — C
2( 3 IC*—201K> ]u\zH},

where we used estimate (7). Let us denote

_ 2H
<e c1k|u| +P19{

h(u,x) = Eyd(u, X, )* — 5(u,x)*
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and put

Cl—C%
= —— Cx.

86‘1
Then, for any M > 1, the last probability can be estimated as follows:

T
Pﬁ{/ W, X,)dt > % WH}
0

2 2M T
< | ——= E h(u, X,)dt
<c*\u\2H> ‘9</ (u f)d)

X 2M
< Clu|~*M1 (Eg ( H(u,x) dx) " TMEﬁH(u,é)ZM> ’

Xo a(x)

2M

where ¢ is a random variable with the density f(1,-) and

H(u,x)= h(u,v) f(9,v)dv.

2 /x
o(x)f(0,x) J_o
Remind that TE»é(u, £)> < Clu|*". The similar estimate is valid for the function

T EyH (u, &) < CT M [,

Hence, using 77 > |u|(f — «)~!, we finally obtain
C _cm)

|2H<

Py{Zr(u) = e "l

The properties of the likelihood ratio described in the Lemmas 5-7 allow us to cite
Theorems 1.10.1 and 1.10.2 by Ibragimov and Khasminskii (1981), where the general
results concerning the consistency, limit distributions and convergence of moments of
the MLE and BE are established. Further, the Theorem 1 now follows from the limit
behavior of the Bayes estimators and Ibragimov and Khasminskii, 1981 (Theorem
1.9.1). O

4. Concluding remarks

Like in Ibragimov and Khasminskii (1981, Chapter VI), one can consider a situation
when the trend coefficient has several cusps. For example, we can consider the situ-
ation when the trend coefficient S(¥,x) = s(x — ¢)), where the function s(-) is regular
everywhere except at points xi,...,x,, and has cusps of order p in this points. More
precisely, we suppose that

S@W.x)=>> di(x — 0 — xi)x — 9 —x;|P + h(x — ),
i=1
where

a; if x < 0,
di(x) =
b, if x>0,
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pe<(0, %), a; # 0, b; # 0, and the function A(-) satisfies Holder condition of order
u>p-+ %

In this situation, we obtain exactly the same results as the ones presented above.
The only difference is the constant I'2, which is now given by

;= Z Iy,
i=1

with I’ é,i defined as in (4), but using d;(-) in place of d(-). Indeed, if we introduce
r independent fractional Brownian motions WiH , i=1,...,r, then it is not difficult to

establish that the likelihood ratio process Z7(-) converge to the stochastic process

r 1 r
Zy(u) = exp Fqg,,-WiH(u) - = ]u|2H ng,l-
2 i=1

i=1
u,ZH} ,

as well as the analogues of the Lemmas 6 and 7.

The problem considered here belongs to the class of problems described in Kutoyants
(2001), where the observations X7 can be replaced by the observations Y7 ={Y,,0 < ¢
< T} with Y; = Xy (x.c[ap3- The MLE and BE constructed by Y T will have the same
asymptotic properties as if the whole observations X7 were used. These estimators are
defined by the same relations (2) and (3), where the likelihood ratio L(1,9;,X7) is
replaced by

1
= exp {rﬁ wH (u) — 3 r’

T
_ S, X)) — S(91,X)

L(9,91,YT) =ex {/ dXx,
( 1 ) p ; o(X, )2 X{x,eB} AdA;

1 /TSw,X,Y—S(«%,)cY »
2 Jo a(X;)? I ey

with the window B = [o, f]. The analysis of proof of the Theorem 3 (and especially
of Lemma 7) shows that all the properties of the likelihood ratio established here do
not change if we take L(-) in the place of L(-). The details can be found in Kutoyants
(2001).
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Hypotheses Testing: Poisson Versus
Self-exciting
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ABSTRACT. We consider the problem of hypotheses testing with the basic simple hypothesis:
observed sequence of points corresponds to the stationary Poisson process with known intensity. The
alternatives are stationary self-exciting point processes. We consider one-sided parametric and one-
sided non-parametric composite alternatives and construct locally asymptotically uniformly most
powerful tests. The results of numerical simulations of the tests are presented.

Key words: hypotheses testing, Poisson process, self-exciting process, uniformly most powerful
test

1. Introduction

Let {t1,1,...} be a sequence of events of a stationary point process X ={X,,t>0} (X, is
a counting process). The simplest stationary point process is, of course, the Poisson process
with a constant intensity S >0, i.e. the increments of X on disjoint intervals are independent
and distributed according to the Poisson law

Sk(z

—s) —S(t—s)
Te Doo0<s<t, k=0,1,....

Therefore, if we have a stationary sequence of events it is interesting to check first of all if
this model (Poisson process) corresponds well to the observations. The importance of this
problem was discussed by Cox & Lewis (1966, Section 6.3).

The alternatives close to the basic hypothesis corresponds to the case when the non-
poissonian behaviour is due to the small perturbations of the Poisson process and are most
interesting to test. For ‘far alternatives’ any reasonable test has power function close to 1 and
the comparison of tests seems less important. Let us consider the problem of small signals
detection by the tests of fixed size € (0, 1). Using the terminology of statistical radiotech-
nics we say that there is at least two types of close alternatives: the first one corresponds to
small ‘signal-noise ratio’ (signals of small energy) and the second, when the amplitude of
the signal can be small, but the total energy because of the sufficiently long time of obser-
vation is comparable with the noise energy (see, e.g. Kutoyants, 1976). For the first class
of alternatives the approach of locally optimal tests, which provides the optimality of the
power function at the small vicinity of the basic hypothesis (the values of the power func-
tion are close to ¢) was developed (see, e.g. Capon, 1961) and for the second class of con-
tiguous alternatives the optimality of the test for a wider class of close alternatives (the
values of the power function are in (e, 1)) was proved (Pitman’s, 1948 approach; Le Cam’s,
1956 theory).

For stationary point processes with Poisson hypothesis and stationary alternatives Davies
(1977) proposed the locally optimal (efficient) or asymptotically locally efficient test. This test

P{X,~ X, =k} =
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is based on the comparison of the derivative of the log-likelihood ratio with some threshold.
See Daley & Vere-Jones (2003, Section 13.1), where the approach of Davies was discussed.

In the present note we suppose that we have observations of the point process X7 ={X,,0<
t<T} on the interval [0, 7] and consider two problems of hypotheses testing in the asymp-
totics of large samples (7 — o). In both problems the basic hypothesis is simple: the observed
process is standard Poisson with known constant intensity S, >0. The composite alterna-
tives are: the observed process is a realization of self-exciting point process [sometimes called
Hawkes (1972) process] within the first case intensity function depending on one-dimensional
parameter and in the second case the intensity function belonging to a wider (non-
parametric) class of functions. We follow the mentioned above Pitman-Le Cam approach. We
start with the ‘locally asymptotically uniformly most powerful test’ (LAUMPT) in the para-
metric case and the main result of the presented work is the LAUMPT where the optimality
is shown for sufficiently large class of local non-parametric alternatives. The similar results
for diffusion processes can be found in Iacus & Kutoyants (2001) (small noise asymptotics)
and Kutoyants (2003) (ergodic processes).

2. Preliminaries

Recall several facts from the theory of point processes [the details can be found in, e.g.
Liptser & Shiryaev (2001, Ch. 18)]. Let (Q, F, P) be a probability space and let {F,,7>0} be
a non-decreasing family of right continuous o-algebras §, C§, C§ for any 0 <s<t. We denote
by 1, 1,..., a sequence of Markov stopping times adapted to {§,,7>0} (i.e. {w:1;<t}€F,
for all 1>0). Let X, be the number of events ¢; up to time ¢, i.e. X ={X,,§,,>0} is a random
process such that

X, = ZX{rigt}, 120,
i>1
where x(,; is the indicator-function of the event 4.
We assume that EX, <oo (there is no accumulation points on any bounded interval). The
process X admits a unique (up to stochastic equivalence) decomposition (Doob—Meyer
decomposition)

X[:A[+M[, (1)

where M ={M,,§,;,t >0} is a martingale and A={A,,§,,t >0} is predictable increasing
process (Liptser & Shiryayev, 2001, Theorem 18.1). We suppose that the compensator A is
absolutely continuous

t
A,:/S(v,a))dv, t>0,
0

where S ={S(t,w),§,,t >0} is called intensity function. We suppose that (1) is the minimal
representation of the point process, i.e. S(z, ) is predictable with respect to the filtration
generated by the counting process X and we write S(¢, w)=S(¢, X). To describe a point pro-
cess it is sufficient to specify its intensity function. We study in this work a special class of
point processes with intensity functions that can be written as stochastic integrals with respect
to the past of the underlying point process.

In the particular case when S is deterministic, the process X is (inhomogeneous) Poisson
process with intensity function S(v, ®)=S(v). In this case

. k
P{X,— X,=k}= [j;S(kv!)dv]exp {/’S(v)dv}

© Board of the Foundation of the Scandinavian Journal of Statistics 2005.
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for any r>s>0 and k=0, 1,.... If the assumption of the independence of increments is no

more valid, then S is no more deterministic and X can be a stationary point process [see
Brillinger (1975) and Daley & Vere-Jones (2003) and references therein for wide classes of
such processes and their applications in real problems].

Recall that the distribution P(ST) of the point process in the space of its realizations (Z(0, T),
B ) is entirely characterized by its intensity function S. The likelihood ratio formula (w.r.t.
Poisson process of constant intensity S,) has the following form [see Liptser & Shiriyev, 2001,
Theorem 19.10]

T T
L(XT)=exp {/0 In S(;’ ) dXx, —/0 [S(t, w) — S*]dt},

where we suppose that the intensity S(z, w) is left continuous function and

P{/OTS(l,w)dl<oo}

under all alternatives studied in this work.

3. One-sided parametric alternative

Suppose that we observe a trajectory X7 ={X,,0<¢< T} of point process of intensity func-
tion S7()={SW,t,w),0<¢t<T}. If 9=0, then S(0,t, w)=S.,, i.e. this point process is a
homogeneous Poisson process of intensity S, >0. Under alternative >0 and Sz () is the
intensity function of self-exciting point process. As usual in such problems, we consider con-
tiguous alternatives (Pitman’s, 1948 alternatives; Roussas, 1972), hence we change the variable
Y=u/+/T and test the following two hypotheses

% u=0
JH4: u>0.

We denote E; the mathematical expectation under the hypothesis 7%, and E, under
(simple) alternative ¥ =u//T.

Let us fix £€(0, 1) and denote by %, the class of test functions ¢,(XT) of asymptotic size
¢, 1.e. for ¢, € %, we have

Tliﬂm‘EOd)T(XT)zs. 2

As usual, ¢-(X7T) is the probability to accept the hypothesis 4 having observations X 7.
The corresponding power function is

ﬂT(ua ¢T):El¢¢T(XT)s u>0.

We introduce the asymptotic optimality of tests with the help of the following definition
Le Cam (1956).

Definition 1
A test ¢5(-) is called locally asymptotically uniformly most powerful in the class %7 if for
any other test ¢1(-) € K, and any constant K >0 we have

lim inf [B7(u, ¢7) = Br(u, 7)1 >0.

T—o000<u<kK

Our goal is to construct locally asymptotically uniformly most powerful test in class 7.

© Board of the Foundation of the Scandinavian Journal of Statistics 2005.
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Self-exciting type processes were introduced by Hawkes (1972) and defined by intensity
function of the following form

P
S(t, w)=S,+ / gt —5)dX, =S+ gt — 1), 3)
0 i<t
where S, >0, t; are the events of the point process and the function g(-) > 0 satisfies the con-
dition
p= | owdr<t. @
0

Recall that according to this representation of the intensity function, the distribution of # is
exponential at rate S, and for all n>1

t Xs
P{t,1>1|t1,...,1,} = exp (—S*t—/ Zg(s—l,-)ds).
0

i=1

Note that A(¢)=EX, is solution of the equation
A(t):E/OtS(v,w)dv:S*t—f—E/ot/org(v—s)dXde
=S,1+ /0[ /Ov g(v—s5)A'(s)dvds.
In stationary case the intensity S(z, ®), is a stationary process

—

S(t,w)=S, + / g(t —5)dX,

and

At)= S, t=ut.

l—p
The spectral density of this process is
u
N=r—————

J@ 2|1 — G(A)|*°

where

G())= /0 e“g(r)dr, p=G(0).

Example 1. Let g(t)=oe™", where >0,y>0 and o/y<1. Then the point process X with
intensity function

S(t,w)=S, +o Z e V=1
1<t
is self-exciting with the rate
S.y

Y=o

Example 2. The function g(-) can be chosen in such a way that the spectral density of the
point process will be rational

oGP

JA=5 PG

© Board of the Foundation of the Scandinavian Journal of Statistics 2005.
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where Q(z)=z"+a 2" '+ +a, and P(z)=z/+ bz’ '+ .- +b,. It is supposed that P(-) and
O(-) have no zeroes in common and no zeroes in the closed right half plane [see Pham (1981),
where the asymptotic properties of the maximum likelihood estimator (MLE) for this model
are described].

We assume that the observed process is either Poisson with constant intensity S, or self-
exciting with contiguous intensity function

t
SO, t,0)=S, +Vr / h(t — s)dX,.
0

Contiguous means that the likelihood ratio is asymptotically non-degenerate. The function
h(-) is supposed to be known, bounded and

h(ye LY (Ry) = {f(-) >0: / f(r)dt<oo} .
0
To have contiguous alternatives we choose, as usual in regular problems, 97 =u/\/T, i.e.
t
u
S(u, t, a)):S*—i——/ h(t—s)dX;, u>0.
VT Jo

Note that for any 4(-) € £} (R;) and any u <K for sufficiently large 7' the condition (4) is ful-
filled for the corresponding function g(-)=uT~"?h(-). This leads us to the following one-sided
hypotheses testing problem:

G u=0, (Poisson process)

J6: u>0, (self-exciting process).
This model corresponds to ‘small self-exciting perturbations’ of the Poisson process of inten-
sity S..

Note that as we use the LAN approach (Le Cam, 1956), we study the behaviour of the

tests statistics under hypothesis only (Poisson process with constant intensity) and do not
use the stationarity of the self-exciting processes under alternatives. The limit of the power

function is obtained using LAN and Le Cam’s Third Lemma.
Let us denote

1 T —
A XTzi/ / h(t —s)dX,[dX, — S, d7].
r(X") ST Jo Jo (1 —s5)dX,[dX, ]

Here
.
/ h(t—s)dX, = " h(t—1;)
0 1<t

(limit from the left of the integral, i.e. the term with s; =¢ is excluded) and

) 00 2
I;:/O h(t)*dt + S, (/0 h(t)dt)

is the Fisher information of the problem. Throughout this paper we denote by z, the 1 —¢
quantile of the Gaussian law N0, 1).

Theorem 1
Let h(-)€ LY (Ry) and bounded. Then the test

43T(XT) =X{Ar(xT)>z}
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is locally asymptotically uniformly most powerful in the class J¢, and for any u>0 its power
function

Br(u, d7) — ) =P{{ >z, —u\/T;}, (5)
where { ~N(0, 1).

Proof. First note that the family of measures {PfyT),19>0} under hypothesis .7 is LAN at
the point ¥ =0, i.e. the random function Z; ()= L(u/~/T, X ") admits the representation (see
Kutoyants, 1984, Theorem 4.5.3)

T u —
ZT(u):exp{/O In <1+M/0 h(t—s)dXs> dXx;
u T t

= exp {“\/EAT(XT) - %21/*14‘ rr(u, XT)} ,
where
Ly {AT(XT)}:>N(O, 1) (6)

and rp (uT,XT) — 0 for any bounded sequence {ur}.
To verify (6) we check the following two conditions:

1 Lindeberg condition for stochastic integral: for any 6 >0

1 ro,
fim, ?EO/O HiX > 507y d1=0,

2 the law of large numbers:

: 1 ’ 2 *
PO_ThEoloS*T/O Hdi=T,. %)

Here, we denote
—
H, = / h(t—s)dX;.
0

By these conditions the stochastic integral A7(X7) is asymptotically normal. The proof of the
corresponding central limit theorem can be found, say, in Kutoyants (1984, Theorem 4.5.4)
(of course, this theorem is a particular case of general CLT for martingales).

To check these conditions we introduce an independent Poisson process {X;, 1 <0} of inten-
sity S, and replace H, by

—
H = / h(t —s)dX;.
It is easy to see that for the process H/, >0 we have
E H; =S*/ h(v)dv
0

and
E)([H —E H;|[H; —EOHS*])zS*/ v+t —s)h(v)do.

max(0,s—1)
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Note as well that

1 T
Po{ﬁ/o [H —H,][dX,—S*dt]>v}

2

T 0
g%/g E0</ h(ts)dXS) dt
T 00 00 2
:ffz/ V vy dv+S. (/ h(v)dv) ] dt—0,
0 t t

as T — oo.
Now the process H,,t>0 is second-order stationary and

00 0 2
EO(H,*)2:S*/ h(t)*dt+ S? (/ h(t)dz) =Eo(H;)* <oo.
0 0
Hence

%2 *2
Eo (Hr X{\H,*m‘ﬁ}) =Ko (Ho X{\Hg\>6ﬁ}) —0,

as T — oo and

. 1 T .
lim ?/0 E, (HtZX{IH,*\>5ﬁ}> dt=0.

T—o0

The law of large numbers (7) will follow from the convergence:
1T ?
My =E, (/ H? don(Hg)2>
T Jo
1 r ’ *2 «\2 *2 *\2
== Eo(H;? — Eo(H})) (H;* — Bo(H; ) di ds — 0.
o Jo

To prove it we need the following elementary result.

Lemma 1
Let X = {X,,t € A} be a Poisson process of constant intensity S>0on ACR, and let f(-), g(-) €
LKA)={fC): [, If (O dt<oo}, k=1,...,4. Then

Cov (( 1w dXv)za (o d)‘)z)

=4/Af(v)de/Ag(v)de/Af(v)g(v)de
2
2 ' Sd 2(0)g*()S d
+ ( /A F(0)g(©) v) 4 /A @S dv
2 [ f(v)Sd 2(0)Sdv+2 Sd 2 Sdv.
4 /A F(0)Sdo /A FOFWSdot /A J0)S dv /A L g)Sdu

Proof. Using well-known properties of the Poisson processes (see, e¢.g. Kutoyants, 1998,
Lemma 1.1), we obtain the moment generating function

(2, 1) =Eqexp {z /A £ () dX, + g /A 9(v) dx}

= exp {/(e;f(”)Jr“”(”) - I)de}.
A
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Recall that

Cov (( [roax) ([0 dxvy)

A ) D¢ (40)
A=0,u=0 a)‘z

& P(0, )
ou?

9o 40

A=0

Therefore the proof of the lemma follows from direct calculations.
Now we can write
R(1,5)=Eo((H;) = Eo(H;))(H;)* — Eo(H;)*)

NS
=4a’K(t,5)+2K(t,5)* + S, / h(t —v)*h(s —v)* dv

NS
+2asS, / [A(t — v)*h(s — v) + h(t — v)h(s — v)*]dw,
where we put

a=S. /OOC h(y)dy
and (for t=¢—ys)
Ka.9=S. [ o ~ <) dy=K(e)
Further, as the function /4(-) is bounded, we have the estimate

R(t,5) < CK(1).

Hence

1 T T C T T
= <=
My T2/0 /0 R(l,s)dlds_T2/0 /0 K(t,s)dt ds

C T
< — .
< T/_TK(r)dt

For the function K(-) we have

/ZK(r)d‘c:S* /Z/lih(y)h(y—|r|)dydf§25* </Oooh(y)dy>2.

Hence M7 — 0 and we have the law of large numbers (7).

The property <2>T(~) € %, follows from the mentioned above asymptotic normality of the
statistic A7(X 7).

Note as well that the convergence (5) follows from

LAAXT) = N(u\/T;, 1)
[see the Third Lemma of Le Cam (van der Vaart, 1998, p. 90)].

The asymptotic optimality of the test follows as well from the general theory (see, e.g. Le
Cam, 1956 or Roussas, 1972), because if we replace 7] by any simple alternative J7 :u=u,,
then the test

¢T(XT)=X{L(1¢*/\/7, XT)>b,}

is the most powerful. Here
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1
b8=exp{u*zg\/1f 1,,}(1+o(1))
It is easy to see that (/ET(-)EJ/S and the power function

Br(u., or) — Blus).

Therefore the test qZ;T(-) is asymptotically as good as the likelihood ratio test for any simple
alternative.

Remark 1. Note that the statistic A7(X7) can be written as follows

T—y
h(t; —t;) — h(v)d
\/Tlh O;Tt; \/Tlh 0<tz<T/ oo

where ¢; are the events of the observed process.

AT(XT)—

Remark 2. By a similar way we can consider the problem of contiguous hypotheses test-
ing when under the hypothesis .74 the observed process is self-exciting too. For example, let
h(9,1)>0,t>0 be a smooth function of ¢ € ®, such that for all ¥ € ® the condition

/ h(9, 1) de<1
0

holds. Then with the help of this function we introduce a family of self-exciting processes
with intensity functions

t
S, t,w)=S, —|—/ h(9, t —s)dX;.
Recall that these are stationary processes.
Now we can test the hypotheses
S I=1,
f% 9> 190

by the observations X7 ={X,,0<7<T}. Suppose as well that the function (¥, ) is two times
continuously differentiable on ¥} at the point ¥ =19, and the derivatives A(¥, -), h(13, -) satisfy
suitable conditions of integrability. Let us denote

" : = O, 1 —
é@z%h&pﬂﬂ@éwhA O, 1 =)

6’[_9 dXS s
and put

1 r ér(ﬁo)
Ty _
AT(’L9(),X )— \/7 /0 S ét(’ﬂo)[dXt S, dt ét(ﬂo)d[]

Then it can be easily shown that the test

Dr(XT)=X{ap05. xT)5 e}

where ¢, = z,1/T,(U) is chosen from the condition ¢, € .%; is locally asymptotically uniformly
most powerful in the class J7;. Here 1,(%%) is the Fisher information

1«192
Mm=m<3i%m>

where &(19) and &(U) are ‘stationary random variables’ related to the limit distribution of
the vector ¢&,(vy), &,(Y)).
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4. Testing of dependence

Suppose that we have two sequences of events 0<¢ <f{p<.--<ty<T and 0<s <
$3< .-+ <sp<T with corresponding counting processes X7 ={X,;,0<¢< T} and Y7 =
{Y;,0<t<T}. The first process is Poisson with constant known intensity function Sy (¢, w)=
Sy >0 and the intensity function of the second process can be written as

t

Sy (t,w) :SY—I—/ r(t—s)dX;,

where r(-) € L' (R,). Therefore, if 7(#)=0, then the observed processes are standard (indepen-
dent) Poisson processes of intensities Sy and Sy respectively (Hypothesis .543). For the other
values of r(-) we have dependent point processes.

We suppose that the dependence between these two processes, if exists, is weak, i.e. the
function r(+) is sufficiently small and we can apply the local approach. As before we suppose
that r(t)=17 h(t), where h(-)e L' (R,) and 97 =u//T —0.

. u=0, (independent Poisson processes)
J6: u>0, (depending processes).

Introduce the statistic

T t—
Ar(XT, YT):ﬁ/ / h(t —s5)dX,[dY, — Sy df]
Y h JO 0

1 1 T
=TT > Zh(sjfz,-)fﬁ > /0 h(v)dv,

05 <T 4 <si 0<y=T

where
B SX o0 5 0 2
Ih_—SY (/0 h(t)y-det+ Sy (/0 h(z)dt) ) .

Proposition 1
Let h(-) € LL(Ry) and bounded. Then the test

4§T(XT, YT) =X{Ap(XT, ¥T)>z,}

is locally asymptotically uniformly most powerful in the class J¢, and for any u>0 its power
function

Br(, §7) — ) =P{{ >z, —u\/I,}, (8)
where { ~N(0, 1).

Proof. The proof is quite close to the given above proof of the theorem 1, and hence is
omitted.

Remark 3. The similar problem can be considered for the couple of mutually exciting point
processes with intensity functions

t t

Sx(t,0)=Sy + / rer(t—$)dY,, Sy(t,w)=Sy + / Frx(t —5)dX,,

—00 —0Q

where ryy(-), ryx(-) € L'(R,). Therefore, if ryy(f)=0 and ryy(t) =0, then the observed pro-
cesses are standard (independent) Poisson processes of intensities Sy >0 and Sy >0 respec-
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tively (Hypothesis .#5). Under alternative there exists a weak dependence of these processes
through their intensity functions.

5. One-sided non-parametric alternative

In all the above considered problems the alternatives are one-sided parametric. It is pos-
sible to describe similar asymptotically uniformly most powerful tests even in some non-
parametric situations. Using the minimax approach we can consider the least favourable
model in the derivation of the upper bound on the powers of all tests, but, of course, for
special classes of intensities. This approach sometimes is called semiparametric and the rate
of convergence of alternatives is /7.

As before, we suppose that under hypothesis 7% the observed point process X ={X,,0<
t < T} is standard Poisson with known intensity function S(¢)=S, >0 and under alternative
JA 1t 1s self-exciting point process with intensity function

t

S(t,w):S*—i—/ g(t—s)dX,, 0<t<T,

—00

where ¢g() is now unknown function. We suppose as well that

A‘mow<h ©)

hence the process X7 is stationary. To describe the class of local non-parametric alternatives
we rewrite this intensity function as

1 t
S(t,w =S*+—/ u(t—s)dX,, 0<r<T,
(oy=S+ = [ ut=)

where the function u(-) belongs to the set % defined below. Let us denote by C% the set of
non-negative functions bounded by the same constant and introduce the set

U, = {u(-)eci: /OOC u(f)dt=r,suppu(-) is bounded }
Note, that for any >0 and 7 >r? the condition (9) is fulfilled.
Therefore, we consider the following hypotheses testing problem
Ho: u()=0,
JA u(:Ye%., r>0.
The power function of a test ¢, depends on the function u(-) and we write it as

ﬂT(ua ()Z’)T) = El¢¢T(XT)s

where u=u(-) € %, with some r>0. We want to apply an approach similar to the minimax
one in the estimation theory. More precisely, we seek to maximize the minimal power of test
on the class %;. However, for any test ¢, €%, we have

inf u, <e,
Jnf Bl dp) <

since for any 7'>0 we can take a function from %, equal 0 on [0, 7]. Hence we introduce
the set

U, n={u(-)e%: supp u(-)C[0,N]},

denote
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Br(r,N,¢;)= u(.)iel}yg . Br(u, d7)

and give the following.

Definition 2
A test ¢3(¢) is called locally asymptotically uniformly most powerful in the class .%#; if for
any other test ¢ (-) € K, and any K >0 we have

lim lim inf [Br(r,N,$})— Br(r,N, ;)] =>0.

N—oo T—0o00<r<K
Let us introduce the decision function
Xr—S. T

qu(XT)ZX{zST(XT)>ZS}, 5T(XT)= \/S*7T

Theorem 2
The test ¢p is locally asymptotically uniformly most powerful in the class J, and for any
u(-) € %, its power function

ﬁT(u,éT)—>ﬁ(u)=P{C>zs—rJ§*}, (10)
where {~N (0,1).

Proof. Let us fix a simple alternative u(-) € %, then the likelihood ratio Lr <%,X T ) =
Zr (u(-)) admits (under hypothesis %)) the representation (see the proof of the theorem 1)

T -
Zr (u(-)):exp{/0 In (1—}—5';7/0 u(t—s)dX\) dX,

1 T t
fﬁ/o /0 u(ts)dXSdt}
= exp {AT(u,XT)— ;I(u)—i—rT(u,XT)} ,

where

1 T 1—
Ty — _ _
Ar(u, X )_S*\/T/o /0 u(t —s)dX;[dX;, — S, d1],
00 0 2
I(u)= / u(ty>dt + S, (/ u(t) dl>
0 0

Lo{Ar (u, XT)}=N(0,1(w)), rr(u, XT)—0.

= / u(t)>de+S.r?
0

and

Moreover, these last two convergences are uniform on u(-) € %y, 0<r <K for any K>0.
Hence the likelihood ratio test

br(X ") =X (2,00 >d}»

with

d, = exp {zex/I(u)— I(Zu)}
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is the most powerful in the class .#; for any two simple hypotheses and its power function
B, ) —P{{>z,— 1w}, (~N(0,1).

It is easy to see that

2

,
inf I(u)=S.r"+—
u(»)g‘?/r‘,\; () o N

because

= (/N u(t)dt)
0

with equality on the ‘least favourable alternative’

2

N
<N / u(t)* dt
0

w ()= (r/ N)xjo<i<ny-

Hence
()in}g P{(>z,—I(w)"*}=P{({>z,—r\/S.+ N-1}.
ut- 65%[\1

Now we study the power function of the test qAST. Let us denote
P
U = / u(t—s)dX;, mn,=X,—S.t,
0

then

1 T 1 T
A u,XT=7/ Udn, 67(X7)= / d
T( ) S*\/T A ¢t ATt 7( ) \/S*7T A Tt

and
EoA7(u, XT)=0, EoAr(u, X")’=1(u), Eodr(X")=0,
Eodr(XT) =1, Eo@r(X")Ar@, X")=r\/S..
Hence, under hypothesis 77, we have
Lo{Ar(u, XT),00(X")} = N(O,R),

where R is covariance matrix of the vector (Ar, d7) described above. Therefore qu €%, and
using Le Cam’s Third Lemma (van der Vaart, 1998) we obtain that under alternative u(-) € %,

Sr(XT)y= N(r/S., 1).
For the power function we have
Blu, o) —P{{>z,—r/S.}.

It can be shown that this convergence is uniform over u(-) € % y, 0<r <K for any K >0 and
this proves the theorem.

6. Simulations

The main results (theorems 1 and 2) of this work are ‘asymptotic in nature’ and it is inter-
esting to see the properties of the tests for the moderate values of 7'. This can be performed
by Monte-Carlo simulations.
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6.1. Parametric alternative

To illustrate theorem 1 we take S, =1 and /(t)=1/2e " (see example 1). This yields

u
Su,t,w)=14+ —— e =2 y>0, 0<r<T.

i<t
In this case

1

Ar(XT)= /5T

X — Z o (T-1)12

0<;<T

2
-2 _ L
2 e

0<G<T 1<y

( )

where ¢; are the events of the observed process, and the test qggr given by

v
dr=0r(XT)=X(ap(xT)> 21

is locally asymptotically uniformly most powerful in the class 7;.
In Fig. 1 we represent the size of the test q’A)(;OS as a function of 7 €[0, 1000]. This size is
given by
AT)=Po{Ar(XT)>z005}, 1<T <1000
and is obtained by simulating M =107 trajectories on [0, T] of Poisson process of constant
intensity S(¢, w)=1 and calculating empirical frequency of accepting the alternative hypo-

thesis.
. . 2005 .
In Fig. 2 we represent the power function of the test ¢, given by

~0.05
Bru,dr V=P {Ar(XT)>z005}, 0<u<5

for T=100, 300 and 1000, as well as the limiting (Gaussian) power function given by

0.07
0.06

0.05

0.04

Size

0.03

0.02

0.01

1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 J
100 200 300 400 500 600 700 800 900 1000
T

0
0
Fig. 1. Test size.
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---- T=100
--- T=300
— T=1000
— Gaussian

Power

0 v by v b b b vy |

0 1 2 3 4 5
u

Fig. 2. Test power.

2
e " ?dy, 0<u<s.

R 1 [
Bu)=P{{>z005 — M\GQ} =— /
V271 20.05— V512
The function f; is obtained by simulating (for each value of u) M =10° trajectories on
[0, T of self-exciting process of intensity S(u, ¢, w) and calculating empirical frequency of
accepting the alternative hypothesis.
Now let us consider the qﬁ; given by

e o~
br= ¢T(XT) =X{Ar(XT)>z}>

where the threshold z is chosen so that this test is of exact size ¢. The choice of this threshold
z as a function of ¢€[0,0.25] is shown in Figs 3 and 4 for 7'=100, 300 and 1000, as well as
the Gaussian threshold z,. The values of z are obtained by simulating M =107 trajectories
on [0, T'] of Poisson process of constant intensity S(z, w)=1 and calculating empirical 1 —¢
quantiles of Ar.

For example to obtain test of exact size 0.05 one needs take z~1.78 for T=100 (z~1.74
for T=300, z~1.70 for T =1000) against z, ~ 1.64 for Gaussian case.

6.2. Non-parametric alternative
To illustrate the non-parametric alternatives we take intensity functions corresponding to

S, =1 and u(t)=(r/N)x{o<i<n} 1.€.

r
St,w)=1+ ——= <Ny, 0<t<T,
( ) N\/TZX{[ ti<N}

i<t

where ¢; are the events of the observed process. This choice of u(-) allows us to compare the
power function of our locally asymptotically uniformly most powerful test

¢f(XT):X{XT>:£\/7+T}:

with the asymptotic power
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r -—- T=300
ol — T=1000
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T T T
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T T T
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Ok 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 J
0 0.05 0.1 0.15 0.2 0.25
Size
Fig. 3. Threshold choice.
N
N
120N - T=100
R --- T=300
r — T=1000
r — Gaussian

1.1+

Threshold

l l § N I N N N N B | l 111 11
0.12 0.13 0.14 0.15
Size

11111111111111111111111

Fig. 4. Threshold choice (zoom).

1 o _2
r=— e """ d,
B(r) m/ v

of Neyman—Pearson test for the least favourable alternatives.

Note that under /%), X7 is Poisson random variable with parameter 7, therefore the size
of the test q@}, as well as the threshold giving a test of exact size ¢, can be calculated directly
(without resort to Monte-Carlo simulations).

. 2005
We represent the power function of the test ¢, given by

Br(u, qAST):Pu{XT >z0sVT 4T}, 0<r<s,

© Board of the Foundation of the Scandinavian Journal of Statistics 2005.




Hypotheses Testing : Poisson Versus Selt-Exciting

47

Scand J Statist 33

Poisson versus self-exciting

407

Power
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— T=1000
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Fig. 5. Test power (N =5).
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— T=1000
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r

Fig. 6. Test power (N =50).

for T'=100, 300 and 1000 as well as the limiting (Gaussian) function S(r), 0<r<5. In Figs
5 and 6 we take N =5 and N =50 respectively. The function f; is obtained by simulating
(for each value of r and N) M =10° trajectories on [0, T of self-exciting process of intensity
S(¢, w) and calculating empirical frequency of accepting the alternative hypothesis.

We see that if | < N < T, then the power function converge to the limiting function (e.g. if
N =50 and T =1000, the power function almost coincides with the limiting one). If N and T
are of the same order (e.g. if N =50 and 7'=100) then the power function of the test can be
essentially smaller. This example confirms the importance of use of functions with bounded
support and of the order of limits in definition 2.
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7. Discussions

The constructed tests are asymptotically optimal for parametric (section 3) and non-
parametric (section 5) alternatives. It seems that these are just the first results in this field
and it is interesting to develop the construction of the asymptotically optimal tests for wider
classes of alternatives. Particularly, it is interesting to study ‘smooth alternatives’ like

I / uP @y de>r,
0

where r>0. Note that the test (;AST is no more uniformly consistent in this situation.
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Abstract: We present a review of several results concerning the construction
of the Cramér—von Mises and Kolmogorov—Smirnov type goodness-of-fit tests
for continuous time processes. As the models we take a stochastic differential
equation with small noise, ergodic diffusion process, Poisson process, and self-
exciting point processes. For every model we propose the tests which provide the
asymptotic size a and discuss the behaviour of the power function under local
alternatives. The results of numerical simulations of the tests are presented.

Keywords and Phrases: Hypotheses testing, diffusion process, Poison pro-
cess, self-exciting process, goodness-of-fit tests

27.1 Introduction

The goodness-of-fit tests play an important role in classical mathematical statis-
tics. Particularly, the tests of Cramér—von Mises, Kolmogorov—Smirnov, and
chi-squared are well studied and allow us to verify the correspondence of the
mathematical models to the observed data [see, e.g., Durbin (1973) or Green-
wood and Nikulin (1996)]. A similar problem, of course, exists for the continuous-
time stochastic processes. The diffusion and Poisson processes are widely used as
mathematical models of many evolution processes in biology, medicine, physics,
financial mathematics, and in many other fields. For example, some theory can
propose a diffusion process

dXt :S* (Xt) dt+Uth, Xo, OSfST

as an appropriate model for description of the real data {X;,0 <t < T} and
we can try to construct an algorithm to verify if this model corresponds well
to these data. The model here is totally defined by the trend coefficient S, (+),
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which is supposed (if the theory is true) to be known. We do not discuss here the
problem of verification if the process {Wy,0 <t < T} is Wiener. This problem
is much more complicated and we suppose that the noise is white Gaussian.
Therefore we have a basic hypothesis defined by the trend coefficient S, (-) and
we have to test this hypothesis against any other alternative. Any other means
that the observations come from stochastic differential equation

dXt =5 (Xt) dt +o th, Xo, 0 S t S T,

where S () # S, (-). We propose some tests which are in some sense similar
to the Cramér—von Mises and Kolmogorov—-Smirnov tests. The advantage of
classical tests is that they are distribution-free; that is, the distribution of the
underlying statistics does not depend on the basic model and this property
allows us to choose the universal thresholds which can be used for all models.

For example, if we observe n independent identically distributed random
variables (X1,...,X,) = X" with distribution function F' (z) and the basic
hypothesis is simple, F () = Fi (), then the Cramér-von Mises W? and
Kolmogorov—Smirnov D,, statistics are

W2 =n / b (@) - P, (:[;)}2 dF. (), D, = sup |, (2) — F. (2)],

—00 z

respectively. Here
. 1 <&
Iy (z) = n Z Lix;<a}
j=1

is the empirical distribution function. Let us denote by {Wy(s),0 <s <1} a
Brownian bridge, that is, a continuous Gaussian process with

EWy (s) =0, EWy (s) Wy (t) =t A s — st.

Then the limit behaviour of these statistics can be described with the help of
this process as follows.

1
Wf :>/ Wo (s)2 ds, vnD, = sup |Wy(s)|.
0 0<s<1

Hence the corresponding Cramér—von Mises and Kolmogorov—Smirnov tests
o (X") = Ywzseays 0 (X") =1 up,sa,)

with constants c,,d, defined by the equations

P{/()1W0(5)2d3>ca} = a, P{ sup |Wo (s)] >da} =a

0<s<1
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are of asymptotic size a. It is easy to see that these tests are distribution-free
[the limit distributions do not depend of the function Fj (-)] and are consistent
against any fixed alternative [see, e.g., Durbin (1973)].

It is interesting to study these tests for a nondegenerate set of alternatives,
that is, for alternatives with limit power function less than 1. It can be realized
on the close nonparametric alternatives of the special form making this problem
asymptotically equivalent to the signal in Gaussian noise problem. Let us put

Fa)=P@+ . [ hEw) dmw).

where the function h (-) describes the alternatives. We suppose that
1 1
/ h(s) ds =0, / h(s)? ds < oo.
0 0

Then we have the following convergence [under a fixed alternative, given by the
function A (+)],

W3:>/01 Uosh(u)du+wo(s)rds,

vnD, = sup
0<s<1

/Osh(v)dv—l—Wo(s)

We see that this problem is asymptotically equivalent to the following signal in
Gaussian noise problem,

dYs = hy (s) ds + dWp(s), 0<s<l. (27.1)

Indeed, if we use the statistics

1
W2=/ Y?ds, D= sup [V
0 0<s<1

then under hypothesis h(-) = 0 and alternative h (-) # 0 the distributions of
these statistics coincide with the limit distributions of W2 and /nD,, under
the hypothesis and alternative, respectively.

Our goal is to see how such kinds of tests can be constructed in the case
of continuous-time models of observation and particularly in the cases of some
diffusion and point processes. We consider the diffusion processes with small
noise, ergodic diffusion processes, and Poisson processes with Poisson and self-
exciting alternatives. For the first two classes we just show how Cramér—von
Mises and Kolmogorov—Smirnov type tests can be realized using some known
results and for the last models we discuss this problem in detail.
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27.2 Diffusion Process with Small Noise

Suppose that the observed process is the solution of the stochastic differential
equation

dX; =58 (Xt) dt + e dW4, Xo = xg, 0<t<T, (27.2)

where W;,0 < ¢t < T is a Wiener process [see, e.g., Liptser and Shiryayev
(2001)]. We assume that the function S (z) is two times continuously differen-
tiable with bounded derivatives. These are not the minimal conditions for the
results presented below, but this assumption simplifies the exposition. We are
interested in the statistical inference for this model in the asymptotics of small
noise: € — 0. The statistical estimation theory (parametric and nonparametric)
was developed in Kutoyants (1994).

Recall that the stochastic process X¢ = {X;,0 < ¢ < T'} converges uniformly
in t € [0,T] to the deterministic function {z;,0 < t < T'}, which is a solution of
the ordinary differential equation

d
dxtt = S(xy), x0, 0<t<T. (27.3)

Suppose that the function Sy (x) > 0 for z > z¢ and consider the following
problem of hypotheses testing,

Ho: S () = Su(x), xo <x <xp
Hi: S (x) # Si(x), xo < x < xp,

where we denoted by x; the solution of equation (27.3) under hypothesis Hg:
t
xf:xo—{—/S*(a:Z)dv, 0<t<T.
0

Hence, we have a simple hypothesis against the composite alternative.
The Cramér—von Mises (Wf) and Kolmogorov—Smirnov (D.) type statistics
for this model of observations can be

[T 172 ,r o\ 2
w2 / dt 2 / X, AR
Jo Si(@p)”]  Jo \eSi(af)

Tt

1 —1/2
D, = / sup
) 0 Sk (562‘)2_ 0<t<T

Xt — 332‘
S (27)

It can be shown that these two statistics converge (as € — 0) to the following
functionals,

1
w2 :/0 W (s)? ds, e 'D. = sup |W(s)|,

0<s<1
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where {WW (s),0 < s < 1} is a Wiener process [see Kutoyants (1994)]. Hence the
corresponding tests

Ve (X°) = Lywescayy e (X°) = Le-1p.sany

with the constants c,, d, defined by the equations

1
P{/ W (s)? ds>ca}:a, P{ sup ]W(s)]>da}:a (27.4)
0 0<s<1
are of asymptotic size a. Note that the choice of the thresholds ¢, and d, does
not depend on the hypothesis (distribution-free). This situation is quite close
to the classical case mentioned above.

It is easy to see that if S (x) # S (z), then supg<;<p |r: — 2| > 0 and
Wg — 00, e 'D, — o0o. Hence these tests are consistent against any fixed
alternative. It is possible to study the power function of this test for local
(contiguous) alternatives of the following form,

h(X:)
dXt_S*(Xt)dt+gS*(Xt) dt + ¢ dW4, 0<t<T.

We describe the alternatives with the help of the (unknown) function A (+).
The case h (-) = 0 corresponds to the hypothesis Hg. One special class of such
nonparametric alternatives for this model was studied in Iacus and Kutoyants
(2001).

Let us introduce the composite (nonparametric) alternative

Hy - h() S Hp,

where o
H, = {h() : / h(z)? p(dz) > ,0} :
xo
To choose the alternative we have to make precise the “natural for this problem”
distance described by the measure u (-) and the rate of p = p.. We show that

the choice
dx

S, (z)?

provides for the test statistic the following limit,

p(dz) =

W§—>/O1 [/Osh*(v)dv-i—W(s)rds,

where we denoted

T ds
hy (s — u?h (2 , U :/ .
( ) T ( uTs) T 0 S* (l_z)Q
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We see that this problem is asymptotically equivalent to the signal in white
Gaussian noise problem:

dYs = hy (s) ds +dW (s), 0<s<1, (27.5)

with the Wiener process W (-). It is easy to see that even for fixed p > 0
without further restrictions on the smoothness of the function hy (-), uniformly
good testing is impossible. For example, if we put

hn () = ¢S, (2)% cos [n (z — x)]
then for the power function of the test we have

h(l)réf;{pﬁ (¢€’ h) S 6 ('¢5, hn) — Q.

The details can be found in Kutoyants (2006). The construction of the uniformly
consistent tests requires a different approach [see Ingster and Suslina (2003)].
Note as well that if the diffusion process is

dX, = S(X)) dt +eo (X)) dW,,  Xg==x0, 0<t<T,

then we can put

§ -2 — x* 2
=[Gy (i)

and have the same results as above [see Kutoyants (2006)].

27.3 Ergodic Diffusion Processes

Suppose that the observed process is the one-dimensional diffusion process
dX; = S5 (Xy) dt + dW, Xo, 0<t<T, (27.6)

where the trend coefficient S (x) satisfies the conditions of the existence and
uniqueness of the solution of this equation and this solution has ergodic prop-
erties; that is, there exists an invariant probability distribution Fg (x), and for

any integrable w.r.t. this distribution function g (z) the law of large numbers
holds

T oo
| ey s — [ g@ ars@).

These conditions can be found, for example, in Kutoyants (2004).
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Recall that the invariant density function fg(z) is defined by the equality

s =G e {2 [T a).

where G (S) is the normalising constant.

We consider two types of tests. The first one is a direct analogue of the
classical Cramér—von Mises and Kolmogorov—Smirnov tests based on empirical
distribution and density functions and the second follows the considered-above
(small noise) construction of tests.

The invariant distribution function Fs (z) and this density function can be
estimated by the empirical distribution function Fr (z) and by the local time
type estimator fr (z) defined by the equalities

) 1 /T X 9 (T
Fr(z) = T/o Lx,<ay dt,  fr(z) = T/o Lix, <y dX,

respectively. Note that both of them are unbiased,

EsFr(z) = Fs(z),  Esfr(z) = fs(a),

admit the representations

_ 2 [TFs(XyAx)—Fs(X;) Fs (2) .
nr (x) = W/O fo (X)) AW, + o(1),
C 2fs (@) [T Lxsay — Fs(Xy) .
(@) =="". /0 exy)  AWato(D),

and are v/T asymptotically normal (as T' — oo)
mr (@) = VT (Fr (@) = Fs () = N (0,dp (,2)°).
Gr (@) = VT (fr (@) = fs (@) = N (0.d; (S.2)°).
Let us fix a simple (basic) hypothesis
Ho : S (z) = S, ().

Then to test this hypothesis we can use these estimators for construction of the
Cramér—von Mises and Kolmogorov—Smirnov type test statistics

W=7 [ [Fr @) - Fs. @] dFs.(@),

—0o0

Dr = sup ‘FT (z) — Fg, (SU)‘ ,
X
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and

= [ i@ s @) aFs),

dr = sgp_‘j‘; (z) — fs. (1‘)‘ :

respectively. Unfortunately, all these statistics are not distribution-free even
asymptotically and the choice of the corresponding thresholds for the tests
is much more complicated. Indeed, it was shown that the random functions
(nr (x),z € R) and ({r (z),z € R) converge in the space (Cy,B) (of continuous
functions decreasing to zero at infinity) to the zero mean Gaussian processes
(n(z),z € R) and ({(z),x € R), respectively, with the covariance functions [we
omit the index S, of functions fg, (z) and Fg, (z) below]:

Rr (z,y) = Es, [n(x)n (y)]
R ([F(Mx) — F (&) F (z)] [Z’(&/\y) —F(S)F(y)]>
f ()

Ry (z,y) = Es, [ (2)( ()]
At (s [Liesay = F ()] [Ligsyy — F (f)}>
=4f( )f(y)E5*< £ (6)? :

Here ¢ is a random variable with the distribution function Fg, (x). Of course,

dr (S,2)° =Bs ()], dr(8,2)" = Es [C()’].

Using this weak convergence it is shown that these statistics converge in distri-
bution (under hypothesis) to the following limits (as T'— 00),

Wi :/ n(z)* dFs.(z),  T"?Dr = suply (o)l

VZ = / Y @) dFs.(@),  TV2dr —s sup|C (o).

The conditions and the proofs of all these properties can be found in Kutoyants
(2004), where essentially different statistical problems were studied, but the
calculus is quite close to what we need here.

Note that the Kolmogorov—Smirnov test for ergodic diffusion was studied in
Fournie (1992) [see as well Fournie and Kutoyants (1993) for further details],
and the weak convergence of the process nr (-) was obtained in Negri (1998).

The Cramér—von Mises and Kolmogorov—Smirnov type tests based on these
statistics are

Yr (XT) - 1{W%>Ca}’ O (XT) - 1{T1/2DT>DQ}7
vr (XT) - I{VT2>ca}’ ¢r (XT) - 1{T1/2dT>da}

with appropriate constants.
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The contiguous alternatives can be introduced in the following way,
h(z
+ ( )
VT
Then we obtain for the Cramér—von Mises statistics the limits [see Kutoyants
(2004)]:

S(z) =85 (z)

Wi = /_Z [QES* <[1{g<x} — Fs, (2)] /j h(s) ds) +n (93)}2 dFs, (),

2

= [ |ers s, | This) ds 40| aFs )

Note that the transformation Y; = Fg, (X;) simplifies the writing, because
the diffusion process Y; satisfies the differential equation

dY; = fe. (X;) 25, (Xo)dt + dWi], Yo = Fs. (Xo)

with reflecting bounds in 0 and 1 and (under hypothesis) has uniform on [0, 1]
invariant distribution. Therefore,

1
W%:/ V(S)st, T1/2DT: sup |V (s)],
0 0<s<1

but the covariance structure of the Gaussian process {V (s),0 < s < 1} can be
quite complicated.

To obtain an asymptotically distribution-free Cramér—von Mises type test
we can use another statistic, which is similar to that of the preceding section.
Let us introduce

_ 1 T t 2
W2 = 2/ Xt—Xo—/S*(XU)dv dt.
T 0 0

Then we have immediately (under hypothesis)
T S L ! 2
Wr = Wgdt = W (s)® ds,
T2 Jo 0
where we put t = sT and W (s) = T~ /2W,r. Under the alternative we have
-, 1T 1 [ ?
Wr = Wi + / h (X5 dv] dt
toor /0 [ vty (%)

1 Trw, t1 [t 2
_ X .
T/o l\/T+Tt/0 h( U)dv] dt




58

On the Goodness-of-Fit Tests for Some Continuous Time Processes

394 S. Dachian and Y. A. Kutoyants

The stochastic process X; is ergodic, hence

1

t/o h(Xv)dv—>ES*h(f)=/ooh(a:)fs* (z)dz = pp

—0o0

as t — oo. It can be shown [see Section 2.3 in Kutoyants (2004), where we have
the similar calculus in another problem]| that

1
W2 :>/ [pn s + W (s)]* ds.
0

Therefore the power function of the test 1 (X T) =1 (W2>c,) COBVerges to
T (6%

the function .
By (pn) =P (/0 [pn s+ W (s)]* ds > ca> :

Using standard calculus we can show that for the corresponding Kolmogorov—
Smirnov type test the limit will be

By (pn) =P ( sup |pn s+ W (s)] >ca) :
0<s<1

These two limit power functions are the same as in the next section devoted
to self-exciting alternatives of the Poisson process. We calculate these functions
with the help of simulations in Section 27.5 below.

Note that if the diffusion process is

dXt =S (Xt) dt + 0o (Xt) th, X(), 0 S t S T,

but the functions S (-) and o () are such that the process is ergodic then we
introduce the statistics

) 1 T t 2
1= i i) £ 5[]

Here £ is a random variable with the invariant density function

fs. (z) = e S*)la ()2 eXP{Q /O ' i(% dy}-

This statistic under hypothesis is equal to

2

Wi m 1[0 (©7] /oT Uot“(X”)dW”] A
2

- T Eg, if (5)2] /OT l\/lT /otU(XU)dWU} @
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The stochastic integral by the central limit theorem is asymptotically normal

1

m =
\/tES* [U (6)2]

and moreover it can be shown that the vector of such integrals converges in
distribution to the Wiener process

/ta(Xv)dWU . N(0,1)
0

(7751Ta e 7775kT) = (W (s1),...,W (sk))

for any finite collection of 0 < 57 < s9 < --- < s < 1. Therefore, under mild
regularity conditions it can be proved that

1
W2 :>/ W (s)? ds.
0
The power function has the same limit,

5¢(Ph):P(/01 [ph8+W(s)]2ds>ca>.

but with
Es, h(£)

Ph = .
\/ES* [U (5)2]

Similar consideration can be done for the Kolmogorov—Smirnov type test too.

We see that both tests cannot distinguish the alternatives with h (-) such
that Eg, h (§) = 0. Note that for ergodic processes usually we have EgS (§) =0
and Eg (S (&) + T~Y2h (€)] = 0 with corresponding random variables
&, but this does not imply Eg, h (§) = 0.

27.4 Poisson and Self-Exciting Processes

The Poisson process is one of the simplest point processes and before taking
any other model it is useful first of all to check the hypothesis that the observed
sequence of events, say, 0 < t1,...,tny < T corresponds to a Poisson process.
It is natural in many problems to suppose that this Poisson process is periodic
of known period, for example, many daily events, signal transmission in optical
communication, season variations, and so on. Another model of point processes
frequently used as well is the self-exciting stationary point process introduced
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in Hawkes (1972). As any stationary process it can also describe the periodic
changes due to the particular form of its spectral density.

Recall that for the Poisson process Xy, t > 0 of intensity function S (¢),¢t > 0
we have (X is the counting process)

P {X, — X, = k} = (k)" (A(t) — A (s))" exp{A(s) — A1)},

where we suppose that s < ¢ and put

A(t) :/o S (v) dv.

The self-exciting process X;,t > 0 admits the representation
t
X = / S (s,X) ds+ m,
0

where 7y, t > 0 is a local martingale and the intensity function

S(t,X):S—f—/tg(t—s) dstS—l-Zg(t—ti).
0

t;<T

It is supposed that
oo
pz/ g(t) dt < 1.
0

Under this condition the self-exciting process is a stationary point process with
the rate

and the spectral density

H i
F= 0 o GO = [ g ar
[see Hawkes (1972) or Daley and Vere-Jones (2003) for details].

We consider two problems: Poisson against another Poisson and Poisson
against a close self-exciting point process. The first one is to test the simple
(basic) hypothesis

Ho : S (t) = Si(t), t>0

where S, (t) is a known periodic function of period 7, against the composite
alternative

Hi:S(t) £ S.(t), t>0,
but S (t) is always T-periodic.
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Let us denote Xj (t) = X (j_1)4+ — Xr(j—1)» J = 1,...,n, suppose that
T = nr, and put
. 1 <
Ay (t) = n ZXj (t)
j=1

The corresponding goodness-of-fit tests of Cramér-von Mises and
Kolmogorov—Smirnov type can be based on the statistics

W2 = A, (1) 2n /0 ' A (1)~ A (1) " dAL ()

Do = Ay (1)"Y2 sup A, (£) — A, (t)‘ .

0<t<r

It can be shown that

1
w2 :>/ W (s)?ds, vn D, = sup |W (s)],
0 0<s<1

where {W (s),0 < s <1} is a Wiener process [see Kutoyants (1998)]. Hence
these statistics are asymptotically distribution-free and the tests

Yo (X1) = Lwzseays &0 (X7) = 1 ynp,nan)

with the constants ¢, d,, taken from Equations (27.4), are of asymptotic size .

Let us describe the close contiguous alternatives which asymptotically re-
duce this problem to the signal in the white Gaussian noise model (27.5). We
put

_ 1 : ulv v u\v :A*(U)
A(t)—A*(t)Jr\/nA*(T)/Oh( @) dh@). u =y

Here h (-) is an arbitrary function defining the alternative. Then if A (¢) satisfies
this equality we have the convergence

2

W3:>/01 l/osh(v)dwvv(s) ds.

This convergence describes the power function of the Cramér—von Mises
type test under these alternatives.
The second problem is to test the hypothesis

Ho: S (t) =S, t>0
against nonparametric close (contiguous) alternative

1

Hl:S(t):S*+\/T

t
/ h(t—s)dX,, t>0.
0




62

On the Goodness-of-Fit Tests for Some Continuous Time Processes

398 S. Dachian and Y. A. Kutoyants

We consider the alternatives with the functions h (-) > 0 having compact sup-
port and bounded.

We have A, (t) = S, t and for some fixed 7 > 0 we can construct the same
statistics

5 M
W = )
ST

T ra 2 1/2 2
/ A= 8ot . Dy =(S.7) 2 sup A (1) - 5.1,
0

0<t<r
Of course, they have the same limits under hypothesis
1
w2 :>/ W (s)%ds, VnD, = sup |W (s)].
0 0<s<1

To describe their behaviour under any fixed alternative h (-) we have to find
the limit distribution of the vector

Wi = (w0 (1), wn ()5 wn (8) = ¢517 ) ; X, (1) — S.t1],

where 0 < ¢; < 7. We know that this vector under hypothesis is asymptotically
normal

,CO {Wn} — N (0, R)
with covariance matrix
R=Rim)pnr,  Rim =7 "min(t;ty).

Moreover, it was shown in Dachian and Kutoyants (2006) that for such alterna-
tives the likelihood ratio is locally asymptotically normal; that is, the likelihood
ratio admits the representation

Z, (h) = exp {An (h, X™) — ;I(h) o (h,X”)} ,

where
1 ™ t—
A, (h, X") = —8) dX; [dX; — S.df],
cnxmy = [ =) ax, ax, - sia
0 [e'e) 2
I(h):/ h(t)thJrS*(/ h(t)dt)
0 0
and

A (h, X™) = N (0,1(h)), 7 (h,X") — 0. (27.7)

To use the third Le Cam’s lemma we describe the limit behaviour of the vector
(A, (h, X™),w,,). For the covariance Q = (Qyn) ,l,m = 0,1, ...,k of this vector
we have

EoA, (h, X™) =0, Qoo = EoA, (h, X™)* =1(h) (14 0(1)).
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Furthermore, let us denote dmy = dX; — S,dt and H (¢ fo (t —s) dXg;
then we can write

Qor = Eo [Ay (h, X™) wy, (1)]

71— 1+tl

B n53/2 Z/T(j 1) dﬂ-t Z/(z 1)

1 n /T(J—l)+tz t /‘X’
= EogH (t) dt = S h(t)dt (1+o0(1)),
s 2 [y B0 =S [Thod o)

t—
EoH (t) = S, / (t —s)ds = S, /

for the large values of ¢ [such that [0,¢] covers the support of h (-)].
Therefore, if we denote

because

then .
Qo = Qo = 7% VS, h.

The proof of Theorem 1 in Dachian and Kutoyants (2006) can be applied
to the linear combination of A, (h, X™) and wy, (t1),...,w, (t;) and this yields
the asymptotic normality

Lo (An (h, X™) ,wn> — N (0,Q).

Hence by the third lemma of Le Cam we obtain the asymptotic normality of
the vector w,,,

.Ch(wn) :C(W(sl)—i—sl VSs By W (s3) + 81 A/Se B),

where we put t; = 7 s;. This weak convergence together with the estimates such
as
Ep, [wy, (t1) — wy, (t2)]? < C |ty — tof

provides the convergence (under alternative)
1 _ 2
W2 — / [\/5* hs+ W(s)] ds.
0

We see that the limit experiment is of the type

Y;:\/S*Bds—l—dW(s), Yy =0, 0<s<1.
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The power 3(tn, h) of the Cramér—von Mises type test 1, (X") = 12,y
is a function of the real parameter pj, = /S h,

1
B(Wy,h)=P </0 [phs+W(s)]2ds>ca) +o0(1) =By (pr) +0(1).

Using the arguments of Lemma 6.2 in Kutoyants (1998) it can be shown
that for the Kolmogorov—Smirnov type test we have the convergence

vnDy = sup |pps+ W (s)].
0<s<1

The limit power function is

By (pn) =P ( sup |pp s+ W (s)] > da) .

0<s<1

These two limit power functions are obtained by simulation in the next
section.

27.5 Simulation

First, we present the simulation of the thresholds ¢, and d, of our Cramér—
von Mises and Kolmogorov—Smirnov type tests. Because these thresholds are
given by the equations (27.4), we obtain them by simulating 107 trajectories
of a Wiener process on [0,1] and calculating empirical 1 — o quantiles of the
statistics .
w3 :/ W(s)*ds and D= sup [W(s)|,
0 0<s<1

respectively. Note that the distribution of W? coincides with the distribution
of the quadratic form

0 9
oy (W%)?’ Ce Lid. ~N(0,1)
k=1

and both distributions are extensively studied [see (1.9.4(1)) and (1.15.4) in
Borodin and Salmienen (2002)]. The analytical expressions are quite compli-
cated and we would like to compare by simulation ¢, and d, with the real
(finite time) thresholds giving the tests of exact size o, that is, c. and d’ given
by equations

P{W:>cl}=a and P{ynD,>d.}=aq,
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Figure 27.1. Threshold choice.

respectively. We choose S* = 1 and obtain ¢ and d. by simulating 107 tra-
jectories of a Poisson process of intensity 1 on [0,7] and calculating empirical
1 — a quantiles of the statistics W2 and y/nD,,. The thresholds simulated for
T =10, T = 100, and for the limiting case are presented in Figure 27.1. The
lower curves correspond to the Cramér—von Mises type test, and the upper
ones to the Kolmogorov—Smirnov type test. As we can see, for T' = 100 the
real thresholds are already indistinguishable from the limiting ones, especially
in the case of the Cramér—von Mises type test.

It is interesting to compare the asymptotics of the Cramér—von Mises and

Kolmogorov—Smirnov type tests with the locally asymptotically uniformly most
powerful (LAUMP) test

R Xor — Sent
n (X™) =159, 1, op="""
¢ ( ) {6r>za} T \/S*TLT

proposed for this problem in Dachian and Kutoyants (2006). Here z, is the
1 — o quantile of the standard Gaussian law, P (¢ > 2,) = a, ¢ ~ N (0,1). The
limit power function of ¢, is

By (pn) =P (pn+C > za) .

In Figure 27.2 we compare the limit power functions 3y (p), B4 (p), and ﬁé (p).
The last one can clearly be calculated directly, and the first two are obtained by
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Figure 27.2. Limit power functions.

simulating 107 trajectories of a Wiener process on [0,1] and calculating empirical
frequencies of the events

{/01[P8+W(s)]2ds>ca} and {sup ,pS+W(S>‘>da}7

0<s<1

respectively.

The simulation shows the exact (quantitative) comparison of the limit power
functions. We see that the power of the LAUMP test is higher than the two
others and this is of course evident. We see also that the Kolmogorov—Smirnov
type test is more powerful that the Cramér—von Mises type test.
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ARTICLE INFO ABSTRACT

Available online 24 May 2008 We consider the problem of hypotheses testing with the basic simple hypothesis: observed
sequence of points corresponds to stationary Poisson process with known intensity against

MSC: a composite one-sided parametric alternative that this is a stress-release point process. The

62MO05 underlying family of measures is locally asymptotically quadratic and we describe the behav-
ior of score-function, likelihood ratio and Wald tests in the asymptotics of large samples. The

Kej_/WDFdS-' results of numerical simulations are presented.

Poisson process © 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Poisson process plays a key role in describing of the reliability systems (see, for example, Rigdon and Basu, 2000). The freedom
in the choice of intensity function of inhomogeneous Poisson process allows to apply this model to a wide range of applied
problems. One of the main characteristics of this process is the independence of the increments on disjoint intervals and the
main statistical advantage is the possibility to use the likelihood ratio analysis. The statistical inference for the other point
processes is essentially more difficult because the likelihood ratio formula is rarely available (in closed form). There are at least
two exceptions. The first one concerns the self-exciting point processes and the second is the stress-release point processes.
In these both cases the increments are not independent but the intensity function, being random process, is measurable with
respect to the observations and therefore we have the opportunity to use the likelihood ratio analysis. Note that these three types
of point processes (Poisson, self-exciting and stress-release) cover a large class of stationary point processes. We suppose that
the problem of the choice of the type of point process is quite important and the most interesting is the testing in the region,
where these models are statistically close and the large samples analysis is non-degenerate (contiguous alternatives).

The model of self-correcting (also called stress-release) point process was proposed in Isham and Westcott (1979) to describe a
stationary sequence of events {t1, ty, ...} which automatically corrects the intensity function. Note that essentially similar model
was introduced in Knopov (1971) and in Vere-Jones (1978) to describe the seismic activity (see Ogata and Vere-Jones, 1984;
Lu et al.,, 1999). This is an elementary stochastic version of the elastic rebound theory of earthquake formation. This model is
used in storage and insurance applications too. Roughly speaking, the stress level (intensity function) increases deterministically
between the events and at the instant of event it is reduced (released). We suppose that this model corresponds well to the
behavior of certain technical systems and can be applied in the study of reliability of such models.
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To introduce this processes we denote by X = {X;, t >0} the counting process, i.e., X; is equal to the number of events on the
time interval [0, t]. Recall that for a stationary Poisson process with a constant intensity S>0 the increments of X on disjoint
intervals are independent and distributed according to Poisson law

k k
SK(t —s) oS(t-5)

PX; — Xs =k} = X )

0<s<t, k=0,1,... .

Particularly,
P{X; qr — X¢ >0} = Sdt(1 +o(1)).

For stress-release point process we have
P{X; 1 dr — X¢ > 017 ¢} = S(t,X¢) dt(1 + o(1)),

where Z is the o-field generated by {X;,0 <s <t} and the intensity function
S(t,X:)=ay(at —X;), t=0.

Here a>0 and the function y(-) satisfies the following conditions:

1. 0<yY(x)<ooforany x € R,
2. there exists a positive constant ¢ such that (x) > ¢ for any x>0,
3. lim,_, ., ¥(x)>1and limy_, _o, Y(x)<1.

Self-correcting processes are called as well stress-release processes (see Daley and Vere-Jones, 2003, p. 239). This class of
processes is widely used as a good mathematical model for non-Poissonian sequences of events. This model was found especially
attractive in the description of earthquakes.

Example 1. Let
S5(t,X¢) = exp{o+ Bt — 0Xe)},

where >0, ¢>0. It is easy to see that conditions 1-3 are fulfilled and the point process with such intensity function is stress-
release.

This model was studied by many authors (see the references in Daley and Vere-Jones, 2003). Particularly it was shown that
under mild conditions there exists an invariant measure x and the law of large numbers (LLN)

T
T [ hest=xoyde — [ nypuiey) M

is valid (see Vere-Jones and Ogata, 1984; Hayashi, 1986; Zheng, 1991). Here h(-) is a continuous, integrable (w.r.t. i) function and
$>0is the rate of the point process. For the model of Example 1 we have the LLN if p >0 and >0.

As the stress-release model is an alternative for the stationary Poisson process, it is natural and important to test these two
hypotheses by the observations {t1, t5, ...} on the time interval [0, T], i.e., to test

S(t,X;)=S versus S(t,X;)=ay(at — X;).

Remind that the likelihood ratio in this problem has the following form:

L(XT)=exp{[)Tlnwld&fsm]f/or[w ~1-In M}Sdt].

where X;_ is the limit from the left of X; at the point t (see, for example, Liptser and Shiryayev, 2001). Therefore, if the function
ay(-)/S is separated from 1 then the second integral in this representation tends to infinity and there are many consistent tests.
Hence it is more interesting to compare tests in the situations when the alternatives are contiguous, i.e., the corresponding
sequence of measures are contiguous. This corresponds well to Pitman’s approach in hypotheses testing (see Pitman, 1948). We
can have such situations if (-) = S + o(1) with special rates o(1). In this work we consider one of such models defined by the
intensity function S(t, X¢) = Sy/(¥(St — X;)) where o} is a small parameter and yy(0) = 1. We suppose that the function y(-) is smooth
and we can write

2 2
/()T[w(ﬁ(St ZX0) = 1 — ISt — Xe))JSdt = % /OT(St — X0 de(1 + o(1)).
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It is easy to see that the rate ¥ = 997 — 0 under hypothesis S(t,X¢) = S is 97 ~ T~ because
1T 2 ! 2 ! 2
—5 | (St—=X)dt= | Wr(s) ds= W(s)* ds,
ST Jo 0 0

where Wr(s) = (ST)’VZ(STS — X15) = W(s), and {W(s),0<s< 1} is Wiener process. Note that we put a = S, otherwise

Y02y (7 5 W(OyF (T St—Xe \?
?/0 (at - X) dt_ifo ((afs)t+«/S_T = ) dt

2

2
S
= KOty I (@-SpT + VSTWrw)P dv

0

Jo
= ‘/’(T)ﬁ%(a — SPPT3(1 + o(1)).
Therefore, if a#S, then we have to take 97 = uT~>? and to test the simple hypothesis # : u = 0 against #’; : u>0. In this
case the family of measures is LAN and the usual construction provides us asymptotically uniformly most powerful test (see, for
example, Roussas, 1972). Note that according to (1) for any fixed alternative 1 >0 we have the convergence

)
T [ st -xoPde — [ yutay)

which, of course, requires another normalization.

Therefore we consider the problem of hypotheses testing when under hypothesis s the intensity function is a known
constant S>0 (Poisson process) and the alternative .#’; is one-sided composite: stress-release process with intensity function
S(t, Xt) = SY(91(St — X;)), where for convenience of notation we put J1 = u/Sy/(0)T (we suppose that y(0)>0). In this case the
corresponding likelihood ratio Zr(u) converges to the limit process

Z(u)=exp {7u/01 W(s)dW(s) — 112—2/01 W(s)? ds},

i.e., the family of measures is locally asymptotically quadratic (LAQ) (see, for example, Le Cam and Yang, 2000). We study three
tests: score-function test, likelihood ratio test, Wald test and compare their power functions with the power function of the
Neyman-Pearson test. Note that we calculate all limits under hypothesis (Poisson process) and we obtain the limit distributions
of the underlying statistics under alternative (stress-release process) with the help of Le Cam’s Third Lemma. Therefore we do
not use directly conditions 1-3 given above.

The similar limit likelihood ratio process arises in the problem of hypotheses testing u = 0 against u >0 for the time series

u .
ij(l—ﬁ)xj,l—s-aj, j=1,...,n— oo,

where ¢; are i.i.d. random variables, E¢; = 0, Ee2 = ¢2. The asymptotic properties of tests are described under hypothesis and

alternatives in Chan and Wei (1987) and Phillips (1987). Particularly, the limits of the power functions are given with the help of
Ornstein-Uhlenbeck process

dYs = —uYsds+dWs, Yp=0, 0<s<1.

Then these limit powers were compared in Swensen (1997).

For the model of Example 1 the power function (for local alternatives) was studied in Ogata and Vere-Jones (1984) and in
Luschgy (1993, 1994). The limit likelihood ratio and tests are similar to that of the mentioned above time series problem. Remind
as well that in Feigin (1979) it was noted that the same limit likelihood ratio arises in the problem of testing the simple hypothesis
u = 0 against one-sided alternative u >0 by observations

dXt=7;Xtdt+th, Xo=0, 0<t<T — oc.

In our case we obtain similar limit expressions for the likelihood ratio and power functions and compare the errors of tests.
The analytical considerations give us an asymptotic (for large values of u) ordering of the tests. The numerical simulations of the
tests show that for the small values of ¢ and for the moderate values of u the power functions of the likelihood ratio and Wald
tests are indistinguishable (from the point of view of numerical simulations) of the Neyman-Pearson envelope. This interesting
property was noticed (for ¢ = 0.05) in Eliott et al. (1996) on the base of 2 x 10% simulations. In our work we obtain similar result
having 107 simulations and we observe for the larger values of ¢ that the asymptotic ordering of the tests holds already for the
moderate values of u.

Note finally that a similar problem of hypotheses testing in the situation when the alternative process is self-exciting
(see Hawkes, 1972) was considered in Dachian and Kutoyants (2006).
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2. Score-function test

We observe a trajectory XT = {X;, 0 <t < T} of a point process of intensity function S(-, X;) and consider the problem of testing
the simple hypothesis against close one-sided composite alternative

Ho: S(6,Xe) =Ss, (2)
H1:S(6Xe) =S p(Ir[Sit = Xe]),  91r>0, (3)
where 97 is a small parameter, the value S, and the function y(-) are known. The problem is regular in the following sense.

Condition .o7. The function y(x),x € R s positive, continuously differentiable at the point x =0, y(0) = 1 and 1/'/(0) >0.

_ The rate of convergence ¥7 — 0 is chosen such that the likelihood ratio L(97,XT) is asymptotically non-degenerate. In the case
(0) <0 we need to change just one sign in the test. This leads us to the reparametrization

= — , u=0
Sap(0)T
and to the corresponding hypotheses testing problem
Ho:u=0, 4)
A1 :u>0. (5)

Therefore, we observe a Poisson process of intensity S, under hypothesis #( and the point process under alternative 1 has
intensity function

(LX) =S, + 7(S.6 = Xe) + o(T 1),
Let us fix ¢ € (0,1) and denote by 4", the class of test functions ¢(X") of asymptotic size ¢, i.e., for ¢y € # . we have
TILH;J Eopr(XT)=¢.
As usual, ¢(XT) is the probability to accept the hypothesis #’1 having observations XT. The corresponding power function is
Br(u, ¢r) =Eur(XT), u>0.

Let us introduce the statistic

1
S T

Xr — (Xr — S.T)?

Ty _
4r(X") = 25.T

(6)

f (56— X)X, . di] =
0

The last equality follows from the elementary representation (see, for example, Kutoyants, 1984, Lemma 4.2.1) for the centered
Poisson process 7y = X — S.t:

T
72:%:2/ n[,dﬂ'[-‘rﬂ.’]‘ +S.T
0

which obviously is equivalent to

1 T 775%- 7XT
T_/() Tt— dTCt = 5T .

Define as well two random variables
1 1
AW) = %(1 —W(1)2)=—/ W(s)dW(s), J(W):f W(s)2ds,
0 0

where {W(s),0<s< 1} is standard Wiener process.
Remind that the likelihood ratio in this problem has the form

L <%XT) — exp :/OT Iny (%(S*t—xt,)> [dX; S, dt]

_/OT [nﬁ (%(s*t _xt)> —1-Iny (%(S*t—xt))} Sk dt] , (7)

where y = S*gb(O) (see, for example, Liptser and Shiryayev, 2001).
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Therefore the direct differentiation w.r.t. u at the point u = 0 gives us the introduced above statistic

0 u or T
ElnL(y_T'x ) u=0_AT(X ).
Below we denote
1-22 2
_ (1-2)2 _ u
a;=——=—— and h(u)= 1 e-2u’

where z4 is 1 — a quantile of standard Gaussian law, i.e., P({ >zq) = a, for { ~ A47(0,1).
We have the following result.

Theorem 1. Let the Condition .7 be fulfilled, then the score-function test

1 XN =1y x1y0a,) (®)
belongs to the class ¢, and for any u, > 0 its power function
ﬁT(u*v(b;‘) g /f*(u*)=l’{|§| éh(u*)z(ps)/z}- (9)

Proof. Under hypothesis /# the value X7 is a Poissonian random variable with parameter S, T. Therefore we have immediately

Xt Xo-=ST

~ N
S*T—) , 5T :>W(1) N (Ovl)

and 47(XT) = A(W)as T — oo. Hence

2
1-Z0

Po{dr(XT)>a;) — PlA(W)> l:l’{lflque)/z}:&

This provides ¢7 € A .
To study the power fr(u., d)’}) we would like to use the Third Le Cam Lemma (see Le Cam and Yang, 2000; Strasser, 1985).
Therefore we need first to show the joint weak convergence

2
Lo(dr, (W) = & (A(W).UA(W) - %J(W)>‘ (10)

where Ir(u) = InL(u/yT,XT).
To verify (10) we denote

U2
l3(u) = udr(X") = S Jr(X"),
where

1 T
hXN = [O (Sut — Xe)2dt

and show that

2
”—J(W)>. (11)

Loliu) = £ <uA(W) -3

Then (10) will follow from the convergence
Ip(ur) = Ir(ur) - 0 (12)

for any bounded sequence ur. O

Lemma 1.

1 1
Lo(Ar(XN)Jr(XT)) = (— /0 W(s)dW(s), fo W(s)? ds>. (13)
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Proof. Let us put Wr(s) = (S.T)"Y?ngr, s € [0,1]. Then
EoWr(s)=0, Eo[Wr(s1)Wr(s2)] = min(s1,s2)

and we have

17, 1 2
WX = 513 /0 2 dt = /0 Wi(s)? ds.

Using the standard arguments we verify (well-known fact) that for any collection {sq, ...,s;} we have the weak convergence
(as T — oo) of the vectors

(Wr(s1), ..., Wr(sg)) = (W(s1),..., W(sg)).
Moreover the following estimate holds:
(EolWr(s1)* — Wr(s2)?1)* <EolWr(s1) — Wi(s2)*EolWr(s1) + Wr(s2)2 <4isz — s1l.
Hence (see Gikhman and Skorokhod, 1969, Section IX.7) we have the convergence (in distribution) of integrals
fo " Wi(s)ds — /0 " W(sds

and

2
AT(XT)= %(

2 1
14+0(1)) = 1200 7/0 W(s) dW(s).

It is easy to see that we have the same time the joint convergence too because from the given above proof it follows that for
any Aq, A:

1 1
AW (1) + o / Wi(sY ds = 2y W(1) + /3 / W(s)? ds.
0 0
Therefore Lemma 1 is proved. []
Our goal now is to establish a slightly more strong than (12) relation
w2 1 5
Ir(ur) = urAr(X")(1 + 0(1)) — 77-/0 Wr(s)” ds(1 +o(1)), (14)

where o(1) — 0 for any sequence uy € Ut with U = {u : 0<u</S,T/InT}.

We can write
T uWr (£> —uWr <£>
l//

l’;(u)—lr(u):/o er W e |
u2Wr ¢ ’ —uWr ¢ —uWr t
7fOT 2S§TT> —y ‘/./(ON(STTT) +1+Iny ¢(O)J(57TT) s.dt

u?
= Ué]'T — 752_1‘

with obvious notation. Remind that u > 0. Using Lenglart inequality (see, for example, Liptser and Shiryayev, 2001) we obtain for
the first term

; B 2
P0{|51,T|>a}<Z+Poi/0 [WT(5)+ Z*Tlmﬁ<ﬁ%)i| d5>b}

for any a>0 and b > 0. Now expanding the functions y(-) we obtain

v —uWr(s) 11— uWT(s){ﬁ —uWr(s)
Y(0)VS.T YOWVST \Y(0WS.T)'
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where i <u. Introduce the set

Cr=1{w: sup |Wr(s) <y(OWInT

0<s<1
and note that for w € C; we have the estimate
u|Wr(s)| 1

sup sup l T( ) < .
ueUr0<s< 1 Y(0)V/5S; vInT

Hence for all u € Uy on this set we can write

W(0) w(iﬂﬁ@)

< sup W(O)—Y(w)=hr -0

v <(nT)"/

sup
0<s<1

W(0)VS.T

as T — oo because the derivative is continuous at the point v = 0.
Let us denote us = uWr(s)/}y(0)+/S.T. Using the expansion of the logarithm

ust)(—ils)

In(Y(—us)) = In(1 — usp(—iis)) = — ——2~
n((—us)) =1In(1 — usy(—1is)) T

we obtain the following estimate:

PO’/: [WT(S) lm// us} ds>b;

c e (i) ’
gPO{CT}+PO {/(; WT(S) (]*m> dS>b,CT .

Remind that Wr(s) is martingale, hence by Doob inequality we have
; 1
Po{C5} < Po{|Wr(1) > Y(0)VInT} < ————.
o{C7} <Po{IWr(1)1>(0) JOPInT

For the second probability after elementary estimates we obtain
. 2
P, / Wi(s _& ds>b, Cr
Y1 — dis(—
1 C 1
2 2, 1
<p0< / Wi(s) ds<hT+l T)>b} <o <h +1nT)

with some constant C>0. Recall that by Tchebyshev inequality

1 1
2
< —.
I’ol/0 Wr(s)*ds>A <3

Therefore, if we take b = a2 then for any a>0
Po{|d171>a} — O

as T — oo.
The similar arguments allow to prove the convergence

Po{|d2r/>a} — O

too.
Therefore, the likelihood ratio Zr(u) = L(u/yT,X"),u>0 is (under hypothesis #¢) LAQ (see, for example, Le Cam and Yang,
2000), because

Zr(u) = Z(u) = exp lfu /01 W(s)dW(s) — ”72 fol W(s? ds] . (15)
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Moreover, we have the convergence I;(ur) — Ir(ur) — 0 for any bounded sequence of ur € Ur. Note that the random function
Z(u) is the likelihood ratio in the hypotheses testing problem

Hy:u=0,

H1:u>0
by observations of Ornstein-Uhlenbeck process

dY(s) = —uY(s)ds +dW(s), Y(0)=0, 0<s<1 (16)

under hypothesis u = 0.
This limit for the likelihood ratio under alternative can be obtained directly as follows. Let us denote

 Xeg —$S.T

Yr(s) = ST 0<s<1.

Then using the representation
t
X = s/ Y(IIS.T — X, 1) dr + My,
0

where M is local martingale and expansion of the function y/(-) at the vicinity of 0 we obtain the equation
.
vi)=-u [ Evwa v, wo)=0, 0<s<1,
o (0)

where Vy(s) is local martingale and g, = (—ii/{/(0)v/S,T)Y7(v) — 0. The central limit theorem for local martingales provides the
convergence Vr(s) = W(s). Hence process (16) is the limit (in distribution) of Y7(s). Moreover from (7) we have

Yr(1)  1-Yr(1? 1-Y(1)?

Ar(XT) = .

T(X") 2U5.T + 5 = 3

This limit of the statistic A7(X") follows from the Third Le Cam Lemma as well. Particularly, for any continuous bounded
function H(-):

EyH(Ar(XT)) = Bo[Zr(w)H(A7(XT))] — Eo[Z(u)H(A(W))] = E4H(A(Y)),
where

1 a2
A(Y)=7/(; ¥(s)dY(s) = #

Hence under alternative (Y7 = u,/yT) we have the convergence

. 2u,
Br(us, @7) — Pu, (IY(D)I<2q g2} =P {lW(l)l SZ1-ey2 m}

because
1 1-— e—Zu*
Y(l):/ e=u1-5) dW(s) ~ A" (o,7>.
0 2u,
This proves (9).

Theorem 1 is asymptotic in nature, and it is interesting to see the powers of the score-function test for the moderate values of
T and especially to compare them with the limit power functions. This can be done using numerical simulations.
We consider the model of Example 1 with S, = 1 and y(t) = e'. This yields the intensity function

S(u,t,Xe) = exp (;[r -x[]) ., u>0, 0<t<T.
In Fig. 1 we represent the power function of the score-function test ¢7 of asymptotic size 0.05 given by

Br(u, §7) =Pu{Ar(XT)>agps), 0<u<20

for T = 100, 300 and 1000, as well as the limiting power function *(-) given by formula (9).
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Fig. 1. Power of the score-function test.

The function fi7(-, ¢7) is estimated in the following way. We simulate (for each value of u) M = 10° trajectories XjT,j =1,....M
of stress-release process of intensity S(u, t, X;) and calculate 4; = AT(XjT). Then we calculate the empirical frequency of accepting
the alternative hypothesis

M

1

M Zﬂ(Aj>ao.05) ~ ﬁT(u' d);')
j=1

Note that for T = 1000 the limiting power function is practically attained. Note also that for T = 100 the size of the test is 0.079
which explains the position of the corresponding curve.
Remind that score-function test is locally optimal (see Capon, 1961).

3. The likelihood ratio test and the Wald test

Let us study two other well-known tests: the likelihood ratio test ¢y based on the maximum of the likelihood ratio function

and the Wald test (?)T based on the MLE ¥r.
Remind that the log-likelihood ratio formula is

im0 XT) = [ 905, X DI 5. el — [ WS, X )~ 1~ In gLt - X s, de
0 0

and the likelihood ratio test is based on the statistic

Sr(XT) = sup L(9, XT),
Je®

where @ is the set of values of 1 under alternative. The test is given by the decision function
T Ty )
¢r(XT)= ﬂ(ér(XT»bn'

where the threshold b, is chosen from the condition ¢y € ..

Note that é7(XT) = L({?T,XT) as well, where f?T is the maximum likelihood estimator of the parameter .

The reparametrization ¥=yr=u/yT reduces the problem (2)-(3) to (4)-(5) and we have to precise the region of local alternatives.
In the traditional approach of locally asymptotically uniformly most powerful tests (regular case, see Roussas, 1972), in order to
check the optimality of a test ¢; we compare the power function f(u, ¢7) with the power function of the Neyman-Pearson test
on the compacts 0 < u < K for any K > 0. For these values of u the alternatives are always contiguous. To consider the similar class
of alternatives in our case is not reasonable because the constant b, became dependent of K. Indeed if we take the test function

Ty _ B (% xT
or(X )—ﬂ(supgmg,(z,-(upbgr ZT(u)_L(yT.X )

then the condition éﬁT e A, implies b, = b,(K). Therefore we suppose that K = Ky = /S, T/InT — cc.
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Finally, we have the following hypotheses testing problem:
Ho:u=0, (17)
H1:u=u, e Ur. (18)
Therefore, to study

5 oxT
¢r(X7)= ﬂ(SUPueﬂJT Zy(u)bs}

we need to describe the asymptotics of its errors under hypothesis 7 and alternatives %1 with 9 = u,/yT, u, € Ur.
Below

AW) =

Theorem 2. Let us suppose that condition .o/ is fulfilled and the value b is solution of the equation

P(A(W)>b;)=¢. (19)
Then the test g?)T with by = eb? belongs to 4", and its power function converges to the following limit:

B, ) — Pu.) =PLA(Yu,)> e,
where

2
A= A0) 1= Ya )

v2J(Yu,) 8J(Yu,)

and Yy, = {Yy,(s),0<s< 1} is Ornstein-Uhlenbeck process (16) with u = u,.

Proof. The log-likelihood process Ir(u) = In Zr(u) admits (under hypothesis /#) the representation (14)

. u?
() =udr(XT)(1 +617) - 7JT(XT)(1 + 021 (20)
where ;7 — 0 uniformly on u € Ur. Hence

TV _ AWy
Ar(XT) = usqu.IJ)TlT(U) = W

and we have

Eodr(XT)=Pg [ sup lT(u)>b§] — P(A(W)>b,)=¢.

ueUr

Let us fix an alternative u = u,. We have the convergence
T u?
Lol Ar(X0) r(w)y = L4 AW), w AW) = S J(W) ¢ (21)
Convergence (21) allows us to apply Third Le Cam’s Lemma as follows: for any bounded continuous function H(-):

Eu H(Ar(X")) = Eo[Zr(w)H(Ar(X"))] — EolZ(u,)H(AW))] = Eu, H(A(Ya,)).

Hence

B, pp) =Py, { sup 1T(u)>b§} — Py {A(Yy,)>bg).

ueUr

This completes the proof of Theorem 2. [
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Let us note that the threshold b, is given implicitly as the solution of equation (19). In the following table we give some values
of b; obtained using numerical simulations.

€ 0.01 0.02 0.03 0.04 0.05 0.1

b 1814 1636 1524 1440 1373 1.144

These thresholds are obtained by simulating M = 107 trajectories on [0, 1] of a standard Wiener process, calculating for each
of them the quantity A(W) and taking (1 — e)M-th greatest between them.
The next test usually studied in such hypotheses testing problems is the Wald test

P
¢r(X7) = 1](77'191 >c)

where 97 is the maximum likelihood estimator of ¥,
Below

Theorem 3. Let us suppose that condition .o/ is fulfilled and the value c; is solution of the equation

P(I'(W)>c;)=e. (22)
Then the test &)T belongs to ", and its power function for any alternative u,. converges to the following limit:

Bltte, by) — Blu) =PI (Ya,)> o),
where

CAY) Jo Yu.(s)dW(s)
T = Jy,y =%+ )

and Yy, is the same as in Theorem 2.

Proof. The proof follows immediately from representation (20), because

PBT’{«/T@ocg}:PE)”( sup Zr(u)< sup ZT(U)]

0<u<c u>cg,ueUr

Osu<ce u>c;

— Py i sup Z(u)<supZ(u)] =P{I'(W)>c;}=¢
and (under alternative u = u,)
PO >c) =P { sup Zr(u)< sup Zr(u)]
o<u<c u>c,uelr

_>Pu*: sup Z(U)<SUDZ(U)I:P{F(Yu*)>ca}:ﬁ(u*)- O

o<u<c u>c

As above, the threshold c; is given implicitly as the solution of equation (22). In the following table we give some values of ¢,
obtained using numerical simulations.

£ 0.01 0.02 0.03 0.04 0.05 0.1

¢, 13.692 11224 9.803 8806 8.042 5719

These thresholds are obtained by simulating M = 107 trajectories on [0, 1] of a standard Wiener process, calculating for each
of them the quantity I'(W) and taking (1 — ¢)M-th greatest between them.
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4. Comparison of the tests

Remind that all these three tests ¢7, qZ)T and (be in regular (LAN) case are asymptotically equivalent to the Neyman-Pearson

test ¢2'T (with known alternative u) and hence are asymptotically uniformly most powerful. In our singular situation all of them
have different asymptotic behavior and therefore it is interesting to compare their limit power functions

_— A
B(u) =Pu{A(Yy)>ag}, ﬁ(u)—Pu[ 2J(Yu)>b£}'

oM { ?((quu))

of course, under condition that all of them belong to 2#".. Our goal is to compare these quantities for the large values of u.
We have to study the distribution of the vector (A(Yy),]J(Yy)), where

ol Bw=r, !uA(m - “2—21<Yu)>a8}

1 1

A== [ () dals). I = [ Vas) ds,
where Y), is solution of the equation

dYy(s) = —uYy(s)ds + dW(s), Yu(0)=0, 0<s<1.

Let us introduce the stochastic process y, = uYy(v/u),0<v<u (this transformation was introduced in Luschgy, 1994).
Then we can write

dyy =-yydv+dwy, yo=0, 0<v<uy,

where w, = /uW(v/u) is a Wiener process and
1Y Ay 2 (Y2 Ju
AYy) = —u- / Vodyo = 24, J(Ya)=u~ [ y2dv =
0 u 0 u?

in obvious notation. Further, the process y, is ergodic wi e density of the invariant law f(y) = e~ 7. Hence ], — oo an
b tation. Further, th dic with the density of th tl N d

1/t 1
4 /(; yidv — 5
Note that the distribution of the process y, does not depend on u.
The constant d. = d.(u) because it is defined by the equation

u2
Py [uA(W) - 7](W)>dC] =¢.

For the large values of u this constant can be approximated as follows. We have (under hypothesis # ) as u — oo:

Py {uA(W) - ”z—zj(w)wg(u)} - {/0] W(s)2ds < — w + M}

u
1

—Py [/ W(s)zds<eg} =g,
0

where the constant e, is defined by the last equality. For example, if we take ¢ = 0.05 then the numerical simulation gives us the
value eq s = 0.056. Therefore d,(u) = —0.5e.u%(1 + o(1)). If we suppose that ¢ is small and try to solve the equation

/e"fj(x)d)czs,
0

where fj(x) is the density function of the integral J(W), then we can easily see that fj(0) = 0 and all its derivatives fJ(k)(O) =0,

k=1,2,.... Hence to see an approximative solution we need to calculate the large deviation probability of the following form
(below r =s/./e;, E= e;l/z — 00):

P, [e;l fol W(s)2d5<1] —P, {/OE W(r)zdr<1}.

Below we put dg(u) = —0.5e,u?.
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We have the relations

f(u)=P{4y>ua;} = {/ Yo dwy <]y —a;u}

\/Z>b‘g =P{/Ouyvdwv<Ju—bg\/2]_u}_

By = ““>E}:P[/Ouyudwu<Ju—%Ju],

Ju u
ﬁo(”)="{ o Yd } {f yodwy <2+ S 2}

Therefore the large values of u (J, ~ u/2):
L T PR VR e A
and finally
B*(u)< Bu)< pu)< p(u)

These inequalities are in accord with Swensen (1997).
Note that for small values of ¢ the constant a, is close to 0.5 (e.g., g5 = 0.498, app1 = 0.49992) and in this asymptotics the
power of score-function test is

Br(u) =P {/Ouyv dwy <(05 — a,)u(1 + o(]))}.

Hence one can expect that in this case the score-function test has essentially smaller power than the others.

Now let us turn to numerical simulations of the limiting power functions. We aim to obtain the limiting power functions of
all the three tests, as well as the Neyman-Pearson envelope, for the moderate values of u (u<<15).

Note that for the score-function test 8*(u) can be computed directly using (9). However, the limiting power functions of the
likelihood ratio and of the Wald tests are written as probabilities of some events related to Ornstein-Uhlenbeck process and can
be obtained using numerical simulations.

For the likelihood ratio test we have

B(u) = Eul gy, b = EoZW)T (gw)ob,)»

where

U2
Z(u) =exp luA(W) - TJ(W)] .

So we simulate M = 107 trajectories W= {Wj(s), 0<s<1},j=1,...,M of a standard Wiener process and calculate for each of
them the quantities A; = A(Wj), J; =J(W)), 4; = 4;/]; and (for each value of u) Z;(u) = exp{u4; — (u2/2)Jj}. Then we calculate the
empirical mean

MZZ Tany ~ ).

For the Wald test we have similarly

=

1 W e = B,

j=1

where Fj = Aj/ /2_]j.
Finally, in order to compute the Neyman-Pearson envelope, we first approximate (for each value of u) the quantity d. = d.(u)
by the (1 — ¢)M-th greatest between the quantities InZ;(u), and then calculate

Mz

1
i _12( Wiinzwpdyuy = ~ B(u).

The results of these simulations for ¢ = 0.05 are presented in Fig. 2.
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Fig. 2. Limiting powers for ¢ = 0.05.
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Fig. 3. Limiting powers for different values of ¢.

Let us note here that in this case the power functions of the likelihood ratio test and of the Wald test are indistinguishable
(from the point of view of numerical simulations) from the Neyman-Pearson envelope. This quite surprising fact was already
mentioned in Eliott et al. (1996), who showed the similar pictures having 2 x 10% simulations. As we see from Fig. 2, with
107 simulations the curves are still indistinguishable. The situation is, however, different for bigger values of ¢. The results of
simulations for ¢ = 0.01, 0.05, 0.25 and 0.5 are presented in Fig. 3.

One can note that for big values of ¢ (e.g., ¢ = 0.5) the powers became more distinguishable, and that the asymptotically
established ordering of the tests holds already for these moderate values of u. Note also that for the small values of ¢ (e.g., e=0.01
and 0.05) the curve of score-function test is essentially lower as expected.

5. Discussion
Remark 1. Note that alternatives u = ur — oo with ¥, — 0 are local but not contiguous. That means that the corresponding
sequences of measures (Pg) PBT)),T — oo are not contiguous. Particularly, the second integral in the likelihood ratio formula

UT ’
tends to infinity:

/T[l//(ﬁuT(S*t — X)) = 1= (D (Sut — X ))IS. dt — oo,
0

In such situation the power function of any reasonable test tends to 1 and to compare tests we have to use, say, the large deviation
principle. For example, the likelihood ratio test ¢7 is consistent for the local far alternatives 9=v//S,T,v € [v,V]where 0< v<V < oco.
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Indeed, under mild regularity conditions we can write

E,,d)’;(xT):PO[sup L< v ,xT)>cc}

<<V \/S*T
—P, { sup | VS.T f 0 (oW (s)) dWi(s)
v<v<V_ 0
ST / W) — 1 — InY(uW(s)] ds:| >In c]
0
L
=P0{‘i13£3v_ ! || meow(s)awis)
1
~ [ Wowr(s) - 1~ Inpowr()] ds} > ]
0 *

1
—>P[ ian/ [W(W(s)—1—In 1//(1/W(S))]d5>0] -1
y<p<! 0
because the function g(y)=y —1—Iny>0fory#1and g(y)=0iffy =1.

Remark 2. Note that we can construct asymptotically uniformly most powerful test if we change the statement of the problem
in the following way. Let us fix some D >0 and introduce the stopping time

T
p =inf {f : / (8.t — X,)%S, dt>DZ] .
0
Then we consider the problem of testing hypotheses
Ho :S(6Xt)=Ss,
u
¥(0)D

by observations X = {X¢,0 <t < tp} in the asymptotics D — oo. Now the likelihood ratio Z;,(u) = L(u/zﬁ(O)D,XD) will be LAN:

A S(X) = S*l//(ﬁD[S*f —Xt]), Yp=

>0

u? . .
Zy(u) = exp [uC - 7], {~N(0,1)

and the test gAbID = ﬂ(AzD (XD )>z,) Where
1
Ay (XP) = 5[0 (Sut — X )[dXe — S, dt]

is locally asymptotically uniformly most powerful.
The proof follows from the central limit theorem for stochastic integrals and the standard arguments (for LAN families).

Remark 3. Note that these problems of hypotheses testing are similar to the corresponding problems of hypotheses testing for
diffusion processes. In particular, let the observed process XT = {X;, 0 <t < T} be diffusion

dX; = W(*’ﬂ'{X{)d[#» odW;, Xo=0, 0<t<T,
where the function y/(0) = 0 is continuously differentiable at the point 0 and {p(O) >0. If we consider two hypotheses: ¢ = 0 and

>0 then the reparametrization
uc

Yo
provides local contiguous alternatives, i.e., the log-likelihood ratio in the problem
Ho:u=0,

H1:u>0

has the limit

s r ! 2
L(ll./(o)T,X ) — —u [ Ws)dwis) - L /0 W(s)? ds.
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The score-function test based on the statistic

1 T
40N =1 [ xeax,
T Jo
the likelihood ratio test and the Wald test have the same asymptotic properties as those described in Theorems 1-3.
For example, if yy(x)=x, then we have the Wiener process (under hypothesis # ) against ergodic Ornstein-Uhlenbeck process
under alternative ;.

Remark 4. We supposed above that the derivative of the function 1/(x) at the point x = 0 is not equal to 0, but sometimes it can
be interesting to study the score-function and the likelihood ratio tests in the situations when the first k — 1 derivatives with
k>2 are null.

Let us consider a stress-release process XT = {X¢,0 <t < T} with intensity function S Y(D(S«t — X;)) such that y(0) =1 ¢(0) =0
and y(-)#0 (k= 2). In this case the modifications have to be the following. Suppose that (0) > 0. To have LAQ family at the point
¥ = 0 we chose the reparametrization ¥ = ¥y:

Iu= |2 s,y
¥(0)

which provides the limit
1 u2 1
INL(9y, XT) = u f W(s) dW(s) ~ - / W(s)* ds.
0 0

Then in the hypotheses testing problem
Ho:u=0,
H1:u>0
the score-function test |/}(XT) =T 4;(x7)>c,) is based on the statistic

Ar(XTy= ) Tsrxzdx S, dt
1 )—W/O(*—t)[ 5. dr].

It is easy to see that under
3 1
Ap(XT) = @ - / W(s)ds.
0

Hence to chose the threshold c; we have to solve the following equation:

ﬂ// exp{—2x2+2xy—zy2} dxdy=¢
3 XB—y>3c 3

because (W(1),3 fol W(s)ds) is Gaussian vector.
The cases k> 2 can be treated in a similar way.
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1. Introduction

In this work we are interested by the asymptotic study of non-regular parametric statistical models. It is well known
that in regular case the classical estimators (the maximum likelihood estimator and the Bayesian estimators) are
consistent, asymptotically normal (with rate 1/./n) and asymptotically efficient. In non-regular cases the situation
essentially changes: usually these estimators are consistent, have different limiting distributions with a rate better than
1/+/n and only the Bayesian estimators are asymptotically efficient. An exhaustive exposition of the parameter estimation
theory in both regular and non-regular cases is given in the classical book by Ibragimov and Khasminskii (1981). They have
developed a general theory of estimation based on the analysis of renormalized likelihood ratio. The approach consists in
proving first that the renormalized likelihood ratio (with a properly chosen renormalization rate) weekly converges to a
non-degenerate limit. Thereafter, the properties of the estimators are deduced. Finally, based on the estimators, one can
also construct confidence intervals, tests, and so on. Note that this approach also provides the convergence of moments,
allowing one to deduce equally the asymptotics of some statistically important quantities, such as the mean square errors
of the estimators.
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More precisely, consider an observation X" from the distribution Pjj. Suppose one have found a renormalization rate
®,—0, such that the renormalized likelihood ratio process

dPj
Z(U) = — 4P X", uel,
(1) dp’ X"
converges weekly (in a suitable functional space) to some non-degenerate limiting likelihood ratio process Z (u), u € R.
Then, one can usually deduce that the Bayesian estimators (here we consider quadratic loss function only) and the
maximum likelihood estimator are consistent, converge with rate ¢,, and their limiting distributions are given by the
random variables

(= % and ¢= arugesnélpZ(u)

respectively. So, the quantiles of these random variables can be used to construct confidence intervals and tests based on
the estimators. The second moments B= ECZ and M= Efz of these variables (also called limiting variances of the
estimators) are also important, since usually the convergence of moments is also shown, and so the mean square errors of
the Bayesian estimators and of the maximum likelihood estimator are Bgp2(1+o0(1)) and M@2(1+o0(1)), respectively.
Moreover, usually it can also be shown that the Bayesian estimators are asymptotically efficient (have the smallest possible
limiting variance), and so the quantity E=B/M can be used as a measure of the (relative) asymptotic efficiency of the
maximum likelihood estimator.

In regular models the renormalization rate is usually ¢,=1/+/n and the limiting likelihood ratio is the same for
different models (LAN property). In non-regular cases the rates are usually better (for example, in change-point situation
¢, =1/n) and the limiting likelihood ratio processes can be different in different models. In this paper we consider two
such limiting likelihood ratios arising in various change-point type models encountered in statistical inference.

The first one is the random process Z, on R defined by

pIl , (x)—x if x>0,
InZ,(x) = { —pll_(—x)—x if x<0, N

where p >0, and IT, and I1_ are two independent Poisson processes on R, with intensities 1/(e”—1) and 1/(1—e~"),
respectively. We also consider the random variables

_ JrXZp(x)dx

b= JrZp(x)dx

and ¢, =argsupZ,(x) 2)
xeR
related to this process, as well as their second moments B, = EC/Z, and M, = Eff) and the quantity E, =B,/M,.

The process Z, (up to a linear time change) arises in various change-point type statistical models as the limiting
likelihood ratio process. The main such model is the below detailed model of i.i.d. observations in the situation when their
density has a jump (is discontinuous). Probably the first general result about this model goes back to Chernoff and Rubin
(1956). Later, it was exhaustively studied by Ibragimov and Khasminskii (1981, Chapter 5) (see also their previous works
Ibragimov and Khasminskii, 1970 and Ibragimov and Khasminskii, 1972).

Example 1. Consider the problem of estimation of the location parameter 6 based on the observation X"=(Xj,...,X,) of the
i.i.d. sample from the density f(x—6), where the known function f is smooth enough everywhere except at 0, and in 0 we
have

0#limf(x) = a#b =limf(x) #0.
Xx10 x|0

Denote P} the distribution (corresponding to the parameter 0) of the observation X". As n— oo, the normalized likelihood
ratio process of this model defined by

u

P}, n f(Xi—0—

Za(u) = ;;Z/ XM= H—(f(xe)n>
i=1 !

converges weakly in the space Dy(—oo, +o00) (the Skorohod space of functions on R without discontinuities of the second
kind and vanishing at infinity) to the process Z,, on R defined by

In (g) I, (u)—(a—b)u ifu>0,

lnza, (u) =
g —In (%)Ha(—u)—(a—b)u ifu<o,
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where II, and I, are two independent Poisson processes on R, with intensities b and a, respectively. The limiting
distributions of the Bayesian estimators and of the maximum likelihood estimator are given by

o fRuzab(u)du
jR ab(u)du

respectlvely The convergence of moments also holds, and the Baye51ar1 estimators are asymptotically efficient. So, ECG b
and Eéub are the limiting variances of these estimators, and Eéab/E &ap is the asymptotic efficiency of the maximum
likelihood estimator.

Now let us note, that up to a linear time change, the process Z,, is nothing but the process Z, with p = |In({)|. Indeed, by
putting u=x/(a—b) we get

and &= argsupZavb(u)

e X
ln(b)Hb( b) —X 1fﬂ20,
InZ, p(u) = | 0 =1InZ,(x) =InZ,((a—b)u).
~In(p)11a(~5=5) —x :
So, we have
. ¢ ¢
Qab—afpb and fab—an'
and hence
B M E:2
EZ, =P E&,=-—"P_ and @b _E,.
bar = qper EBar= oy B2,

Some other models where the process Z, arises occur in the statistical inference for inhomogeneous Poisson processes,
in the situation when their intensity function has a jump (is discontinuous). In Kutoyants (1998, Chapter 5) (see also his
previous work Kutoyants, 1984) one can find several examples, one of which is detailed below.

Example 2. Consider the problem of estimation of the location parameter 0 €]o,ff[, 0 < & < f# < 7, based on the observation
X" on [0,T] of the Poisson process with - periodic strictly positive intensity function S(t+6), where the known function S is
smooth enough everywhere except at points t*+1k, k € Z, with some t* € [0,7], in which we have

0+# ltlTrtpS(t) =S_#S, = ltllrpS(t) #0.

Denote P} the distribution (corresponding to the parameter 0) of the observation X”. As T — oo, the normalized likelihood
ratio process of this model defined by

" So4ur(t T
Zr(w) = ”*T<XT>—exp{ / In >0 £uT) (/f)()dxa)— /0 [S(Hu/r(t)—so(o]dt}

converges weakly in the space Dy(—o0,+0o0) to the process Z;s s, on R defined by
S, .
1n(5 )175 ( ) (S, -S_ )7 if u>0,

InZ.s s, =
S u .

_m(s )175+ ( )—(s+ =S, ifu<o,

where IIs and Is, are two independent Poisson processes on R, with intensities S_ and S., respectively. The limiting

distributions of the Bayesian estimators and of the maximum likelihood estimator are given by

_ JrUZ:s s, (u)du

lis s, = [oZes s, (ndu and &5 5, =argsupZI,5ﬂ5+ (w)

respectlvely The convergence of moments also holds, and the Baye51an estlmators are asymptotically efficient. So, EgT s 5.
and Efrs s, are the limiting variances of these estimators, and EL_,IS S, /Eg,S s, Iis the asymptotic efficiency of the
maximum likelihood estimator.

Now let us note, that up to a linear time change, the process Z;s s, is nothing but the process Z, with p = |lr1( ).
Indeed, by putting u =tx/(S;+ —5-) we get

S.-S_
ZT,57,5+(u):Zp(x):Zp( *_L_ u).

So, we have
¢,
S,-S_’

. _ %
6155, = S, -s_

and (.5 s, =
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and hence
2B M, E(
Eﬁ,s,,a = —pz, Eéz,s,,g = 702 an % =Ep.
S+—S) S+=S) s .
The second limiting likelihood ratio process considered in this paper is the random process
Zo(x) =exp{W)—3lxl}, xeR, 3)
where W is a standard two-sided Brownian motion. We also consider the random variables
XZo(x) dx
C:‘fwi and &g =argsupZy(x 4
0= T 2ot dx 0 xgst 0(X) 4

related to this process, as well as their second moments By = EC(Z) and My = 1-:53 and the quantity Eq=Bo/Mo.

The models where the process Z, arises occur in various fields of statistical inference. A well-known example is the
below detailed model of a discontinuous signal in a white Gaussian noise exhaustively studied by Ibragimov and
Khasminskii (1981, Chapter 7.2) (see also their previous work Ibragimov and Khasminskii, 1975), but one can also cite
change-point type models of dynamical systems with small noise (see Kutoyants, 1984 and Kutoyants (1994, Chapter 5)),
those of ergodic diffusion processes (see Kutoyants, 2004, Chapter 3), a change-point type model of delay equations (see
Kiichler and Kutoyants, 2000), an i.i.d. change-point type model (see Deshayes and Picard, 1984), a model of a
discontinuous periodic signal in a time inhomogeneous diffusion (see Hopfner and Kutoyants, 2009), and so on.

Example 3. Consider the problem of estimation of the location parameter 0 €]a, /5[, 0 < o < f§ < 1, based on the observation
X¢ on [0,1] of the random process satisfying the stochastic differential equation

dXé(t) = %S(t—@) dt+dw(t),

where W is a standard Brownian motion, and S is a known function having a bounded derivative on ]—-1,0[U]0,1[ and
satisfying

ltlTngS(t)fltlaniS(t) =r+#0.

Denote P, the distribution (corresponding to the parameter 0) of the observation X¢. As ¢ -0, the normalized likelihood

ratio process of this model defined by
szJrsZu & {] & 2 1 ! 2 2 }
Zo(u) = — 220 (X% — exp{ — / [S(t—0—&*u)—S(t—0)dW(t) —=— / [S(t—0—&2u)—S(t—0)? dt
dP() & Jo 22 0

converges weakly in the space Cy(—o0,+00) (the space of continuous functions vanishing at infinity equipped with the
supremum norm) to the process Zo(r?u), u € R. The limiting distributions of the Bayesian estimators and of the maximum
likelihood estimator are r—2{, and r—2&, respectively. The convergence of moments also holds, and the Bayesian estimators
are asymptotically efficient. So, r~*By and r~“*M, are the limiting variances of these estimators, and E, is the asymptotic
efficiency of the maximum likelihood estimator.

Let us also note that Terent'yev (1968) determined explicitly the distribution of &y and calculated the constant My=26.
These results were taken up by Ibragimov and Khasminskii (1981, Chapter 7.3), where by means of numerical simulation
they equally showed that By = 19.5 + 0.5, and so Ey = 0.73 4+ 0.03. Later in Golubev (1979), Golubev expressed By in terms
of the second derivative (with respect to a parameter) of an improper integral of a composite function of modified Hankel
and Bessel functions. Finally in Rubin and Song (1995), Rubin and Song obtained the exact values By =16{(3) and
Eo =8((3)/13, where ( is Riemann’s zeta function defined by

. 1
s)= —.
&) 2 s

The random variables {,, and ¢, and the quantities B,, M, and E,, p > 0, are much less studied. One can cite Pflug (1993)
for some results about the distribution of the random variables

argsupZ,(x) and argsupZ,(x)
xeR 4 xeR_
related to ¢,.

In this paper we establish that the limiting likelihood ratio processes Z, and Z, are related. More precisely, we show that
as p—0, the process Z,(y/p),y € R, converges weakly in the space Dy(—oc, +c0) to the process Z. So, the random variables
p¢, and pé, converge weakly to the random variables {, and &, respectively. We show equally that the convergence of
moments of these random variables holds, so in particular p?B, —»16{(3), p?M,—26 and E,—8((3)/13. Besides their
theoretical interest, these results allow one, for example, to construct tests and confidence intervals on the base of the
distributions of {y and &, (rather than on the base of much less known distributions of {, and ¢,) in models having the
process Z, with a small p as a limiting likelihood ratio. Also, the limiting variances of the estimators and the asymptotic
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efficiency of the maximum likelihood estimator can be approximated as

16{(3) 26 8{3)
07 M, ~ re and E,~ 3

in such models.

These are the main results of the present paper, and they are presented in Section 2, where we also briefly discuss the
second possible asymptotics p — + oo and present some numerical simulations of the quantities B,, M, and E, for p €]0,00[.
Finally, the proofs are carried out in Section 3.

B, ~

2. Main results and numerical simulations

Consider the process X,(y) =Z,(y/p), y € R, where p >0 and Z, is defined by (1). Note that

J¥YX,Wdy o
X0 dy =pl, and 3r}:‘/§E5D_1{;1PXp(V)—PCp,

where the random variables {, and ¢, are defined by (2). Remind also the process Zo on R defined by (3) and the random
variables {, and ¢, defined by (4). Recall finally the quantities B, = E( M, = Eé E,=B,/M,, Bo= E2 =16((3),
Moy = Efo =26 and Ey = By /My = 8((3)/13. Now we can state the main result of the present paper.

Theorem 1. The process X, converges weakly in the space Dy(—oo,+oc) to the process Zg as p —0. In particular, the random
variables p(, and p&, converge weakly to the random variables {, and &, respectively. Moreover, for any k >0 we have

P*ECY ~ECG and  pFEES - EZ,
and in particular p?B, —16{(3), p>M, —26 and E, —8{(3)/13.
This theorem will be proved in the next section, but before let us discuss the second possible asymptotics p — +oco. One
can show that in this case, the process Z, converges weakly in the space Dy(—ooc,+0c0) to the process Zo.(x) = e 1 x> .,

x € R, where 7 is a negative exponential random variable with P{5 <t} =ef, t <0. So, the random variables {, and &,
converge weakly to the random variables

‘. fuza (%) dx
f[R oo (X) dx

respectively. One can equally show that, moreover, for any k >0 we have

=n+1 and ¢, =argsupZ..(x)=
xeR

ECK—ECY, and EZ—EEE,

and in particular, denoting B, =E(%, M, =E: and E, =B./M,, we finally have B, —>B=E(n+17 =1,
M,—>M. =En?=2 and E, —E., =1/2.

Let us note that these convergences are natural, since the process Z., can be considered as a particular case of the
process Z, with p = + oo if one admits the convention +oo-0=0.

Note also that the process Z.,, (up to a linear time change) is the limiting likelihood ratio process of Model 1 (Model 2) in
the situation when a-b=0 (S- - S, =0). In this case, the variables {,, =#+1 and ¢, =# (up to a multiplicative constant)
are the limiting distributions of the Bayesian estimators and of the maximum likelihood estimator, respectively. In
particular, B, =1 and M., =2 (up to the square of the above multiplicative constant) are the limiting variances of these
estimators, and the Bayesian estimators being asymptotically efficient, E.,=1/2 is the asymptotic efficiency of the
maximum likelihood estimator.

To conclude this section, let us present some numerical simulations of the quantities B,, M, and E, for p €]0,0c[. Besides
giving approximate values of these quantities, the simulation results illustrate both the asymptotics

By M

o
B,,~p—2, Mp~p—2 and E,—»Ey; as p-0,

with By = 16{(3) ~ 19.2329, Mp=26 and E; = 8((3)/13~ 0.7397, and
B,-»B., M,-M, and E,—E. as p-oo,
with B, =1, M, =2 and E,, =0.5.
First, we simulate the events x;,x,,...of the Poisson process IT . (with the intensity 1/(e”—1)), and the events x},X}, ... of

the Poisson process I1_ (with the intensity 1/(1—e~")).
Then we calculate

_ JeXZptodx 3R xieP TN 3T erth— 3o Xjel PN 4 3T er P
p JIRZP(X) dx Zioo:]epi,xx_'_ Z?ilep—;)i+x;
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and

. X, if pk—x; > p—pl+x},

Gp=arss PZp(x) = { —X, otherwise,
where

k=argmax(pi—x;) and ¢=argmax(p—pi+x;),

i>1 i>1

so that

X =argsupZ,(x) and —x,= argsupZ(x).
xeR ¢ xeR_

Finally, repeating these simulations 107 times (for each value of p), we approximate B, = Eg”ﬁ and M, =Eff, by the
empirical second moments, and E, =B, /M, by their ratio.

The results of the numerical simulations are presented in Figs. 1 and 2. The p —0 asymptotics of B, and M, can be
observed in Fig. 1, where besides these functions we also plotted the functions p?B, and p?>M,, making apparent the
constants By ~ 19.2329 and My=26.

In Fig. 2 we use a different scale on the vertical axis to better illustrate the p — oo asymptotics of B, and M,, as well as
both the asymptotics of E,,. Note that the function E, appear to be decreasing, so we can conjecture that bigger is p, smaller
is the efficiency of the maximum likelihood estimator, and so this efficiency is always between E., = 0.5 and Eq ~ 0.7397.

3. Proofs

The results concerning the random variable {, are direct consequence of Ibragimov and Khasminskii (1981, Theorem
1.10.2) and the following three lemmas.

Lemma 2. The finite-dimensional distributions of the process X,, converge to those of Zy as p—0.
Lemma 3. For all p >0 and all y,,y, € R we have

EIX)*00)-X) 22 <lyi-yal.

Lemma 4. For any c €]0,1/8[ we have

EX,)*(y) < exp(—clyl)

for all sufficiently small p and all y € R.

Note that these lemmas are not sufficient to establish the weak convergence of the process X, in the space Dy(—o0, +0o0)
and the results concerning the random variable ¢,. However, the increments of the process InX, being independent, the
convergence of its restrictions (and hence of those of X,,) on finite intervals [A,B] C R (that is, convergence in the Skorohod
space D[A,B] of functions on [A,B] without discontinuities of the second kind) follows from Gihman and Skorohod (1974,
Theorem 6.5.5), Lemma 2 and the following lemma.

100 EEEE FEEE FE R T HH\H\I\\HH \\\\‘\\\\.‘\\\\ L1
907 :
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Fig. 1. B, and M, (p — 0 asymptotics).
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Fig. 2. B,, M, (p— oo asymptotics) and E, (both asymptotics).

Lemma 5. For any ¢ >0 we have

limlim sup P{|InX,(y1)—InX,(y2)| > &} =0.
h—=0p=0yy, _y,| <h

Now, Theorem 1 follows from the following estimate on the tails of the process X, by standard argument (see, for
example, Ibragimov and Khasminskii, 1981).

Lemma 6. For any b €]0,3/40[ we have
PS sup X,(y) > e ) <4ebA
yl>A

for all sufficiently small p and all A> 0.

So, it remains to prove the lemmas. We start with Lemma 2. Note that the restrictions of the process InX, (as well as
those of the process InZy) on R, and on R_ are mutually independent processes with stationary and independent
increments. So, to obtain the convergence of all the finite-dimensional distributions, it is sufficient to show the
convergence of one-dimensional distributions only, that is,

InX,9) = InZo) = W)~ 5 = (= 5av1)
for all y € R. Here and in the sequel “= " denotes the weak convergence of the random variables, and A/(m,V) denotes a

“generic” random variable distributed according to the normal law with mean m and variance V.
Let y > 0. Then, noting that IT ;. (%) is a Poisson random variable of parameter A =y/p(e”—1)— oo, we have

¥\ Yy [y H*(%>_A y ¥ P H*(%)_A ef—1—p y
lnXp(y):pH_,,()——:p per—1) = + _;:ﬁ er—1 _yp(ef’—l)iN(_f'y)'

p) P N er—1 N

since

p__p ., e=1-p_p*2+0(p* 1
e’—1 " p+o(p)

per—=1) " p(p+o(p)) 2

and

)

Similarly, for y <0 we have

-\ ¥y =y ALH’(%) -y y
InX,0)=—p H’(7>7:'” Vpd—e—») 7 1-er p
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Jor (= Y
=7y 1_pe,,, ﬁ(p) +y(70(p1 _lef,f; :>N(32—’,—y),

and so Lemma 2 is proved.
Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after). For y > 0 we can write

e-soa(3.(2)-5) (-3 (2. ()

Note that IT. %2 is a Poisson random variable of parameter A=y/p(e’—1) with moment generating function
M(t) = exp(A(ef—1)). So, we get

12,0, y 0210 _ Yy _ e
X (y)_exp< p>e p(p(ep 1 1)) eXp( 20 e ) TP\ 2per

B er/i—e-r/t N\ tanh(p/4)
=exp —ym =exp(—y—— ).

For y <0 we obtain similarly

"0 =Be(511(37)35) =0 (- 25) 2 (e« 1)

Y y 1—e?? \ tanh(p/4)
—exp((=35 + i) =2 (Vaprr em) o0 (V30

Thus, for all y € R we have

tanh(p/4
EX;*() = exp (4)4&5/)) 5)
and since
tanh(p/4) _ p/4+o(p) N 1
20 2p 8

as p—0, for any c €]0,1/8[ we have EX}/Z(y) < exp(—cly|) for all sufficiently small p and all y € R. Lemma 4 is proved.
Further we verify Lemma 3. We first consider the case y;,y, € R, (say y1 > ¥2). Using (5) and taking into account the
stationarity and the independence of the increments of the process InX, on R, we can write

x1/2
EIX) 20X ()12 = EX, 1)+ EX(v2)— 2BX} 20X} 2(v2) = 2-2EX, 72 mg]:
2

tanh(p/4) 1

<y1-y2 IT 21—yl

tanh(p/4
:2_2EX;/20’1—}’2):2—23)(13(—\}’1 IM>

The case y1,y, € R_ can be treated similarly.
Finally, if y1y, <0 (say y» <0 <y1), we have

tanh(p /4)

_y, anhe /4))

EX!200)-X! 20 =272Ex;/2cy1>ﬁx;/2(yz>=272exp( il o
tanh(p/4)>

= 2—26xp<—|y1 Y2l 20

|y =y2l,
and so Lemma 3 is proved.

Now let us check Lemma 5. First let y1,y, € R, (say ¥ >Y») such that A = |y;—y2| < h. Then
2

1 1 1 A A
P{|InX, (y1)—InX,(y2)| > &} < 8—2E|lnxp(y1)flnxpcyz)|2 = 8—2E|lnxp<A)|2 = C—ZE'pH + (5)7

_1 A?
<p (A+4 )+p——24A> 2([3(10)41 +7(p)4? )< 2 (ﬁ(p)hw(p)hz).
where 1= A/p(ep—l) is the parameter of the Poisson random variable I (4/p),

B - P ___P -1
PO= @15 = prom

=2 _<1‘ : )2_<eﬂ717p)2_ /2401
M= e 17 T T pler—1) T \p er—1) T \per—1)) T\ p(p+op) ) "4

and
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as p—0. So, we have
h2
lim supP{INX, () —InX, ()] > &) < lim (o) =+ 7l = ( 4 4)
=0 -y, <h
and hence

limlim sup P{|InX,(y1)—InX,(y2)| > &} =0,
h=0p =0y, —y,|<h

where the supremum is taken only over y;,y, € R, .
For y1,y2 € R_ such that 4 =|y;—y,| < h one can obtain similarly

1 1, , 1y :
P{InX,(y1)=InX, (v2)| > ) < ElnX, (y)~InX,v2)> = 5 (B () 4+7(0)A%) < 5 (B (h+7 (p)h?),

where
_ P
FO= e = 5o !
and
()= (e*hup)z _ <p2/2+o<p2)>2ﬁ 1
PO=oda=ery ) = ppropy ) T3

as p—0, which will yield the same conclusion as above, but with the supremum taken over y;,y, € R_.
Finally, for y;y, <0 (say y, < 0 <y;) such that |y;—y,| < h, using the elementary inequality (a—b)? < 2(a? +b?) we get

1 2
P{|InX, (y1)—InX, (y2)| > &} < S—ZE\lnxp(y])flnxp(yz)F < S—Z(E\lnxp(y])\2+Ewlnxp(yz>\2>

2 / ’ 2 / ’
= (Bpm +p(PW3+B (P2l +Y (P)Iy21H) < 22 (BO)+B (p)h+((p)+7 (P)h?),

which again will yield the desired conclusion. Lemma 5 is proved.
It remains to verify Lemma 6. Clearly,

P{ sup X,(y) > e’b’q} < P{supo(y) > e”’A} +P{ sup X,(y) > e*”A}.
y=>A y<-A

yI>A

In order to estimate the first term, we need two auxiliary results.
Lemma 7. For any c €]0,3/32[ we have

EX,/*(y) < exp(—clyl)
for all sufficiently small p and all y € R.
Lemma 8. For all p >0 the random variable

Ny = [Selnéli(ﬂz(f)—f),
where I, is a Poisson process on R with intensity 1= p/(e?—1) €]0,1[, verifies

Eexp (g np) <

The first result can be easily obtained following the proof of Lemma 4, so we prove the second one only. For this, let us
remind that according to Shorack and Wellner (1986, Proposition 1 on page 392) (see also Pyke, 1959), the distribution
function F,(x) =P{n, <x} of 1, is given by

(

1-F,(0) =P{n, 2 x} = (1-7)e™*y Je~H)r

n>x

for x > 0, and is zero for x < 0. Hence, for x > 0 we have

_ X (n—x)" i Jx 1/ X\" . 1 i
1-F,(x) < (1—A)e n}ﬂ: e (e 7\/_6 n§>xf(l n) (le'~%)
1-4 1—-A\n—Xx
S e s e e
1=A o= (ZeTHK 124 1 (el 1- ; r1/2) 1-4 P\
=2 —Z; dt= =
V2n ,Z:O vk =V /[Rh NG A V=In(Ze™%)  /=2In(Zel %) (ep—1>
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— X _ X
< (_re o2 _ pe r2 <e P2,
er/2—e-p/2 2sinh(p/2)
where we used Stirling inequality and the inequality 1-1 < \/—2In(le'~*), which is easily reduced to the elementary
inequality In(1—u) < —pu—p?/2 by putting p=1—/. So, we can finish the proof of Lemma 8 by writing

Eexp(5n,) = /R e 4dF, (x) = [V A(F, (-1 - 4 /[R eP/A(E, (x)—1) dx

- B/ e/”‘/‘*clx+8/ ep"/“(lfF,,(x))dxglJrB/ e PX4dx =2,
4 Jr. 4 Jr, 4 Jr,

Now, let us get back to the proof of Lemma 6. Using Lemma 8 and taking into account the stationarity and the
independence of the increments of the process InX, on R, we obtain

1/4(y)

P{supo(y) > e‘bA} <P EsupX,)/*(y) = bA/4EX1/4(A)Esup X = e"4EX)/*(A)EsupX,/*(2)
y>A z>0

y>A

—eb/‘/‘*EXl/“(A)Esup (exp( ., (z/p)— —)) = eP/4EX)/* (A)Eexp <sup(’0 (H%l(t)ft)))

t>0
- ebf‘/“Ex;/“(A)Eexp (Bn,) <2e"4EX ).
Hence, taking b €]0,3/40[, we have 5b/4 €]0,3/32[ and, using Lemma 7, we finally get
P< supX,(y) > e 2 b < 2eP%exp <— S—bA> =2
y>A 4

for all sufficiently small p and all A> 0, and so the first term is estimated.
The second term can be estimated in the same way, if we show that for all p > 0 the random variable

My = SUp (—I1;(O)+0) = — inf (I1;;(t)~0),

teR
where IT, is a Poisson process on R with intensity 2’ = p/(1—e~*) €]0,1], verifies
p ’
Eexp(znp) <2

For this, let us remind that according to Pyke (1959) (see also Cramér, 1954), 1, is an exponential random variable with
parameter r, where r is the unique positive solution of the equation 2'(e"—1)+r=0. In our case, this equation becomes

1- eﬂ(eir D+r=0,

and r = p is clearly its solution. Hence U is an exponential random variable with parameter p, which yields
P\ 4
Eexp(znp> =3 <2,
and so Lemma 6 is proved.
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We consider an inhomogeneous Poisson process X on [0, T']. The intensity function of X is supposed to
be strictly positive and smooth on [0, T'] except at the point 6, in which it has either a O-type singularity
(tends to 0 like |x|?, p € (0, 1)), or an co-type singularity (tends to oo like |x|”, p € (—1, 0)). We suppose
that we know the shape of the intensity function, but not the location of the singularity. We consider the
problem of estimation of this location (shift) parameter 6 based on n observations of the process X. We
study the Bayesian estimators and, in the case p > 0, the maximum-likelihood estimator. We show that
these estimators are consistent, their rate of convergence is nl/(p+D) they have different limit distributions,
and the Bayesian estimators are asymptotically efficient.
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maximum-likelihood estimator; consistency; limit distribution; convergence of moments; asymptotic
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1. Introduction

Inhomogeneous Poisson process is one of the simplest point processes (see, e.g. [1]). However,
due to the large choice of intensity functions, this model is rich enough and is widely used in
many applied statistical problems, such as optical communications, reliability, biology, medicine,
image treatment, and so on (see, e.g. [2-5]).

The diversity of applications is also due to the possibility of using the likelihood ratio anal-
ysis. In parameter estimation problems, the large samples theory is quite close to the one of
the classical (i.i.d.) statistics. In particular, let us consider the problem of estimation of the
parameter 6 by n independent observations on some fixed interval [0, 7] of an inhomogeneous
Poisson process X = {X (¢), 0 <t < T} of intensity function Sy(¢). Let us mention that this
problem is equivalent to the one of estimation of the parameter by one observation on a growing
interval of a periodic inhomogeneous Poisson process. If the problem is regular (the model is
locally asymptotically normal), then both the maximum-likelihood estimator (MLE) 6, and the
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Bayesian estimators (BE) 6, are consistent, asymptotically normal:
V@, —0) = N©,10)"), n@, —0) = N©,1(6)™",

and asymptotically efficient (see, e.g. [6,7]). Here I (8) is the Fisher information given by

I(Q)Z/T@dr
o Se(®)

where Sy (¢) is the intensity function and 5‘9 (t) = (0/00)Sy(1).

If the problem is not regular, then the properties of estimators essentially change. For example,
if Sp(-) is smooth everywhere on [0, T'] except at the point 8, in which it has a jump (consider
for instance Sp(t) = s(t — 6), where s(-) is discontinuous in 0), then the MLE and BE are still
consistent, but converge at a faster rate:

n, —0) = &, n@,—0) =&,

have different limit distributions (&; and &, are different with Eélz > ESZZ), and the BE are
asymptotically efficient (see, e.g. [6,7]).

In this paper, we deal with the case where the intensity function Sy (-) is smooth everywhere on
[0, T']except atthe point 8, in which it has a singularity of order p. The cusp-type singularities were
already studied in the preceding paper [8]. Here we consider O-type and oco-type singularities.
More precisely, we suppose that Sy(f) = s(t — ), where s(-) is some known strictly positive
function on [T, T]\ {0} and 6 € (0, T) is some unknown parameter, and that we have the
following representation:

500 st — 6) = {a|t—9|l’+w(r—9) ifr <0,
blt —01P+y(t—0) ift >0,
where a, b > 0, p > —1 (to guarantee the finiteness of intensity measure), and i (-) is smooth.

If ¥(0) # 0 and p > 1/2 then, in spite of the singularity of the intensity function in 6, the
Fisher information is finite, and so this case can be treated as the regular one.

If ¥ (0) #0and 0 < p < 1/2, we say that the intensity function has a cusp at 6. This is the
case treated in [8] (where instead of a, b > 0 it was supposed a’>+b*>0 only). There it was
shown that the MLE and the BE are consistent, converge at the rate n'/??*1 (which is faster than
in the regular case but slower than in discontinuous case):

/D@ — ) = ny, n"/CPV@G, —0) = ),

have different limit distributions, and the BE are asymptotically efficient. The convergence of
moments was equally verified.

If ¥ (0) =0 and p > 1 then, as above, the Fisher information is finite and this case can be
treated as the regular one.

If ¥(0) =0and 0 < p < 1, we say that the intensity function has a O-type singularity at 6.
In this case, we study the asymptotic behaviour of the MLE and the BE, and we prove that the esti-
mators are consistent, converge at the rate n'/(?*1 (which is again intermediate between the regular
and discontinuous case rates), have different limit distributions, and the BE are asymptotically
efficient. We also verify the convergence of moments.

If —1 < p <0 we say that the intensity function has a oo-type singularity at 6. In this
case, we study the asymptotic behaviour of the BE only (MLE makes no sense in this case).
We prove that the estimators are consistent, converge at the rate n'/(?*!D (which is even faster
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than in discontinuous case), and are asymptotically efficient. We verify as well the convergence
of moments.

Let us note that the jump can also be considered as a singularity by taking p = 0 and a # b,
which explains that the rates are slower for p > 0 and faster for p < 0.

Let us also mention that our results are similar to those obtained by Ibragimov and Khasminskii
for the problem of estimation of a singularity location of the density for the i.i.d. model of
observations. An exhaustive exposition of the results can be found in Chapter 6 of their book [9],
but one can also refer to their previous works [10,11]. The asymptotic behaviour of the MLE and
of a wide class of BE obtained for this (i.i.d.) model is similar to the one obtained here for the
model of Poisson observations. Particularly, the rate of convergence of the estimators is n!/(?*+1,
and the BE are asymptotically efficient.

Finally, let us note that for the study of the asymptotic behaviour of the estimators we use the
method of Ibragimov and Khasminskii presented in their book [9] (see as well [7], where this
method is applied to inhomogeneous Poisson process).

2. Main results

Suppose that we observe n realizations (Xi,..., X,) = X" of the Poisson process X =
{X(#),0 <t < T} of intensity function Sy(t) = s(t — 6), where 6 is some unknown parameter,
0e®=(x,B)C(0,T), and s(-) is some known strictly positive function on [—T, T] \ {0}.
We suppose that the function s(-) can be written in the form s(t) = d(¢)|t|” + ¥ (¢), where
pe(—1,00U(0,1),

b ift >0,

a, b > 0, and the function ¥ (-) is Holder continuous on [—7', T'] of order higher than (p + 1)/2,
thatis | (x) — ¥ (¥)| < L |x — y|* forall x, y € [T, T] with some fixed constants L > 0 and
2 > (p+1)/2. In the case p > 0, we suppose equally that ¥ (0) = 0. Our aim is to estimate the
parameter 6 and to study the asymptotic behaviour of estimators as n goes to infinity.

The likelihood ratio in our problem can be written (see, e.g. [7]) as

n T T
So (1) So (1)
L@®,6;,X") =exp / In dX;(@) — n/ [ — 1Sy (t)dty,
; 0 Se, (1) 0o LS @) 1
where 6; is some fixed value of 6.

As usual, introduce the MLE 6, as one of the solutions of the equation

LBy, 61, X") = sup L(0, 6;, X")
0e®

if
d(t):{a ift <0,

and the BE 6, for prior density ¢ (supposed to be positive and continuous) and quadratic loss
function as

N B
9,,:/ 0q(0|1X") dob,

where the posterior density
B -1
10X = 10,0 x"q) ([ 0.0 X g0 a0

Note that the MLE makes no sense in the case p < 0, since in this case the likelihood equals
infinity in any point 6 which is event of one of the Poisson processes X, ..., X,.
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To describe the properties of these estimators, we need to introduce the stochastic process

+00
Z(u) = exp {p/ In

o0

u
1—2=

n(dz)+ln% / Y (dz)
0

+00 P
_/ Hl_g —1—pln1—g']a’(z)|2|pdZ
—b
_ a — |M|P+1 51gn(u)} , uecl.
p

Here and in the sequel Y denotes a Poisson process on R of intensity function Sy(z) = d(z)|z|?,
and 7 is its centred version: 7 =Y — EY.
We introduce also the random variable ¢, and in the case p > 0 the random variable £ by the

equations
+00 +00 -1
g:/ uZu) du ([ Z(u)du)

Z(§) = sup Z(u).
ueR

and

Let us note here that £ is well defined in the case p > 0, since in this case with probability one
the process Z () attains its maximum in a unique point (see, e.g. [12]).
Now we can finally state the main results of this paper.

THEOREM 1  Under the made assumptions, the following lower bound on the risks of all estimators
holds: for any 6y € ® we have

lim lim inf sup Eo(n"/"™P6, —0))* > E¢°,

820 nsoo G |6—0p|<s
where inf is taken over all possible estimators 0, of 6.
This theorem leads us to introduce the following definition.

DEFINITION 2 We say that the estimator 6, is asymptotically efficient if

lim lim sup Eq@n'*?™@, —0))? = E¢?

§—>0 n—o0 ‘9—9()‘<5
for any 6y € O.
For the BE we have the following theorem.

THEOREM 3 The BE 6, have uniformly in 6 € K (for any compact K C ©) the following
properties:
° 5,, is consistent, that is

o, P (convergence in probability),

e the limit distribution of 6, is ¢, that is

nl/(l’+1)(9~n — 0) = ¢ (convergence in law),
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e for any k > 0 we have

lim Eqln'/"*D @, — 6)|* = El¢|*
n—oo

and, moreover, 8, is asymptotically efficient.

And for the MLE (in the case p > 0) we have the following theorem.

THEOREM 4 Let p € (0, 1). The MLE 6, has uniformly in 6 € K (for any compact K C ©) the
following properties:

° én is consistent, that is
A P
6, —> 0 (convergence in probability),
e the limit distribution of é,, is &, that is
nl/(pH)(én — 0) = & (convergence in law),
e for any k > 0 we have

lim Ey|n'/?"*tD (4, — 0)F = Elg|*.
n—oo

To prove the above stated theorems, we apply the method of Ibragimov and Khasminskii [9].
For this we denote 8, = 6 + un~"/?*D forallu € U, = (n"/®*V (o — 0), n'/P+D (B — 6)), we
introduce the normalized likelihood ratio process as

Z,(u)=L0O,,0,X"), uel,,

and we establish (the proofs are in the next section) the following three lemmas.

LEMMA 5 The finite-dimensional distributions of Z, (u) converge to those of Z(u) uniformly in
0 € K (for any compact K C ©).

LEMMA 6 For any compact K C © there exists some positive constant C such that
Eo|Z,2 1) = 2, u2)? < Cluy — up|"*!
foralluy,u, € U,, 60 € K and n sufficiently large.
LeEMMA 7 For any compact K C © there exists some positive constant ¢ such that
EoZ,”*(u) < exp{—c [u|"*"}

forallu € U,, 8 € K, andn € N.

Using these lemmas and applying Theorems 1.9.1, 1.10.2 and 1.10.1 of [9], we get Theorems 1,
3, and 4, respectively.
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3. Proofs of the lemmas

For convenience of notation, all throughout this section C and ¢ denote generic positive constants
which can differ from formula to formula (and even in the same formula), and we put v =

1/(p+1).
First of all let us fix some & > 0 such that cd(?)|t|? < s(t) < Cd()|t|? on (-6, 4d), and
s(t) Zcon[-T,T]\ (—8/4,5/4). To do so, we note that

[ ()] < [Y(O)+ Cle|* = Cle|” (11177 + ¢y (0)[]t] ") < minfa, b} [t]?/2
fort € (=6, §),since »x — p > (1 — p)/2 > 0 and ¥ (0) = O in the case p > 0. It follows clearly

min{a,b}) P > d@)|t|?
2 2

s@) =dOt|” + ¢ @) 2 (d(t) -

and s(¢) < 2d(¢)|t]|?. Finally, on the compact set [T, T] \ (—8/4, 6/4) we have s(t) > c since
the function s(-) is continuous.

Now, let us fix some sequence (A,) such that A, — oo sufficiently slow. More precisely, we
suppose that A, n7" — 0 and we will give some additional conditions below. We split the interval
[0, T'] into three parts:

Ei=:t—-0|<A,n"}=0—-A,n",0+A,n""),
E,={t:A,n"<|t—0|<8}=0-6,0—-A,n")U@O+A,n"0+9),
Es={t:§<t—0|}=(0,0-8)U@+6,T).

In order to prove Lemma 5, we will only study the convergence of the one-dimensional (the
general case can be considered similarly) distributions of the process

IR 0! T[S, (1)
ann(u)_;/(; 1nde,~(t)—n/(; [m—l}&;(z)dt

n T T
=Z/ del-(t)—n/ g Se(1)dr,
i=1 Y0

0

where we denote

S, (1) _ _ Sp, (@)
nm and g=g(0,t,u,n) = —Sg(t) 1

The characteristic function of the random variable In Z,,(#) can be written as (see, e.g., [7],
Lemma 1.1)

f=r6,tun)=1

T
én(L) = Egexpl{i A In Z, (1)} = exp {n/ [e”f—l—ixg]sg(t)dz},
0

and hence

T T
1n¢>n(,\):n/ [e”f—l—ikf]Sg(t)dt+i)Ln/ [f — g1Se(2) dt. (1)

0 0

To study this expression, let us at first establish the two following properties.

(a) For any fixed u, we have lim,,_.», g(@, ¢, u,n) = O uniformlyin# € Kandt € E, U Ej.
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(b) We have

lim n/ g% Sy(r)dr = 0.
E,UE;

n—oo

To prove (a), wesety =t — 60 € (E, —6) U (E3 — 6) and we write

st —6,)
lg@,t,u,n)|=|————1
s —0)
_ ‘d(y —un") |y —un""|P + ¢y (y —un”") —d(y)|yl” — )
s(y)
_ €Ay —unl" =)+ G —un"") =4 Q)
s(y)
c lly —un™" —|y|P| |¢Y(y—un") =9y
h s(y) s(y)
=M +M
with evident notations.
For y € E, — 6 we have
_ —V|p _ |y|P r
wy < o =P =y |:CH1_ u _1‘< Clul _Cll
clylr yn' lyln” Ay
C —V|
My < S e — 0 it p <o,
C|l/tl’l_v|% Clul%n—v% %n—V(’f—P) .
M, < < =Clul——— —0 if p>0.

cyl” 7 (Agn)? AR
Finally for y € E3 — 6, using the Holder continuity of s(-), we have

Clun™"|” S
|g(9’tvu’n)|<—:C|M| n —)O
C

So, (a) is proved.
To prove (b), we first note that

(So, (1) = Sp(1))? (s(y —un™) —s(y)?
2Sp(t)dt = / d dr = / d
n/;g p(t)dt =n . S0 t=n - o) y

< Cnf lun="1?*dy = C |u|**n=®>*b — 0
E3—9

since 2vsc — 1 > 0. To conclude the proof it remains to show that
0+ O—A,n™"
n/ ngg(t)dt-i-n/ g% Sy(t)dt —> 0.
O+A,n" 05
For the first term we have

0+8 s oy 2
n/ 22 Sg(t)dt:n/ (s(y —un=") —s(y) dy
%

+A,n™" A,n™v S(y)
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8 _ —vy _ 2
<n/ (s(y —un=") —s(y)) dy
A,n7v C|)’|p
:Cn/(s (ly —un™|? — |y|)? dy
A,n~v |)’|p
) _ —vy _ 2
+Cn/ Y&y —un) =y () dy
A,n™" |)’|p
§ _ —Vy __ _ -V —
+Cn/ Y@ —un™) =)y —un™"? —|y|?) dy
Ap,n |}’|p

=I’l]1+l’l]2+l’l]3

with evident notations. Further

sn” o P _ P2 ,,—2vp +00 . P _ P2
Z—u z n z—u Z
nJ]=Cn/ ( | 121") n‘”dzéC/ ( | ||)dz—>0
A |z|P n—vP A |z|?

n n

since

7 —ulP —|z|P)? ul? 2 c\*
(12— ul” = 2I") :m,,(l__ _1> NW(_) =Clz?
217 : -

and p — 2 < —1. Similarly
8
dy < Clul w0 [Ty rdy — 0
0

§ |I/tl’l7v|2%

A,n" |y|p

since 2v — 1 > 0 and —p > —1. Finally
InJ3] < Cy/(nJy) (nJr) — 0

by Cauchy—Schwarz inequality, and so the first term converges to 0.

The second term can be treated in the same way. So, (b) is proved.

Now let us return to the study of the characteristic function ¢,(-). Using Equation (1) we can
write

Ing, = @1 + @2 + @3,

where we set
(pkzn/ [e”-f—1—ixf]se(t)dz+ixn/ [f — g1Ss(¢) dt.
Ek Ek
For ¢3 we get

¢3:n/ [e"/ —1—ixf]Se@)dt+irn [ [f—glSe(t)dt
Es E;5
1 . 5 1. )
~—nf @GAf)Se@)dt—<iAin g~ Sy(t)dt
2 Jg, 2 Es
N_l 2 2 _l- 2
~ A n g° Sy(t)dt iin g° Sy(t)dt — 0,
2 E; 2 E;

where the symbol ‘>’ means equality of limits.
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In the same way, we get ¢, — 0, and it remains to study ¢;. For this we set y, =y —un™",

a(y) =d)lyl?,

s(y) 14 ¥(y)
a(y) d(y)lyl?

fory € [T, T]\ {0}, and 8(0) = 1. Note that the function 8(-) is clearly Holder continuous of
order

B(y) =

N Eay if p> 0,
| min{s, —p} ifp <O.

We have

@1 :nf [e”f—l—iAf]Sg(t)dt+iAn/ [f — gl Se(t)dt
E, E,

Ann a(h)ﬂ()@))” . a(yy) BOw)
nfgww[(abdﬁ@) B | APOE

o T BOW) MWW@J}
—ix ASCTLAS LA B P (sl d
l n/;A,,n”|: a(y) B(y) N5 By | FPEDdY
[ T o) o)
~ n/Ann“ [a“(y) —1—iXln () ] a(y)dy

Ann™ ot (y,) (ﬁik(yu) )
- - —1 d
+”[mnvwww gy )Y

A,n""
—iAn/ |:a(yu) —1—1In oz(y,,)] a(y)dy
—A v La(y) a(y)

A B() >
—iA u —1)d
; ”/?Mu“@)(ﬂ@> Y

=nli+nh—iinlz—iAnly

with evident notations.
Using the Holder continuity of B(-), we get

A,n”" N A, n—
|1 14 Sn/ a(yu)wdy <nC|un"|“/ o (Yu) dy

A,n~v /3()’) —A,n™v IS()’)
A,n™" (Ap—u)yn™
~C |u|“nl_"”/ a(y,)dy=C |u|“nl_””/ d(x)|x|? dx
—A,n™v (—A,—u)n=v
=C |M|unl—vu a (A, + u)p+1 + L(An _ M)p+l pove+h
p+1 p+1

< Clul* (A, + u)?'n="* — 0

if (A,) is chosen, so that A, nvH s 0.
Similarly, noting that 8*(-) is also Holder continuous of order 1, we get

Agn™ ik in _ Qi
|n12|<n/ loe' * )| 1B (yu) — B (y)la(y)dy

Agn= a2 1B+ ()]
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A,n7" ) ) A,n™"
=n/' w”@»—ﬂ”@nmwdy<nCWnﬂw/' a(y) dy

A,n7" —A,n7"
= C |u|* a7 APT 0 0HD — C |yt AP T — 0

under the same condition on the choice of (A,).
For n I5 we can write

Alln7V d u Mp d u Mp
n13=n/ [(y)lyl 11 V) yul
P _
_1_m(ﬁ1421_z
d(z) Z

] —p 2Dl rq
Apn L AP BFTORIE ] MyFdy
_n/An [M 1_E P)} d(z)lled
a _An d(Z) Z nV(["'rl) Z
° d(Z_I/l) u 14 d(Z_M) U p
l——| =1I-In{———|1—=— P dz.
- f—oo [ d(2) z n( d(2) e )] d(2)|z]" dz

Note that the last integral is finite, since

9

d(Z _ u) (a)sign(u) ﬂ[u—_qu](Z)

d(z) b

and hence the integrand behaves as C|z|?~2 as 7 — 00.
Finally, for n I;, we have

A,n™" dik u 3 ilp d 3 y p
nh:n/‘ [—ALELL——1—ixm—gﬂlL]awww@
—agnv L Ayl P d(y)lylr
Al rd(z - N d(z — "™ | d@)z1?
:f/ <—<Z——’21—z >—1—ixln(—(z——’21—Z )—EELM
_A, d(z) b4 d(z) 4 nvp+h

/OO |:(d(z—u) u
N A | I
oo d(z) Z

where the last integral is finite as before.

1A _
) —L4xm(ﬂiiﬁb—ﬁ
d(z)

p
)} d(z)|z|? dz,
Z

So we get
o [ /d(s — i irp
m@—»c=/ <iil§ =X -4—mpm1—qcmmwu
oo d(z) Z Z
00 d _ p
-4Af [iiiﬂl—f —1—pm1—5Hd@uV@.
o L d©@) z Z
To terminate the proof of Lemma 5, it remains to show that £ = In ¢, where ¢(-) is the
characteristic function of In Z (u).
Recall that
+00 u a u
an(u)zp/ In|l—— n(dz)-l—ln—/ Y(dz)
—00 Z b 0
+00 p
—/ [%—5 —1—pm1—fud@mW@
oo z Z
a—>b

i lu|P*! sign(u)

=K+ K, — K3 — K4

with evident notations.
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Hence

Ingp(A) =InEexp{i A In Z(u)}
=InEexp{i A\ K| +i L K} —i XKz —i LKy

+o0
= In Eexp {ik/ [p In
—0oQ0

+ikln;—lf d(@)|z|Pdz —iAK3 —i A Ky
0

400
= / [exp {i Apln
—00

1 — g' —ixln (%) sign(u) Jl[u,m](Z)} d@)lz|” dz

+In (%) sign () mu,m(z)] n(dz)}

u
1—2=
Z

u . ay .
1 - E +iAln <E) sign(u) ]]-[u—,u+](z)} -1

—iApln

u
+ikln%/ d@)|z|Pdz — i A K3 — i A Ky
0

+00 irp _ i
=/ '1—5 (M) —1—irpln 1—5‘ d(2))z|P dz
oo Z d(z) Z
—IiAK;—iAKy
+00 p _
=£(A)+m/ ‘1—E <M—1) d@)|z|P dz — i A K4
oo z d(z)
+00
= L0 +in / 2 — ul? (a — by sign(u) L, () dz — i & Ky

a—>b

=LA +i)r(a —b)/ |z —ul?dz —iA lu|P 1 sign(u) = L(1).
0 p+1

So, the convergence of the one-dimensional distributions is proved. The case of higher-
dimensional distributions can be treated similarly. The uniformity in 6 on any compact set K C ©
is evident. Lemma 5 is proved.

Now let us prove Lemma 6. For |u; — uy| > 1 the assertion is evident since for all 8 and n
we have

E@ |Z},1l/2(l/£]) - an/z(u2)|2 g 4 § 4 |I/t1 — u2|2p+1.

Suppose now that |u; — uy| < 1. Denoting A = u; — u, and using Lemma 1.5 of [7] we can
write

T 2
Eo |2 ) — 2w < f Sa., (1) — /S, d
122w = 2 < | [ 50,0 = 50,00

T 2
=n/ [\/S(I—Q—uln*")—\/s(t—é?—uzn*“)] dr
0
T—0—u,n™" 2
—n [ [Vso—an 5] ay

O—u,n=v

=n /T_G_umv [sG—An™") —sWP

dy
O—un=" [\/s(y —An")+ W]z

=nli+nlb,
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where /] and I, are the integrals of the same function over the interval (—§/2, §/2) and over the
set E=(—60 —uyn", T —0 —up,n")\ (=6/2,5/2), respectively.

On the set £ we have |y| > §/2, and hence |y — An~"| > §/4 for n sufficiently large. Recall
that on the set {y : |y| = §/4} the function s(-) is separated from zero and Hélder continuous of
order s. So, for n sufficiently large we get

|An7v|2% —vp+1 +1
nh<n| ———dy<CnlAn ")’ =Clu; —us|’"".
E c

Further, for the first integral we have
8/2d —An~V —An~VIP =d P12
nl <Cn/ [d(y —An" )|y —An""| DIV

—8/2 [Vs(y = An™) + /s

8/2 _An~Y) — 2
+Cnf (W& —An™") =¥ ()] dy
—8/2 s(y)
f‘”z [d(y —An™")|y — An~"|P —d()yI’P
—5/2 1/2[/d(y — An=")|y — An="|P2 + /d(y)|y|P/*]?

8/2 |An—vl274
+ Cnf = 4y
—s2 1/2d(y)Iyl?

52 ,
SCn/ [\/d(y—An*”)Iy—An_”W/z—\/cTy)|y|p/2] dy

8/2

| 82
+Cn|An-“|P+/ Ly
—s2 d(y)
Oo~ ~
<Cn|An—”|f’“/ [d(z — Dz = 1|1”* —d(2)|z|P*1* dz + C |A|PH!
—00

= C AP = Cluy — up|PH.

Here in the last integral we have denoted d (z) = +/d(z A) and noticed that the integrand behaves
as C|z|P72 as z — oo.
So, in the case |u; — up| < 1, for all 8 and n sufficiently large we get finally

Eo|Z) () — Z)V2w)P < Cnl+Cnly < Cluy — un|Pt'

Lemma 6 is proved.
It remains to verify Lemma 7. Using Lemma 1.5 of [7], for any n, 6 and u € U,, we can write

1
E(gZ,i/z(u) < exp {—En F(u n”)} ,

where forallu € (« — 60,8 —0) C (—T, T) we denote

T 2
F(u) = fo [mﬂ(z)—m(z)] dr.

First we suppose |u| < §/2. Since 8 € K C (0, T'), we have

T 2
F(u):/ [\/S(I—O—u)—\/s(t—é?)] dt
0
T—-60 2 & 2
[ o= =50 ay = [ [V - vs] d,
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where we can take 0 < & < §/2. Hence |y| < §/2 < 6 and |y — u| < §, and so we get
& . _ 2
Fn) 2/ [s(y —u) —s(y)] .
—e [Vs(y —u) + /s()]

- /s [(d(y —w)|y —ul? —dD|y|”") + W —u) — O] q
~ ) [W2Zd(y —wly — ulP? + J2d(y)|y|P/?]?

€ 2
—c [ [VaG=uly —ul’ = JatyI2] ay
A [Y(y—uw) — ¥y q
—e WAy —w)ly — ulP/2 + /d(y)|y|P/?]?
. WA =wly —ulP? = AWMy W (y —u) — ¥ (y) dy
e Vd(y —w)ly —ulP/? + /d(y)|y|P/?

=5+ L x|h]

+

+

with evident notations.
For the first integral we have

/lul 2
I = C|u|"/ [,/d(u(z — D)z — 1172 = /d(u z)|z|f’/2] dz,
—&/lul
and so clu|? < I; < Clu|? since the last integral can be bounded from above and from below by
the integral of the same function over R and over (—¢/T, ¢/ T), respectively.

For the second integral we get

2 [° 1 2
L, < Clul™™ ———dy = Clu|*™.
— VAP

Using Cauchy—Schwarz inequality, we obtain |I3| < C/T) I, < Clu|**»*D/2 for the last

integral, and finally

Fu) >c¢ |M|p+1 _ C|u|%+(p+])/2 =c |u|p+1 (1 -C |M|%7(p+l)/2) >c |u|p+]

for u sufficiently small, that is for |u| < o, where o > 0 is some fixed constant.
On the other hand, we have also
inf F(u) =c >0,
[u|Zo
since otherwise we should have Sy, (t) = Sy(¢) for some fixed u* and almost all ¢ € [0, T,
which is impossible. Hence, for all |u| > o we can write

|u|p+1

_ p+1
F(u)}c}ch+1 =clul.

So, forall @ andu € (¢« — 68, B — 0) we have
F(u) > clul”*,

and hence for all n, 6, and u € U,, we can write
1/2 1 —v +1
EyZ, " (u) < exp —EnF(un )t < exp{—c |ulP"}.

Lemma 7 is proved.
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4. Concluding remarks

(1) For simplicity of exposition, in this paper we considered the Bayesian estimators and the
notion of asymptotic efficiency in the case of quadratic loss function. In fact, the results hold for
a larger class of loss functions (see [9] for more details).

(2) Again for simplicity of exposition, we considered the case where the unknown parameter 8
is a shift parameter, that is Sp(t) = s(t — 6). In fact, the results hold in a more general situation,
for example when the intensity function is strictly positive (except possibly in #) and can be
written as

Se(t) =d@ —0)|t —0|”P +¥(@0,1),

where p € (—1,0) U (0, 1), the function d(-) is as before, and the function W (8, ¢) is continuous,
and uniformly in # Holder continuous (of order higher than (p + 1)/2) with respect to 6. In the
case p > 0 we suppose equally that W (0, 8) = 0. It is not difficult to obtain for this case the same
results as those presented above.

(3) Like in Chapter 6 of [9], one can consider a situation when the intensity function has several
singularities of the same order. More precisely, we suppose that t; < --- < t, witht, —t; < T,
the unknown parameter 6 € ® = («, 8) € (—t;, T —t,), and the intensity function is strictly
positive and can be written as

So(t) =Y di(t =0 —1;) |t — 0 — 1;|" + W (O, 1),

i=1
where p € (—1,0) U (0, 1),

a; ifx <0,

d; (x) =
=1y ifx o0,

a;, b; > 0, and the function W (6, t) is continuous, and uniformly in # Holder continuous (of order
higher than (p + 1)/2) withrespectto 6. Inthe case p > 0 we suppose equally that W (0, 6 + t;) =
0. It is not difficult to obtain for this problem the results similar to those presented above. The
difference is that now one needs to introduce the process Z (and hence the random variables ¢
and &) in a slightly different manner. More precisely, for eachi = 1, ..., n, one should introduce
a process Z; in the same manner (but using constants a; and b; instead of a and b) as Z was
introduced. Further one should consider the process Z defined by

zw) =[] zw.

i=1

where the processes Z; are independent.
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Abstract Different change-point type models encountered in statistical inference for
stochastic processes give rise to different limiting likelihood ratio processes. In a previ-
ous paper of one of the authors it was established that one of these likelihood ratios, which
is an exponential functional of a two-sided Poisson process driven by some parameter, can
be approximated (for sufficiently small values of the parameter) by another one, which is an
exponential functional of a two-sided Brownian motion. In this paper we consider yet another
likelihood ratio, which is the exponent of a two-sided compound Poisson process driven by
some parameter. We establish, that similarly to the Poisson type one, the compound Poisson
type likelihood ratio can be approximated by the Brownian type one for sufficiently small
values of the parameter. We equally discuss the asymptotics for large values of the parameter
and illustrate the results by numerical simulations.
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1 Introduction

In this work we are interested by the asymptotic study of non-regular parametric statis-
tical models encountered in statistical inference for stochastic processes. An exhaustive
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exposition of the parameter estimation theory in both regular and non-regular cases is given
in the classical book (Ibragimov and Khasminskii 1981). They have developed a general
theory of estimation based on the analysis of renormalized likelihood ratio. Their approach
consists in proving first that the renormalized likelihood ratio (with a properly chosen renor-
malization rate) weekly converges to some non-degenerate limit: the limiting likelihood ratio
process. Thereafter, the properties of the estimators (namely their rate of convergence and
limiting distributions) are deduced. Finally, based on the estimators, one can also construct
confidence intervals, tests, and so on. Note that this approach also provides the convergence
of moments, allowing one to deduce equally the asymptotics of some statistically important
quantities, such as the mean squared errors of the estimators.

It is well known that in the regular case the limiting likelihood ratio is given by the LAN
property and is the same for different models (the renormalization rate being usually 1/./n).
So, the classical estimators—the maximum likelihood estimator and the Bayesian estima-
tors—are consistent, asymptotically normal (usually with rate 1/,/n) and asymptotically
efficient.

In non-regular cases the situation essentially changes: the renormalization rate is usually
better (for example, 1/n in change-point type models), but the limiting likelihood ratio can
be different in different models. So, the classical estimators are still consistent, but may have
different limiting distributions (though with a better rate) and, in general, only the Bayesian
estimators are asymptotically efficient.

In Dachian (2010) a relation between two different limiting likelihood ratios arising in
change-point type models was established by one of the authors. More precisely, it was shown
that the first one, which is an exponential functional of a two-sided Poisson process driven
by some parameter, can be approximated (for sufficiently small values of the parameter) by
the second one, defined by

Zo(x) = exp [W(x) — % |x|] , x €R, (D)

where W is a standard two-sided Brownian motion. In this paper we consider yet another lim-
iting likelihood ratio process arising in change-point type models and show that it is related
to Zo in a similar way.

1.1 The process Z, ¢

We introduce the random process Z, y on R as the exponent of a two-sided compound
Poisson process given by

() fef+y)

ifx >0
k=1 f(8+) ’ 1 =

InZ, r(x) = g 2)
T m S it <0,

where y > 0, f is a strictly positive density of some random variable ¢ with mean 0 and
variance 1, [T and I1_ are two independent Poisson processes of intensity 1 on R, Eki are
independent random variables with density f which are also independent of 1, and we use
the convention 22: 1 ax = 0. We equally introduce the random variables

. foZ,,,f(x) dx
P Zy () dx

é)/_f = inf [Z : Zy,f(Z) = sup Zy,f(x)} , 3)

xeR
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Ey ;= sup {Z : Zy,f(z) = sup Zy,f(x)} ’

xeR

Epp=aé, +0- oz)éy oo €l0,1],

related to this process, as well as their second moments B), ¢ = E{ and M? = E(§ o f)2

An important particular case of this process is the one where the densuy fis Gaussmn
that is, ¢ ~ N/(0, 1). In this case we will omit the index f and write Z, instead of Z,, , 5)‘3‘
instead of Sy Iz and so on. Note that since

+ 2
% = Fye — % ~N(=y%/2, 7%,

the process Z, is symmetric and has Gaussian jumps.

The process Z, ¢, up to a linear time change, arises in some non-regular, namely change-
point type, statistical models as the limiting likelihood ratio process, and the variables ¢,
and E ¢ s s the limiting distributions of the Bayesian estimators and of the appropriately cho-
sen max1mum likelihood estimator, respectively. The maximum likelihood estimator being
not unique in the underlying models, the appropriate choice here is a linear combination
with weights o and 1 — o of its minimal and maximal values. Moreover, the quantities

y.f and MY y, £ are the limiting mean squared errors (sometimes also called limiting vari-
ances) of these estimators and, the Bayesian estimators being asymptotically efficient, the
ratio E¢ v = =B, s/ My’ is the asymptotic relative efficiency of this maximum likelihood
estimator.

The examples include the two-phase regression model and the threshold autoregressive
(TAR) model. The linear case of the former was studied by Koul and Qian (2002), while the
non-linear one was investigated by Ciuperca (2004). Concerning the TAR model, the first
results were obtained by Chan (1993) where he studies the least squares estimator, which
is, in the Gaussian case, equivalent to the maximum likelihood estimator. A more recent
and exhaustive study was performed by Chan and Kutoyants (submitted) (for the Gaussian
TAR model) and in Chan and Kutoyants (to appear). Note finally that in both models, the
parameter y of the limiting likelihood ratio is related to the jump size of the model.

In

1.2 The process Zy

On the other hand, many change-point type statistical models encountered in various fields of
statistical inference for stochastic processes rather have as limiting likelihood ratio process,
up to a linear time change, the process Zg defined by (1). In this case, the limiting distributions
of the Bayesian estimators and of the maximum likelihood estimator are given by

B Jp X Zo(x) dx

= and &y = argsup Zo(x), 4)
Jo Zo(x) dx R
R xXe

respectively, while the limiting mean squared errors of these estimators are By = Egg and
My = Eég. The Bayesian estimators are still asymptotically efficient, and the asymptotic
relative efficiency of the maximum likelihood estimator is Eg = Bo/ M.

A well-known example is the model of a discontinuous signal in a white Gaussian noise
exhaustively studied by Ibragimov and Khasminskii (1975) and Ibragimov and Khasminskii
(1981, Chap. 7.2), but one can also cite change-point type models of dynamical systems with
small noise considered by Kutoyants (1984) and Kutoyants (1994, Chap. 5), those of ergodic
diffusion processes examined by Kutoyants (2004, Chap. 3), a change-point type model of
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a delay equation analyzed by Kiichler and Kutoyants (2000), a model of a discontinuous
periodic signal in a time inhomogeneous diffusion explored by Hopfner and Kutoyants
(2010), a change-point type model of a threshold diffusion process investigated by Kutoyants
(to appear), and so on.

Let us also note that Terent’yev (1968) determined the Laplace transform of P (|§g| > 1)
and calculated the constant My = 26. Moreover, the explicit expression of the density of &
was later successively provided by Bhattacharya and Brockwell (1976), Yao (1987) and Fujii
(2007). Regarding the constant By, Ibragimov and Khasminskii (1981, Chap. 7.3) showed
by means of numerical simulation that By = 19.5 £ 0.5, and so Ey = 0.73 & 0.03. Later
Golubev (1979) expressed By in terms of the second derivative (with respect to a parameter)
of an improper integral of a composite function of modified Hankel and Bessel functions.
Finally Rubin and Song (1995) obtained the exact values Bp = 16 ¢(3) and Eg = 8¢(3)/13,
where ¢ is Riemann’s zeta function defined by ¢ (s) = Zg‘;  1/n%.

1.3 The results of the present paper

In this paper we establish that the limiting likelihood ratio processes Z, s and Z are related.
More precisely, under some regularity assumptions on f, we show thatas y — 0, the process
Zy s y/1 ¥?),y € R, (where I is the Fisher information related to f) converges weakly in
the space Do(—o0, +00) (the Skorohod space of functions on R without discontinuities of
the second kind and vanishing at infinity) to the process Zg. Hence, the random variables
1 )/2;“),, rand/ yzéj‘j‘v ¢ converge weakly to the random variables ¢y and &, respectively. We
show equally that the convergence of moments of these random variables holds and so, in
particular, 12)/4B%f — 16¢(3), 12)/4M)‘f,f — 26 and E)"/‘ ;= 82(3)/13. Besides their
theoretical interest, these results have also some practical implications. For example, they
allow to construct tests and confidence intervals on the base of the distributions of ¢y and &g
(rather than on the base of those of ¢, and S;" Iz which depend on the density f and are not
known explicitly) in models having the process Z, r with a small y as a limiting likelihood
ratio. Also, the limiting mean squared errors of the estimators and the asymptotic relative
efficiency of the maximum likelihood estimator can be approximated as

o 165G, 26 o
v 2y4 2 1294 v S T3

in such models.

These are the main results of the present paper, and they are presented in Sect. 2, where
we also briefly discuss the second possible asymptotics y — 400 and present some numer-
ical simulations of the quantities B),, M7 and EY for y € ]0, ool. Finally, the proofs of the
necessary lemmas are carried out in Sect. 3.

Concluding the introduction let us note that a preliminary exposition (in the particular
Gaussian case) of the results of the present paper can be found in Dachian and Negri (2009)
and (2010).

2 Asymptotics of Z), ¢

Let y > 0, and let f be a strictly positive density of some random variable ¢ with mean 0
and variance 1.
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2.1 Regularity assumptions

We will always suppose that /7 is continuously differentiable in L2, that is, there exists ¥ €
L? satisfying [p (v FO+h)—/Fx)—h w(x))2 dx = o(h?) and [ (Y (x+h)—y(x))?
dx = o(1), as well as that ||| > 0.

Note that under this assumptions, the model of i.i.d. observations with density f(x + 0)
is, in particular, LAN at & = 0 with Fisher information I = 4 v = 4fR Y2 (x) dx
(see, for example, Ibragimov and Khasminskii (1981, Chap. 2.1)) and so, using characteristic

funCtiOIlS, we have
2
. I 17,22
li (E itln (8+(ué/)\/’)) 1(——‘5 )t—zlu t

n— oo

and, more generally,

i e I/VZ . !
lim (Ee” In f(f(t))/) ) — el (—j)t_,IIZ (5)

y—0

forallt € R.

Note also, that only the convergence (5) will be needed in our considerations. So,
one can rather assume it directly, or make any other regularity assumptions sufficient
for it as, for example, Héjek’s conditions: f is differentiable and the Fisher information
I = fR ') ( f (x))2 dx is finite and strictly positive (see, for example, Ibragimov and
Khasminskii (1981, Chap. 2.2)).

Note finally, that in the Gaussian case the regularity assumptions clearly hold and we have
I=1.

2.2 The asymptotics y — 0

Let us consider the process X, r(y) = Zy,f(y/lyz), y € R, where Z, ¢ is defined by (2).

Note that
Jey Xy s dy 2
fR Xy r(y) dy g
inf{z 1 Xy, 5 (2) =sup X, f(y)} =1y’ £, r
yeR
and

sup {z 1 Xy p(2) = Supr,f()’)} = IVZS), Iz
yeR

where the random variables ¢, ¢ and S |y are defined by (3). Remind also the process Zg
on R defined by (1) and the random Varlables ¢o and &y defined by (4). Recall ﬁnally the
quantities By, y = E;‘y’f, )/,f = E(g%f) , E;’/"f =B ,f/My’f, as well as By = E{O =
16¢(3), Mg = Esg =26and Eg = By/Mo = 8¢(3)/13. Now we can state the main result
of the present paper.

Theorem 1 The process X, y converges weakly in the space Dy(—00, +00) to the process
Zy as y — 0. In particular, the random variable 1 yzg“y, f converges weakly to the random
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variable ¢y and, for any a € [0, 1], the random variable 1 yzf)‘j‘ § converges weakly to the
random variable &y. Moreover, for any k > 0 we have

1552k Eg”)l/‘,f — E;é‘ and 1%y E(é)‘f’f)k — Eég.
In particular, 127/43%]«- — 16¢(3), 12)/4M]‘f’f — 26 and E;"f — 8¢(3)/13.

The results concerning the random variable ¢,  are direct consequence of Ibragimov and
Khasminskii (1981, Theorem 1.10.2) and the following three lemmas.

Lemma 2 The finite-dimensional distributions of the process X, r converge to those of Z
asy — 0.

Lemma 3 For any C > 1/4 we have

2
2 2
E X)l,ff(yl) - X)l,{f(yz) = Cly1 =yl
for all sufficiently small y and all yi, y» € R.
Lemma 4 Foranyc €]0, 1/8[ we have

2
EX /7 (y) < exp(—clyl)

for all sufficiently small y and all y € R.

Note that these lemmas are not sufficient to establish the weak convergence of the pro-
cess X, s in the space Dy(—00, +00) and the results concerning the random variable f;‘;" Iz
However, the increments of the process In X, ¢ being independent, the convergence of its
restrictions (and hence of those of X, ¢) on finite intervals [A, B] C R (that is, conver-
gence in the Skorohod space D[A, B] of functions on [A, B] without discontinuities of the
second kind) follows from Gihman and Skorohod (1974, Theorem 6.5.5), Lemma 2 and the
following lemma.

Lemma 5 Forany § > 0 we have

lim lim sup P{|[InX, ;) —InX, ()| > 8} =0.
h=0y=0 |y —y|<h

Now, Theorem 1 follows from the following estimate on the tails of the process X, ¢ by
standard argument (see, for example, Ibragimov and Khasminskii (1981)).

Lemma 6 Foranyb €10, 1/12[ we have

P sup X, r(y) > e PAl <4704
lyl>A

for all sufficiently small y and all A > 0.

The proofs of all these lemmas will be given in Sect. 3.
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2.3 The asymptotics y — +00

Now let us discuss the second possible asymptotics y — 4-00. It can be shown that in
this case, the process Z, ; converges weakly in the space Dy(—00, +00) to the process
Zoo(x) = W {_p<x<t}, X € R, where n and 7 are two independent exponential random vari-
ables with parameter 1. So, the random variables ¢, r, S’: I é;f 7 and E)‘f’  converge weakly
to the random variables

_ foZoo(x) dx T
T g Zeox)dx T 2

¢

& = inf {z 1 Zoo(z) = sup Zoo(x)} = —7,
xeR

gL = sup {z : Zoo(z) = sup Zoo(x)} -t
xeR

and
b =abgt-—a)ég=>0-a)r—an,
respectively. It can be equally shown that, moreover, for any £ > 0 we have
E¢) , — E¢l, and EE ) — EEL)"

In particular, denoting By, = E;“go, Mg = E(Sg‘o)2 and ES, = Boo/ME,, we finally have
2
T—0 1
B — B =E = —,
V. f oo ( ) ) )

2
;(vf _)MgO:E((l_Ol)T—OlT])2=6<a__) _|_l (6)

and
1

ARy . S—
T -+

(N

Let us note that these convergences are natural, since the process Z, can be considered as
a particular case of the process Z,, ¢ with y = +00 under natural conventions f(¢£00) =0
and In0 = —oo0.

Note also, that Z is the limiting likelihood ratio process in the problem of estimating the
parameter 6 by i.i.d. uniform observations on [0, 6 4 1]. So, in this problem, the variables
{oo and £ are the limiting distributions of the Bayesian estimators and of the appropriately
chosen maximum likelihood estimator, respectively, while By, and M are the limiting
mean squared errors of these estimators and, the Bayesian estimators being asymptotically
efficient, E is the asymptotic relative efficiency of this maximum likelihood estimator.

Finally observe, that the formulae (6) and (7) clearly imply that in the latter problem
(as well as in any problem having Z,, as limiting likelihood ratio) the best choice of the
maximum likelihood estimator is « = 1/2, and that the so chosen maximum likelihood
estimator is asymptotically efficient. This choice was also suggested for TAR model (which
has limiting likelihood ratio Z,,) by Chan and Kutoyants (submitted). For large values of y
this suggestion is confirmed by our asymptotic results. However, we see that for small values
of y the choice of « will not be so important, since the limits in Theorem 1 do not depend
on «.
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2.4 Numerical simulations

Here we present some numerical simulations (in the Gaussian case) of the quantities By, My,
and EJ for y € 10, oo[. Besides giving approximate values of these quantities, the simulation
results illustrate both the asymptotics

B M
B, = y_g +o(y™, M)‘f = y_‘? +o(y™ and E;’,‘ — Ey as y — 0,

with By = 16¢(3) ~ 19.2329, My = 26 and Ep = 8¢(3)/13 ~ 0.7397, and
By — B, My — M, and Ej — E3, as y — oo,

with Boo = 0.5, MZ = 6 (¢ —0.5)*> + 0.5and EZ, = 1/ (12 (e — 0.5)* + 1).

First, we simulate the events xfr, x;' , ... of the Poisson process I1; and the events

X, , X, ,... of the Poisson process I1_ (both of intensity 1), as well as the partial sums
S1+, S;, ...of theii.d. N (0, 1) sequence sfr, 8;'_, ... and the partial sums S, S, , ... of the
i.i.d. (0, 1) sequence ¢ , &, , .. .. For convenience we also put xaL =x, = S(")Ir =8, =0.
Then we calculate
fR xZy,(x)dx
v Jz Zy(x) dx

1 st 2 2 1 .S~ _ 2 _2
>0 Ees’ ((xi_:—l) - (x;r) ) - 22 Ees’ ((xi—i-l) — () )
= T R _
220 eSi (x,-++1 _xl_+) + 220 esi (X — %)
+ . + —
X . if A\ > S,
—Xpi 15 otherwise,

’

§, = inf {z 2 Zy(z) =sup Z,(x)
xeR
xl:rl’ if Sl:r > S,

+ : = =
&, = sup {z 1 Zy(z) = sup Zy(x)] - { —x, , otherwise,

xeR

and

B =af, +(1-wE/

where

k = argmax Sl.+ and ¢ = argmax S, ,
i=0 i=0
and we use the values 1/2, 1/4 and O for «. Note that in this Gaussian case (due to the sym-
metry of the process Z, ) the random variable é}}_"‘ has the same law as the variable —&5,
that’s why we use for o only values less or equal than 1/2.

Finally, repeating these simulations 107 times (for each value of y), we approximate
B, = ng and My = E(éj‘j‘)2 by the empirical second moments, and EY = B,, /M), by their
ratio.

The results of the numerical simulations are presented in Figs. 1, 2, 3. The y — 0 asymp-
totics of the limiting mean squared errors is illustrated in Fig. 1, where we rather plotted the
functions y4By and y4M)‘f , making apparent the constants By ~ 19.2329 and My = 26. One
can observe here that the choice « = 1/2 is the best one, though its advantage diminishes
as y approaches 0 and seems negligible for y < 1.
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Fig.2 By and My (y — oo asymptotics)

In Fig. 2 we illustrate the y — oo asymptotics of the limiting mean squared errors by
plotting the functions B, and M}, themselves. Here the advantage of the choice @ = 1/2 is
obvious, and one can observe that for y > 5 this choice makes negligible the loss of efficiency
resulting from the use of the maximum likelihood estimator instead of the asymptotically
efficient Bayesian estimators.

Finally, in Fig. 3 we illustrate the behavior both at 0 and at co of the asymptotic relative
efficiency of the maximum likelihood estimators by plotting the functions E. All the obser-
vations made above can be once more noticed in this figure. Note also that as y increases
from 0 to oo, the asymptotic relative efficiency seems first to decrease from Ey =~ 0.7397
for all the maximum likelihood estimators, before increasing back to ES, for the maximum
likelihood estimators with « close to the optimal value 1/2.
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3 Proofs of the Lemmas

For the sake of clarity, for each lemma we will first give the proof in the particular Gaussian
case (in which it is more explicit) and then explain how it can be extended to the general one.

3.1 Proof of Lemma 2

Note that the restrictions of the process In X, (y) =In Z,, (y/ ¥?),y € R, (as well as those of
the process In Zp) on R and on R_ are mutually independent processes with stationary and
independent increments. So, to obtain the convergence of all the finite-dimensional distribu-
tions, it is sufficient to show the convergence of one-dimensional distributions only, that is,
the weak convergence of In X, (y) to

InZo(y) = W(y) — % NN(—%, |)’|)

forall y € R. Moreover, these processes being symmetric, it is sufficient to consider y € R4

only.
The characteristic function ¢y, (¢) of In X, (y) is

y/7? . 2
+( )£+—lty71'l+(y/)/2)

I
(py(t) — EeitlnXV(y) — Ee—il)/ Zk:l k
gzm)

2 2.2 2
— B it MO/ =F N0/ — g o= G+ (/v

+(17?) .

I 2
—EE (e—ity p it T (v/v )

2 M (/%)
=E (MO T Eee
k=1
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where we have denoted .71, the o-algebra related to the Poisson process IT,, used the
independence of &; and I1 and recalled that E ¢/ = ¢~ 22,
Then, noting that IT ( v/ yz) is a Poisson random variable of parameter y/y > with moment

generating function E e’ M (v/v%) = exp (% (e’ — 1)), we get

2
Ing, () = > (e—yzz(lﬂfz) - 1) = % (—% (it +1%) +o (y2))

= =2 (it +1%) +o(1) > =2 (i1 +1%) = InEe" 20
as ¥ — 0 and so, in the Gaussian case Lemma 2 is proved.

In the general case, proceeding similarly we get

< (/) re
it 1n X it —h—
@y (1) = Ee"MXrs0) = Ee &8

e My (y/1y?)
_ E((Eeztln f}j;)”) ) L f (D=5 g itn Zo(y)

by dominated convergence theorem, since
. l/y2
; fe+y) ‘(_1) _ 1402
(Eezzln P ) A2 t—51t

by (5), and y2 14 (y/Iy?) converges clearly to y/I in L? (and hence in probability).

3.2 Proof of Lemma 4

Now we turn to the proof of Lemma 4 (we will prove Lemma 3 just after). For y > 0 we

have

2 2 2
— e GO/ L0/ — g o= 5 T+0/r)

~exp (yi ( - 1))

The process X,, being symmetric, we have

EX!2(y)=e (% _4 (8)
S =exp| 5 | ¢
for all y € R and, since
L (2 1 y? ) 1

asy — 0,forany c € ]0, 1/8[ we have EX]l,/z(y) < exp (—c |y|) for all sufficiently small
y and all y € R. So, in the Gaussian case Lemma 4 is proved.

ny (,V/V2)

2
EX)/*(y) =EE (e_g k=1 s~ M+ 0/r?)
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In the general case, equality (8) becomes EX}],/? (y) =exp (|y| 0, - 1)/1)/2) with

Iy:E\/f(8+y) <\/Ef(e+y) _,

fle f(€)

2

Recall the convergence (5) of characteristic functions and note that I]}/ Y are the correspond-
ing moment generating functions at point 1/2. The convergence of these moment generating
functions (at any point smaller than 1) follows from the fact that for all y they are equal 1 at

1

2
point 1 (which provides uniform integrability). Thus we have I;/ Y" — ¢~ !/8 which implies

(In1,)/y* — —1I/8,and so (I, — 1)/Iy* — —1/8.
3.3 Proof of Lemma 3

First we consider the case y1, y» € Ry (say y1 > y;). Using (8) and taking into account
the stationarity and the independence of the increments of the process In X, on R, we can
write

2
E|x)201) — x)200)| = EX, (1) + EX, () - 2EX200) X} ()

1/2
X2 (y1)
1/2
X3/ (y2)

=2-2EX)/*(Iy1 — »2I)

_ 2
=2 —2exp (—lyl 2y2| (e_VS — 1))
14

vi =2l ( _¥ 1
< —2— 8 —1 < — — .
< 2 e = 5=l

=2-2EX,(»)E

The process X, being symmetric, we have the same result for the case y, y» € R_.
Finally, if y;y» < 0 (say y2 <0 < y1), we have

2
E|X)200) - X)) =2 - 2EX)20n EX)2(n)

and so, in the Gaussian case we obtain even more than the assertion of Lemma 3.
In the general case, proceeding similarly we get

172 12

2 Iyt — 2l
E Xy’f(yl) - Xy,f(yZ) <-2——

iUy =D

and, since —2([, — 1)/Iy* — 1/4, the proof is concluded.
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3.4 Proof of Lemma 5

First let y;, y2 € R4 (say y1 > y»2) such that A = |y; — y2| < h. Then, noting that
conditionally to .%p1, the random variable

My (A/y?) 2

nX,(A)=-y > & - %H+(A/V2)
k=1

2
is Gaussian with mean —%H+(A/y2) and variance y2T1(A/y?), we get
1 2
P {[in X, (y) = In X, ()] > 8} = F E[In Xy (y0) —In X, (32)]
1 2
= E In X, (A)]

- 5iZEE ((m X, (A))? ‘ ﬂm)
4

= 5E (y2n+<A/y2> +2 (n+<A/y2>)2)
(e (30)
52 4 \y2 " yh
(1 +y2/4HA + A%/4)
< (B h+h*/4)
where B(y) = 1 + y%/4 — 1 asy — 0. So, we have

lim sup Pi|lnX,(y1) —InX,(y)| >4 lim —
y—0 1—yal<h {| 14 14 \ } y—0 52

1 h?
=—(h+—),
(%)

lim lim sup P{llnX,(y;) —InX, ()| >38;=0,
fim lim, sup {{n Xy y ()] > 8}

IA

(B(y) h + h*/4)

and hence

where the supremum is taken only over yi, y» € Ry.

The process X,, being symmetric, we have the same conclusion with the supremum taken
over y;, y2 € R_.

Finally, for y;y, < 0 (say y» < 0 < yp) such that |y; — y;| < h, using the elementary
inequality (a — b)? < 2(a® + b?) we get

1
P{lin X, (yn) —In X, (52)| > 8} < S E[In X, () ~In X, o)’

IA

2
5 (Eln X, 00f +Efn X, 032 [)

2 ) 5
= 5 BOW +01/4+ B Iyl + 2l /4)

A

2
o (By)h +h?/4),
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which again yields the desired conclusion. So, in the Gaussian case Lemma 5 is proved.
Another way to prove this lemma, is to notice first that the weak convergence of In X, (y)

to In Zp(y) (established in Lemma 2) is uniform with respect to y € K for any compact

K C R. Indeed, the uniformity of the convergence of the characteristic functions in the proof

of Lemma 2 is obvious, and so one can apply, for example, Theorem 7 from Appendix I

of Ibragimov and Khasminskii (1981), whose remaining conditions are easily checked.
Second, using this uniformity we obtain

lim sup P{|lnX,(y)—InX,(»)| >3} = lim sup P{|[InX,(y)|> 6}
Y=0 |y —yl<h r=0 |yl<h

= sup P{|InZo(y)| > &}
lyl<h

where the supremum is taken over y;, y» € R such that y;y, > 0, and

8
lim sup P{|lnX,(y)—InX,(»)|>8} <2supP <|1nzo(y)| > —]
Y=0 |y —ysl<h lyl<h 2

where the supremum is taken over y;, y» € R such that y;y, < 0.
Finally, reminding that In Zo(y) ~ N (—|y| /2, |yl) and denoting ® the distribution
function of the standard Gaussian law, we get

P {[In Zo(y)| >5}:¢(_L+@)+1_¢(L+@)

for |y| < h. The last expression does not depend on y and clearly converges to 0 as # — 0,
so the assertion of the lemma follows.

It remains to observe that this second proof does not use any particularity of the process
X, and, hence, is trivially extendable to the general case.

3.5 Proof of Lemma 6

Taking into account the symmetry of the process In X,,, as well as the stationarity and the
independence of its increments on R, we obtain

P{ sup X, (y) > ebA} < ZP{sup X, (y) > ebA}

lyl>A y>A
< 2" Esup X/%(y) ©)
y>A
1/2
Xy ()
= 2”2 EX}/*(A) E sup IVT

y>A Xy (A)
=2¢"2 EX}/?(A) Esup X2 (2).

z>0
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In order to estimate the last factor we write

1 My (z/y?) }/2
E sup X2 = Eexp| = sup | —y e — T (z/v?)
z>0 v 2 z>0 kZ:; k 2
1 - ny?
=Eexp| = sup| —y g —— ).
Now, let us observe that the random walk S, = — ZZ’ZI slj, n € N, has the same law as the

restriction on N of a standard Brownian motion W. So,

E sup X)I/2(z) = Eexp (% sup (yW(n) - ny2/2))

z>0 neN

= Eexp (% sug (W(nyz) — ny2/2))

1 1

< Eexp (— sup (W(t) — t/Z)) = Eexp (— M)
2 120 2

with an evident notation. It is known that the random variable M is exponential of parameter

1 (see, for example, Borodin and Salminen (2002)) and hence, using its moment generating

function Ee'™ = (1 —1)~!, we get

Esup X)/%(z) <2. (10)

z>0

Finally, taking b € 10, 1/12[ we have 3b/2 € 10, 1/8[ and, combining (9), (10) and
using Lemma 4, we finally obtain

P{ sup X, (y) > e_[’A} < 4eP4/2 exp (—%A) =4 0A
lyl>A

for all sufficiently small y and all A > 0, which concludes the proof in the Gaussian case.

In the general case the proof is almost the same. Note that we have no longer the symmetry
of the process X, 7, so we need to consider the cases y > A and y < — A separately. Besides
that, the only difference is in the derivation of the bound (10). Here we get

EsupX/2(z) = E Ly
sup y’f(z)— exp 5 )

>0
. < : S
where M is the supremum of therandom walk S, = >} _; X, n € N,with X; = In 58
k
Note that
€
BN gl

fley 7

and so, the cummulant generating function k(r) = In(E ¢’X1) of X admits a strictly positive
zero typ = 1. Hence, by the well-known Cramér-Lundberg bound on the tail probabilities of
M (see, for example, Theorem 5.1 from Chapter XIII of Asmussen (2003)), we have

P(M >x) <e 0¥ =¢*
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for all x > 0. Finally, denoting F the distribution function of M and using this bound we

obtain
1
E exp (— M) = / e*/? dF (x)
2 R

= [e/? (F(x)—l)]fz— %/ex/2 (F(x) — 1) dx
R

2

1
1+—/ e 2 dx =2,
2 Jr,

1 1
= _/ e*/? dx+—/ e*? (1 — F(x)) dx
R_ 2 Jr,

IA

which concludes the proof.
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INCLUSION-EXCLUSION DESCRIPTION OF RANDOM FIELDS
S. Yu. Dashian, B. S. Nahapetian

Izvestiya Natsionalnoi Akademii Nauk Armenii. Matematika,
Vol. 30, No. 6, 1995

The inclusion-exclusion approach towards construction of random fields on the v-dimensional integer
lattice is described. Comparison with classical Gibbs description is presented.

§1. INTRODUCTION

The inclusion-exclusion approach was successfully applied in the framework of point process theory by Ambartzu-
mian and Sukiasian [1]. The main result of this approach is the following theorem.

THEOREM A. (R. V. Ambartzumian, H. S. Sukiasian) Let a system {f(x1,...,%,)}, #; € IR¢ of nonnegative
symmetrical functions be given satisfying the condition f(z1,...,2,) < b, n = 1,2, .... for some b > 0. If for almost

all zy,...,x, € IR? and all convex D C IR? the following inequalities hold

[ee] _1 n
1+Z( n!) /D.“/Df(yl,.wyn) dyy - dyn 2 0,
n=1

& —1"
f(xl,u-,lm)JrZ( ) /"'/f(9617~~713m7y1,~~,yn)dyl"'dyn207 m >0,
p Jp

[
n=1 n:
then there exists a point process P, such that at the continuity points, the values of f coincide with the densities

of P.

The purpose of this paper is to apply the same approach towards construction of random fields on the integer
lattice ZZ”. Special attention is paid to the classical Gibbs random fields. The paper describes the main facts of

the proposed approach, gives some examples and points at a broad class of non Gibbsian random fields. We note

@1996 by Allerton Press Inc. Authorization to photocopy items for internal or personal use, or the internal or personal use
of specific clients, is granted by Allerton Press, Inc. for library and other users registered with the Copyright Clearance Center (CCC)
Transaction Reporting Service, providing that the base fee of $50.00 per copy is paid directly to CCC, 222 Rosewood Drive, Danvers,
MA 01923.
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that non Gibbsian random fields in statistical physics now receive intensive consideration (see, for example, [2] —
[5])-

§2. RANDOM FIELDS AND P-FUNCTIONS
We consider random fields on the integer v-dimensional lattice ZZ, v > 1. For simplicity the phase space X we

assume to consist of two points: X = {0,1}. Denote by & the set of all finite subsets of ZZ" and let
X ={x;, teA}, zeX, teA, Ac&

be the set of all configurations (realizations) on A. Each element 2 € X* is uniquely determined by the subset of A,
where the configuration - assumes the value 1 (in physical terminology this is the subset occupied by the particles).
Therefore any configuration on A we will identify with corresponding subset of A. A probability distribution on
XA we denote by Py = {Pr(z), z C A}, A € £. For A = () there exists only one probability distribution Py(f) = 1.

For A € £ and I C A denote

(Pi(x)= Y Pa(zulJ), zCI.
JCA\T

Definition 1. A set of probability distributions P = {Px, A € £} is called consistent in Kolmogorov sense, if for
any A€ Eand I CA (Py)i(z) = Pr(z), z C 1.

It is well known that any set of probability distributions consistent in Kolmogorov sense determines some
probability measure on X%” equivalently some random field. In the inclusion-exclusion approach the Kolmogorov’s
consistency condition is replaced by some nonnegativity condition imposed on certain finite sums with alternating
signs of summands.

Let B be the Banach space of all bounded functions defined on £ with the norm

Bl =sup 5 S bl b= (b, T} B,
ree 2n(A) =

where n(A) is some numeration of elements from £.

Definition 2. A function f = {f;, J € £}, f € B we call a P-function, if fy =1 and for any A € £ and z C A

Z(—l)‘m\‘” favg =0, 1

JCx
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where | - | denotes the number of points in a finite set.
Note that the space BY C B of all P-function is a convex closed subset of B. It is not difficult to show that

B is compact.

THEOREM 1. A system P = {Py, A € £} of probability distributions is consistent in Kolmogorov sense if and only

if there exists a P-function f such that

Pa() =Y (D" fa Pa@) =fa, CA, A€E. (2)
JCx

PROOF: Necessity. Let P = {Px, A € £} be a system of probability distributions consistent in Kolmogorov sense.

Put fao = Pa(0), A € €. Clearly 0 < fp <1, fy = Py(0) = 1. Further we have

S DIV s =D (=D (0) = D (=D (Pa) s (0) =

JCx JCx JCx
=YDV ST P =Y Pa) Y () = Py(a).
JCz JJca JCz J:JCJCx

At the last step we used the relation

=C,
> H)‘C\A':{;’ ; o 3)

A:BCACC
Sufficiency. Let f be a P-function. We put

Pa(z) =Y (D" fy, o CA, Ae€
JCx

and show that P = {Pj, A € £} is a family of probability distributions consistent in Kolmogorov sense. We have

S Pa@) =) (D =D fau Y, DIV =g =1,

zCA JCx JCA z:JCxCA

i.e. P is a system of probability distributions. Let us verify that it is consistent. For any A € £ and I C A we can

write

Py = >0 3 ()l g o= 3 STV ST VR s =

JEMNI F iy JCMI 7 o J2CJ
= Z (—1)le\ 1l Z fA\(leJNQ) Z (-1l = Z (—1)le\ 1l I, = Pi().
JiCa J2CANI J: T CICANT JiCx

3. EXAMPLES OF P-FUNCTIONS

Example 1. Let f be a P-function. For any B € £ such that fz > 0 consider the function f®) = { fp ()%,
Jeé& } It is not difficult to see that f(7) again is a P-function. The realizations of corresponding random fields
may assume the value 1 only outside B.
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Example 2. Let P be a random field with independent components and f; = Py (0), t € ZZ”. The corresponding

P-function is

f{Hft, Jee}.

teJ

The case f; =q,t € ZZ¥, 0 < g < 1 corresponds to Bernoulli random field.

Example 3. Suppose p(z), = € [0,1] is a probability density and f = {¢!’!, J € £} is a Bernoulli P-function. The

b= {/01 lplg) dg, J € 5}

is a P-function of the corresponding mixture of the Bernoulli random fields. In case p(x) = 7271, 7 > 0 the

1
b= Wrtgg= T Aeey.
K A

In this case the set of finite dimensional distributions is

function

corresponding P-function is

|A]

PA(J,) Aeé.

T A+ T 1;[1 A +7—i
In §7 we will demonstrate that this random field is non Gibbsian.

Example 4. Suppose S s, t, s € ZZ" is a family of nonnegative numbers such that » S < co. Consider
teZLv

f: eXp*ZBt,57 Jeé&
t,s€J

It is a P-function, which is the discrete analog of Ambartzumian—Sukiasian [1] point random field in IR?. We

briefly remind the main result of [1]. The following sequence of functions was considered:

fe=a, f@or)=a® [ heow) n=23. @
{i,j}c{1,....,n}

where 0 < h(z,y) < 1 is a symmetrical function in IR? x IR, @ > 0 is a parameter (intensity), while the product

is taken over all possible two-subsets of {1,...,n}. Under the convergence condition

Sup/ (1 —h(z,y)] dy < oo
x R
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there exists a point process P in IR? for which (4) present the so-called absolutely densities, i.e. for every sequence
L1y.eey Ty

P(dxy,...,dz,) = f(21,....x,) dxy - - - dapy.

The proof of this result was obtained in [1] using Theorem A. It seems possible to prove the corresponding result

for P-functions.

Example 5. Here we describe some P-functions occurring in the Gibbs random fields theory. For any nonempty
A € € let us fix an arbitrary point t4 € A and define a partially ordering in £. Assume that B < A, B,A € £ if

there exists a sequence B = By, Ba, ..., B, = A such that B;_1 = B; \ tp,, i = 2,...,n. A sequence
B={B1,T1;..;Bn, T}, ByT;€f TiNBy=tp, i=1,..n, Bi<A B <B_1UT;i1, i=2,..,n

we call a path beginning at A and of length n. The set of all paths the beginning at A and of length n we denote
by BY", A€ £. Now let K = (K, J € £) be a function such that

S OIE) <aX", A1+Va)’ <1, Aa>0.

J:iteJe&
[J]=n

Then the function

fJ:1+Z Z (71)nKT1"’KT,L, Jeé&

" geB(M
presents a P-function (see, for example, [9], [10]).
4. RANDOM FIELDS AND Q-FUNCTIONS

In this section we construct P-functions by the principle used in the theory of Gibbs random fields.

Definition 3. A function 6 = {0, J € £} we call a Q-function, if 0; >0, J € &, 6y =1 and for any z € £
> (=1, > 0. (5)
JCx

Unlike the P-functions, the @Q-functions have simple constructive description.

THEOREM 2. A function § = {0;, J € £} is a Q-function if and only if there exists a function H = {Hg, S € £},

Hg >0, S €&, Hy =1 such that for each J € E,0; = > Hg.
SCJ
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PROOF: Necessity. Let @ = {0, J € £} be a Q-function. Put
Hs= > (-1)%V1g, sec¢. (6)
Jcs
Since 0 is a Q-function, according to definition of Hg, we have Hg >0, S € £ and Hy = 1. We can write
D He=> Y (-0)¥VIe, =36, > (-1 =6y, AceE
SCA SCAJCS JCA  S:JCSCA

Sufficiency. Let 0y = Y. Hg. Clearly 6; >0, J € £, 8y = 1. Finally
SCA

Z(_l)\sv\ 0, — Z(_l)\sw Z Hs = E H Z (DI = Hg >0, Seé&.

JCS JCS JcJ Jjcs  J.JcJcs

Theorem 2 is proved.

THEOREM 3. Let 0 = {0, A € £} be a Q-function. Suppose A T ZZ" is a sequence of increasing subsets, such that

for any J € & the following limit exists:

On\
m
AMZy Oy

=fs (7
Then f = {fs, J € £} is a P-function.

PRrROOF: We have for any I € £

. Oav(n\) 1
Ve IR/ NUEAE) RS U o NP cr
JEC( ) fns A, (=1 N POt o E (1) Oa\nus, =C
Cx JCx JCx

Since 6 is a Q-function, for A€ £, T C A, SC A\ I and z C I we have Z (71)‘“5\‘” 05 > 0, and hence
JCzUS

D= Y > (~psiig, >o.

SCA\I JCzUS
It follows that
D= > (=) b0 D>, (=DEVRI= S () g, o, > 0.
SCA\I J1Cx JoCANT Jo:JoCSCANT JiCa
Theorem 3 is proved.
We give characterization of Q-systems to be used in §§5,6 below.
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Definition 4. A family of probability distributions @ = {Qa, A € £}, Qa(0) > 0, Qy(0) = 1 is called consistent
in Dobrushin sense, if for any K, Ae& AN A=0

@ UN(Q)) -
Qp3(0) = B Qa(w). w A, ®

Note that one can equivalently rewrite (8) as follows

Qrux(@) = Qa(@)(Q, 7)z(®). )

THEOREM 4. A system Q = {Qa, A € £}, Qa(0) > 0, Qy(0) = 1 of probability distributions is consistent in

Dobrushin sense if and only if there exists a Q-function @ = {6;, J € £} such that for any A € £

Qn(z) = % S (-)lVlg,, wCA, (10)

JCz
PROOF: Necessity. Let Q = {Qn, A € £}, Qa(0) > 0, Qy(?) = 1 be a set of probability distributions consistent in

Dobrushin sense. Set 05 = [Qa(0)]71, A € £. We can write

_ B 1) _Qu(0)
1= Q8= on0) Qa(S) = On(0 > Qa9).

sCJ SCJ ) SCJ
From this we get
0 =01 Qa(S).
SCJ
Therefore
DD, =0, (=D)IVE YT QA(S) = 04Qa (),
JCx JCa SCJ

and we obtain (10).
Sufficiency. Let there exist a Q-function § = {6, J € £} such that (10) holds. By definition, Qa(z) > 0, Qy(0) = 1.

Further we have

> Qalx) = % DY (=pvie, = % Yoo >, (Vg =1,

zCA zCA JCx JCA z:JCaxCA

i.e. the system (10) is a set of probability distributions. Let us verify that it is consistent in Dobrushin sense. First

we note that Qx(0) = QL’ Ae&. Also
A
0 ~(0
QAuK("”) = 1~ Z(_l)\m\ﬂ 0y = ﬁQA(m) = QAUiAé)QA(x), 2 CA.
AUA JCa AUA A(0)

Theorem 4 is proved.
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Remark 1. If 6 = {0, J € £} is a Q-function, then

0
f(A):{fJ: M Jeg}
O

is a P-function with parameter set A € £. The probability distributions for the corresponding random fields have
the form
PV (@) = (PA)ant(@), @ C 1,

1, =10,

i ={y 22

This is a random field in finite volume A.

Remark 2. Since the set of all P-functions is compact, one can choose a convergent sequence of P-functions
fA) 5 f (as k — 00), where Ay, T Z¥, k — oo is some increasing sequence of subsets. A random field with

P-function f is called limiting for random fields in finite volumes.

§5. Q-FUNCTIONS WITH BOUNDARY CONDITIONS AND

CONDITIONAL DISTRIBUTIONS FOR RANDOM FIELDS

Let P = {Pj, A € £} be a random field. According to well known martingale convergence theorem for any A € &,
x C A, T CZ"\ A there exists the following limit

_ P, ~(xUT~
QX (z) = _lim M a.s., (11)
APZV\A Px(xx)

where Ty =ZN A. For each A € € the quantity (11) defines some probability distribution, which we call conditional

distribution on A with boundary condition T C ZL" \ A (see [6], [7]). The family of conditional distributions

depending on A € £ and the boundary conditions Z:

Q={Q%, A& TCZ \A} (117
is called conditional distribution of the random field P.
Definition 5. A system of probability distributions (11°) is called consistent in Dobrushin sense, if for any AA€E,
ANA=0andanyz CA, yCA TC Z"\(AU/NX)

L@ UY) = Q@) (O 5) - (12)
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Definition 6. A function 0(z) = {6%7°, J € £}, 05 =1, T C &, Tye =TN(Z\ J) is called Q-function with
boundary condition T, if for any x € €

> (=g > 0.

JCx

Any function H(Z) = {Hf”c7 J e &}, Hg =1, T C Z" with nonnegative values we call a H-function with boundary
condition .

THEOREM 5. A function 6(T) = {0?”, Je&}, 65 =1,T CZ is a Q-function with boundary condition T, if and
only if there exists a H-function H(T) such that for any A € £

O3 = > Hy”.
JCA

Definition 7. A system 0 = {0(Z), T C Z"} of Q-functions depending on boundary conditions is called consistent,
if the corresponding system H = {H(Z), T C Z"} of H-functions has the following property: for any .Ji,Js € €
and T C ZZ"

T(riudp)e _ ppudn)e ppl1VT (g uas)e
H; 55,2 =Hy Hy, .

THEOREM 6. A system of conditional distributions (11°) is consistent in Dobrushin sense if and only if there exists
a consistent system of Q-functions 6 = {6(x), T C ZZ"} such that

Qr(@) = == S () s A

T JTac
eA JCx

The proofs of Theorems 5,6 are similar to those for Theorems 2,4. The latter correspond to the case of empty

boundary conditions.
§6. Q-FUNCTIONS FOR GIBBS RANDOM FIELDS
A measurable function ® defined on € we call a potential if

sup Y [@(J)] < oo (13)

a€ZY jaciee

The potential energy of the configuration x C A, A € £ with boundary condition T C ZZ” \ A is defined by the

expression

U(z)= Y. D @(Jul).

0#£JCx :ch
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The @-functions with boundary condition T C Z" for Gibbs random fields have the form
Z(z) = {Zf\“" = Z exp [-U™ (z)], A€ 8} .
zCA

The corresponding Gibbs conditional distributions are

P ) = (Z5) e [ U @), zCA

Any element of close convex hull of the set of limiting Gibbs distributions is called a Gibbs random field (see [7],

[8]). Note also that any H-system corresponding to a Gibbs random field has the form
{Hg = exp [fUI(S)] , Se& zTCH\S}.

§7. NON GIBBSIAN RANDOM FIELDS

Below we construct some non Gibbsian random fields.

PROPOSITION 1. Let 6§ = {63, J € £, T C Z” \ J} be a consistent system of Q-functions and H = {H3, J € £,
T C Z" \ J} be the corresponding system of nonnegative functions (H-system). Let R(T), T C ZL” be a function

such that R(T1) = R(T2) if T1 = T2 up to a finite number of lattice points. Then the system

R(Z)
)

HRz{(Hf . JeE, fcw\,]}

determines some consistent 6-system of Q-functions, which we denote by 0g.

PRrROOF: For any Jy,Jo € £ and T C ZZ" \ {J; U Jo} we can write

R(T) R(T) R(TUJ1)

(H5,0) " = (H5,H52) 7 = (m3) ™7 (m500) 7 = (15,) " (13

PROPOSITION 2. Let 0 ={0;, J € £, T C ZZ" \ J} be a Gibbsian system of Q-functions. Then the corresponding
0r is non Gibbsian system of Q)-functions.
PrOOF: Since 6 is Gibbsian, then the corresponding H system has the form

H:{exp[—Uf(x)]7 xCA, TCZ\A, AGS}.
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Hence

Hp = {exp [fUI(x)R(T)] , xCA, TCZ\A Ae&}.
According to Proposition 1, Hg determines some fg, which is consistent and hence in turn determines a random
field. Let us show that this random field is non Gibbsian, i.e. there is no potential & such that

UR(z)R@) =Y Y. S(JUJ). (14)

JCx @#?Ci

Suppose the contrary is true, i.e. (14) holds. For z = ) we have

o)+ Y ()| R@ =30)+ Y. ().
0£JCT 0£JCT

Therefore, if T = @, then ®(0)R(0) = (0), and if T = {¢}, then
[(0) + R(DIR(1) = D(0) + B(1), [2(0) + D(NIRO) = D(0) + B(1), D(H)]R(D) = B(t).
In the same way we find that ®(J)R(() = ®(t) for any J € £. Hence
H*(z)R(Z) = H*(z)R(0) or R(z)= R(0).

But the last relation is not valid if Z is infinite.
Now we demonstrate that the random field of Example 3 is non Gibbsian. The conditional distributions in
question are
Qi(@) =p"I(@)(1 - p@)M1", 2 c A, TCZ\A A€k,

where

I

T)= lim +— a.s.

p(@) Altoo [A]

We rewrite Q% () as

o (Em)”
A= T m)

Thus the norming factor should be Zx(F) = (1 — p(z))~!*, and the potential energy is

p(T)

U*(z) = |z|In T—p@)

According to Proposition 2, this potential energy fails to generate a Gibbsian random field in classical sense.
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Abstract. The problem of description of random fields by means of one-point
conditional distributions is considered. A necessary and sufficient condition
for a given system of one-point distributions with boundary conditions to be a
subsystem of some specification is given. A sufficient condition for existence of
random fields with given one-point conditional distributions, as well as some ap-
plications concerning Gibbs description of random fields, non-Gibbsian random
fields and martingale-difference random fields are presented.
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1. Introduction

The description of a random field by means of its conditional distribution
was given by Dobrushin in his fundamental works [5-7]. In [5], Dobrushin gave
sufficient conditions for existence and for uniqueness of a random field with given
specification (consistent system of distributions in finite volumes with boundary
conditions). The existence condition was imposed on the whole specification,
while the uniqueness one was imposed only on its subsystem consisting of one-
point distributions. Discussing this fact, Dobrushin noted that under some
strict positivity conditions, the whole specification can be determined by its
subsystem consisting only of one-point distributions, and stated the problem of
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finding consistency conditions for a given system of one-point distributions with
boundary conditions to be a subsystem of some specification. The answer to
this problem would not only permit one to reformulate Dobrushin’s theory in
terms of one-point conditional distributions, but also to develop the theory in
some directions.

In this paper we propose a solution to that problem, by giving necessary
and sufficient consistency conditions for a given system of one-point distribu-
tions with boundary conditions to be a subsystem of some specification. So,
instead of specifications we introduce a new object of consideration: one-point
systems. We give sufficient conditions for existence of a random field with given
one-point conditional distributions, obtain some new conditions for a Gibbs de-
scription of random fields without the usual assumption of strict positivity of its
conditional probabilities, propose some scheme for constructing non-Gibbsian
random fields and a simple method for constructing martingale-difference ran-
dom fields. Another application of this result concerning nonparametric identi-
fication of random fields was given in [2].

Note that in this paper we consider so-called weakly positive or vacuum
specifications with finite state spaces (for example lattice gas models of statisti-
cal physics). Generalizations to the case of vacuum systems with more general
state spaces are possible.

Note also that a preliminary exposition of our results was given in [4].

2. Preliminaries

2.1. Random fields and specifications

We consider random fields on the v-dimensional integer lattice Z", i.e., prob-
ability measures P on (X%, F2") where (X, F) is some state space, i.e., space of
values of a single variable. Usually the space X is assumed to be endowed with
some topology 7T, and F is assumed to be the Borel o-algebra for this topology.

In this work we concentrate on the case when X is finite, 7 is the discrete
topology and F is the total o-algebra, that is F = T = exp(X).

For any S C Z" let us consider the space X° of all configurations on S. If
S = (), we assume that the space X? = {@#} where @ is understood as an empty
configuration. A probability distribution on X® is denoted by Pg.

For any T, S C Z" such that T' C S and any configuration x = {x, t € S}
on S, we denote by X, the subconfiguration (restriction) of x on T' defined by
X, = {x;, t € T}. Forany T, S C Z" such that TNS = () and any configurations
x on T and y on S we denote by x @ y a configuration on 7T'U S equal to x on
T and toy on S.

Denote by & the set of all finite subsets of Z", i.e.,let € ={A CZ" : |[A] <
oo} where |A| is the number of points of the set A. If A € £\ {0}, we can write
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Pa = {PA(x), x € X*}. For convenience of notations we agree that for A = ()
there exists only one probability distribution Py(@) = 1.
For each A € £ and I C A we write

(Pa);(x) = >  Pixay), xea&l (2.1)
yEX AT

to denote the restriction (or marginal) (P); of P5 on I.

Any random field P on Z” can be described in terms of its finite-dimensional
distributions {Px, A € £} which are consistent in the sense that for any A € €
and I C A we have (PA)I =P;.

For all A € £ there exist for Pac-almost all X € X" the following limits

x € XN

Any system B
Q={Q}, Acfandxec XV}
of probability distributions such that for all A € £ we have Q} = qf for Pe-
almost all X € XA is called conditional distribution of the random field P.

A conditional distribution @ of a random field P satisfies P-almost surely
the condition

X @Y) = QR () (Q) )5 ()
where A,A€ &, ANA=0,xc X", yec XN andx € x(AUR)"
Definition 2.1. A system

Q={Q%, Acfandxex’}

of probability distributions is called specification if for any A, A € & such that
ANA =0 and for any x € X4, yEXK and X € X(AUA) we have

Qi (x®y) = Q™ (%) (Q 7)) ): (2.2)

One of the main goals of random field theory is to study the set of all
random fields having a given specification as a conditional distribution, and
particularly to find conditions on the specification, sufficient for existence and
uniqueness of such random fields. The best known conditions of such type are
the quasilocality of a specification for existence, and Dobrushin’s uniqueness
condition for uniqueness.

Definition 2.2. Let S C Z" and let g = {g*, x € X7} be an arbitrary real-
valued function on X°. We say that the function g is local if there exist some
finite A C S such that ¢ = ¢¥ for all x,y € X satisfying X, = ¥, and it is
quasilocal if it is a uniform limit of local functions.
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Note that quasilocality of g is equivalent to its continuity with respect to
the topology 7, or also to the following condition:

X1 — 0, 2.3
sup g = g% (2:3)

where x¢ denotes the configuration on S equal to x; on I and to some fixed
a € X in all points of S'\ I.

Definition 2.3. A specification Q is called (quasi)local if for all A € £ and
x € X2 the function Q}(x) is (quasi)local as a function of X € XA,

Definition 2.4. We say that a specification Q satisfies Dobrushin’s uniqueness
condition if it is quasilocal and we have

— sup Z sup Z‘Qt z) — QY a:t)‘ 1, (2.4)

2 iezr sezv\t XY zex
where the second sup is taken over all pairs X,y € X%"\! such that we have
iZ”\{s,t} = yzy\{s’t}.

Here and in the sequel, for convenience of notations, we write ¢ for the one-
point set {t}, and z; for the configuration taking value z € X on the set t.
Now we can state the following theorem (see [5]).

Theorem 2.1. Let Q be some fixed specification.

1) If Q is quasilocal, then there exists a random field P having Q as a
conditional distribution.

2) If Q satisfies Dobrushin’s uniqueness condition, then the random field P
having Q as a conditional distribution is unique.

2.2. Gibbsian specifications

The best known examples of specifications are Gibbsian specifications. These
specifications have the following (Gibbsian) form:

exp(~UF(x))
> oyexn exp(=UX(y)) '
Here the function U, = {UX(x), x € XA, X € XN} is called Hamiltonian in A,

the set of functions U = {Ux, A € £} is called system of Hamiltonians, and is
assumed to be given by the formula

Qi (x) = ANEE, xe XD xeah

> Y o B(x;®%5), Acf xeXxt xext, (25)
J:0£JCA JeE:JCA®
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where ® = {®(x), x € X7, J € £\ {0}} is some function taking values in
R U {+o0} and called (interaction) potential. Here and in the sequel we use
the convention that any sum over an empty space of indexes is equal to 0, i.e.,
Uy(0) = 0 for all X € X%".

Let us put

ul(z) = Y Oz ®Fy), te€Z'AcE zekX, xex?\
JCA\t

In order for the system of Hamiltonians U to be well-defined, potentials are
always supposed to be such that the limit
exists and is in R U {+oc} for all t € Z", x € X and X € X%"\*. Since
uN(xy) = UF(xy) for all t € Z¥, x € X and X € X%\, we call the system
u={u(z;), t€Z", v € X, X X?\} one-point Hamiltonian.

Potentials satisfying (2.6) are called convergent. Usually the potentials are
supposed to be uniformly convergent, i.e., potential and Hamiltonians are sup-
posed to be finite, and the convergence in (2.6) (and hence in (2.5)) is supposed

to be uniform with respect to X. Note that Gibbsian specifications with uni-
formly convergent potentials are clearly quasilocal.

2.3. Vacuum systems

Let us start by introducing the notion of so-called vacuum potentials. Fix
some element § € X which will be called vacuum and let X* denote X"\ 6.

Definition 2.5. A potential ® = {®(x), x € X7, J € £\{0}} is called vacuum
potential (with the vacuum 6) if we have ®(x) = 0 for all x € X such that
there exists some t € J satisfying x; = 6.

The class of vacuum potentials corresponds to so-called lattice gas models
of statistical physics. Note that for an arbitrary uniformly convergent potential
and any # € X, one can find a unique (not necessarily uniformly convergent)
vacuum potential giving the same specification as the initial one (see, for exam-
ple, [9]). In physical terminology x; = 6 means that this site is not occupied by
any particle, while all other values represent different types of particles.

Consider an arbitrary configuration x € X, S C Z”. Denote by T the set
of sites occupied by particles, i.e., T'= {t € S, z; # 0} C S. Clearly, we have
X = xeT, and hence the configuration x is uniquely determined by its subcon-
figuration x, € X *T " In the sequel we will not distinguish between this two
configurations and will write, for example, x € X*1, T'C S for a configuration

xon S.
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Now we can rewrite all the above formulas in these notations. For example,
the quasilocality condition (2.3) becomes

sup g%t — g*| — 0.
xeX*T, TCS s

The Gibbsian form is
exp(=U*(x))
> yexnr exp(=UX(y)) ’

The Hamiltonian U = {U¥(x), x € X/, I € £, X € X*°, § C I} corre-
sponding to a potential ® = {®(x), x € X*7, J € £\ {0}} is given by the

formula
US(x) = Y d o o(x; @x7).

J:0£JCI JeE:JcCS

QX (x) = ANe& xeXx !, TcA xeax*s, ScA-

Note that the Hamiltonian no longer depends on A. In fact, vacuum condition
implies that for all A € £ satisfying I C A C 5° we get the same Hamilto-
nian (adding empty sites does not change the energy of a configuration). The
relation (2.6) can be rewritten as

uX(x4) = Ali%ly uxa(zy).

Let us finally note here, that in the vacuum case we clearly have UX(@) = 0
for all X € X*%, S ¢ Z”, and hence we have Q% (@) > 0 for all A € £ and
X € X*°, S c A°. Here 0 is nothing but the configuration #* identically equal
to # on A. This remark leads us to introduce the following

Definition 2.6. A specification
Q={Q5, A& xeXx*® S A%}

is called vacuum specification (with the vacuum 6) if for all A € £ and X € X*7,
S C A€, we have
Q3 (D) > 0. (2.7)

Sometimes vacuum specifications are also called weakly positive specifica-
tions, and the condition (2.7) is called “essentiality” of vacuum.

Note finally that for vacuum specifications the consistency condition (2.2)
can be rewritten in an equivalent form

X QEUN(X) DX
AUK(X@Y) = W Q{B (y)- (2.8)
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3. One-point systems

In this section we propose a description of vacuum specifications, based
on the notion of a consistent system of functions (called one-point system),
which is closely related to one-point distributions. Particularly, the answer to
Dobrushin’s problem for vacuum specifications follows immediately from this
description.

For simplicity, we will first consider the case when X = {0,1}, the vacuum
0 =0 and X* = {1}, i.e., there exists just one type of particles, corresponding
to 1. Hence, any configuration x on S C Z" is identified with a subset T" of S
where the configuration x takes the value 1. In the sequel we will not distinguish
between these two notions and will write, for example, x C .S for a configuration

x on S.
With these notations we have x, = xNA, x®y = xUy, the Gibbsian form
is
— —Ux
Q% (x) = — PEUTX) Ae& xCA, XCAS

B ZycA eXp(_Ui(Y)) ’

the Hamiltonian U = {U¥(x), x € £ and X C x°} corresponding to a potential
® ={D(J), Je&\{0}} is given by the formula

U¥(x) = Y doeul),

J:0£JCx JeE:JCX

and the condition of essentiality of vacuum is just Q} () > 0 for all A € £ and
X C A°.

Before introducing description of specifications by means of one-point sys-
tems, we need some preliminary results.

3.1. Description of specifications by means of H-systems

Here we show that a vacuum specification can be described by means of
a system of functions (H-system), satisfying some consistency conditions. A

more detailed exposition of the results concerning H-systems can be found in [3]
and [4].

Definition 3.1. A system H = {HY, x € £ and X C x°} such that HX > 0 for
all x € £, X C x°, and Hf =1 for all X C Z”, is called H-system.
An H-system H is called consistent if it satisfies the following condition: for
any x,y € & such that x Ny = ) and any X C (x Uy)° we have
Hf

xuy = HY HZY™. (3.1)
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Theorem 3.1. A system Q@ = {Q}, A € £ and X C A°} is a vacuum specifica-
tion if and only if there exists a consistent H-system H such that for any A € £
and any X C A° we have

QR0 = = e XA 32)

Proof. 1) Necessity. Let @ = {Q}, A € £ and X C A°} be a specification with
Qi(#) > 0 for all A € £ and X C A°. For all x € £ and X C x°, we use the

notation .
Hf = (_1)|X\J|T-
% Q5 (0)
Let us show that (3.2) holds. For any A € £, J C A and X C A° we can
write * @
< Qs (0) ~=
1=) Qjly)= = Qi (
2902 o0 N qim) 2
and hence )
Qi (
Q50 @ YCZJ W
Therefore
% 1 1 Q% (x)
HY =) (- —— = — DS QX (y) = g . (3.3)
ch‘; Q@) Qx() JEC: yzc;, Qi (0)

and taking into account the equality

> Hy = s

yCA

we obtain (3.2).

Obviously, (3.3) implies that H = {HY, x € £ and X C x°} is an H-system,
and it remains to verify its consistency. For any x,y € £ such that xNy =
and any X C (x Uy)°, using (3.3) and (2.8) we can write

HE HiUx _ XUy(X) QXUX(y) _ ny(XUy) o HXU
s oy (0) Q5 (0) oy (0) o

which concludes the proof of necessity.

2) Sufficiency. Let H = {HY, x € £ and X C x°} be a consistent H-system.
For all A € £, x C A and X C A€ put
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Let us prove that @ = {Qi, A € £and X C A°} is a specification. Obvi-
ously Q is a system of probability distributions in finite volumes with boundary
conditions. It remains to verify the consistency condition (2.8). We have

QAUK(X Uy) = chAuK Hi - ZzCAUT\ Hx
_ Hx _ H}%UXi Z R Qi_uf\(x) quX(y).
chAuK H ZzCT\ HEox s ’ Q)/i\UX(@) A
The theorem is proved. O

Remark 3.1. Let H be a consistent H-system. For all x € £ and X C x° denote
UX(x) = —In HY. Then the system U = {U¥(x), x € £ and X C x°} satisfies
the following consistency property: for all x,y € £ such that x Ny = ) and all
X C (x Uy)° we have

UN(x Uy) = US(x) + UR(y). (3.4
Now we can rewrite (3.2) in the form
exp(—U*(x))

> oyenexp(—=Ux(y))’

which is the usual Gibbsian form with Hamiltonian ¢4. But in our case, the
system U is an arbitrary system satisfying (3.4), and in general does not have
an explicit form in terms of some potential.

Ae & xCA X CAS

Qi (x) =

3.2. Description of specifications by means of one-point systems

As we have already seen, consistent H-systems are convenient tool for de-
scription of vacuum specifications. Here we will show that one can describe
specifications by means of more simple systems, namely by means of one-point
systems.

Definition 3.2. A system h = {h¥, t € Z" and X C Z" \ t} is called one-point
system if for all t € Z¥ and X C Z" \ t we have h¥ > 0 and for all s,t € Z” and
X C Z" \ {s,t} we have

WERES = O (3.5)

The following lemma shows that these one-point systems correspond one-to-
one to consistent H-systems.

Lemma 3.1. A system H = {HY, x € £ and X C x°} is a consistent H-system
if and only if there exists a one-point system h such that for all x € £ and X C x°©
we have

X _ X XUt XUt U Uty —1
I = 5 htz "'htn
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where n = |x| and ti,...,t, Is an arbitrary enumeration of elements of the
set x. Particularly, for all t € Z" and X C Z" \ t we have H = h¥.

Proof. 1) Necessity. Let H = {HY, x € £ and X C x°} be a consistent H-
system and put A¥ = HX > 0 for all t € Z" and X C Z" \ t. Since H-system H
is consistent, using (3.1) we obtain

HY, o = HY HY® = hy hi™”.

In the same manner H {is 0= h¥ h*-* and hence h is a one-point system. Again
using (3.1) we obtain easily

% _ % pRUt _ ¥ g¥Ut, gRUL UL, X pRUL RUL U Uty g
HX o Htl H?t27~1“7tn} o Htl HtXQ 1 H~){{t3,.1..,ti} - htl hf‘; b htn
which concludes the proof of the necessity.

2) Sufficiency. Let h = {h¥, t € Z" and X C Z"” \ t} be a one-point system
and for all x € £ and X C x° put

HE = b BEM o Pt >, (3.6)

First of all let us verify that this definition is correct, i.e., that it does not
depend on the enumeration of the set x. To this end, let us fix some enumera-

tion t1,...,t, and let ¢ = {¢(1),...,¢(n)} and ¥ = {¢(1),...,9%(n)} be two
permutations of the set {1,...,n}. We need to show that

X XUt (1) XUt 1yU-Utp(n—1) . T XUty (1) XUty 1)U Uty (n—1) (3 7)
to(1) “te(2) to(n) T My ) M) bap (n) T
It is well known that any permutation of the set {1,...,n} can be decomposed

in a product of transpositions of nearest neighbours, and hence it suffices to
consider only the case where ¥ = ¢ o (k,k + 1) with some k € {1,...,n — 1},

e, ¥ = {p(1),...,0(k = 1),0(k + 1), 0(k),p(k +2),...,9(n)}. But in this
case (3.7) is reduced to

XUty U Ut —1) ; XUt 1)U Uty —1) Ut (k)
o (k) o (k+1)

_ U btenon ) XUte@ U Ul e Ut (i)
to(k+1) Lo (k) ’
which is an evident consequence of (3.5). So, H is an H-system, and it re-
mains to check its consistency. Let us take some x = {t1,...,t,} € € and
y ={s1,...,8m} € € such that x Ny = () and some X C (xUy)°. We have
xUy ={t1,...,tn,S1,...,8n} and hence, using the definition (3.6) of the H-
system H, we get

x X 1.XUty XUt U---Uty 1
HY = hi hy, b hy ,
HiuX _ hiuX hiUxusl L hiUxuslumUsm,l
y S1 S2 Sm ?
X _ X XUt U---Utpn—1 7 XUt U---Ut XUt U--Ut,Us1U--USi —1
Hny = h} - hi h LERY o n m-1,
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and hence (3.1) holds. The theorem is proved. O
Now we can formulate the main result of this section.

Theorem 3.2. A system @ = {Q}, A € £ and X C A°} is a vacuum specifi-
cation if and only if there exists a one-point system h such that for any t € Z"
and any X C Z" \ t we have

- 1

hf
GO =17 t

Proof. 1) Necessity. Let @ = {Q}, A € £ and X C A°} be a vacuum specifica-
tion. Consider the H-system #H corresponding to @, and let h be the one-point
system corresponding to H. This h is the desired one-point system, since rela-
tions (3.8) follow immediately from (3.2). The necessity is proved.

2) Sufficiency. Let h = {h¥, t € Z" and X C Z" \ t} be a one-point system.
Consider the H-system H corresponding to h, and let @ be the vacuum speci-
fication corresponding to H. Again (3.8) follows from (3.2), and so the theorem
is proved. O

Let us note that this theorem answers Dobrushin’s problem, by showing
when a system of one-point distributions with boundary conditions is a subsys-
tem of some specification. In fact, a necessary and sufficient condition for that
is condition (3.5) which can be rewritten, using the obvious relation

i7- 0.
Qi (1)

(3.9)

as follows:
Qi (s) Q7% (1) QF(0) Q7 (0) = QF (1) Q¥ (s) Q5 (1) QF° (D).

Remark 3.2. Let h be a one-point system. For all ¢t € Z¥ and X C Z" \ t denote
u*(t) = —Inh¥. The system u = {u*(t),t € Z" and X C Z" \ t} is a one-point
Hamiltonian, which in general does not have an explicit form in terms of some
potential.

Finally, let us give an example of one-point system, based on a simple idea
which will be used in Section 4 for constructing non-Gibbsian random fields.

Example 3.1. Let h = {h}, t € Z" and X C Z" \ t} be a non-negative system
such that hi* = h}? if X3 = X2 up to a finite number of lattice points. Then h
is clearly a one-point system.
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3.3. Generalizations to the case of arbitrary finite state space

All the results obtained above can be straightforwardly generalized to the
case of an arbitrary finite state space X. As always we suppose that there is
some fixed element # € X which is called vacuum and we use X* to denote X'\ 6.

Definition 3.3. A system H = {HY, xe X*!, e &, xe X*°, § C I} such
that HX > 0 forall x € X*/ I € £, x € &*°, § C I°, and HF =1 for all
X e Xx* §cCZ, is called H -system.

An H-system H is called consistent if it satisfies the following condition: for
any x € X* T e & yex ), Je&suchthat INJ =0 and any X € X*7,
S C (IUJ) we have

Hf

_ X 17Xdx
oy = HX HX,

Theorem 3.3. A system @ = {Q}, A € £, X € X*, § C A°} is a vacuum
specification if and only if there exists a consistent H-system H such that for
any A € £ and X € X*°, S C A°, we have

Hi

——x  xex IcA.
EyEXA H}i{ *

Qi (x) =

Definition 3.4. A system
h={h(z), teZ’, ze X", xecX*® ScCZ'\t}

is called one-point system if for all t € Z", x € X* and X € X*°, S C Z” \ t we
have h¥(z) > 0, and for all s,t € Z", z,y € X* and X € x5 8 czZ? \ {s,t} we
have B

R (y) by 77 () = B () BEE7 (y).

Lemma 3.2. A system H ={HX, xeX*, Ic& xecXx* ScI% is a
consistent H-system if and only if there exists a one-point system h such that
forallx e X*!, T e & and X € X*S, S C I° we have

_ — XD XDx DB, _
H:(( = h?l (:Btl) ht2 wtl ('Tt2) U htn " ' ! ('xtn)
where n = |I| and ty,...,t, is an arbitrary enumeration of elements of the

set I. Particularly, for allt € Z¥, v € X* and X € X*°, S C Z" \ t, we have
HY = hi(z).

Theorem 3.4. A system Q@ = {Q}, A € £, X € X*°, § € A°} is a vacuum
specification if and only if there exists a one-point system h such that for any
t €Z¥ and any X € X*°, S c Z¥ \ t, we have

- 1

hi (@)

and Qf(z;) = 17> )

, x e X",
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Finally relation (3.9) becomes

% _ Qf_(it
Q; (0)

~—

, T EX".

4. Applications

In this section we propose some applications of one-point systems.

4.1. Description of random fields by means of one-point systems

As we have already mentioned in Section 2, quasilocality of a specification
guarantees existence of random fields having this specification as a conditional
distribution. Using the results of Section 3, we can describe a vacuum specifi-
cation by means of a one-point system. We have the following

Theorem 4.1. A vacuum specification Q is quasilocal if and only if the corre-
sponding one-point system h = {h¥, t € Z" and X C Z" \ t} is quasilocal as a
function of X for all t € Z", i.e., if we have

sup |hY —hY| —— 0, teZ”.
XCZV\t Iz

Proof. Recall that quasilocality means continuity with respect to the topol-
ogy T2\t If Q is quasilocal, then using (3.9) we get clearly the quasilocality
of h. Now, if h is quasilocal, then by (3.6) we get the quasilocality of the
corresponding H-system #, and then by (3.2) the quasilocality of Q. O

Now we can state a theorem about existence and uniqueness of a random
field with a given one-point system.

Theorem 4.2. Let h = {h¥, t € Z" and X C Z" \ t} be a one-point system.

1) If h is quasilocal, then there exists a random field P having h as a one-
point system.

2) If, moreover, h satisfies the condition

g HE
sup sup = — < 1,
Z\ scz\(sn (L+HE) (L+AF°)

(4.1)

then the random field P having h as a one-point system is unique.

The condition (4.1) is nothing but Dobrushin’s uniqueness condition rewrit-
ten in terms of one-point systems. It is obtained by replacing @ by its values
(expressed in terms of h) in (2.4).
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4.2. Gibbsian one-point systems

The problem of characterization of Gibbsian random fields was considered
in many works (see, for example, [1,9,11,15]). One of the most interesting
aspects of this problem is the description of the class of specifications which are
Gibbsian with a potential satisfying some given conditions. For example, let us
mention the following result.

Theorem 4.3. A specification Q is Gibbsian with uniformly convergent po-
tential if and only if it is quasilocal and strictly positive.

Since vacuum specifications can be described by means of one-point systems,
the above mentioned problem can be reduced to a similar problem for one-point
systems.

Definition 4.1. A one-point system h = {h¥, t € Z" and X C Z" \ t} is called
Gibbsian with potential satisfying some given condition, if the corresponding
specification Q is Gibbsian with a potential satisfying this condition.

Combining Theorems 4.1 and 4.3 we obtain the following result.

Theorem 4.4. A one-point system h is Gibbsian with uniformly convergent
potential if and only if it is quasilocal and strictly positive.

Note that this result can be also proved directly, taking into account that
the uniform convergence of potential is equivalent to the quasilocality of cor-
responding Hamiltonians, and hence to the quasilocality and strict positivity
of h.

Let us now describe a wider class of one-point systems which are Gibbsian
with (not necessarily uniformly) convergent vacuum potentials. For convenience
we call such one-point systems Gibbsian.

Theorem 4.5. A one-point systemh = {h¥, t € Z" and X C Z"\t} is Gibbsian
if and only if the following two conditions are satisfied:

(h1) for all t € Z"¥ and X C Z" \ t we have lim hY' = h},
1zv

(h2) for all t € Z" and X C Z" \ t we have hy = 0 if there exists T € £ such
that hy" = 0.

Proof. 1) Necessity. We suppose that the one-point system h is Gibbsian, i.e.,
that for all t € Z" and X C Z" \ t we have h¥ = exp(—u*(t)) with

)= Y (VU
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where ® is some convergent potential. We need to check conditions (hl) and
(h2). The first condition follows obviously from the fact that the potential ® is
convergent. To check the second one, let us take some ¢t € Z” and X C Z" \ t
and suppose that there exists T € £ such that A" = 0. We need to show that
h¥ = 0. We have

uT(t) = —In(hiT) =4oo= Y VUL = > VUL

Ve . VCxr VCxr

But the last sum contains a finite number of summands and hence at least one
of them is equal to +o0o. This implies that for any I € £ such that I D T we
have u*' (t) = 400, and since ® is convergent we have also u*(t) = +oo, and
hence h¥ = exp(—u*(t)) = 0 which concludes the proof of the necessity.

2) Sufficiency. We suppose that the one-point system h satisfies conditions
(h1) and (h2) and that u is the corresponding one-point Hamiltonian. Let us
consider the potential ® defined by

+00, if V £ € J we have u”/\(¢) = 400,

O(J) =

() > (=D)NNRE(@g),if 3¢ € J such that u”\(¢) € R.
RCJ\!

Note that the last sum is well defined since the number of summands is finite
and by (h2) all the summands are finite. We can also show that this definition
is correct, i.e., that if u/\(¢),u”\*(s) € R then

Z (=D NONEL R (p) = Z (=) AN B (g,

RCJ\L RCJ\s

Indeed, we have

Z(_l)I(J\e)\RIUR(g) _ Z (—1)|T\O\RI, R (p)
RCJ\¢ RCJ\{¢,s}
+ Z (—1)|TAONRUs) g RUs ()
RCJ\{¢,s}
= Z (_1)|(J\£)\R|(UR(£)_URUS(E))’
RCJ\{¢,s}

and in the same manner
Yo DN ) = 3T (DI (s) — ),
RCJ\s RCJ\{¢,s}

Since all the terms in these sums are finite, using (3.5) we see that the sums are
term by term equal.
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It remains to check that the potential ® indeed corresponds to our one-point
system h, i.e., that
u¥(t) = > ®(Vu) (4.2)
VeE: VR
for all t € Z¥ and X C Z" \ t. Since condition (hl) holds, it is sufficient to
verify this relation only in the case when X € £. Let us at first suppose that the
left-hand side of (4.2) is finite. In this case by (h1) we have u" (t) < +oo for all
V C X. Then by definition of ® we have

o(VuUt)= > (=)L),

RCV

and hence the right-hand side of (4.2) equals

> D) = (e,

VCx RCV

Now let us consider the case when the left-hand side of (4.2) is infinite, i.e.,
when u*(t) = +00. We need to show that the right-hand side of (4.2) is also
infinite. Two cases are possible:

e We have u’(t) = +oo. In this case by the definition of & we obtain
®(t) = 400, and since ®(t) is one of the summands in the right-hand side
of (4.2), the latter is infinite.

e We have u?(t) € R. In this case clearly there exists a V C X such that
V # 0, uV(t) = +oo, and for all £ € V we have u"\(¢t) € R. Hence, for
all £ € V we can write

w N () 4+ uVNOVE) = uVN() + uV () = uV V() + (Foo) = Foc.

But ©"\(t) € R, and hence we have u("\OV(¢) = u(VUO\(f) = 400 for
all £ € V. Clearly we have also u(VV\t(t) = u"(t) = 4+00. Thus, by
definition of ® we have ®(V Ut) = 400, and hence the right-hand side
of (4.2) is infinite.

4.3. Non-Gibbsian one-point systems and random fields

In Theorem 4.5 we have seen necessary and sufficient conditions for a one-
point system to be Gibbsian. Now we will describe a simple scheme for con-
structing non-Gibbsian one-point systems and non-Gibbsian random fields. We
need the following
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Lemma 4.1. Let h = {h¥, t € Z" and X C Z" \ t} be a one-point system
and R = {R(X), X C Z"} be a real-valued strictly positive function such that
R(X1) = R(X2) if X1 = X2 up to a finite number of lattice points. Then the
system

hr = {(h))E® t € 2" and x C Z" \ t}

is also a one-point system.

Proof. For any s,t € £ and X C Z" \ {s,t} we can write

(htf)R(E) (h?Ut)R(EUt) — (hti)R(i) (hfut)R(E)
= (WSh)" = (n

(5 3
)R(i) (htiUS)R(iUs)

® K

which concludes the proof. O

Remark 4.1. We require the function R to be real-valued and strictly positive
only in order for the system hr to be well-defined. But the lemma holds under
less restrictive conditions. For example, if the system h is strictly positive,
which is equivalent to say that the corresponding Hamiltonian U is finite, we
can consider R to be any real-valued function, and if the system h is less or
equal than 1 (respectively greater or equal than 1), which is equivalent to say
that the Hamiltonian U is strictly positive (respectively strictly negative), we
can allow R to take the value +oo (respectively —oo). Here and in the sequel
we admit that 1% = 0% = 1, or equivalently (do00) -0 =0 - (+o00) = 0.

Proposition 4.1. Let h = {h¥, t € Z" and X C Z" \ t} be a strictly positive
Gibbsian one-point system, and let R = {R(X), X C Z"} be a real-valued
function such that R(X1) = R(X2) if X1 = X2 up to a finite number of lattice
points. The following three conditions are equivalent:

1) the one-point system hg is non-Gibbsian;

2) there exists at least one pair t € Z" and X C Z" \ t such that R(X) # R(0)
and that h¥ # 1;

3) the function R = {R(X), X C Z"} is not constant on the set M defined by
MN={XCZ"|3teZ" such that t ¢ X and h} # 1}.

Proof. First let us show that 2) = 1). Since h is Gibbsian, it has the form
h = {exp(—u*(t)), t € Z" and X C Z" \ t}

where the one-point Hamiltonian u is finite and given by some convergent po-
tential ® = {®(J), J € £\ {0}}. Hence

hr = {exp(—u*(t) R(X)), t € Z" and X C Z" \ t}.
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We need to show that the specification determined by hx is non-Gibbsian, i.e.,
that there is no convergent potential ® = {®(J), J € £\ {0}} such that

K RE) = Y ®(tUJ), teZ', XCZV\t (4.3)
JeE: Jcx
Suppose that the contrary is true, i.e., that (4.3) holds. In this case we would
clearly have
X <) : Xr e _ : Xr . X
wi(t) R(®) = lim w™ (1) R(Xr) = R(0) Jim o™ () = R(0) u™(1)

for any t € Z" and X C Z" \ t. But the last relation contradicts condition 2).

The implication 1) = 2) is easy to see, since if 2) does not hold, then
for all t € Z" and X C Z" \ t we have R(X) = R(D) or h¥ = 1, and hence
(R)R® = (KX)R®) But the last specification is clearly Gibbsian, since got by
multiplying a Gibbsian potential by a constant.

The implication 3) = 2) is evident.

For the proof of 2) = 3) note that since there exists a pair t € Z" and
X C Z" \ t such that R(X) # R(0) and hY # 1, clearly we have X € 9. On
the other hand, 91 contains at least one finite set y, since otherwise we would
have h¥ = 1, and hence u®(s) = 0, for all x € £ and s € x°, which is possible
if and only if ® = 0 on £ \ {0} which contradicts h¥ # 0. So we will have
R(X) # R(0) = R(y), which shows that R is not constant on . O

Remark 4.2. 1) Clearly, as in Lemma 4.1 we can allow R to take the value +o0o
or —oo under suitable conditions.

2) If hg is a one-point system of some random field P, then this random
field is non-Gibbsian (i.e., does not have any Gibbsian one-point system) if and
only if the function R = {R(X), X C Z"} is not P-almost surely constant on .

Proposition 4.1 allows to construct non-Gibbsian one-point systems and, if
the existence is known, non-Gibbsian random fields. Note that non-Gibbsian
random fields constructed this way are not quasilocal, in the sense that they do
not have any quasilocal conditional distribution.

As an application let us give an example of a non-Gibbsian one-point system.
For any p € (0,1) let us denote by J? the set of all X C Z" such that the following
limit exists:

Ilgzﬂy W = p(X) =p,
and put J = X% \< U 3p> and
p€(0,1)
- 0, ifxe?,
hi =93 pX)

otherwise.
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Clearly this is a one-point system, since
BE XU p(X) p(XUt) _ p(X) p(XUs) — X pXUs
T 1-p®) 1-p(RUL)  1-p(X) 1-p(xUs)

Now, let us remark that the system h can be rewritten in the form h¥ =
(h¥)E®) where hY = e~ ! is the Gibbsian one-point system corresponding to the
potential ® = {®(J) = 1y5=1}, J € £\ {0}}, and the function R is given by

00, ifx €7,
R(X) = X
®=] , ®
1 -p(x)

Clearly condition 3) of Proposition 4.1 is satisfied, and hence h is non-Gibbsian.

Note that this one-point system corresponds to a well known example of
a non-Gibbsian random field. In fact, for any p € (0,1) let us consider the
Bernoulli random field BP with parameter p. Since BP is concentrated on J7,
we have BP-almost surely the equality

p__ Bi(1)
1-p BY(0)
Hence, taking into account (3.9) we see that all the fields B?, p € (0,1), have
h as a one-point system. So, any mixture of these fields also has h as a one-
point system. Let us consider such a non-trivial (P # BP, p € (0,1)) mixture
P and show that it is non-Gibbsian. Indeed, in this case the set 1 is equal to
{X € Z"}, and the function R is not P-almost surely constant on N, since it
takes different values on different JP-s. So, according to part 2) of Remark 4.2
the random field P is non-Gibbsian. Note that this fact can also be obtained
using a general result from [8, Section 4.5.1].

To conclude, let us note that by direct calculation one can easily obtain the

explicit form of the specification @ determined by h:

. B 1{x:®}’ ifiej,
T {<p<f>>lxl (1 = p(R) M, otherwise

otherwise.

iy =

4.4. Martingale-difference one-point systems and random fields

A random field {&;, ¢t € Z"} taking values in X C R is called martingale-
difference if for all t € Z" we have

E(S | &, s€Z"\t) =0

almost surely. This definition implies that if for all A € & we put S, = Zﬁt,
teA
then for all finite A C A C Z" the following martingale equality holds:

E(S, | &, t € A) = S5.
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Martingale-difference random fields are interesting for several reasons. For
example, for such random fields one can develop a limit theory similar to one
developed in [10] for martingale-difference random processes (see, for exam-
ple, [12,14]). Besides, such random fields are of interest in some problems of
statistical physics. One of the reasons is the asymptotically normal behaviour of
the total spin at the critical point for martingale-difference models, another one
is that to any lattice model with finite spin one can correspond some martingale-
difference model, so that probabilities of the total spin in one model can be
expressed in terms of probabilities of the other one by means of some com-
binatorial formulas (see [13]). This gives a possibility to study the models of
statistical physics by means of martingale theory.

Below we give a simple method for constructing martingale-difference ran-
dom fields using one-point systems.

Let X C R be a finite space with a fixed vacuum 6.

Definition 4.2. A one-point system
h={h(z), teZ’, xc X", xecX*° ScCZ'\t}
is called martingale-difference if we have
Z zhY(z) =0
rzeX*
forallt € Z and X e X*5 S C Z" \ t.
We need the following general result about one-point systems.

Lemma 4.2. Consider finite state spaces X and YV with fixed vacuums 6 € X
and @' € W respectively and write, as usually, X* = X\ § and W* = W\ ¢'.
Let h={h}(z), t € Z", x € X*, K€ X*°, S C Z" \ t} be a one-point system,
and let ¢ be a function ¢ : W — X such that p(w) = 0 if and only if w =6’.
Then the system

h, = (k¥ (p(w)), t € Z", we W*, we WS, §c Z"\t},
where (W) = {p(wWs), s € S}, is also a one-point system.

Proof. First of all, let us note that since ¢(w) = 6 if and only if w = ', the
system hy, is well defined. Further, for all s,t € Z¥, w,v € W* and W € W*¥,
S CZ”\ {s,t} we have

hf(w) (QD(U)) h;p(W@vs) (QD(UJ)) _ hf(w) (QD(U)) h@(W)GB@(v)s (QO(QU))

B (p(w)) TP (o (0))
)

= B () RETE (o)

which concludes the proof. O
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Now we can state the following

Theorem 4.6. Suppose the conditions of the preceding lemma are satisfied,
and suppose moreover YW C R, 8/ =0 and

Z w=0 forall ze&X".

wep~1(z)

Then the one-point system h,, is martingale-difference.

Proof. We need to show that for all t € Z and W € W*°, § € Z” \ t, we have
Y owews W hf(w)(go(w)) = 0. Indeed,

S whfPpw) = Y 3 whi™(pw)

weW* TEX* wep~(x)
= Z hf(w)(aﬁ) Z w = 0
TeEX* wEp~1(x)
which concludes the proof. O

It follows clearly from Theorem 4.6 that if the one-point system h, defines
some random field, then this field is martingale-difference. The existence of such
fields can be guaranteed, for example, by quasilocality of the one-point system h,
since quasilocality of h implies obviously the quasilocality of h,. For example, if
we consider the ferromagnetic Ising model, W = {—1,0,1} and p(w) = 2 |w| —1,
we get the martingale-difference model considered in [13].
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Description of Specifications by Means of Probability
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The problem of description of specifications by means of probability distribu-
tions in small volumes with infinite boundary conditions is considered. The
description of specifications by means of n-specifications (consistent systems of
probability distributions in volumes of cardinality bounded by n with infinite
boundary conditions) is established under the condition of very weak positiv-
ity. Particular attention is paid to the most important case n =1 which requires
special considerations.

KEY WORDS: Consistency conditions; specification; n-specification; positivity
conditions; weak positivity; very weak positivity.

1. INTRODUCTION

The notion of specification—consistent system of probability distributions
in finite volumes with infinite boundary conditions—is a basic one in
the theory of random fields and in mathematical statistical physics. The
importance of this notion is that the description of random fields in terms
of specifications turned out to be a powerful tool for the development
of the theory of random fields (see, for example, ref. 1). Besides, the
specifications admitting Gibbsian description represent the mathematical
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background for the study of systems of statistical physics. The problem
of Gibbsian description of specifications was a subject of consideration of
many authors (see, for example, refs. 2-5).

The theory of description of random fields by means of specifica-
tions was constructed by Dobrushin in his fundamental works (refs. 6-8).
Particularly, the conditions of existence and uniqueness of random fields
described by a given specification were obtained in ref. 6.

In the latter work, while commenting the uniqueness condition,
Dobrushin touched upon the problem of restoration of specifications by
means of their one-point elements. Several years ago, in a private con-
versation with one of the authors Dobrushin pointed out the importance
of a closely related problem: the problem of description of specifications
by means of consistent systems of one-point probability distributions with
infinite boundary conditions. However, at that time no consistency condi-
tions on one-point probability distributions were known.

These two problems of Dobrushin were solved by the authors in refs.
9 and 10 under the condition of weak positivity (as well as under the
condition of strict positivity). In particular, consistency conditions under
which a system of one-point probability distributions with infinite bound-
ary conditions describes a specification were established in ref. 10 under
the condition of weak positivity. There it was also shown that the weak
positivity condition is coordinating, that is, a specification is weakly posi-
tive if and only if its subsystem consisting of one-point elements is weakly
positive. It was equally proved that under the condition of weak positiv-
ity, the quasilocality property is heritable, that is, a weakly positive spec-
ification is quasilocal if and only if its subsystem consisting of one-point
elements is quasilocal.

Let us note here that the consistency conditions established in refs.
9 and 10 were mentioned as properties of strictly positive conditional
probabilities of Markov random fields in ref. 11. Note also that some
results concerning the problem of restoration of strictly positive spe-
cifications can be found in refs. 1 and 5. In ref. 12 the attempt to
solve the problems of restoration and description of specifications in
some non-positive cases was undertaken, but sufficiently full results were
obtained only in one-dimensional case and under more complicated
conditions.

In the present work the results of ref. 10 are extended to essentially
more general situation. First, instead of consistent systems of one-point
probability distributions with infinite boundary conditions we consider
more general systems: so-called n-specifications, that is, consistent sys-
tems of probability distributions in small volumes (volumes of cardinal-
ity bounded by n) with infinite boundary conditions. But the principal
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difference is that the results are obtained under so-called very weak pos-
itivity condition which is essentially weaker than the conditions used in
ref. 10.

Note that the results of the present work allow one to formulate the
condition of existence of random fields described by a given specification
in terms of the latter’s one-point elements only, that is, exactly in the same
terms as the well-known Dobrushin’s uniqueness condition. So, it becomes
possible to formulate the problem of description of random fields directly
in terms of 1-specifications.

Note in addition, that the results of the present work will be proba-
bly useful in the recently emerged theory of non-Gibbsian random fields
which are now intensively studied (see, for example, ref. 13).

Note finally, that the methods used in the present work are new and
considerably differ from those used in ref. 10.

2. PRELIMINARIES

We denote by Z" the v-dimensional integer lattice and by & the set of
all finite subsets of ZV, that is, § ={A CZ" :|A| < o0}, where |A| is the car-
dinality (the number of points) of the set A. For convenience of notations,
we will omit braces for one-point sets, that is, will write a instead of {a}.
For any neNUoco=({1,2,...,00} we equally denote &, ={A €& :|A|<n}.
Clearly, for n =00 we have £ =¢.

Let (%', #) be some measurable state space. Usually 2 1s assumed to
be endowed with some topology 7, and % is assumed to be the Borel
o-algebra for this topology. In the present work we concentrate on the
case when % is finite, 7 1is the discrete topology and % 1is the total
o-algebra, that is, # =7 = part(%).

For any T C Z' we consider the space 27 of all configurations on T.
For T =¢ we assume that 27 ={@}, where @ is understood as an empty
configuration. For any 7,S CZ" such that T CS and any configuration
x={x;, teS} on S we denote x; the subconfiguration (restriction) of x
on T defined by x, ={x;, t€T}. For any T, S CZ" such that TNS=¢ and
any configurations x on 7 and y on S we denote xy the concatenation of
x and y, that is, the configuration on TUS equal to x on 7 and to y on
S. For any aeZ, T CZ' and x € 2T, the notation x =a will mean x; =a
for any r €T, and the notation x >a will mean x; =a for some teT.

Let A €&. We denote a probability distribution {PA (x), x € 2"} on
I by PA. Note that in the case A= there exists only one probability
distribution defined by Py(@)=1. For any I/ CA we denote (P,), the
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restriction (or marginal distribution) of P, on I, defined by

(Pp),(x)= > Ppr(xy).

yexrh\!

Finally, let us recall Dobrushin’s consistency condition and the notion
of specification, introduced in ref. 6.

Definition 1. Let A €&. Any system {Q%, ¥ € 2% \A} of probabil-
ity distributions on 2 indexed by infinite boundary conditions will be
called A-kernel and denoted by Qf.

Definition 2. Let A< and I C A. We will say that a A-kernel Q%
is consistent in Dobrushin’s sense with an I-kernel Q7 (and vice versa), if

REy)=(Q%), ., ®) QF (»)

for any x e 28\, ye ! and x e 27\,

Definition 3. A family {Q%, A €&} of A-kernels indexed by Aeé
will be called specification, if Q% and Qf are consistent in Dobrushin’s
sense for any A€ & and I C A.

The main goal of this work is the description of specifications by
means of probability distributions in small volumes with infinite boundary
conditions, more precisely, by means of n-specifications.

3. NOTION OF n-SPECIFICATION AND POSITIVITY POINTS

Recall that specifications are families of A-kernels in finite volumes.
Let us consider smaller systems: families of A-kernels in volumes with
bounded size.

Definition 4. Let neN. Any family {Q%,A€é&,} of A-kernels
indexed by A €&, will be called n-system.

In order to describe specifications, n-systems must satisfy some con-
sistency conditions which should at least be properties of n-systems con-
tained in specifications. So, let us introduce the following notion of
n-specification.

Definition 5. Let neN\ 1. An n-system {Q%, A €&,} will be called
n-specification, if Q} and Qj are consistent in Dobrushin’s sense for any
Aeé&, and I C A.
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Note that the n-systems contained in specifications are indeed n-spe-
cifications. Note also, that in Definitions 4 and 5 one can include the case
n=o00, and that oco-specifications defined this way will be clearly nothing
else but specifications.

Remark equally, that we did not yet define the 1-specifications, which
would be the most interesting for our purpose, since they are the small-
est. Why we did not do it? The matter is that if we introduce the notion
of 1-specification in the way of Definition 5, then it would be degenerate,
since for 1-systems Dobrushin’s consistency conditions become identities.
So, in order to define the notion of 1-specification, it is necessary to find
some “internal consistency conditions” (that is, some relations between
one-point probabilities only), which should be properties of 1-systems con-
tained in specifications. Such properties are given in Theorem 8§, but before
formulating it let us introduce the notion of positivity point, which will
play an important role all along this paper.

Definition 6. Let Acéd, let T CZ"\A and x€ 27 \A\T | and let Q%
be a A-kernel. A configuration u e 2 is called positivity point (p.p.) of
Q¢ under boundary condition (b.c.) varying on T and equal to X outside, if
for any e € 27, we have Q’f\"‘ (u) > 0.

Let us formulate immediately one of the most important properties of
positivity points.

Theorem 7. Let J,I1€& such that J NI=¥, put A=JUI, let
TCZ'\A and x€ ZZ \A\T and let Q%, Q7 and Q% be a J-kernel, an
I-kernel and a A-kernel. Suppose QY 1s consistent in Dobrushin’s sense
both with Q% and Qf. If u is a p.p. of QY under b.c. varying on JUT
and equal to X outside, v is a p.p. of Qf under b.c. varying on JUT and
equal to X outside, then the concatenation uv is a p.p. of Q% under b.c.
varying on T and equal to X outside.

This theorem will be proved in Section 6, as well as the following the-
orem presenting the above mentioned properties of 1-systems contained in
specifications.

Theorem 8. If Q={QY, A e &>} is 2-specification, then
Q') QT Q7w QW= Q"M QW) Q) Q)
for any r,s€Z’, x€Z', y,veX*and xe X% \1\*, ()

and forany p.p.u of Q7 under b.c. varyingons and equal tox outside.
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Remarks: (1) This theorem remains valid if any one of x, y,u,v is
supposed to be a positivity point.

(2) In the formulation of the theorem we could take @ to be
n-specification for some ne (N\ 1)U ococ.

(3) In this theorem Q@ is arbitrary, and the conditions are imposed
on the arguments of the relation (1) only. A weaker version of the the-
orem was already established by the authors in ref. 10 under some addi-
tional conditions on @. Note also, that it is not possible to obtain the
relation (1) without any condition at all. Indeed, as shows the following
example this relation may not hold in general.

Example 9. Let the state space 2 ={0,1,2,3} and consider the
oo-system Q={Q%, A € &} defined by

Tix=0 if [A] =2

T if ¥30
A®)=11/5 if¥=1and xe{0,1,2)

2/5 ifx=1and x=3

1/4  if¥¥0and ¥#£1 if [A]=1.

It is not difficult to verify that @ is a specification. Further, if for some
arbitrary t,s €Z”, we take x € 2% \*\" such that x=1, and put x=2,
u=3, y=1 and v=2, the relation (1) will clearly fail.

Now, in view of Theorem 8 we can introduce the following notion of
1-specification.

Definition 10. A 1-system {Q%, A €&} is called 1-specification, if

Q') QY () Q) Q¥ (W)= Q™M (») QX (x) QT (v) Q7' (w)
for any t,s€Z", x e X", y,veZ® and xe 2 \1\s, (2)

and forany p.p.u of Q7 underb.c. varyingonsand equaltoX outside.

Note, that like the case n>2, the I-systems contained in
specifications will be 1-specifications. So, for any n € N, the restriction of a
specification on &, is nothing but an n-specification. Description of speci-
fications by means of n-specifications is in some sense an inverse operation
to this restriction.
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4. PROBLEM OF DESCRIPTION OF SPECIFICATIONS BY MEANS
OF n-SPECIFICATIONS

The problems of this type was firstly considered by the authors in
refs. 9 and 10. In these works, the problem of description of specifications
by means of n-specifications was solved for n=1 under the condition of
“strict positivity”, as well as under the condition of “weak positivity”.

4.1. Strict Positivity
The strict positivity is the simplest positivity condition for n-systems.

Definition 11. Let neNUoco. An n-system {Q%,Aeé&,} will be
called strictly positive, if for any A € &, each configuration x € 2% is a p.p.
of Q% under b.c. varying on Z"\ A and equal to # outside.

Remark that Definition 11 simply means, that for any A €&,, any
xeZ? and any xe 2% \M we have Q’X(x) > 0.

The strictly positive specifications are widely studied and used in
mathematical statistical physics. For example, the specifications admitting
Gibbsian description with a real-valued potential are strictly positive.

Note also, that under the condition of strict positivity, the consistency
conditions (2) from Definition 10 of 1-specification become

QX () Q' (» QF () QM ()= Q¥ (y) QX (x) QT (v) Q" (u)

for any t,s€Z’, x,uc ", y,ve2* and x e 2% \1\s,

Let us now explain the nature and point out several consequences of
the problem of description of specifications by means of n-specifications
using as example the results obtained in refs. 9 and 10.

The main result is that any strictly positive 1-specification g describes
a specification, that is, there exists a unique specification containing ¢.

The second result is that the strict positivity condition is coordinating,
that is, a specification @ is strictly positive if and only if the 1-specifica-
tion contained in @Q is strictly positive. Let us note here that the necessity
is trivial, and the sufficiency becomes evident in view of considerations of
the present work due to Theorem 7.

Note that these two results imply also that any strictly positive specifi-
cation @ can be restored by the 1-specification contained in it (that is, any
specification containing the same 1-specification is necessarily equal to Q)
and allow us to conclude that the description is a one-to-one correspon-
dence between strictly positive 1-specifications and strictly positive specifi-
cations.
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The third result is that under the condition of strict positivity the
quasilocality property is heritable, that is, a strictly positive specification Q
is quasilocal if and only if the 1-specification contained in @ is quasilocal.

This result together with the first one allow us to formulate the con-
dition of existence of random fields described by a given specification
in terms of the latter’s one-point elements only, that is, exactly in the
same terms as the well-known Dobrushin’s uniqueness condition, and so,
it becomes possible to formulate the problem of description of random
fields directly in terms of 1-specifications.

Note in addition, that as it will become clear from the subsequent
considerations of this work, these results can be extended to the case of
arbitrary n € N.

Now we want to consider the problem of description outside of the
scope of strict positivity condition. First of all let us notice that under no
condition at all this description does not hold.

4.2. Counterexample

Let us fix some neN. If the description of specifications by means
of n-specifications held under no condition at all, then any n-specification
would describe a specification. The following example shows that it is not
true.

Example 12. Let 2 ={0, 1}, denote F(x) the function which counts
the number of elements equal to 1 in a configuration x on T CZ" and
consider the oo-system Q={Q%, A €&} defined by

Tx=0y 1if F(x)=0
Te=yy W FX) =1 if [A|Z22
A =114y if F@E =0
1/2 if F(x)=1
[ Tx=1y 1if F(x)=2 if [A|=1.

It is not difficult to verify that @ is a specification. However, the
n-specification g, contained in Q does not describe a specification, since,
for example, the co-system Q_ {Q A» A €&} defined by

P Tx=1y 1 [A|Zn+2,
QA(x): _ )
W) if [Al<n+1

1s also a specification containing ¢q,,.
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So, it becomes evident that in order for the description of speci-
fications by means of n-specifications to hold, some kind of positivity
condition is necessary. The strict positivity is the most restrictive positivity
condition, since it does not permit zeros at all. A weaker positivity condi-
tion is the “weak positivity” which was already studied by the authors in
refs. 9 and 10.

4.3. Weak Positivity

The weak positivity condition for n-systems is formulated as follows.

Definition 13. Let neNUoo. An n-system {Q%,A€é&,} will be
called weakly positive, if there exist some element 6 € 2 (called vacuum),
such that for any A € &, the configuration x =6 is a p.p. of Q% under b.c.
varying on Z"\A and equal to @ outside.

Clearly, this condition on n-systems is really weaker than the strict
positivity one. It remains really weaker when applied to n-specifications
too. For instance, the n-specification contained in the specification @ from
Example 9 1s weakly positive but not strictly positive.

Weakly positive specifications are well known in mathematical statis-
tical physics. For example, the specifications admitting Gibbsian descrip-
tion with a vacuum potential (which may take infinite values) are weakly
positive.

Note also, that under the condition of weak positivity, the consistency
conditions (2) from Definition 10 of I-specification have a simpler equiv-
alent form given in the following proposition. The proof of this proposi-
tion is quite similar to those of Proposition 18 (see Section 6) and will be
omitted.

Proposition 14. A weakly positive 1-system {Q%, A €&} is 1-spe-
cification if and only if

QX () Q¥ () QP ) QM (1°)= Q™ (») QF (x) Q¥ (v°) QI w°)
for any t,s €Z", x e X", ye X5, xe XL \1\s,

and for u®e 2" such that u°=6 and v° € Z* such that v°=8.

As we have already mentioned, the problem of description of specifi-
cations by means of n-specifications under the condition of weak positivity
was solved for n =1 in refs. 9 and 10. There it was shown, that any weakly
positive 1-specification describes a specification. It was equally shown, that
the weak positivity condition is coordinating, and under this condition the
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quasilocality property is heritable. Moreover, as it will become clear from
the subsequent considerations of this work, these results can be extended
to the case of arbitrary n e N.

So, the further study of the problem of description of specifications
by means of n-specifications reduces to determination of a weaker (in ideal
case the weakest) positivity condition, under which this description holds.
Such a condition is the very weak positivity condition obtained in the
present work.

4.4. Very Weak Positivity

Since the positivity points used in Definition 10 of I-specification are
positivity points under boundary condition varying on one-point sets only,
it seems natural to consider the following positivity condition.

Definition 15. Let neNUoo. An n-system {Q%,Acé,} will be
called too weakly positive, if for any Ae€é&,, any s€Z’\ A and any
¥ e 27" \A\5 | there exists a p.p. of Q9% under b.c. varying on s and equal
to X outside.

However, in accordance with its name, this condition is too weak in
order to solve the problem of description. Indeed, a too weakly positive
n-specification not necessarily describes a specification (for n =1 it is suffi-
cient to consider the I-specification ¢; from Example 12, and a similar
example can be easily constructed for arbitrary n € N). Moreover, the too
weak positivity condition is not coordinating (for instance, the specifica-
tion @ from Example 12 is not too weakly positive). But what is the
matter?

The weak positivity and strict positivity conditions were shown to be
coordinating by concatenating positivity points thanks to Theorem 7. But
for the too weak positivity condition this approach does not work: if we
concatenate two positivity points under boundary conditions varying on
one-point sets, we obtain a positivity point under fixed (varying on the
empty set) boundary condition. So, we need to modify (strengthen) the
condition of too weak positivity in order to be able to correctly concat-
enate positivity points. This leads us to introduce the following positivity
condition.

Definition 16. Let neNUoo. An n-system {Q%,A€é,} will be
called very weakly positive, if for any A € &, any V € & such that VCZ"\ A
and any ¥ € 27 \A\V | there exists some p.p. u=6(A, V,¥) of Q% under
b.c. varying on V and equal to x outside.




Description of Specifications by Means of Probability Distributions 179

Description of Specifications by Means of Probability Distributions 291

Clearly, this condition on n-systems is really weaker than the weak
positivity one. As shows the following example, it remains really weaker
when applied to n-specifications too.

Example 17. Let 2 ={0, 1}, let F be the function used in Exam-
ple 12 and consider the oco-system Q={Q%, A € &} defined by

_ Te=0y 1f F(X)=00,
Ax) = _
Tx=1y 1f F(X)<o0.

It is not difficult to verify that @ is a specification, and that the n-spe-
cification contained in Q is very weakly positive but not weakly positive.

Note also, that as well as in the weakly positive case, under the con-
dition of very weak positivity, the consistency conditions (2) from Defi-
nition 10 of 1-specification have a simpler equivalent form given in the
following proposition which will be proved in Section 6.

Proposition 18. A very weakly positive 1-system {Q%,A €&} is
1-specification if and only if

Q7 (x) Q¥ () QP () Q¥ ()= Q™M (») QF (x) Q¥ () Q7Y ()
for any t,s €Z", x e X", ye X5, xe XL \1\s, (3)

and for u°=6(t,s,x) and v°=6(s,t,x).

In Section 5 we present the main results of this paper which estab-
lish the description of specifications by means of n-specifications under the
condition of very weak positivity.

5. MAIN RESULTS AND THEIR PROOFS

The main results of this work consist of the following three theorems.
The first one 1s that any very weakly positive n-specification describes
a specification.

Theorem 19. Let neN, and let ¢ be a very weakly positive n-spe-
cification. Then there exists a unique specification containing q.

The second one is that the very weak positivity condition is
coordinating.
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Theorem 20. Let neN, let Q be a specification, and let ¢ be the
n-specification contained in @. Then @ is very weakly positive if and only
if ¢ 1s very weakly positive.

The third one is that under the condition of very weak positivity, the
quasilocality property is heritable.

Theorem 21. Let neN, let Q be a very weakly positive specifica-
tion, and let ¢ be the n-specification contained in Q. Then Q is quasilocal
if and only if ¢ is quasilocal.

The proof of the second theorem is evident, since the necessity is triv-
ial, and the sufficiency directly follows from Theorem 7. The third theo-
rem will become clear in view of the proof of the first one. The proof of
the latter will be given in the end of this section and needs some auxil-
iary results which are of independent interest too. These results are given
below and will be proved in Section 6.

Proposition 22. Let A€é and I CA. A A-kernel Q) and an
I-kernel Q7 are consistent in Dobrushin’s sense if and only if

*(xy) QFF (v) = Q% (xv) Q¥ (y)

y 4)
for any x e 28\, y,veZ! and xe 27\,
The equivalent form given in this proposition looks simpler than the
original form of Dobrushin’s consistency condition and will be intensively
used in our considerations.

Proposition 23. Let ne(N\1)Uoo. An n-system Q={Q%, A €é&,}
will be n-specification if and only if Q3 and Q},, are consistent in
Dobrushin’s sense for any A €&, and 7€ A.

This proposition considerably reduces the set of Dobrushin’s con-
sistency conditions needed in order to check if an n-system is
n-specification.

The next and final theorem establish a general and useful property of
n-specifications.

Theorem 24. Let ne(N\1)Uoo and let Q={Q%.Aeé,} be an
n-system.




Description of Specifications by Means of Probability Distributions 181
Description of Specifications by Means of Probability Distributions 293
(1) If Q is n-specification, then
Q) (x4) Q" (xp) Q¢ () Q) (wpy)
= Q) (xp) Q¢ ” (x¢) Qi * (up) Q" (uy)
for any A, B, C, D such that (5)
AUB=CUDeé&, and ANB=CND=4,
and for any x,ue24Y% and ¥ € 2% \4\8 such that
uc- is a p.p. of Qg under b.c. varying on D and equal to X outside.
In particular
Q" (x) Q4 ,(») Q) (uv) = Q (xy) Q' ,(v) QF* () ©

for any A€é&y, €A, x,ued’, yveZ*\" and xe 2%\,

(2) Conversely, if (6) is fulfilled, then Q is n-specification.

This theorem contains in particular the results of Theorem 8 and at
the same time characterizes n-specifications.

Now, we can at last prove the above stated theorem about description
of specifications.

Proof of Theorem 19. Let neN, and let ¢ ={q%, A €&,} be a very
weakly positive n-specification.

In order to prove the theorem it is sufficient to show, that there exist
a unique (n+ 1)-specification @ containing ¢. Indeed, in this case Q is
clearly very weakly positive too, and so we can conclude the proof by
means of iteration.

First we prove the uniqueness: if there exists an (n+ 1)-specification
Q={Q%, A e&,+1} containing ¢, then it is the unique (n+ 1)-specification
containing ¢. For each A € & let us fix some point £€ A. If |A|<n, then
clearly

() =g (x). (7)

Now let [A|]=n+1 and xe 2% \%, and let u e 2™ be the configuration
defined by u; =6(t, A\ t,x). Using (6) we have

Xu XX
YN X q, A\e(xz) qug(xA\g) g
A(x)_ A(u) EuA\E fx[ . ( )
q, (ug) Qpr\ (A ()
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Since Z Q% (y) =1, we get finally

yeah
-1

~ qu\e(y)qm (YA ¢)
rw= Y A INVAY/NY: . )

yeas qz M) ‘lAfz("A\z)

So, any (n 4+ 1)-specification containing ¢ have necessarily the explicit form
given by the formulas (7), (8) and (9), and hence the uniqueness is proved.

To conclude the prove of the theorem, it remains to verify that the
(n+1)-system Q={Q%, A €&,+1} defined by (7), (8) and (9) is indeed an
(n 4+ 1)-specification. Applying Proposition 23 and taking into account that
g 1s n-specification, it is sufficient to verify Dobrushin’s consistency condi-
tion for Q% and q% with |A|=n+1 only. Further, according to Propo-
sition 22 this condition becomes

T @) q, (0) = Q% (xv) q, (). (10)

For the case t =¢, using (8) we obtain

q MV (x) qix\m)

(x.)’) qA\g(v) = JIT\( ) A\g(v)

Xu

q, “\(uy) qA\g(uA\g)
- Teae ) gy () -
R0 = fﬁ“ ax\ ()
AV (uy) ‘lA\z(”A\z)

= Qi (xv) g\ ,(¥),

and so (10) is verified. Now, for the case of arbitrary t € A, it is sufficient
to show that the right-hand side of (8) does not depend on the choice of
¢ and apply the same argument.

This property is true due to the following chain of equalities

GV G ) G € ) @ ()
aF ) ) ) N ) G )

] A\‘(xt) qz HANE(x) (If\x(;[\g(xz\\z\z)

xxt

Xu xXx,u

q; A\t(ut) q, ! A\t\ﬂ(”g) qA\;\g(uA\t\Z)
Xu XX

q; *V(x,) qA<t(xA\z)

q V) Q)
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The validity of these equalities in the case n >2 is guarantied by The-
orem 24. For n =1 the first and the third equalities are trivial, and the sec-
ond one follows from the definition of 1-specification. So, the theorem is
proved. |

6. PROOF OF AUXILIARY RESULTS

Proof of Theorem 7. Let us suppose the contrary: there exists some
aeZT such that Q% (uv) =0. Since QY is consistent in Dobrushin’s sense
with Q7, according to Proposition 22 we can write

QY (uv) QT (y) = Q% (uy) Q¥ (v).

Taking into account that v is a positivity point, we have Qf"‘“ (v) >0,
and hence Q%% (uy) =0 for any ye 2.
Similarly, for any y € 27, from the relation

Q¥ (uy) Q% (x) = Q¥ (xy) Q¥ (w),

we get Qif(xy):O for any x e 2. B
So Q3%(z)=0 for any zeZ A which contradicts the fact that Q%% is
a probability distribution. |}

Proof of Theorem 8. This theorem clearly follows from the first
assertion of Theorem 24 by substituting A=C=t, B=D=s, x=xy
and u=uv. ||

Proof of Proposition 18. The necessity is trivial. In order to prove
the sufficiency, let us first show that

Q" (1) QM Q7w Q1) = Q") QY ) Q) QW)
for any t,s €Z', x,uc X', ye X*, xe AL \1\s, (11)

and for v°=0(s,t,Xx).

Using (3) we obtain

Q7 () Q™ (» Q7 ) QY () = QT (y) Q7 (x) QX () QT (),
QX () Q¥ () QF (1) QY (X)) = Q™ (v) QF () QY () Q¥ ().
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Suppose quo(y)>0. Then, if we cross-wise multiply these two equali-
ties and cancel identicglo strictly positive terms, we get the necessary rela-
tion. Now suppose QM (y)=0. From the same equalities we get clearly

Q" '(x) Q¥ (y)=0 and Q" () Q*“(y)=0, and so the property (11) is
proved.
Further, using (11) we obtain

Q" () Q) Q) Q" ()= Q" (» QF () Q) QY (w),
Q" ™) Q@ Q' ) Q1) = Q") Q') Q) Q" (w),
and so, applying once more the same argument we can conclude the proof

of the proposition. |

Proof of Proposition 22. First suppose that Q% and Qj} are consis-
tent in Dobrushin’s sense. Then

QL (xy) Q7 (v) = (QF),,,®) Q*(») QF* (v)
= (Q),, ) Q7 (») Q7 (»)

= Q% (xv) QF*(y),

and so we have (4).
Now suppose (4). For any ve 2! we can write

* (xy) QF (v) = Q% (xv) QF* ().

Summing over v we obtain

TEy) =Y QF(xv) QFF (»)=(Q),,, () Q7 (»).

vex!

and so Q% and Qj are consistent in Dobrushin’s sense. [

Proof of Proposition 23. The necessity is trivial. In order to prove
the sufficiency, it is sufficient to show that the consistency in Dobrushin’s
sense 1s transitive, that is, if JCICAed, and if a A-kernel Qf 1is con-
sistent with an /-kernel Q7 which in its turn is consistent with a J-kernel
QY. then Q% and QY are also consistent.
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Let x e 22\, let y,ve 2’ and let e 22"\ Since Q7 is consistent
with Q%, using Proposition 22, we have

Q781 (xpy 4 ¥) QFF (0) = QF* V1 (x7 ;v) QFF ().
Hence

(QF)ay; (Xp\ ) Q72 (xy\ ;) Q5 ()
= QR (xay ) QF MV (xp ;0) Q5 ().

Further, since QY 1is consistent with Q} we obtain

R xy) QFF (1) = QF (xv) Q5 ().

and so, applying once more Proposition 22 we can conclude the proof of
the proposition. |}

Proof of Theorem 24. In order to carry out the proof we need the
following two simple lemmas.

Lemma 25. ILet /,Ved& such that INV =@, put A=1UV, let
xe 2% \A, and let a A-kernel Q% be consistent in Dobrushin’s sense with
an [-kernel Q7. If u 1s a p.p. of Q} under b.c. varying on V and equal to
¥ outside, then there exists a configuration y € " such that Q’X (uy) > 0.

Proof. Let us suppose the contrary: for any configuration y € Z Vo we
have Q7 (uy)=0. Since Q% is consistent in Dobrushin’s sense with QJ, for
any e« € 21 and any y € 2" according to Proposition 22 we can write

T wy) Q7 ()= Q% (ay) Q% (w),

and hence, taking into account that u is a positivity point we obtain the
equality Q% (ay)=0.

So Q’X (z) =0 for any z € 2", which contradicts the fact that Q’X Is a
probability distribution. |

Lemma 26. Let Ac& and I CA, let xe 22\, and let a A-ker-
nel Q% be consistent in Dobrushin’s sense with an 7-kernel Qj. If for
some xeZ M\ and y,veZ! we have Q’X(xy):O and Q’X(xv)>0, then
Q" (»=0.
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Proof. Since QY 1is consistent in Dobrushin’s sense with Qf, accord-
ing to Proposition 22 we can write

 (xy) QFF (v) = Q% (xv) Q¥ (y),

and so, taking into account that Q’X (xy)=0 and Q’j_\(xv) > (0, we obtain
immediately Q7*(y)=0. |

Now we turn to the proof of Theorem 24. First let us suppose that Q
is n-specification and prove the property (5). For convenience of notations
let us denote A=AUB=CUD. According to Proposition 22, we have

Q% (x) Q5 (up) = QF (xyup) QL (xp).

Multiplying this equality by QiuB (uy) and using Proposition 22 on
the right hand side, we obtain

Q% (x) Q" (up) Q5% () = Q% () Q7% (x,) Q5 (xp). (12)

In the same way we have

Q% (x) Q5 (up) Q1 (up) = Q% (1) Q5 (xp) QL (x0). (13)

Suppose first Qi (x)>0 and Qi (u) > 0. Then, if we cross-wise multi-
ply the equalities (12) and (13) and cancel identical strictly positive terms,
we get the relation claimed in (5).

Suppose now Qi (x)=0 and Qf\ (u) > 0. Then from (12) and (13) we
have Q’, A “B(x 1) QxxA (xg)=0 and Q DC(xD) QxxD (xc) =0 correspondingly,
and so, the necessary relation i1s still valid. Similar considerations show
that it remains valid for the case Qf\ (x)>0 and Qf\ (u)=0.

Suppose finally Qf\(x)zo and Qf\(u):O. Since u,- 1S a positivity
point, due to Lemma 25 there exists some configuration y € 2? such
that Qf\ (ucy) >0. The latter inequality together with Qf\ (u) =0 mmplies
according to Lemma 26 that Q)lc)uc (up) =0, and so, the left hand side of
the relation claimed in (5) vanishes. It remains to show that the right
hand side of this relation vanishes too. Indeed, if Qf\(uch)_O then
taking into consideration that Q A(uCy)>O and using Lemma 26 we
obtam Q DC(xD)_O and if Q A(quD) > (0 then taking into account that

QA(x)_O we get QC (xc)=0.
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So, the property (5) is established. In order to prove (6) it is sufficient
now to put A=¢t, B=A\t, C=0, D=A, x=xy and u=uv in (5), and
note that u;=# is indeed a p.p. of Qj under b.c. varying on A and equal
to x outside.

It remains to prove the second part of the theorem. Suppose (6) is
fulfilled, take some A€ &,, teA, xeZ’, y,veZ*\" and xe 2% \*, and
let us show that

Qi (xy) QR ()= Qf (xv) QXY ,(»). (14)

Suppose first Q¥ (x) > 0. Then, taking u=x in (6) and canceling the
term QF’(x) we obtain (14).

Suppose now Q;”?(x)>0. Then, interchanging the positions of y
and v in (6), taking u =x and canceling the term Q;” (x) we obtain (14).

Suppose finally Qf” (x)=0 and Q;”(x)=0. Taking in consideration
the first equality, we can show that the left hand side of the relation (14)
vanishes. Indeed, since QF" is probability distribution, we can chose u € "
such that Qj?” (u) > 0, and using (6) we clearly obtain Q’f_\ (xy) ’f\x\t(v) =0.
Similarly, the second equality implies that the right hand side of the rela-
tion (14) vanishes, and so this relation is proved.

Now, in order to conclude the proof of the theorem it remains to
apply consecutively Propositions 22 and 23. |
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Abstract. The problem of characterization of Gibbs random fields is consid-
ered. Various Gibbsianness criteria are obtained using the earlier developed one-
point framework which in particular allows to describe random fields by means
of either one-point conditional or one-point finite-conditional distributions. The
main outcome are the criteria in terms of one-point finite-conditional distribu-
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Gibbs random field is given and the development of an alternative approach to
the Gibbs theory is started.
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Introduction

The classes of processes considered in the theory of random processes are usu-
ally characterized by some properties of their finite-dimensional or conditional
distributions. However in practice, the study of a particular class usually goes
through some representation theorem expressing processes in terms of simple
and convenient objects, such as transition matrices for Markov chains, charac-
teristic functions for processes with independent increments, spectral functions
for stationary processes, and so on.

The situation is quite different for the class of Gibbs random fields. Histori-
cally, instead of being characterized by some properties of their finite-dimensio-
nal or conditional distributions, Gibbs random fields have been defined directly
by the well-known representation of their conditional distributions in terms of
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potentials. And only afterwards the problem of internal characterization of
Gibbs random fields was considered.

It was shown by Kozlov [20] and Sullivan [24] that Gibbs random fields (with
uniformly convergent potentials) can be characterized by strict positivity and
quasilocality of their conditional distributions. More precisely, in order for a
random field to be Gibbsian, its conditional distribution (the system of finite-
volume conditional probabilities with conditions on the entire exterior) must
have a version which is a strictly positive quasilocal specification. As we see,
this criterion imposes conditions on an object (conditional distribution) which
is neither unambiguously defined (is defined up to a set of probability zero), nor
constructive (its elements are indexed by infinite-dimensional boundary condi-
tions) and, in addition, does not always determine the random field uniquely
(phase transitions). In our opinion, it is preferable that a characterization be in
terms of an object which does not have these features.

As a matter of fact, such characterization already exists for the subclass
of Gibbs random fields with real-valued finite-range potentials. It was shown
by Averintsev [1-3] and Sullivan [23] that these random fields are character-
ized by strict positivity and Markov properties. Note that in the strictly posi-
tive case, the Markov property can be formulated in terms of one-point finite-
conditional distribution (the system of single-site conditional probabilities with
finite-volume conditions). This object is defined unambiguously and in con-
structive manner (its elements are ratios of finite-dimensional probabilities).
Moreover, according to Dalalyan and Nahapetian [7], it uniquely determines
(can be identified with) the random field.

The aim of the present work is to characterize Gibbs random fields by some
properties of their one-point finite-conditional distributions in the general case
of uniformly convergent potentials. It is worth mentioning that such character-
ization is very natural in light of and was made possible due to the one-point
framework developed in some recent papers. Namely, an approach towards
description of random fields by means of one-point conditional distributions
(the system of single-site conditional probabilities with conditions on the en-
tire exterior) was developed by the authors in [4-6] (see also Ferndndez and
Maillard [14,15]). Later on, a closely related and in some way complementary
description of random fields based on one-point finite-conditional distributions
was proposed in [7].

The main outcome of the present work are random field Gibbsianness criteria
in terms of one-point finite-conditional distribution. These criteria deal with an
unambiguously defined constructive object and allow us to start to develop an
alternative approach to the Gibbs theory by giving (on the basis of one of the
criteria) a probabilistically explicit definition of Gibbs random field.

The plan of the paper is as follows. The necessary notations and prerequi-
sites are given in Section 1, the one-point framework is presented in Section 2,
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the random field Gibbsianness criteria are established in Section 3 and the al-
ternative approach to the Gibbs theory is introduced in Section 4.

1. Preliminaries

In this section we briefly recall some necessary notions and facts from the
theory of Gibbs random fields.

1.1. Random fields

We consider random fields on the v-dimensional integer lattice Z” (or, more
generally, on any countable set L), i.e. probability measures P on (22", #%")
where (Z,.%) is some measurable space of values on single sites (state space).
Usually the space 2" is assumed to be endowed with some topology .7, and .7 is
assumed to be the Borel o-algebra for this topology. In this work we concentrate
on the case when %2 is finite, .7 is the discrete topology, and .# is the total
o-algebra, that is, .# = 7 = part(2").

For any S C ZY, we denote by &(S) the set of all finite subsets of S, that
is, we put &(S) = {A C 5 : |A| < oo} where |A| is the number of points of the
set A. For convenience of notation we will omit braces for one-point sets, that
is, will write ¢ instead of {t}. We put also &*(S) = &(S5) \ {@}. For S =Z" we
write & = &(Z") and &* = &*(Z").

For any S C Z¥, the space 2°° is the space of all configurations on S. If
S = @, we assume that the space 2'? = {@} where @ is the empty configura-
tion. For any T',S C Z" such that T' C S and any configuration x = {x, t € S}
on S, we denote by x,, the subconfiguration (restriction) of & on T defined by
x, = {x, t € T}. For any T,S C Z” such that NS = & and any config-
urations  on 7" and y on S, we denote by xy the concatenation of x and y,
that is, the configuration on T"U S equal to & on T and to y on S. For any
configuration & € 2%, the set S C Z" will be called support of  and we will
write S = &(x). For any A € &, we denote
2h= ) 2*

A€&*(A)

the space of all configurations with non-empty finite support contained in the
exterior of A.

For any S C ZV, a probability distribution on 2™ will be denoted by Pg.
Note that if S = & there exists only one probability distribution P4 (@) = 1.
For any 7,5 C Z" such that T C S and any Pg, we denote by (Pg)r the
marginal distribution (restriction) of Pg on T. If A € & and I C A, we can
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write Py = {Px(x), z € 2} and

(Pa)i(@)= Y Parlwy), zec2’

= ‘%'A\I

Any random field P on Z" is uniquely determined by (can be identified
with) the system {Pa, A € &} of its finite-dimensional distributions which are
consistent in the sense that for any A € & and I C A we have (P,); = Pj.

Finally, a random field P will be called strictly positive if for any A € &
the finite-dimensional distribution Py is strictly positive, that is, P () > 0 for
all x € 22, The set of all strictly positive random fields will be denoted P.

1.2. Finite-conditional and conditional distributions of random fields

Let P be some random field. For any A € &, we denote by Pg-(sc) the

measure on 2 A whose projection on 2~ A is PX for any Ae & *(A°), that is,
P g+ (ac) is the direct sum of the measures P
For all A € &, the ratios
~ P > (m%)
PG(;)(:L')

exist for P g« (zc)-almost all € ZA, Any system
é:{Q%, Aegandieé—&;ﬁ}

of probability distributions such that for every A € & we have Q% = q% for
P g« (pc)-almost all € A will be called finite-conditional distribution of the

random field P. The subsystem of o) consisting of single-site distributions
(|A| = 1) will be called one-point finite-conditional distribution of P. Note that
in general a random field may have many versions both of finite-conditional and
one-point finite-conditional distributions. However, for strictly positive random
fields these distributions are uniquely determined and strictly positive (consist
of strictly positive elements only). Note also that it is not difficult to check that
if a random field P has a strictly positive version of (one-point) finite-conditional
distribution, then P is necessarily strictly positive itself.
Further, for all A € &, the limits

q¥(z) = lim g3 (z), xe 2N
ATZV\A

exist for Ppc-almost all € € 272", Any system

0={Q}, AcSandzec 2"}
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of probability distributions such that for every A € & we have Qf = qfF for
Pjc-almost all T € 272 will be called conditional distribution of the random
field P. The subsystem of @ consisting of single-site distributions will be called
one-point conditional distribution of P. Note that in general a random field P
may have many wversions both of conditional and one-point conditional distri-
butions (even if P is strictly positive). Note also that if a random field P has
a strictly positive (consisting of strictly positive elements only) version of (one-
point) conditional distribution, then P is necessarily strictly positive itself. For
the case of conditional distribution this fact is well-known, while for the case of
one-point conditional distribution we refer to the Proposition 3.2 below.
Concluding this section let us emphasize that random field’s (one-point)
finite-conditional distribution contains more information about the random field
than its (one-point) conditional distribution. Indeed, the latter can be clearly
deduced from the former (by passing to the limit), while the converse is not so
clear. Moreover, it is not true in general, since in the strictly positive case, the
(one-point) finite-conditional distribution determines the random field uniquely
(see Section 2.2), while the (one-point) conditional distribution does not always
do so (phase transitions). All this becomes particularly apparent in the Markov
case, when (one-point) conditional distributions can be considered as subsys-
tems of (one-point) finite-conditional distributions. Indeed, let P be a Markov
random field and let A denote the neighborhood of the set A. As we have
Q% = Q73?*, the elements of the (one-point) conditional distribution of P can
be considered as elements of the (one-point) finite-conditional distribution of P.
However, not all the elements of the latter correspond to the elements of the

former, but only the elements Q% such that &(x) D 0A.

1.3. Description of random fields by means of conditional distribu-
tions

The well-known description of random fields by means of conditional distri-
butions introduced by Dobrushin in [8-10] is carried out in terms of specifica-
tions. A system

Q:{Qf, Aefandfee%/\c}
of probability distributions is called specification if

Q% (zy) = (Qf)A\I(w) 7 (y) (1.1)
forall Ae&, IcA 2z 2™, ye 2! and Te 27V

Note that any version of conditional distribution of a random field P satisfies
a condition somewhat weaker than (1.1), where P jc-almost all (and not nec-
essarily all) T € 2~ A% are considered. However, any random field possesses at
least one version of conditional distribution being a specification (see [18,21]
and [22]).
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One of the main goals of Dobrushin’s theory is to study the set of all random
fields compatible with a given specification, that is, having this specification as
a version of conditional distribution. The best-known sufficient conditions for
existence and for uniqueness of random fields compatible with a given specifica-
tion are quasilocality and Dobrushin’s uniqueness conditions respectively. The
first one will play an important role in our considerations, so we recall it below.

Let S C Z¥. A real-valued function g on 2% is called quasilocal if

lim sup |9(x) — g(y)| =0,
MS zye X S:xa=y,

or equivalently if g is a uniform limit of functions depending only on values of
configuration on finite sets of sites (local functions). Note also that the quasilo-
cality is nothing but continuity with respect to the topology .7° and, taking
into account that 29 is compact, the strict positivity and uniform nonnullness
conditions are equivalent for quasilocal functions.

A specification Q@ = { Q%, Ac&and T € %AC} is called (quasi)local if for
any A € & and & € 2 the function Z — Q% (x) on 2" is (quasi)local.

Finally, a specification will be called strictly positive if all its elements are
strictly positive.

1.4. Gibbs random fields and Gibbsian specifications

The main object of consideration of the present paper are Gibbs random
fields. They are defined in terms of Gibbsian specifications, which in turn are
defined in terms of potentials.

Any function ® on 22 taking values in R U {400} is called (interaction)
potential. A potential ® is called convergent if it is real-valued and the series

Y o(xz5) (1.2)

Je&(te)

converge for all t € Z¥, x € Zt and T € 27",

A potential @ is called uniformly convergent if it is convergent and the
convergence in (1.2) is uniform with respect to .

A potential @ is called finite-range potential if for any t € Z" there exist

only a finite number of sets J € &(t°) such that ® # 0 on 2™/, Note that any
real-valued finite-range potential is uniformly convergent.
For an arbitrary convergent potential ® one can construct the specification

Q={Q%, Aec & and T € 2™} given by Gibbs formulae

T _ exp ( - Uf(w))
>yearexp(—UR(y))’

ANe&, xe 2™ Te2™, (1.3)
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where

Ui()= > > ®@,;T;), A& zec2t T2 (14
J: @#ICA Feg(pe)

The specification @ is called Gibbsian with potential ®. Any random field
compatible with Q is called Gibbs random field with potential ®.

The problem of characterization of the class of Gibbsian specifications with
potentials satisfying some given conditions was subject of consideration of many
authors: one can refer to Averintsev [1-3] and Sullivan [23] (see also Grim-
mett [19]) for real-valued finite-range potentials, Kozlov [20] and Sullivan [24]
for uniformly convergent potentials, and the authors’ works [4,5] for more gen-
eral potentials (which in particular can assume the value 4+00). Such charac-
terizations are useful since they yield characterizations (in terms of conditional
distribution) of the classes of corresponding Gibbs random fields.

In this paper we consider uniformly convergent potentials only, so Gibbsian
specifications and Gibbs random fields with uniformly convergent potentials
will be called shortly Gibbsian specifications and Gibbs random fields. The
best-known characterization of the class of Gibbsian specifications is given by
the following criterion (see, for example, [17]).

Criterion 1.1 (Kozlov—Sullivan). A specification is Gibbsian if and only if
it is quasilocal and strictly positive.

Concerning (the subclass of) Gibbsian specifications with real-valued finite-
range potentials, let us recall that they are characterized by strict positivity
and locality. So, Gibbs random fields with real-valued finite-range potentials
are characterized by strict positivity and Markov properties. Let us note that
if the first property (strict positivity) holds, the second one (Markov) allows
various equivalent formulations, one of which uses only single-site conditional
probabilities with finite-volume conditions (see, for example, [25]). So, one has
an internal characterization of Gibbs random fields with real-valued finite-range
potentials in terms of one-point finite-conditional distribution. Establishment of
a similar characterization in the general case of uniformly convergent potentials
is not so straightforward. However, it was made possible due to and is very
natural in light of the recently developed one-point framework which is presented
in the following section.

2. One-point framework

In this section we briefly recall the main results of the authors’ works [4—6]
and of the paper by Dalalyan and Nahapetian [7], concerning the problems of
description of random fields by means of one-point conditional and one-point
finite-conditional distributions correspondingly.
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2.1. Description of specifications and random fields by means of one-
point conditional distributions

The idea that it is possible to describe and study random fields by means of
one-point conditional distributions goes back to Dobrushin [8,11]. Some steps
in this direction were made by Sullivan [23] and Flood and Sullivan [16]. We can
also mention Theorem 1.33 from the book by Georgii [17] concerning the problem
of restoration of specifications by means of their single-site elements. However,
the realization of Dobrushin’s idea goes through a more important problem:
the problem of description of specifications by means of systems of single-site
probability distributions indexed by infinite boundary conditions (one-point sys-
tems) consistent in some sense. This problem was treated much later, the main
difficulty residing in finding appropriate consistency conditions.

For the case of finite state space (considered in this paper), Dobrushin’s
idea was realized by the authors in [4,5] under the weak positivity condition
(as well as under the strict positivity condition) and in [6] under the newly-
introduced very weak positivity condition. The case of a general (not necessarily
finite) state space was studied by Ferndndez and Maillard in [14] under an
alternative nonnullness condition and in [15] under the extension to this case of
the very weak positivity condition. However, some important issues were left
open in these papers. In particular, the necessity of the consistency conditions
proposed in the first paper was not considered. Moreover, it is not difficult to
see that except for some particular cases (for example, the strictly positive case),
this necessity fails. Concerning the second paper, perhaps the most important
issue, the equivalence between the compatibility with the original one-point
system and the compatibility with the full specification constructed from it, is
established within some class of random fields only.

Let us now briefly recall the main results of the authors’ works [4—6]. In these
papers, under wide positivity assumptions (very weak positivity), necessary and
sufficient conditions for a system {QF,t € Z" and T € 2 tc} of probability
distributions to be contained in some specification were established. A system
satisfying these conditions was called 1-specification. It was equally shown that
the specification containing the given 1-specification is uniquely determined by
some explicit formulae involving only the elements of this 1-specification. More-
over, since these formulae make use of finite number of elementary operations,
the entire specification is quasilocal if and only if the 1-specification is, and the
set of random fields compatible with the 1-specification coincides with the set
of random fields compatible with the entire specification. Hence, whole Do-
brushin theory can be reformulated in terms of 1-specifications, and so one can
speak about description of random fields by means of one-point conditional dis-
tributions. The same applies to the results about characterization of Gibbsian
specifications.

Below, we give some more details in the particular strictly positive case.
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The definition of strictly positive 1-specification can be formulated in the
following way: a system

Q={QF. teZ andz e 2"}
of strictly positive probability distributions will be called 1-specification if

T(2) QT (1) Q7Y (u) QT (v) = Q¥ (1) Q7Y (x) QT (1) QF"(u) (2.1
forall t,s € Z’, z,ue X, yveZ* and Te 2.

Further, a 1-specification @ = {Q?, t € Z" and ® € 2"} is called (quasi)local
if for any t € Z¥ and 2 € 2t the function Z — QF(z) on 2" is (quasi)local.
Finally, a random fields P is called compatible with a 1-specification if the latter
is a version of one-point conditional distribution of P.

The above mentioned explicit formulae determining the elements of the spec-
ification @ = {Q%, A € & and T € 2} containing the given strictly positive
1-specification have the following form: for all A € & and T € 2™ one has

Tu xTx u
Qf(m) _ Qt1 {ta,..., tn} (xtl) th {t13%{ts3,.., tn}t (xt2) .
Q:clu{tz ..... tn} (Utl) Q:;m{tl}u{t3 ,,,,, tn} (uh) .
TL L1y, 1)
e
X O e
,,,,, t,,
Qtn 1 n—1 (utn)

where C is the normalizing factor. Here some fixed configuration u € 2°* and
some enumeration tq, ..., t, of elements of A are chosen arbitrary. Note that the
right hand side of these formulae does not depend on this choice (correctness of
the formulae) thanks to consistency condition (2.1).

Note also, that these formulae imply that the specification containing a
strictly positive 1-specification is necessarily strictly positive itself. Recall that
the quasilocality is also “heritable”. Now Kozlov—Sullivan Criterion 1.1 can be
clearly reduced to the following one, already obtained by the authors in [4, 5].

Criterion 2.1. A specification is Gibbsian if and only if the 1-specification
contained in it is quasilocal and strictly positive.

Since the uniform convergence of potential assures the quasilocality of the
1-specification expressed by Gibbs formulae, one can also obtain the following
corollary of Criterion 2.1.

Criterion 2.2. A specification is Gibbsian if and only if the 1-specification
contained in it admits the representation given by Gibbs formulae (1.3) and (1.4)
with some uniformly convergent potential.
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2.2. Description of random fields by means of one-point finite-condi-
tional distributions

Now we turn to the problem of description of random fields by means of
one-point finite-conditional distributions considered in [7]. This description is
closely related (and in some way complementary) to the one presented in the
previous section.

First, let us note that the necessary and sufficient conditions for a system

qg={Qf, te€Zandx € j%\”/t} of probability distributions to be contained
in some system Q = {Q%, A € &and & € 22} of probability distributions
satisfying

Qi (zy) = QX\/(z) Q7" (y) (2.2)
forall Ae&, IcA, zc 2N, ye2! and € 20

are the following:

Q7 (z) Q7" (y) = Q¥ (y) Q7Y (=) (2.3)
forall t,scZ’, v 2" ye€ 2% and x € Z{t:s},

Note also that if g is the one-point finite-conditional (é is the finite-con-
ditional) distribution of some strictly positive random field, then it necessarily
satisfies the condition (2.3) (the condition (2.2)). However, in order for a strictly
positive system q satisfying (2.3) (é satisfying (2.2)) to be the one-point finite-
conditional (the finite-conditional) distribution of some strictly positive random
field one needs some additional conditions. It turns out that such conditions
are the following;:

Qi (z) Q;(y) Q¢ (u) Q; (v) = Q; (y) Q¢ (z) QF (v) Q¢ (u) (2.4)
for all t,s€Z”, z,uc 2" and y,v € 2%

More precisely, in [7] it was shown that the strict positivity of elements
and the fulfillment of the conditions (2.3) and (2.4) are necessary and sufficient

for a system {Q}, t € Z” and ¢ € 2t} of probability distributions to be the
one-point finite-conditional distribution of some strictly positive random field.
It was equally shown that this random field is uniquely determined by this
system. In particular, a strictly positive random field is uniquely determined
by (can be identified with) its one-point finite-conditional distribution, and so
one can speak about description of random fields by means of one-point finite-
conditional distributions.
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3. Random field Gibbsianness criteria

In this section we turn to the main subject of the present work: the problem
of internal characterization of Gibbs random fields. The main results: random
field Gibbsianness criteria in terms of one-point finite-conditional distribution
will be established in Section 3.3. Before that, random field Gibbsianness criteria
in terms of conditional and one-point conditional distribution will be obtained in
the next two sections by means of transformation and subsequent improvement
of Criteria 1.1, 2.1, 2.2.

3.1. Random field Gibbsianness criteria in terms of conditional dis-
tribution

Combining the definition of Gibbs random field with Criterion 1.1 one gets
the following well-known characterization: a random field is a Gibbs random
field if and only if it has a version of conditional distribution which is a quasilo-
cal and strictly positive specification. This criterion can be improved in the
following way.

Criterion 3.1. A random field is a Gibbs random field if and only if it has a
version of conditional distribution which is quasilocal and strictly positive.

Since the strict positivity of a version of conditional distribution implies the
strict positivity of the random field, the criterion is immediately deduced from
the following proposition which is of general interest.

Proposition 3.1. If a strictly positive random field has a quasilocal version of
conditional distribution, the latter is unique and is necessarily a specification.

Proof. Let P be a strictly positive random field. First, note that the measure P
is everywhere dense, that is, P(A) > 0 for any non-empty open set A € 2"\
{2}. Indeed, since such a set A necessarily contains a non-empty cylinder sub-
set A’, which in turn contains a subset {& € 2% : ®y = x°} where A € &*
and z° € 27, we have P(A4) > P(A4’) > Po(z°) > 0. An important evident
property of everywhere dense measures is the following: if a continuous function
is equal to zero almost everywhere (with respect to such a measure), then it is
equal to zero everywhere.

Now, suppose {Q%, A€ &and® € 2} and {q%, A € & and T € 2}
are two quasilocal versions of conditional distribution of P. Hence, for any
A € & and ¢ € 21, the function

T+— Q(x) — 4} (@)

on 2 is quasilocal and equal to zero P c-almost everywhere. Since quasilo-
cality is nothing but continuity and the measure P . is everywhere dense, this
function is equal to zero everywhere. So, the uniqueness is proved.
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Finally, suppose Q@ = {Qf, A€ & and ® € 272} is (the unique) quasilocal
version of conditional distribution of P. For any A € &, I C A, x € 2"\ and
y € 2! consider the function

T +— QR (zy) — (Q}) (@) QT ()

on 2 °. This function is clearly quasilocal and, as it follows from the properties
of conditional probabilities, is equal to zero P pc-almost everywhere. Hence it is
equal to zero everywhere, and so Q is a specification. O

Let us note that Criterion 3.1 was as a matter of fact obtained in [24] using
a different approach.

3.2. Random field Gibbsianness criteria in terms of one-point condi-
tional distribution

Criterion 3.1 characterizes Gibbs random fields in terms of conditional dis-
tribution. However, in view of Section 2.1, it should be possible to do it in
terms of one-point conditional distribution. Indeed, combining the definition
of Gibbs random field with Criterion 2.1 and taking into account the results of
Section 2.1, one gets the following characterization: a random field is a Gibbs
random field if and only if it has a version of one-point conditional distribution
which is a quasilocal and strictly positive 1-specification. As in the preceding
section we can improve this criterion in the following way.

Criterion 3.2. A random field is a Gibbs random field if and only if it has
a version of one-point conditional distribution which is quasilocal and strictly
positive.

The criterion is immediately deduced from the following two propositions
which are of general interest.

Proposition 3.2. If a random field P has a strictly positive version of one-
point conditional distribution, then P is strictly positive itself.

Proof. Let us suppose that the random field P is not strictly positive. In this
case we can find some A € &%, t € A and z € 2 such that P5(z) = 0 and
Pr\t(za\¢) > 0 (recall that Py (@) = 1). Now denote

A= {E S %tc : EA\t = ZA\t}'
Obviously Pic(A) = P\¢(za\¢) > 0. Introduce also

B= () {ze 2" P;(@;) >0}
A€E(te)
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Since B is a countable intersection of sets of probability 1, we have P (B) = 1.
So, it comes Py(ANB) > 0.
For allT € AN B and all A € &(t°) such that A D A\ ¢, we have

T~ P ’V(Zt_"“)
th(Zt): tUA — A = 0.

Hence, for all T € AN B we get

lim qth(zt) =0
AZV\

which contradicts the existence of a strictly positive version of one-point condi-
tional distribution of P. O

Proposition 3.3. If a strictly positive random field has a quasilocal version
of one-point conditional distribution, the latter is unique and is necessarily a
1-specification.

Proof. The uniqueness is proved following exactly the same argument as in the
proof of Proposition 3.1.

To prove the second assertion, suppose {QF, t € Z¥ and & € 2"} is (the
unique) quasilocal version of one-point conditional distribution of a strictly pos-
itive random field P. For any t,s € Z¥, z,u € 2" and y,v € 2°° consider the
function

T — Q7' (2) QT (y) Q7 (u) Q7" (v) — QT"(y) Q7" () QT (¢v) QF (u)

on 2 {5} Applying the reasoning used in the proof of Proposition 3.1, it
clearly comes that this function is equal to zero everywhere. O

Concluding this section let us note that combining the definition of Gibbs
random field with Criterion 2.2 and taking into account the results of Section 2.1,
one also has the following characterization.

Criterion 3.3. A random field is a Gibbs random field if and only if it has a
version of one-point conditional distribution admitting the representation given
by Gibbs formulae (1.3) and (1.4) with some uniformly convergent potential.

3.3. Random field Gibbsianness criteria in terms of one-point finite-
conditional distribution

Now we can establish random field Gibbsianness criteria in terms of one-
point finite-conditional distribution, which are precisely the main outcome of
the present paper. The first such criterion is the following.
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Criterion 3.4. A random field is a Gibbs random field if and only if it is
strictly positive and its one-point finite-conditional distribution {q¥, t € Z"
and € 2"t} satisfy one of the following equivalent conditions:

(A) the limits
lim ¢¥(z), t€Z’, re€ X" T€E 2,
AMZ\t
exist, are uniformly nonnull with respect to T, and the convergence is
uniform with respect to @,

(B) the limits
lim ¢™(z), t€Z’, v X" TC 2,
ATZV\t
exist, are strictly positive, and the convergence is uniform with respect
to .

Proof. The sufficiency is quite evident. Indeed, the strictly positive limits sup-
posed to exist form a strictly positive version of one-point conditional distribu-
tion of the random field. The uniformity of convergence guarantees that this
version is quasilocal and so, the sufficiency follows from Criterion 3.2. Let us
also note that at the same time this quasilocality clearly yields the equivalence
of the conditions (A) and (B).

Now let us turn to the proof of the necessity. Let P be a Gibbs random
field. According to Criterion 3.2 it has a quasilocal and strictly positive version
Q ={Q7f, tcZ andT € 2"} of one-point conditional distribution. So,
according to Proposition 3.2, the random field P is strictly positive, and to
conclude the proof it is sufficient to show that

lim  sup g7 (2) — QF ()] =0
ATZV\t TEX T

for allt € Z¥ and x € 2°t.

For this we need the following inequality due to Sullivan:

__nf Q@) <qgi(x)<_ sup  Qf(x) (3.1)
YeXL iy == YEX Y =2

forallt € Z¥, A € &*(t°), z € 2t and z € 2. This inequality is clearly valid
since Py (22) )
= tUA\TZ 7] _
xr) = = z) P (dy).
G-t s [ QP
{ge 2t gr==}

Taking this inequality into account, it remains to verify that

lim  sup inf QY(z) — QF(x ‘ =0
ATZ”\t ie‘%tc ge%tCIQA:EA t( ) t ( )
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and B B
lim  sup sup QY(z) — QF(x ’ =0
Jm s () - QF)

ye%tclyAziA

forallt € Z¥ and x € Zt. To show the first one we write

sip | il QF@) - QF@)|< sw s [QF(@) - QF ()]
e tC | YEX T Yy =mA TEX 1 GEX 1 Y\=Ta

and use the quasilocality of Q. The second one is proved similarly. O

At first sight, Criterion 3.4 deals only with the one-point finite-conditional
distribution. However, in fact it imposes conditions equally on its limit, that is,
on the one-point conditional distribution. The following and last criterion really
deals only with the one-point finite-conditional distribution. Before formulating
it, let as agree that in the sequel when we use the notation &1 we presume that
only configurations « such that &(ax) D T are considered.

Criterion 3.5. A random field is a Gibbs random field if and only if it is strictly
positive, its one-point finite-conditional distribution {q¥, t € Z¥ and ¢ € 2t}
is uniformly nonnull (consists of uniformly nonnull with respect to @ elements)
and one of the following equivalent conditions holds:

(C) foranyt € Z¥ and v € 2'" one has

Jim sup af () — qf ()| =0,
T2\ ;,;E%t:;A:;A

(D) for any t € Z¥ and x € Z'" one has

lim sup sup q; ) — qy 2)| = O’
ATZU\t Jeg*(tc) ;,;E%J:;A:§A| t( ) t( )‘

(E) for any t € Z* and x € 2" one has

lim  sup q;x —q;Aaz = 0.
i, s (4 (o) - g @)

Proof. First we concentrate on the condition (E). Clearly

sup |qf(2) — g (@) = sup  sup |qF(2) - ¢ (@),

Teat Ie&(te):IDA TEXt°

and so the condition (E) is nothing but the Cauchy condition for the existence
of the uniform limits considered in Criterion 3.4. The sufficiency now clearly
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follows from Criterion 3.4 since the Cauchy principle yields the existence of
the uniform limits, and the uniform nonnullness of one-point finite-conditional
distribution guarantees their strict positivity. The necessity also follows from
Criterion 3.4 since the condition (E) is ensured by the Cauchy principle, and
the uniform nonnullness of one-point finite-conditional distribution can be easily
obtained from (3.1) and the condition (A) (use the first inequality of (3.1) and
the uniform nonnullness of limits considered in the condition (A)).

It remains to check the equivalence of the conditions (C), (D) and (E). The
implications (C) = (D) and (C) = (E) are trivial since

sup  sup |gf(z) —qf(x)| < sup |qf(z) —q¥(x)|
Jeé‘)*(tc) w’yG%J:wA:yA ;,563&”:51\:’@\
and _ B _ N
sup [qf (z) — g7 ()| < sup g7 (2) — qf (2)].
zeXt ZYEX i ma=y,

Similarly, the inequality

sup |gf(z) — gf(2)| <2 sup |gF(x) — 7" ()]
;,EG Z't Z;A::!;A et

yields the implications (E) = (C). To prove the last implication (D)= (C), we
need the following lemma.

Lemma 3.1. Let {q?, Ie& andx € %} be the finite-conditional distribu-
tion of some strictly positive random field. Then the set

A= {E KA A%izm\l g% (z) exists for every I € & and x € 5{]}

is of probability 1 and possesses the following property: if € € A then zx jc € A
forallJ € & and z € 2.

Proof. Since the set A is a countable intersection of sets of probability 1, it is
also of probability 1. It remains to show that if © € A then y = 2&;c € A for
all t € Z¥ and z € 2%, that is, limpqz0\ 1 q¥" (z) exists for every I € & and
x € 2’1, This is trivial if ¢ € I (since in this case g, = T, ) and clearly follows
from the relation

T\t

7 2T pns q (z)
gP @) = g™ () = ULy 5y,
(thI )t(Z)

otherwise. O
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Returning to the proof of the implication (D)= (C), let us fix some t € Z"
and x € 2, denote

fA)= sup  sup  |qgF(x) — g} (z),
JEE*(t9) z,Yye X ixa=y,

and for any € > 0 choose (according to the condition (D)) some A, € & such
that [f(A)| <eforall A€ &, A DA..

First we will show that lima4zv\ ntA(x) exists for every & € 2%, Let us
take some Z° € A (according to the lemma, the set A is of probability 1 and so
is not empty) and consider ¥ = T _Z3. € A. So, we can find some AL € & such
that ~ S

g/ (z) — g} (z)] <
forall I,J € & I DAL, J D AL. Thus, for all I,J € & such that I D A, UAL
and J D A; UAL we can write

67 (2) — ¢ (2)] < |77 (2) — @V (z)| + @V (z) — ¢¥ (2)|+|aY" (z) — @77 (2))
< f(Ae) +e+ f(Ae) < 3e,

and hence limp4z0\¢ qu (z) exists according to Cauchy principle.

Further, for every T € 27" consider the set V(Z) = {g € 2" : g, =Za_}.
Clearly these sets are either mutually disjoint or coinciding, and there is only
a finite number k (more precisely k = |2 "<|) of different sets among them.
Hence there exists a finite collection Z', ..., ZE" € 2% such that

(This fact equally follows from the compactness of 2 ) So, using Cauchy

principle we can find some AY € & such that |qf1’ (x) — qf?’ (x)] < e for all
i=1,...,kandall I,J €&, I DA/, JDAL

Now, let the set A € & be such that A D A; U A”, the sets I,J € & be
such that I D A and J D A, and the configurations * € 27 and y € 2/
be such that £y = y,. Clearly, we can find some ¢ € {1,...,k} such that
T)\_ = TA. = Y,_, and thus we may write

% (2) — ¥ ()| < |a%(x) — ¢ (@)| + | (2) — 77 (2)| + | (z) — q¥ ()|
< f(Ae)+e+ f(A) < 3e

which shows that the condition (C) holds. O
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Concluding this section let us note that “multi-point” analogues of Crite-
ria 3.4 and 3.5 formulated in terms of the whole finite-conditional distribution
are of course valid. Concerning the first one, we would like to mention that its
necessity statement was as a matter of fact contained in the proof of Lemma 1
of [24], whose argument we follow while proving Criterion 3.4. As to the second
one, let us mention that the part utilizing the analogue of the condition (D)
can be deduced from Theorems 1 and 2 of [20]. It should be pointed out that
the author does not provide the proof of the sufficiency statement of Theorem 2
(leaving it, as he says, to the reader). However, our considerations show that the
proof of this statement is neither intuitive, nor technically simple. Moreover,
the validity of the statement seems doubtful in the settings of [20] where the
state space is not supposed to be finite or even compact.

4. Some further development

The random field Gibbsianness criteria presented in the previous section are
formulated either in terms of (one-point) conditional distribution, or in terms
of (one-point) finite-conditional distribution. These two types of criteria are
complementary, however, the second type criteria deal with an unambiguously
defined constructive object and allow us to take a different look on and try
to develop an alternative approach to the Gibbs theory. In this section we
undertake some introductory steps in this direction.

First let us note, that roughly speaking, Criterion 3.4 asserts that aside
from positivity considerations, Gibbs random fields are characterized by the
uniform convergence of their one-point finite-conditional distribution (to the
one-point conditional one), while only a weaker (almost sure) convergence is
guaranteed for an arbitrary random field. In our opinion, this is perhaps the
most comprehensible characterization of Gibbs random fields, on the basis of
which the following probabilistically explicit definition of Gibbs random field
can be given.

Definition 4.1. A random field P is called Gibbs random field if
1) for any A € & and € 27 one has Py (x) > 0,
2) the limits

Piua (@A)

L teZ, ze2t T X, 4.1
ATZV\¢t PA(EA) ( )

exist, are strictly positive, and the convergence is uniform with respect
to .

Note that if P is a Gibbs random field, then the limits (4.1) form a version
of one-point conditional distribution of P and, moreover, their multi-point ana-
logues exist and form a version of conditional distribution of P. We call these
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versions canonical. Note also, that the canonical (one-point) conditional distri-
bution of a Gibbs random field is the only quasilocal version of its (one-point)
conditional distribution. Note also that now, the Criterion 3.4 turns into the

following theorem about representation of canonical conditional distribution of
Gibbs random fields.

Theorem 4.1. If P is a Gibbs random field, then the canonical (one-point)
conditional distribution of P admits the representation given by Gibbs formu-
lae (1.3) and (1.4) with some uniformly convergent potential.

Conversely, if a random field P has a version of (one-point) conditional dis-
tribution admitting the representation given by Gibbs formulae (1.3) and (1.4)
with some uniformly convergent potential, then P is a Gibbs random field, and
this version is canonical.

The set ¢4 of all Gibbs random fields is not empty since, as it follows imme-
diately from the above definition, it contains the set .# of all strictly positive
Markov random fields. On the other hand, as shows the following example, not
all strictly positive random fields are Gibbsian.

Example 4.1. Let 2" = {0,1} and consider the random field P given by

1

A
W, AGé",wE%,
|A]

PA(QZ) =

where |z| = [{t € A : ; = 1}| is the number of “particles” (ones) in the
configuration @. (This random field describes the situation when the number of
particles in the volume A is distributed uniformly on the discrete interval [0, A]
and, given that this number is k, all k-particle configurations are conditionally
equiprobable.) First, for all t € Z¥, T € 2" and A € &*(t°) we have

TA . PtUA(l EA) . ’§A| + 1
q; (1) = — = .
PA(.’IZA) |A| + 2

Further, for any p € [0,1] let us denote by J% the set of all € € 2°*" such that

and put J; = 27"\ ( Upepo.] J7). Now we see that the limits (4.1) do not exist

for & € J; and are not all strictly positive for £ € 3% UJ}. Each one of these
facts yields the non-Gibbsianness of P.

Let us note that the random field P considered in this example is the uniform
mixture of Bernoulli random fields BP, p € (0,1). Indeed, for all A € & and
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x € 2N, we have

Pa(a) = =t — Bl + 114l - [al +1)

(1 — pyAl=lel g

o—_ _

Now, the non-Gibbsianness of P also follows from the general fact that any
non-trivial mixture of Bernoulli random fields is non Gibbsian (see the authors’
work [5], as well as Section 4.5.1 of [12] and Section 4 of [13] for the case of
finite or countably infinite mixtures). Let us give two other examples of such
mixtures where the finite-dimensional distributions are explicit and permit to
check the non-Gibbsianness directly.

Example 4.2. Let 7 > 0 and consider the random field P which is the mixture
with the density 7p™ ! of Bernoulli random fields B?, p € (0,1), that is,

1
P(z) = /p”’"(l — p)l Al Tt g

0
=7B(|lz| + 7, |A| = |2| +1), Ae& xze TN

(This is a generalization of the previous example, the latter being obtained for
7=1.) Here, for all t € Z¥, T € 2" and A € &*(1°) we have

qEA(l) _ PtUA(lfA) _ ‘fl\‘ + 7
t PA(EA) |A‘+T+1,

and so, all the considerations of the previous example hold.

Example 4.3. Let a, p1,p2 € (0,1) such that p; # ps and consider the random
field P which is the mixture of Bernoulli random fields BP* and BP2 with the
coefficients o and f = 1 — «, that is,

Py(x) = ap'fcl(l il —I—ﬁp‘;d(l —pp)lMTlRl AN e e 27N
Here, for all t € Z¥, ® € 27" and A € &*(t°) we have

~ Puwa(1Ty)  api + Bpaexp{|A|HA(TA)}

g7 (1) = —— —
PA(Tn) o+ Bexp{|A|HA(Zr)}
where Zal E| ]
_ TA b2 TA — P2
Ha(ZpA) = ——In—+ (1 — In .
A@) = Tl (1= )
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Clearly, there exist a configuration Z € J; such that |zx|/|A| is oscillating be-
tween 0 and 1, that is,

liminf — =0 and limsup 2N 1.

A TA] Ates TA]

Then, since In(p2/p1) and In((1 —p2)/(1 —p1)) are of opposite signs, |A|Hx(Zn)
is oscillating between —oo and +o0o. Hence, the limits (4.1) do not exist for
x = z, and so the random field P is non-Gibbsian.

The preceding examples show that ¢4 C &?. However, ¢ is dense in & with
respect to the topology of weak convergence (P" — P if PY(x) — P (x) for
all A € & and € 2. Indeed, let P € £, let BP be a Bernoulli random field
(with some p € (0,1), and let A,, € &, n € N, such that A,, T Z” as n — oo. For
each n, consider the random field P™ such that its restrictions on A, and A
are independent and given by (P")a, = (P)a, and (P")rc = (BP)ac. Clearly,
P" € # and P" — P as n — oco. So, we have shown that .# (and hence,
a fortiori, ¢) is dense in &?. Note that a similar (though limited to the scope
of translation invariant random fields) statement for the case of a general (not
necessarily finite) state space can be found in Section 4.5.6 of [12].

As we have seen above, the mixtures and the limits of Gibbs random fields
can be non-Gibbsian. However, this is no longer the case if we consider Gibbs
random fields having the same canonical (one-point) conditional distribution.
Indeed, we will see below that we have even more: for any P° € ¢, the set 4(P°)
of all Gibbs random fields having the same canonical (one-point) conditional
distribution as P° (which is equivalently the set of all random fields consistent
with the canonical (one-point) conditional distribution of P°) is convex and
closed.

First we show the convexity. Let P*,P? € ¢(P°), let {¢%, t € Z" and
Z € 2"} be their common canonical one-point conditional distribution, let
a € (0,1) and put P = aP' +3P?, where 8 = 1 — . The strict positivity of
P is evident. Further, for all t € Z" and x € 2%, we have

sup Pun(@n) _ a7 (z)
zea | PA(Ta) ‘
1= 1 — 1= =
~ ew aP L (Tr) (Piua(2TA)/ Pp(Ta) — qF ()
T aP)(Zr) + BPL(Zn)
N BPR (@A) (Pip(2Ta)/ PA(ZA) — ¢7(2)) ‘
a Py (Zn) + BPR(Tn)
p! — _ p?2 — _
< sup |PAETN) ) | Pal®A) )
TE X tC PA(mA) TELLC PA(CBA)
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and hence P € 4(P°).

Now let us verify that the set ¢ (P°) is closed. Let P" € 4(P°), n € N, such
that P" — P as n — oo, and let {q%, A € & and ® € 2"} be the common
canonical conditional distribution of the elements of ¢(P°). To show that P is
strictly positive, let us note that for all A € & and & € 2" we have

P > inf q%
alz) > _inf qx(x)

for any P € 4(P°). Hence,

inf P(x) > inf P > inf ¢% 0,
neN A@) Pelél(P") A (@) EEII'%AC(]A(J:)>

and so P (x) > 0. Further, according to our definition of Gibbs random field,
for all t € Z¥ and x € 2%, we have

lim  sup
AMZY\t Fe g t©

for any P € 4(P°). Moreover, taking a closer look on the necessity part of the
proof of Criterion 3.4 one can see that all the estimates therein are based on the
canonical one-point conditional distribution only, and so, it becomes clear that
the above convergence is also uniform with respect to P, that is,

Pioa(z®n)

lim sup sup Przy) q*(z)| = 0.

AZV\t Peg(P°) mc 2t

Hence, for all sufficiently large A, the quantity

P?UA (7T)

Pz, q; (z)

sup
F A

can be made smaller than an arbitrary € > 0 for all n € N. For any such A, by
passing to the limit as n — oo, we get

Pua(zTy) 7
PA(EA) t

q; ()| <

sup < g,

F A

and so, P € 4(P°).

In conclusion we would like to recall that this section is only a first step in
the development of the above mentioned alternative approach. In our opinion,
the realization of the potential of this approach will make a real contribution to
the Gibbs theory, namely in such problems as uniqueness, decay of correlations
and limit theorems. For example, some results concerning the problem of decay
of correlations can already be found in [7].
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Abstract. The problem of nonparametric estimation for Gibbs random fields is considered. The
is supposed to be specified through a translation invariant quasilocal one-point system. An est
of one-point system is constructed by the method of sieves, and its exponential arahsisten-
cies are proved in different setups. The results hold regardless of non-uniqueness and tran
invariance breaking.
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1. Introduction

This paper is devoted to nonparametric estimation problem for a class of ran
fields defined on the-dimensional integer lattic&", v > 1 and taking values in
the state spacd& = {0, 1}. An approach towards description of such fields w
introduced in our joint papers with B. S. Nahapetian [2—4]. The main idea of
approach is to describe random fields by specifications (just as in Gibbs ran
field theory) but to define specifications by some systems of real numbers
Q-functions, H-functions, Q-systems,H -systems and one-point systems, rath
than by interaction potentials. This approach permits one also to describe
Gibbsian random fields and provides a parametrization of random fields suit
for statistical inference.

In this paper we consider the problem of nonparametric estimation of a ¢
point system. We construct an estimator by combining the idea of approximati
ratio of conditional probabilities by a ratio of some empirical conditional frequg
cies with the main idea of the method of sieves (introduced by U. Grenander []
approximation of infinite-dimensional parameters by finite-dimensional ones.
prove exponential consistency ahd-consistency, for alp € (0, oo), of our sieve
estimator in different setups.

Let us note here that for maximum likelihood estimators F. Comets in [1] &
gets exponential consistency in the parametric case and in a classical Gib
setup using the theory of large deviations.
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Note too that in general the problem of estimation for Gibbs random field
complicated by such classical phenomenons of Gibbs random fields theory as
uniqueness (presence of a phase transition) and translation invariance breaki
our work the results are established regardless of this aspects of Gibbs ra
fields theory.

Parametric statistical inference for Gibbs random fields is now quite well
veloped in classical Gibbsian setup. The actual state of the theory is well prese
in the monograph by X. Guyon [11] and references therein. For more informa
see [1, 8, 12-14].

As to nonparametric inference, it seems to be less well investigated. We
mention here a preprint by C. Ji [12]. He considers a classical Gibbsian s
where the random filed is described by an exponentially decreasing pair-intera
potential. For this model he studies the sieve estimator of ‘local characterist
The proof presented there needs some rectification. Our work is similar to [12
that our one-point system is in fact something similar to local characteristics, af
that we study the sieve estimator. But unlike [12], our setup is much more ger
and in our case we estimate the object (one-point system) which itself desc
the random field.

Let us finally note here that the results of this paper were presented with 1
detail in [2]. All the results hold in the case of arbitrary finite state sptc&ee
[2] for more details about this case.

2. Preliminary Results

In this section we recall some basic notions of the Gibbs random fields theory
introduce the notion of one-point systems.

2.1. RECAPITULATION OF GIBBS RANDOM FIELDS THEORY

We consider random fields on thedimensional integer latticg”, i.e., probability
measures o, F) = (X%, fOZ”). For simplicity the state spac& (space of
values of a single variable) is assumed to consist of two points and be endowecd
the totalo-algebra (ther-algebra consisting fo all subsets &, i.e., (X, Fo) =
({0, 1}, exp{0, 1}). Denote€ = {A C Z": |A| < oo} the set of all fintie subsets of
7' . Here and in the sequéd | is the number of points of the sat For anyA € £
let

XA ={x={x,teA):x, eXforall t € A}

be the set of all configurations (realizations) anClearly, each element ¢ X*
is uniquely determined by the subset/®fwhere the configuratiom assumes the
value 1 (in physical terminology this subset is occupied by particles). Theref
we can identify any configuratiaoxon A with the corresponding subsgtof A. In
the sequel we will not make any distinction between these two notions and we
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write X C A for a configuratiorx on A. Note thatf is countable. Note too that by
definition F is the smallest -algebra orf2 containing the cyclinder events

XeQ:xy €A}, A& AcF

Here and in the sequgl, = xN A C A is the subconfiguration (restriction) a@n
of the configuratiorx.
A probability distribution on¥, A € &, is denoted by

Par = {PA(X), X C A}.

For A = ¢, we consider that there exits only one probability distribufpi) =
1.

It is well known that a probability measure & (or, equivalently, a random
field onZ") can be described in terms of fisite-dimensional distributiong/hich
are consistent in the sense tli@} ); = P;. Here and in the sequel the probability
distribution (P,); on X is the restriction oP, onI.

Let us now introduce the concept of conditional distribution of a random fie

For this we need the notion of convergence of nets (sequences) of real nun
indexed by elements &f. Let {ap, A € £} be a real-valued function ofi and
T C Z' be an infinite subset df.’. We say that lim,r ay = ar if for any
sequence\, € £ such thatA,, + T we have the convergence lim, a,, = ar.

Let P be a random field. It is well known that for any € £ there exist for
Pac-almost allx ¢ A© = Z"\ A the following limits:

PAU[\(X Ui[\)

qs(x) = lim , XCA.

Atac - Px(Xz)
Any system
Q=1{Q%, AecfandXcC A}

of probability distributions in various finite volumes with various boundary con-
ditonsX on A€ such that for allA € £ we haveQX = g% for Pyc-almost allx C A€
is calledconditional distributionof the random fieldP.

It is also well known that any conditonal distributiad® of a random fieldP
satisfiedP-almost surely the condition

QF A xUY) = QY 0(Q% DAY 1)

whereA, A e E ANA =0,xC A,y C A andX C (A U A)<. In fact, this is
nothing but the elementary formula

P(ANB|C) =P(A|BN C)P(B|C) (2)

written for our case.
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Now let us consider an arbitrary system
Q={Q%X, Ae&andXcC A}

of probability distributions in finite volumes with boundary conditions. If we wa
this system to be a conditional distribution of some random felthen we need
to suppose that P-almost surely satisfies the condition (1). However, we do 1
know the random fieldP a priori. Therefore we need to require that the conditig
(1) holds always, rather than almost surely. This leads us to introduce the folloy

DEFINITION 1. A system
Q=1{Q%, Aefandxc A%}

of probability distributions in finite volumes with boundary conditions is callé
specification, if for anyA, A € £ such thatA N A = ¢ and foranyx C A,y C A
andX C (A U A)“ we have

QX i (xUy) = QXY (0 (Q% )i ().

In Gibbs random field theory a random field is described through a specifica
Q = {Q%X, A € £andX c A°}. Usually the specification is assumed to have s
called Gibbsian form, written in terms of some physical quantities like interact
potentials, but we do not suppose that here. Any random field having the spe
ation @ as a conditional distribution is called@ibbs random fieldor Q. Note
that we use the traditional term ‘Gibbs’ even thougldoes not necessarily have
Gibbsian form. The main question of the Gibbs random field theory is the st
of the setG = G(Q) of all Gibbs random fields fo@. Is this set empty of not? If
it is not empty, is it a singleton or not, i.e., is the field havi@gas a conditonal
distribution unique or not? In the non-uniqueness case, what can be said ¢
the structure of this set? Another interesting question is the following. Supy
that @ is translation invariant (i.e., invariant with respect to shift operator&.'on
or, in other words, stationary). Are all the random fields frGit®) translation
invariant or not? In the latter case what can be said about the gubsetG;(Q)
of translation invariant random field?

These questions are answered in a general setup, when the specif@asior
not supposed to have Gibbsian form, but rather is supposed qudmlocal In
this case the sets are non-empty and the structure of the sets can be studied
that it is possible to havaon-uniqueness|G| > 1, |G:i| > 1) andtranslation
invariance breaking(G # G;i). Note also, that in our work the results are e
tablished regardless of these phenomena of Gibbs random field theory, since
hold uniformly ongG. For detailed exposition of Gibbs random field theory see t
works of R. L. Dobrushin [5-7] for the Gibbsian case and the excellent book
H.-O. Georgii [9] for the general case.

DEFINITION 2. Letg = {g*, x C Z"} be an arbitrary real-valued function én
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(1) We say that the functiog is local if it is 7' measurable for soma € &,
l.e., if it depends only on the restrictioq), of x on A or, equivalently, if we have
gt =g forallx € Q.

(2) We say that the functiog is quasilocal if we have limy,z» g4 = g*
uniformly onx € , i.e.,

sup|g’ — g*| — 0.
Xef mzy

DEFINITION 3. A specificatiorQ is called (quasi)local if foralh € £ andx C A

the function{Qi"C (X),Z € 2} is (quasi)local, i.e., if for alA € £ andx C A the
guantity

ox.a(1) = SUP|QY () — Q)]
XCA¢
tends to 0 ad 1 Z" (for the quasilocal case) or equals 0 fosufficiently large
(for the local case). A random fieRis called (quasi)local if it has a (quasi)loca
conditional distribution.

2.2. DESCRIPTION OF SPECIFICATIONS BY MEANS OF ONPOINT SYSTEMS

As we have already seen the notion of the specification plays central role ir
(Gibbs) random fields theory. In [2—4] an approach towards description of spec
ations was developed. In this approach speficiations are described by some sy
of real numbers lika2- functions, Q-systems H -systems and one-point systems
rather than by interaction potentials. Here we recall some results about des
tion of specifications by consisteht-systems and one-point systems. Details a
proofs can be found in [2] or in [4].

DEFINITION 4. A systemH = {Hf,x € £ andX C x‘} is calledH-systemif
HY>0forallx € £ andX C x* andH) = 1 for allX C Z'. This H-system is
called consistenif it satisfies the following condition: for any, y € £ such that
XNy =@ andanyx C (xUYy)‘ we have

HY

X pyXUx
Xy = HYHY™.

H-systems let one describe specifications in the following way.

THEOREM5.A systenQ = {Q%, A € £ andX C A¢}is a specification satisfying
QX (W) > Oforall A € £andX C A€ if and only if there exists a consisteft-
systemH = {HX,x € £ andX C x°} such that for anyA € £ andX C A we
have

X

o H
XX) = —=2%—, XCA. 3
Q4 (X) Sy G C 3)
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Now let us introduce the following

DEFINITION 6. A systemh = {h*,t € Z’ andX C Z"\t} is calledone-point
systemif for all + € Z" andX C Z"\t we haveH* >0 and for alls,z € Z" and
X C Z"\{s, t} we have

Xy XUs 7. X7 XUt
WA R = Y,

Here and in the sequel we wri®\r as a shorthand notation f@r\{¢},X U as a
shorthand notation fot U {z} and in general we omit braces for one-point sets.
As the following theorem shows, these one-point systems correspond on
one to consisteni/ -systems. In fact they are nothing but one-point subsystems
consistentH -systems and hence, just liké-systems, describe specifications.

THEOREM 7.A systent{ = {H},x € £ andX C x°} is a consistent H-system fif
and only if there exists a one-point systara= {h%,t € Z" andX C Z"\t} such
that for all x € £ andX C x we have
HY — hY htYUtl . htXUtlUn-Ul‘n_l (4)
X 11 2 n
wheren = |X| and1q, ... ,t, iS some arbitrary enumgratio_n of elements of the s
X. Particularly, for all t € Z" andX C Z"\t we haveH = h’.

So, a specifcatior® satisfying Q% () > 0 can be described by some one-poil
systemh. Let us note that such specifications are some-times cadledum spe-
cifications Note also that we include the Gibbsian case.

Clearly the quasilocality df is equivalent to the quasilocality of correspondin
specification@.

Finally, let us turn us turn to the translation invariant case. Obviously a spec
ation @ is translation invariant if and only if the corresponding one-point syster
is translation invariant, i.e., if we ha\lé = hf‘jf; forall z,s € Z" andX C Z"\t.
In this case, clearly one needs to know only the subsy$t&nx c Z"\0}, where
h* = h§ andOis the origin ofZ". This subsystem is the object of statistical intere
of this work. Since it determines the whole one-point system we will use the s
notationh for it. Condition of the quasilocality in this case will be written in th
form

y(I) = sup | — | — 0.
XCZV\0 nzy
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3. The Nonparamteric Estimation Problem

In this section we present the statistical model, construct an estimator and sta
main results of the paper: exponential dntd consistencies of this estimator.

3.1. STATISTICAL MODEL

We write’H = {h: his quasilocal and translation invarignfo anyh € H we
associate some specificatiGhand hence some sefgh) = G(Q) andG; (h) =
Gti (Q) of Gibbs random fields.

Supposeh € H is some unknown translation invariant quasilocal one-po
system. We observe a realisation of some random Hedd7(h) in the observation
window A,. Here and in the sequel, denotes the symmetric cube with the sid
sizen centred at the origi® of Z" (without loss of generality we assume that
is odd). So, based on the data = x,, C A, generated by some random fiell
P € G(h) we want to estimatl. More formally, the statistical model is

(Q,F,Pegh),heHiy

where 0< A< B < oo are some constants aﬁﬂi’f% is the space of one-point
systems satisfying the following conditions.

(C1) h € H,1.e.,his quasilocal and translation invariant.
(C2) For allx c Z"\0 we haveA < h* < B.
(C3) Let p be the supremum norm d¢ft and put

¢(d) = sup sup |hX — R
I: p(I°\0,0) > d XCZ'\0

We call the functiong(-) rate of quasilocalityand we suppose that(d)
<ce 24" wherec, a ands are some positive constants.

Note thatc, « andé are not supposed to be knowarpriori and may differ for
differenth € H3'.

Let us remark here that our statistical model is a bit unusual, in the s¢
that the probability measure is not determined by the parameter Rather,h
determines some sét(h) of probability measures. The observations come frg
an arbitrary element of this set but we are not interested in this element, the
object of interest is the parameteritself. That is, we want to identify the class
G (h) corresponding to (unknown) one-point systepand not a particular elemen
of this class. In fact, this is the reason for which our results hold regardless of
uniqueness and translation invariance breaking. In some sefgé)if > 1, then
P € G(h) can be viewed aB = P(h, 1), and onlyh is the parameter of interesit
(something like semiparametric statistical problem), while all our considerati
will be performed on conditional distributions, the latter ones depending only
h, and not onu.
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Any real-valued random functioh, = {EZ, X C Z*\0} constructed fronx, is
said to be arestimatorof h. The distance between the estimaigrand the true
valueh is measured in the supremum norm:

IR, —hll = sup &, — h¥|.
XCZ\0

The estimatorh, is said to beconsistentif for any h € H3% we have

Ih, — h|| — .-« O in probability, uniformly overp e G(h), i.e., if for any
h e #3% and anys > 0 we have

sup P(Jh, —h| > &) — 0.
Peg(h) n—oo

If the last relation holds uniformly oh e ’Hj"% then the estimatdr, is said to be
uniformly consistent

The estimatomh, is said to bel 7-consistentfor somep € (0, co), if for any
h e 13" we have|h, — h| —,_.« 0inL?, uniformly overP € G(h), i.e., if
for anyh € H3'; we have

sup E|h, —h||? — 0.

If the last relation holds uniformly oh € %3, then the estimatdr, is said to be
uniformly L 7-consistent

Let us finally note here that, if the random field corresponding to a one-p
systemh is unique, then the statistical model, the identifiability and all the notic
of consistency regain their classical statistical sense.

3.2. CONSTRUCTION OF THE SIEVE ESTIMATOR

Let us first note that by (3) we have

QY(I) — HIX — HZX — h;(
t Sye HY  HX+ HY  1+h}
oy = M 1
! Sy HY  HX+ HY  1+h}
and hence
_ _ X0 X(1
o = RO _ AW 5)

) QYO

The main idea of the estimator is to take some= k(n) and approximate
h* by the ratio of the conditional probabilities with condition in the volumg
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For this we use the formula (5) and we approximate the conditional probabil
Q¥(x), x € {0, 1}, by the probabilities2y 4+ (x[X4x) of observingx in O given that
Xz Is observed om\ ;. The volumeA, is called asieveandk = k(n) is called
sieve sizand is supposed to grow fast enough. In fact, using the total probab
formula and the quasilocality condition, we have

— Xpxy _
Poay(xXap) = | . Qo " (x) Pagia; (dylXa;)
Xk

~ Q5 [ Pagin @) = Q5.

On the other hand, # grows much slower than, then the probabilitie®o
(x|Xaz) in their turn can be estimated by empirical conditional frequency of {
valuex observed in some pointe A, given thatX,: + ¢ is observed on the set
Ay +t.

More precisely, lek(n) be the periodization oA” of the observatiorx,, that
IS, (X(n))a,+n: = X, + nt for all r € Z". Note that equivalently periodization car
be viewed as wrapping the observatignon a torus. Now, for every C Z"\0, let
us put

Alz{yCZ”: yAk :XAZUO} and AO:{yCZV: yAk :YAZ}

Let us also put

1 0
N :Z]]'{X(n)—teAl} and N° = Z]]'{X(n)—ter}-

tel, telAy,

Clearly, N* and N° are the total numbers of subconfigurationspbf the ‘form’
Ay and equal tXa; UO andi,\z, respectively.

Now we define thaieve estimatoh,, by

N1/NO if N> 0andN?! > 0,
ht=1 A, if N' =0,
B, if NO = 0(andN! > 0).

Note that the case¥® = 0 andN?! = 0 are asymptotically notimportant. Moreove
we could have not considered at all the second case, that is, we could have p
estimator still to bev!/N® = 0. Our definition of the estimator pursues rathe
practical aims, and is motivated by the following reasoNS: = 0 means that
Qp(0) ~ 0 and hencé* is ‘large’, while N1 = 0 means tha@f(1) ~ 0 and hence
h* is ‘small’; but we knowa priori that A < h* < B.

Let us note here, that the idea of using empirical conditional frequencies to
struct estimators, as well as some results on consistency of estimators of sucl
for parametric models in the classical Gibbsian setup, can be found
[8, 11-14].
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3.3. ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

Note that the definition of the sieve estimator depends on the choic&Cdioosing
k too large may results in insufficient number of repetitions of the subconfigura
Xaz in Xy, i.e., one can too often havg® = 0 or N = 0. On the other hand,
choosingk too small may result in poor quality of the approximatiQf(x) ~
Pojaz (x[Xaz). The following theorems show a ‘good’ choicekofLet us denote

b* =maxin(1+ B),In(1+ B) —In A} and d* =v/(2b").

Now we can formulate the following theorems.

THEOREM 8 (Exponential consistency of the sieve estima#gsume thah e
H5 % andh, is the sieve estimator with = [(d In n)*/*] andd € (0, d*). Then,
for anyh € 3% and anye > 0, there exist some positive constant- 0 and

someng € N such that

A~ v—2d b*
sup P(|h, —h[| > &) e @ " /Inn
PeG(h)

for all n > ng, i.e.., the estimatoh, is exponentially consistent.

THEOREM 9 ( P-consistency of the sieve estimatofssume thah € #5; and

h, is the sieve estimator with = [(d In n)Y"] andd € (0,d*), and fix some
p € (0, 00). Then, for anyh € Hi’f‘; and for sufficiently large values af we have

sup (E||F1n — h||”)¥r < p—(v/2=db*~o)
PeG(h)

where o is an arbitrary small positive constant.e., the estimatorh, is
L 7-consistent.

These theorems are the main results of this paper. The next section is de
to their proof.

Let us finally note here, that the consistencies of the sieve estimator prove
the Theorems 8 and 9 can be trivially straightened to be uniform, if we consid
narrower class of one-point systems by fixing not only the constaatsd B from
the condition C2), but also the constanis ¢, and$ from the condition C3), that
is considering the clas& = #(A, B, a, ¢, 8) defined by conditions1), (C2)
and (C3) with somea priori fixed constantsi, B, a, c ands.

Note also that all the bounds on the rates of consistency obtained in the pre)
section are ‘slowed’ by the constahfrom the definition of the sieve size Hence,
one can consider getting rid of the terms containihgy slightly modifying the
choice of the sieve sizk. In fact, in the case of the spa@é, by puttingk =
[(In n)Y"+3/2] one can get uniform exponential consistency with the rate

sup sup P(||h, — h| > &) <e o™
heH PeG(h)
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wherex (n) is some slowly varying function, arld’-consistency with the rate
sup sup (E[lh, — h|))Y? <n= /27,
he7-[ PeG(h)

The proofs are similar. The rates in this case are almost same as in the cg

parametric estimation, when the unknown one-point system is supposed to be
For more detailed discussion and for the parametric case see [2].

4. Proof of Theorems 8 and 9

Throughout the proofC, « and ng denote generic positive constants which ca
differ from formula to formula (and even in the same formula).

The main component of the proof of Theorem 8 is the so-called ‘conditio
mixing lemma’.

LEMMA 10 (Conditional mixing).Leth € H3%;, P € G(h) and letp(:) be the
corresponding rate of quasilocality also Ie&t= L(n) € N and let the set®; =
Ri(n),..., R, = R, (n) be finite subsets d&" such thatp(R,,, R,) > B, for
{1 # £, whereB, —,,_, o 00 and

lim max [R¢ ¢(B,) =0.

n—00 1<L<L

DenoteR = Z"\(R1 U --- U R;) and letu,: X® — R, ¢ =1,..., L, be some
bounded measurable functions. Then

L
E gyu-URL (R (1‘[ u«(mexR)
(=1

L
= (1_[ ER[R(”Z(XR3)|XR)> 1+ Bn)L (6)

=1
whereEg,z is the expectation with respect By, and

8 =0 ( max lelcp(ﬂn)>- (7)

1<e<L
Proof. First of all let us note that ik, = y; for all r such thato (¢, 0) > d then

by (C2) and C3) we have

y

h
In x| = [In AY —In K| < C|hY — | < Cop(d).

Now supposeK; = Ki(n), K, = Ko(n) and K3 = Kz(n) form a disjoint
decomposition o7’ such thatk; € £ andp (K1, K») > B,. Then, using translation
invariance and the formula (4), we get

XK4 UX/K2
In —4

n XK:,,UXK2 <C|XK1|(P(,Bn)<C|K1|(p(,Bn)
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forall x, X' C Z". If, moreover,|K1|¢(B,) — - 0, then clearly

XKgq Ux’K2

Now we can see that for all, X’ c Z"

!

Xka X XKk3UXk Xk4UXK
2 2 37K
QKl (XKl) HXK1 ESCI(l HS
XK3UXK2 - XK, UX XK ux’
3-"Ko 37"Ko
QKl (XKl) HXK1 E]CK]_H]
!
XKk3UXk, Xk3UXk, HXK3UXK2
XKy S N
XK3UXKy Z XK LUX, XK qUX]
377Ky 377Ky
Hy, ScK1 Xjck, Hy s
XK3UX/K2
XKl
= -1 1( x
X1(3UXK2 +
HXK1
Xg2UXK.
y X5 g s° )41
X —_— —
QKl (S) xK3Ux’K2 +
SCKq s
XK UX]
HXK3 Ko o U XK3UXKy
— K1 1 K3-7K5 S S 1
- X x- UX - QKl ( ) / - +
H K3 Ky XK3UXK2
XKq SCK1 H,
xKSUX’K2
XKl
-1
XK3UXK2 +
HXKl
xK3Ux’K
2
Xy UX H
2 S
+ E Qx SOl —-1]+1
1 XK UX
3 Kz
— A, +1 (8)

whereA, = O(|K1|e(B,)). Using the last formula and the total probability for
mulawe getforalk =1,... ,n

PR@|RUR1U~-'URZ,1 (XRe |XR U XR]_ U..-u XR(,]_)
= Prr Xg, IXR) (1 + 8,)

wheres,, satisfies (7). Multiplying this relations ovér= 1, ... , n we get
L
PR1U~--URL|R(XR1 U-.-u XRL |XR) = (1_[ PRe|R(XRg |XR)) (1 + an)L
=1

which implies (6). The lemma is proved.
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The next lemma gives us a uniform lower bound for the conditional probabili
Q% (x) and for the probabilitie®, (x).

LEMMA 11. Let P € G(h) for someh satisfying the conditionG2). Then, uni-
formly onx € A andX C A¢, we have

QL0 =e M and Py(x) = e M

whereb* = max{in(1+ B),In(1+ B) —In A}.

Proof. The second assertion clearly follows from the first one using the tc
probability formula. By the same formula and properties of conditional distril
tions the first assertion clearly can be derived from the b@ﬁd) > e~ for all
X C Z'\Oandx € {0, 1}. But by (C2) we have

i, h* A 5 1 1
X(1) = _ > and Qpj(0) = - >
QY =177 178 PO =177 178
and hence
_ 1 . *
x > min ’ — Minfin A-In(1+B).—In(1+B)} _ ,—b*
Q) {1—|—B 1+B} ’ ’

The lemma is proved.

In order to use the conditional mixing lemma, let us decompgsé the fol-
lowing way. For technical reasons suppase 2m k for somem € N. ThenA,, is
partitioned intan” = n"/(2k)" cubesDy, ... , D, with side Z. EachD; contains
(2k)" lattice sites. We order sites of eabhin the same arbitrary way. Hence, ever
t € A, can bereferredtoasapdit j),i =1,... ,m",j=1,...,(2k)", which
means thej-th site in the cubeD;. In the sequel we will use both the notatians
and(i, j) for points ofA,,.

If we define

o _ 1_
Yii = Lyyy—ijpeary aNd Y = Ly jreay)

and

mV
0 __ 0 1_ 1
NP=3) Y} and Ni=) Y}
| i=1

then N° and N from the definition of the sieve estimator will have the form

(2k)Y (2k)”
0 __ 0 1_ 1
N_ENJ. andN_ENj.

Note that ally?, y2

Y3, Nj?, le, N° andN* depend om, onX,: and on the observa-
tion x,,.
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Now, for anyX C Z"\0, we can write

A — 1| < RN — Y] 4 RS — BN
= | — K| + Lyyo_goricgy Y — K| +

2k)Y
> 2

j X %
+ ]]'{N0>0,N1>0} NO — ]’l Ak

BN — 1|+ Lyyogy| B — K| + Lyyi_gl A — BN | +

(2k)¥
+ Lyo-0 n1-0) Z

j=1

/N

1 0
N ﬁh%z
NO NO

= W — BN+ Lyyogy | B — W] + Lyl A — h™ | +

(2k)” N}
+ ; 1{N0>0,N1>O,N§):O}m +
(2k)” 1
* Z 1{N§’>O,N1>0}W|le - NJQ R
j=1
= DX + DAX) + D3(X) + D*(X) + D3(X) ©

with evident notations.
First of all, by (C3) we have

IDEO)I = sup W™ —hN| <o) <ce ™™ — 0
XCZ\0 n—>00
and hence
P(ID;()]| > &/5) =0 (10)
for n > no.

To estimate the remaining summands we need the following lemma.

LEMMA 12. Denotel’(n) = n=4%", A, = T'(n)m"” = n"~4"" /(2k)" and fix some
r € {0, 1}. Then, for anyg € (0, 1), there exist some positive constant- 0 and
someng € N such that

N7 V—2db*
P(—L<l—s><e””2“/mﬂ
An
uniformly onn > no, j =1,...,(2k)" andX,: C A}.

Proof. For definitioness let us take= 0. We denote by/;; a cube with side
centred ali, j),i =1,... ,m", j=1...,(2)", and lety; = Z"\(V{; U--- U
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Vv j). Note thatYl.(]’. depends only on the restriction of our periodized observat
X(n) on the set;; and that fori; # i> we haveo(V,;, Vi,;) = 2k — k = k. So, for
anyi > 0, it follows from the conditional mixing lemma that

E(e ™M xy,) = @+ 80" [] E@™*"ixv,) (11)
i=1

with §, = O(k"p(k)) = O(d In nce‘“kw) =o(n~P)forall p > 0.
Clearly, using the Lemma 11, definition ﬁ,ij’. and total probability formula, we
have

T B )
Furthermore, using Taylor expansion formula, we get

30 - 0xy, . —A(YO—E0|xy,
E(e ””|XV,») — . )»E(YUIXVJ)E(e w(r2 E(Ylj|xvj))|xvj)

_ A? A
< e M (1—|— Ee*) < exp[—k (F(n) — Eek>i| . (12)

Finally, combining (11), (12), and using Chebychev’s inequality and the tc
probability formula, for sufficiently large values afwe get

N 0
P A_J <1l—¢ < ek(l—a)kn Ee—ANj

n

Vv )\- v
< erdarmm exp[—k (F(n) — E&) mj| (148,

-2 (oo -3¢,
< Cexpl—Am 8F(n)—§e .

Now, choosingh = eI'(n)/e = en~%"" /e < 1, for sufficiently large values of
we get

N? en~db" pv . endV
P <1- < Cexp|— —dbt_
(An = 8) p|: e 2“d|nn(8n 2

*
—an"=24b" /1

< e

with an arbitrarye < £2/(2"*t1e d). The lemma is proved.

Using this lemma we clearly get

r

P(N' =0) <P (Tf <1- e> Leman T

n
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forall j =1,...,(2k)", r € {0, 1} and for sufficiently large values af. There-
fore, for sufficiently large values of, we have

P(I|D2()|| > &/5) = P( sup D3<X>|>s/5>

XCZ¥\0
< Y PNO=g e (13)
YAzCAZ

where we take into account thaf depends only ON,:, and hence the supremun
overX C Z"\0is in fact a maximum ovek,: C Ap, i.e., @ maximum over

214kl < 241N elements.
In exactly the same way we have

P(ID3()|| > &/5) <e o 2" /inn, (14)
and similarly we get
P(ID4()| > ¢/5) = P ( sup |D}(X)| > s/5>
XCZ’\0

(2k)"

< Y Y P =0 et (15)

YAzCAZ j:l

Finally, the last summand is estimated by the following lemma.

LEMMA 13. For anye € (0, 1) there exist some positive constant- 0 and
someng € N such that

P(IDE()|| > &/5) e en 2 /inn (16)

forall n > ny.
Proof. As before, it is sufficient to show that

1 X € v—2db*
0 1 A70 X% —an /Inn
P(Nj >0, —5INF = NI | > 5(2k)v) <e .

We have obviously

1 X €
0 1 0 7, Xa%*

eNO
<P >
S(2k)¥
(2k)”

0
<P Y F<d-o@b +P<

j=1""

mU

1 0 7 Xp*
D =Yg

i=1

m\)

> Wy

i=1

= rkn> ,
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wherer = &(1—¢)/5 andW;; = Y — Y K%, The estimate of the first term

easily follows from the preceding lemma. To estimate the second one let us ai
note that using translation invariance, total probability formula and the formu
(2), (5) and (8) we have

X A % — .. X %
E(Y1xv) B = Payy—a.jyRazlxy, — (@, ) B

XUy, —G. ) _ o
= Qq (0) Pasv; . RaglXy;, — (@ j)) X

x Q% (1)/Qy " (0)
= (A4 o) Pariyy—.y Raz Iy, — (i 1)) Qo™ (1)

= 1+ ,0,1)2 PA;WJ-_(LJ')(YA; |XV, — (@, J)) X

YAzU(ij—(i,j))

X Qo D

= EY1xy,) 1+ pn).

wherep, = O(¢(k)) = O(ce=**""") = o(n=F) for all B > 0.
The last equality clearly implies that

X %

E(W;Ixy,) = E(YjIxy,) — E(X2Ixp,) b = O(py)

and hence, for any > 0, using the fact that B < W;; < 1 and Taylor expansion,
we get

0 0 0_ 0
B Milxy,) = & HMI BTNy, )

2 2
< O [1+ A(B+1) ex(3+1>]
= 2

(B +1)° eA<B+1)]
5 :

Finally, using Chebychev’s inequality, total probability formula and conditior
mixing lemma, we get

P (mz Wij 2 ‘L')\.n>
i=1
<e ™ E exp (A i W,~~)

i=1

< eXp|:)"0(l0n) +

v

<e—kr1’(n)m” E <1_[ E()\'eW[jSVj)) 1+ 8n)m”

i=1
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—ar A2(B + 1)2 "
<Ce—kfn ab® {EXD[XO(,O,,)-F ( 2+ ) eA(B+1)i|}

" B + 1)?
<C exp{—k m" |:rn_‘”’ — %Aeu'y“) — O(pn)“ .

Now, choosingh = tn=4"" /((B + 1)? ¢%+1) < 1, we get

P §W~>rk < Cexp|l— Tt n !
AR Pl B 1025 2dInn 2

s
—an’=240" /1n g

< e

with an arbitrarye < t2/(2°1(B + 1)%2e2+1 q).
By the same argument we have

mV
v—2d b*
P(_Z Wij>f)\-n) <e @ /Inn
i=1

which concludes the proof of the lemma.

Now, combining (10), (13)—(16) and taing into account the inequality (9),
get the assertion of the Theorem 8. The uniformityPore G(h) is trivial. The
Theorem 8 is proved.

Let us note, that the details of the proof clearly give rise to explicit expression
the constani. For example, it € (0, 1), then one can take an arbitrary

.L_2

@ < 2v+1(B + 1)2 eB+1d'

Note, too, that taking a closer look on the proof we can give a ‘more prec
bound on the rate of consistency, explicitly showing the dependence of the ra
e. That is, fore € (0, 1/2), we have the bound

sup P(lh, —h]l > &) < :I]-{Gcn—ad(d nmd/v gy +
PeG(h)

+ U, expl—ae?n’ 2% /In n + O (p,)Ben""%%" /In n}

where

1 1
- 25-2V+3(B—|—1)283+1d’ ’8: 5-2"+1(B—|—1)263+1d

o

and the sequenag, is given byy,, = 2" (2" d In n + 1)(2°d In n + 2).
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Consideringe = ¢, = n~"/2=°) with an arbitrary small positive constastand
using the above bound we can easily prove Theorem 9. Indeed, we have

E|h, —h|? = / ||ﬁn—h||de+/A 1A, = h||P dP
||hn_h||>3n ||hn_hH <ép
< (max{n’, B} + B)’ P(||h, —h| > ¢,) +¢&”
< Cn—(V/Z—G)p

for sufficiently large values of, where we use the fact thatis bounded bys and
h by maxXn", B}. the assertion of Theorem 9 follows trivially.
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SUMMARY
Risk mapping in epidemiology enables areas with a low or high risk of disease contamination
localized and provides a measure of risk differences between these regions. Risk mapping mo
pooled data currently used by epidemiologists focus on the estimated risk for each geographic
They are based on a Poisson log-linear mixed model with a latent intrinsic continuous hidden M
random field (HMRF) generally corresponding to a Gaussian autoregressive spatial smoothing. Ri
sification, which is necessary to draw clearly delimited risk zones (in which protection measures n
applied), generally must be performed separately. We propose a method for direct classified ris
ping based on a Poisson log-linear mixed model with a latent discrete HMRF. The discrete hidde
(HF) corresponds to the assignment of each spatial unit to a risk class. The risk values attache
classes are parameters and are estimated. When mapping risk using HMRFs, the conditional dist
of the observed field is modeled with a Poisson rather than a Gaussian distribution as in imag
mentation. Moreover, abrupt changes in risk levels are rare in disease maps. The spatial hidder
should favor smoothed out risks, but conventional discrete Markov random fields (e.g. the Potts
do not impose this. We therefore propose new potential functions for the HF that take into accour
ordering. We use a Monte Carlo version of the expectation—maximization algorithm to estimate pg
ters and determine risk classes. We illustrate the method’s behavior on simulated and real data s

method appears particularly well adapted to localize high-risk regions and estimate the correspond
levels.

Keywords Animal epidemiology; Disease mapping; Expectation-maximization (EM) algorithm; Image segment
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1. INTRODUCTION

Efficient disease control requires an understanding of the determinants and dynamics of the dis
guestion. In situations where little initially is known, the first questions to ask are: Where are the
ulations at high risk located? Are these locations structured in space? If so, how? Can they be
to environmental factors? Disease mapping models of epidemiological risk provide tools to lo
high-risk areas and identify potential sources of a disease. A comparison of disease maps with t
tial distribution of factors suspected of causing the disease can help to identify which are
significant.

Epidemiological data are frequently count data aggregated at the level of spatial units (e.g. aq
trative zones): For each unit, the available information is the number of observed cases and the poy
size. The risk in a given spatial unit is the probability that an arbitrary individual in the populatio
the unit is contaminated. Classical risk mapping methods are based on spatial models. Spatial
tions account for spatial structure in the unknown or unobserved factors affecting the risk level and
spatial transmission of infectious diseases. These methods are inspired by statistical methods fo
restoration or denoising (see, elg, 2001). The mathematical framework is that of hidden Markov rd
dom fields (HMRF). The “hidden image” to be restored is the risk value at each spatial location, af
observed image is the set of counts of observed cases. The numbers of cases usually are modeled
son distributions. Most statistical methods for risk mapping of aggregated data (sedp#i.g. 1999
Pascuttaand others2000 dedicated to noncontagious diseases are based on a Poisson log-linear
model initially proposed byBesagand others(1991). This model is based on a hierarchical Bayesi
approach where the latent intrinsic risk field (parameter of the Poisson distribution) is represente
Markov random field (MRF) with continuous state space modeled by a Gaussian autoregressive
smoothing. Recent developments in risk mapping concern spatiotemporal mappikg¢seeleld and
Richardson2003 Robertsorand others 2010 and multivariate disease mapping ($éeorr-Held and
others 2002 MacNah 2010. These procedures produce a precise real-valued estimation of the diff
risks in each spatial unit.

Most applications of disease mapping involve real-valued disease risk maps. However, in someg
such as animal epidemiology (see, éAfprial and others 2009, a coarser spatial representation of ris
is needed in which locations with similar risk values are grouped. Such a representation with ¢
delimited areas at risk can help decision makers interpret the risk structure and is important to det
protection measures such as culling, movement restriction, mass vaccination, etc. These areas at
be viewed as clusters as kKnorr-Held and RassgR000, but we prefer to interpret them as classes
risk, as inGreen and Richardsof2002 or Alfo and others(2009, because geographically separate
areas can have similar risks and be grouped in the same class. There consequently are fewer cla
clusters, facilitating interpretation by decision makers. Until present, an additional postprocessing
generally conducted to define the risk classes either manually (involving the difficult definition of th¢
range of each class) or using automated statistical classification methodséeg.and Raftery2007).
In either case, the classification step, which is of major interest in animal epidemiology, is not part
initial risk mapping procedure and is performed separately. In 2 recent papers, risk classification is
a single proceduresreen and Richardsd2002 present a model that is based on hierarchical Bayeg
approaches with the latent risk field modeled by a Gaussian autoregressive spatialsmoothinglifovh
and otherg2009 present a method based on discrete HMRF models estimated by an EM-type algqg
using mode field approximation.

In this article, we propose another approach to risk modeling that integrates an automatic and uf
vised classification of locations into a few risk classes. This method relies on a discrete HMRF mg
which spatial correlations are embedded in the map of classes. A representative risk associated w|
class is estimated during the procedure. Many biologists are unfamiliar with the Bayesian contex
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for estimation in conventional risk mapping methods, sucBesagand otherg1991), Molli & (1999, or
Pascuttcand otherg(2000, and they hesitate to use it. They are most interested in a practical inte
tation of each parameter of the model, including hyperprior distributions and hyperparameters. T
the hyperprior stacking up that occurs in hierarchical Bayesian approaches, we chose to investi
alternative estimation of the different parameters by maximum likelihood (ML) using an EM-type
rithm (seeMcLachlan and Krishngr2008. More generally, we aimed to produce a model that can
interpreted easily by epidemiologists and designed easily based on the context. In particular, the
correlation is controlled by the potential function of order 2 that is quite simple, interpretable, ang
ible. At the end of the estimation procedure, the classification is directly estimated from the obs
count data, without any intermediate estimation of individual risks at each location, by computat
the iterated conditional modes (ICM) estimator (Besag 1986. The output is a disease map where t
color of each spatial unit represents the associated risk class. We present our model for classified
mapping from count data in Secti@ The estimation classification method is described in Se&idm
Sectiord, we illustrate the performance of our method first on simulated data and then to produce a
classification of the risk of bovine spongiform encephalopathy (BSE) in France.

2. THE DISEASE MAPPING MODEL

We present here our discrete HMRF for the mapping of disease risk classes. The numbers of o
casesy; of disease in the spatial units= 1, ..., n form the observed fiel¢¢ = (yj)i=1...n and are
associated to the random fie¥d = (Y])j-1
field X = (Xi)i-1,...
characterizing disease maps is fully embeddex.in

.....

.....

2.1 The observed field

In the HMRF framework, the observed fieYdis linked to the HFEX assuming conditional independeng
given a realizatiorx (no spatial correlation appears at this stage):

n n
P(Y =yx.0) =[] P(Yi = yilx.0) = exp[Zlog P(Yi =y, |xi,e>} :
i=1 i=1
with, for a discrete HMRF) = (6k)k=1,....k . In risk mappingfk is a representative risk associated wi
classk (k = 1, ..., K), e.g. the absolute risk that corresponds to a probability of infection. For a
and noncontagious disease, the case we consider, the distributfprisaiisually modeled by a Poisso
distribution with expectation equal t@6y, (the mean number of cases in uilif with n; denoting the
population sizeY; |x; ~ P(niby,), with P(Y; = yi|Xi, 8) = exp(—n;ify )(nibx )Y /yi!, forx =1,..., K
andi =1, ..., n. This discrete distribution of thg s is the first main difference with the discrete HMR
models commonly used in image segmentation where a Gaussian distribution often is considered
In practice, epidemiologists usually prefer to study the relative miskcorresponding to the ratig
between a local and an overall risk rather tifign It allows an easier comparison of different risk ma
as the scale of thig s is always the same; in contrast, the rangésotan vary considerably between
data sets. For a unique population (without any structure), these 2 risks are equivalent.

2.2 TheHF

We now will describe the modeling of the HK, which involves the spatial correlation characteri
ing disease maps. We consider an MRF (see,l8,2001) with potential functions of order 1 and 2
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The distribution ofX then is expressed as

PX =xla, B) =y exp[ =D p106la) + 8D D" 0206, %)) | » (2.1)
i:l

i=1 ]€V|

whereV is the set of neighbors @f In our illustrations (Sectio#), the territory of France is divided inta
1264 hexagons and adjacent hexagons are defined as neighbors.

The use of a potential function of order @3, parameterized by a parameteris one way to tune
the proportions of the different risk classesXn The termg2 accounts for spatial correlation and th
parametep fixes the balance between these terms. In other words, it controls the importance of the
smoothing. In MRF models, only potential functions of order 1 and 2 usually are considered to fac
computation and the interpretation of these functions. The same is true in spatial epidemiology, wh
jointinfluence of 2 (or more) neighbors on a geographical unit seems much more difficult to interpre
the influence of a single neighbor. Since we observed good results in our experiments wigh anly
@2, we did not consider larger orders.

We compared 2 choices foi. First, we considered a potential function with no a prigiik|a) = 0,
fork =1,..., K, so that only the data and the spatial structure of the classes guide the final distrik
of classes. We then considered the general gadda) = ak, with a1 = 0 as the potential functions aré
defined up to a constant.

We aim to represent situations with smooth variations of risk in space (as can be expected fro
demiological data) through the use of the spatial correlation termit is highly unlikely that a very
low-risk area would be observed immediately next to a very high-risk area. Extreme risk areas log
would be separated by a smooth gradation of risks. This meangibat xj) should not only favor
configurations where neighboring locations are in the same class, as with the classical Pott&\apd
1982 used inAlfo and otherg2009 which penalizes equally all pair configurations whgire# X;. 2
also should decrease with the distance betweamdx;.

We propose 2 expressionsg@f that take these specific features of risk mapping into account. First
assume an ordering of the classes in the senséhatfy1. Theng, should penalize pairs of classes
andk’ at neighboring sites according to their distance: The closer the 2 classes, the higher the prok
that this configuration would be observed. We propose the 2 followinigased on 2 distances betweg
the classes of neighboring units that take into account a gradual correlation. The first, referred to as
is based on the absolute distangglx;, Xj) = 1 — |x; — Xj|/(K — 1). The second, referred to as grad
is based on the squared distangg(x;, Xj) = 1 — (X — Xj)z/(K — 1)2. While the correlation here only
depends on the distance between the risk classes of 2 adjacent units, more complex forms could be
in other contexts. For example, asymmeiccan be introduced to model a dissemination influeng
by an ecological gradient; angb can differ in different regions of the map according to geographi
barriers.p2 is easy to interpret and to construct according to the intended application and is one
main advantages of our approach.

3. MODEL ESTIMATION

For an epidemiologist, the first output of interest is the risk map, i.e. the values of the risk otgss
followed by the values of the ris, (or ry) associated with thes. The classification procedure thg
determines the risk classes is detailed in SecBidh To obtain thexjs, we must estimate the differen
parameters of the model: The rigks(or ri), the classes proportiong (k =1, ..., K), and the smooth-
ing strengthp. The estimation procedure is presented in Se@idrbelow. As mentioned previously, we
chose to apply an ML procedure through an EM-type algorithm instead of a Bayesian procedure tg
hyperpriors that are difficult for epidemiologists to interpret.
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3.1 Parameter estimation

Without loss of generality, we present here the method for the parameterization of the model w
absolute riskgk: (0, a, #). The formulas remain valid if relative riskg are used in the place 6. The
model parameters are estimated with missing data (th&X}HHFo evaluate the ML estimator, we therg
fore used the EM algorithmDempstetand others 1977). However, the complexity of the HMRF mode
renders impossible the computation of the expectation of the complete log-likelihood in the ex
tion step of the EM algorithm. To overcome this problem, we applied the Monte Carlo EM (MC
solution proposed byVei and Tanne (1990 which relies on a Monte Carlo method to generate
alizations of the HFX. In the expectation step, we also need to computeatipeiori distribution of
the HF, P(X = X|a, f). The computation of this probability is too complex to be obtained direg
To overcome this problem, we used the notion of pseudolikelihood propos&®4sg(1974 which
consists of an approximation of the probability of the MRFoy a product of local conditional prob
abilities of the X;s given their neighborhoo®(X = X|a, ) ~ [['_; P(Xi = Xilxy,a, B), where
Xv, = {Xj, ] € Vi} denotes the value of neighboring units. Computing this approximated proba
is simple and fast. The iteratian+ 1 of the MCEM algorithm with the use of pseudolikelihood is tl
following:

Monte Carlo expectation stepGeneratély. 1 realizations<@+D-M . x(@+1).(Ta+1) of the HF accord-
ing to the conditional probability distribution of the missing d&eX = x|y, 6@, ¢ @ @) using one
iteration of the Gibbs sampling procedure. The expectation of the complete data log-likelihood t
approximated by

QTq+1(€5 a: ﬂle(q)a a(q)7 ﬁ(q))

Tq+1 n
=7 ) Z Z['Og P(Yi =Yy IXi(qH)’(t), 0) +logP(X; = Xi(q+l)’(t)|X£2+l)’(t), a, Pl
A+l i—1i=1

Maximization step. Update the parameters@9t?D, ¢ @+ g@+Dy py maximizing the functior@Tqul
@, a, 10D, ¢ @ @) according to®, a, ).

Remark that théx may be ordered, but this constraint is not included in this estimation procedur¢
only specified ordered initial values of the ris%% as the design of the potential functiga that favors
ordered situations generally suffices to maintain this order of the risks during the estimation algg
A more complete description of the estimation procedure is presented in Section A of the supplen
material available aBiostatisticsonline.

3.2 Classification

The EM algorithm (and the Monte Carlo version we used) provides an estimation of the model para
but does not assign a class to each site. Conditional probabilities of eack atassch sité are computed
during the EM procedure. These are used to estimatg thgn order to classify the different geographic
units) using the maximum a posteriori (MAP) rule. The MAP estimate is the realization of the HF wit
highest probability conditional to the observed data. Unfortunately, the MAP estimate cannot be cor
directly for a Gibbs distribution as it involves the computation of the conditional distribution of the hi

variables for all possible hidden maps. We chose to use the ICM algorithm that can be con8dseed

1986 as an approximation and an improvement of the MAP. During ICM, the class of each geogral
uniti is iteratively fixed to the mode of the conditional distributionXqf knowing the observed data
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and the current value of the neighbegs, i.e. solving:

X =arg _max P(Xi = KIX1, s Xie1, X2 gy -, X5, Y, 0,8, )

whered, &, andj are estimations of the model parameters (we use an average of the latest values
MCEM algorithm), andx® is the initialization of the ICM procedure (the last simulated map during
MCEM algorithm). ICM can be iterated but, in practice, we observe that only one application generi
sufficient.

4. |LLUSTRATIONS

We first apply our method on a few examples to understand the behavior of the model and to com
with the method currently used by practitioners, e.g. the modBeshgand otherg1991) with posterior
classification. We then present the performance of our method on intensive simulations. Finally, we
the model to a real data set concerning BSE in France.

4.1 lllustration on simulated representative data sets

We simulated different data sets using the cattle population in France (see B(g)rasn;s and 3 risk
maps we built manually. In the first case (Figu{a)), we defined 3 large risk regions for a rare diseg
with ; = 107°, 6, = 1074, andd3 = 1073. In the second case (Figulgb)), we defined 5 smaller
risk regions, with91 = 1072, 6, = 5 x 1075, 03 = 1074, 64 = 5 x 10~4, andfs = 1073, In the third
case (Figurel(c)), we drew a continuous North—South (NS) gradient for the risks based on the he)
centroids going from 1 in the South to 10° in the North.

Using the populatiom;, the true classes and the associated risk valugg we simulated numbersg
of casesy; from Poisson distribution® (n; 8y, ). Figuresl(d—f) present examples of observed number
casesy; maps) obtained for the 3-classes, 5-classes, and NS gradient risk maps. We first appli
procedure to these data sets: A discrete HMRF model ggtgrad2 estimated with MCEM algorithm
We applied the 2 forms af1: The complete procedure estimating batfand £, and the simplest case
of « = 0 estimating only the smoothing parameterWe then compared our model to one current
applied by practitioners: The model Besagand others(1991), a Gaussian conditional autoregressi
(CAR) smoothing with a single local spatial effect and no global effect (for details, see Section
the supplementary material availableBabstatisticsonline). We obtained worse results when using al
a global effect. To classify this continuous estimation of the risks, we applied the clustering proc
based on a Bayesian regularization for Gaussian mixfaral€y and Raftery2007). For the 3-classes
simulation, Figure(a) and (b) show that our classification procedure performs well estimating aly
exactly the outline of the high risk region. The 3 estimated risks are also very close to the true value
low risk region is not as well retrieved. In particular, when estimating leoéimd g (Figure 2(b)), there
is an important region in the South-East (SE) that is classified incorrectly in the low-risk class. Hov
this region has a very low population density and, despite the medium risk level, no disease cast
been observed there. This important lack of information explains the misclassification of the regiof
CAR model presented in Figugc) detects that the North-East has a higher risk than the Centre an
South-West (SW). However, the real pattern is not retrieved and the highest risks are estimated in
with very small populations. In addition, all the estimated risks are overestimated.

For the 5-classes simulation, Figurggl) and (e) show that our procedure performs well, rougk
retrieving the true pattern and estimating quite well the outlines of the high-risk areas. In comparisg
general pattern and the outlines of these regions are retrieved more approximatively by the CAR m
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O 1e-05
O 1e-04
1e-03

(d) Simulated data (y;) for

(a) Risk map (x;) for
the 3—classes example

the 3-classes example

1e-05
5e-05
O 1e-04
5e-04
1e-03

(e) Simulated data (y;) for

(b) Risk map (x;) for
the 5-classes example

the 5-classes example

1e-05

5]
,10]
1,33]

1e-03

(f) Simulated data (y;) for the

(C) Risk map (x;) for the
continuous gradient example

continuous gradient example

Fig. 1. Simulated data sets: Arbitrary generated risk mg® (iIsed to simulate data sets and examples of cases I
(y;i s) for the 3-classes, the 5-classes, and the continuous gradient examples.
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$
(a) 3 classes. Discrete HMRF with %
a =0, p estimated, K=3

0.00e+00
8.24e-06
8.21e-05
5.62e-04
1.11e-03

(d) 5 classes. Discrete HMRF with
a =0, p estimated, K=5

0O 2.37e-04
O 4.78e-04
B 7.75e-04

(g) Gradient. Discrete HMRF with @

(c,B) estimated, K=3

0O 3.16e-04
0O 5.22e-04
B 7.83e-04

(j) Gradient. CAR with %

posterior classification, K=3

Fig. 2. Results on simulated examples for 3-classes, 5-classes, and continuous gradient with our discrete
method and the CAR model with posterior classification.

shown in Figure(f). In particular, the highest risk is again estimated in the SE region where the popul
is very small. In all cases, the estimation of this eastern high-risk region extends too far into the
probably because, due to the small population in the SE, the data do not contain enough informa
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O 6.87e-06 1.61e-04
O 9.30e-05 1.08e-03
B 1.02e-03 3.30e-03
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(b) 3 classes. Discrete HMRF with (C) 3 classes. GAR with
{0, ) estimated, K=3 posterior classification, K=3
1.239-05 6.420-05
9.10e-05 1.26e-04
d 9.61e-05 1.84e-04
5.14e-04 6.18e-04
9.26e-04 1.97e-03
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posterior classification, K=5
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2.98e-04
4.82e-04
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(i) Gradient. Discrete HMRF with @

(,p) estimated, K=7
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{«,p) estimated, K=5
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(K) Gradient. CAR with @ %

posterior classification, K=5

(1) Gradient. CAR with
posterior classification, K=7
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detect changes in risk level. It should be noted that the incorrect extension of the SE high-risk regi
the south is much less important with our method. The 2 highest risk levels are very well estima
our procedure, coming closer to the true values than the CAR estimates, which are slightly overest
In all the procedures, the 3 other true classes essentially are represented by 2 colors. One color
approximately the lowest true risk region, with the corresponding estimtes: 8.24x 106 for our
method witha = 0,8, = 1.23x 10~ for our complete method arf] = 6.42x 10> for the CAR model.
The estimated risk values are closest to the true éne-(10~°) with our procedure and the outlines of th
lowest risk region are more clearly delimited and exact. The other colors encompass the low and n
true risk regionsép = 5x107°, 63 = 10~%). With our method, the estimates corresponding to this gla
region lie between the true onés:= 8.21x10~° whena = 0,6 = 9.1x 1075, andds = 9.61x 1075 for
the complete procedure. In contrast, for the CAR model, the valuesl.26x 10~% andds = 1.84x10~4
clearly overestimate these risks.

Experiments were made on these data sets with a number of classetered in the procedure thg
were different from the true one (see Section B of the supplementary material avail&8itsttistics
online). The good classification rate with our method is always equivalent to or higher than with the
model, and wheiK is higher than the true one, the discrete HMRF method can estimate at the end
procedure less classes than initially asked.

Figures2(g-1) present the estimated risk maps obtained for the NS gradient simulated dataset fq
3, 5, and 7 classes with our method and the CAR model. As already observed, the CAR model es
high risks in the SE region with a very small population (see Figd(ed)). With this model, the real
NS pattern is not really retrieved. Moreover, the different risk regions are not clearly delimited, with
isolated units having a different risk from surrounding areas. In contrast, with our model (see B{gte
i), the risk regions are delimited very clearly and the NS pattern is retrieved very well. Only Rignre
presents an incorrect curving delimitation in the SW which may be due to the lack of population
SE, leading again to an overvaluation of the risk in this region. However, this phenomenon is very |
with our method compared to the CAR model. With regard to risk values, the lowest are overestimg
all methods but less by our model (between k68~* and 2.3% 10~%) than by the CAR model (aroung
3x10~%); and the estimates of the highest risks are similar with both methods, close to the true valy
slightly underestimated (around %30~%).

4.2 Intensive simulation study

We now present the performance of our method on intensive simulations. For the 3-classes &
5-classes risk maps presented in Figutés) and (b), we simulated 100 data sey fhaps as in
Figures1(d) and (e)) from the Poisson distributidn(n;6y,). We display the results obtained with oy
method for the true number of class&s £ 3 or 5) in different cases: With no spatial smoothing, i.e. wh
£ = 0; in the simplified case where = 0 andp is estimated; with an intermediate procedurdyeing
fixed to the values obtained whgn= 0; and with the complete model estimating batandg. Whengp
is estimated, we explored the 2 propogedAccording to the number of classes in estimated maps (C
est.), we present the number of simulations (Sim. nb.), the mean value of the distribution of the al
distance between the true and the estimated risk cldsse$X; — i |, and the median of the estimated ris
valuesd.

For the 3-classes simulations, as shown in Tdblge observe that the result is quite similar with tf
2 proposedy,. Our method usually retrieves the true number of classes, a little more often fwad2.
When the model returns the true number of classes, except when there is no spatial smgoth)gthe
good classification rate (correspondingdte= 0) is very high; important classification erro £ 2, i.e.
when the trueq; and estimated; classes are very different) are almost never observed; and the estir
risk values are very close to the true ones.
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Table 1. Distribution of the absolute distance between the true and the estimated risk classes f
3-classes intensive simulations and median of estimated/aisies

Class Sim. d= Median valueof
Method estimated nb. 0 1 2 0 o 3
B=0 3 91 65 311 4 2%10° 11x104 108
2 9 577 354 6.9 %10 95x1074 1073
o =0, pp gradl 3 100 94.7 53 0 10 9.7x10° 1073
a = 0,9 grad2 3 99 96.1 39 0 16 9.7x10° 1073
o fixed, g5 gradi 3 84 78.9 21 0 §10° 12x10% 1073
2 16 652 347 01 6.910° 67x10° 1073
o fixed,po grad2 3 97 838 162 0 1810°° 10~4 10°3
2 2 645 354 0.2 % 1073 0 1073
9o gradl 3 88 879 121 0 1210°° 1074 1073
2 12 645 354 01 6.910°° 0 10°3
9o grad2 3 97 854 146 O 12105 1074 10°3
2 2 643 354 03 6.&107° 2x104 1073

For the 5-classes experiments, as shown in TAbllee differences between the tested versions of
model are more distinct. We see clearly that the spatial smoothing is very important in such a ¢
since important classification errord & 3) are observed whefi = 0, even when the true number @
classes is retrieved. We also notice thagrad2 performs a little better than gradl. For example, wher
a andp are estimatedy, gradl gives the true number of classes in 65% of the simulations, wheres
grad2 gives it in 84%. In terms of classification, the best results are obtainedmdre; are estimated
(less errors in the number of classes and high rate of good classification) orawkef (high rate of
good classification, even if the number of classes estimated is not the true one).a\Vithéired, the
results seem worse, but they are difficult to interpret since the important representatienlofvhen the
number of classes in estimated maps is not the true one can be due to a shift in the numbering of
when some are not represented. We observe that the risk values are generally well estimated, eg
for the highest risks. In general, when some classes disappear they correspond to those with the
risk, possibly because when no or few cases are observed the differences between low risks are
to discriminate. In this case, there is limited underestimation of other risks since these regions n
integrated into other ones.

4.3 lllustration on a real data set: BSE in France

BSE is a honcontagious neurodegenerative disease in cattle. This sudden and unexpected disea
ened bovine production in Europe and has been studied intensivelyAfarigl and others 2005 for
spatial analyses). In our data set, the numbers of cases shown in Bfguoecurred in France betwee
July 2001 and December 2005. We compared the following methods: Our discrete HMFdiad 2
with only g estimated¢ = 0), ora andf estimated, and the CAR model with and without a poster
classification. Following current practice, we considered a fixed number of classes,Kakirigto obtain
the following risk levels: very low, low, medium, high, and very high.

As shown in Figures(c—f), the risk pattern is roughly the same with all methods, with high rig
in Brittany (West), the Center, the Alps (East), and in the SW, and low risks in the South-Cente
North-East, and on Corsica island. The main differences between our method and the CAR model g
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o[ o0 278 0
o [ 285, 1828] 1
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W [11578,32 039] a-5
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(a) Cattle population
(ni map)

1.73e-05 1.29e-05
1.45e-05 2.29e-05
6.91e-05 3.66e-05
9.87e-05 6.13e-05
2.55e-04 1.01e-04
@)
(c) Discrete HMRF witho, =0, (d) Discrete HMRF with(a, B) estimated,
p estimated, K=5 K=5
4044205 2.39e-05
5.19e-05
6.04e-05
6.55e-05
1.10e-04
1.27e-04
(e) CAR with posteior classification, (f) CAR in continuous
K=5 grey—scale

Fig. 3. Real data set: BSE in France. Population map, humber of cases during the study and estimated risk
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the South around the Mediterranean that has a low risk with our method, and the North that
lower risk with the CAR model. The apparent differences between maps must be interpreted
light of the estimated risk values used. The lowest risk estimated by the CAR ntadel @x10-5)
is higher than the low risk estimated by our method wher= 0 (J» = 1.45x107°) and the very
low risk estimated by our complete methatl (v 1.3x107°). In contrast, the estimations of the higl
est risks are smaller in the CAR modék(= 1.1x10~* andd; = 6.55x10~°) than in our method
(05 = 2.55x1074 andd; = 9.87x10°° whena = 0, 5 = 1.01x10~* for the complete procedure). |
also should be noted that Figus€) is difficult to interpret as it does not highlight the important spat
structures as risk clusters. It illustrates why epidemiologists prefer the type of representations g
Figures3(b—e) built with a posterior classification and is why we propose an integrated classifig
method. The maps produced by our discrete HMRF ugpgradl compared to Figur&¢c) and (d) show
only a few differences located in the SW where, as already noted, the low population imply a more d
estimation.

5. DIscussION

In this article, we propose to adapt a method relying on discrete HRMF modeling to risk mapp
produce an automated, integrated, and unsupervised method for the classification of geographig
into risk classes. The main differences between this method and the CAR model for disease m
are the latent discrete HMRF and the EM procedure for ML estimation. The main differences be
our model and HMRF models used for image segmentation consist first in replacing the usual G4
distribution by a discrete Poisson distribution to link the HF of risk claséde dataY, and second
in specific potential functions of order 2 for a spatial correlation taking into account a smooth s
gradation between risk classes.

Our discrete HMRF-based method provides risk maps that are coherent with the CAR model b
fewer classification errors and more clearly delimited zones at risk. The best results in terms of es
number of classes and classification errors are obtained for the discrete HMRF when estimatin
f (o being set to zero) and for the complete procedureud f estimated). In practice, for compute
tional reasons, we suggest using the version wite- 0, which is more rapid. The simulations sho
that our model is particularly adapted to determining high-risk regions (both to precisely localize
regions and to estimate the associated risk level) that are of principal interest in practice for the
tual imposition of control procedures. Low-risk regions are more difficult to determine, especially
they are in regions with small populations, and our method tends to underestimate low risks; hg
such regions are less important for decision makers. The CAR model leads to more classificatior
and tends to overestimate all risks. Our experiments suggest that the CAR model is not adapted
diseases in very heterogeneous populations as it tends to estimate high risks in regions with vet
populations.

The main advantage of our discrete HMRF method is that all the parameters are easy to interg
the model can be adapted easily to different epidemiological situations. In particular, the interpreta
the potential function of order 2 in terms of neighborhood interaction enables a simple definition
smoothing according to the intended application. The definition of the neighborhood used, in this
simply based on geographical proximity, can be adapted to different contexts. For example, a dissy
due to an ecological gradient such as wind dissemination could be introduced. Another strength
model is that the key classification step is integrated into the model instead of being a separate pr
as in the method currently used by animal epidemiologists.

Beyond the obvious advantages of drawing risk classes as visual tools, another strength is the
analysis of disease risk. The risk can depend on different explicative variables that influence its
repartition. If the effect of known explicative variables is taken into account when building the risk
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the analysis of the remaining spatial structure in the risk map can help identify other, unsuspected
implied in the epidemiological risk. Such a method already has been considered in convention
mapping models. The same approach could be envisaged easily in the discrete HMRF framew
introducing the effect of covariates.

SUPPLEMENTARY MATERIAL

Supplementary material is availableraip://biostatistics.oxfordjournals.org.
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