Fiche n° 5: Compacité et continuité

Exercice 1 Les ensembles suivants sont-ils compacts?

- (a) $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^4 \le 1\}$
- (b) $B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^5 \leq 1\}$
- (c) $C = \{(x, y) \in \mathbb{R}^2 \mid |x^2 + 2axy + y^2| \le 1\}$
- (on discutera suivant la valeur du paramètre $a \in \mathbb{R}$).

Exercice 2 (a) Montrer en revenant à la définition que l'intervalle $[0,1] \subset \mathbb{R}$ n'est pas compact.

(b) Montrer que toute suite dans]0,1[a des sous-suites qui convergent dans \mathbb{R} .

Exercice 3 Pour A et B deux sous-ensembles de \mathbb{R}^n , on définit l'ensemble A+B par

$$A + B = \{a + b \mid a \in A \text{ et } b \in B\}$$

- (a) Si A et B sont ouverts, A + B est-il ouvert?
- (b) Si A et B sont compacts, A + B est-il compact?
- (c) Si A et B sont bornés, A + B est-il borné?
- (d) # Si A et B sont fermés, A + B est-il fermé?

Même question en supposant de plus A compact.

Exercice 4 Soit $f: \mathbb{R}^2 \to [0, +\infty[$ une fonction continue telle f(x,y) tend vers 0 quand $||(x,y)|| \to +\infty$. Montrer que f est bornée supérieurement sur \mathbb{R}^2 et atteint sa borne supérieure. En est-il de même pour la borne inférieure?

Exercice 5 # Soit $f: \mathbb{R}^n \to \mathbb{R}$ une application continue. Montrer que les trois conditions suivantes sont équivalentes.

- (i) $(\forall M > 0)(\exists R > 0)(\forall x \in \mathbb{R}^n)(||x|| > R \Rightarrow |f(x)| > M),$
- (ii) Pour toute partie bornée $B \subset \mathbb{R}$, $f^{-1}(B)$ est une partie bornée de \mathbb{R}^n ,
- (iii) Pour toute partie compacte $K \subset \mathbb{R}$, $f^{-1}(K)$ est une partie compacte de \mathbb{R}^n .

Exercice 6 Soient $X \subset \mathbb{R}^n$ un sous-ensemble compact et $f: X \to X$ une application. On suppose que pour tous $x, y \in X, x \neq y$, on a ||f(x) - f(y)|| < ||x - y||. Montrer que f admet un unique point fixe. (<u>Indication</u>: considérer la fonction ||f(x) - x||).

Exercice 7 # Soit $N : \mathbb{R}[X] \to [0, +\infty[$ l'application définie par

$$N(a_0 + a_1X + \dots + a_dX^d) = \sum_{i=0}^d |a_i|$$

- (a) Montrer que N est une norme sur $\mathbb{R}[X]$.
- (b) Calculer $N(X^k)$ pour $k \in \mathbb{N}$.
- (c) La boule unité fermée de $\mathbb{R}[X]$ pour la norme N est-elle un fermé ? est-elle bornée ? est-elle compacte ?

Exercice 8 # Soit N une norme sur \mathbb{R}^n .

(a) Montrer qu'il existe c, C > 0 tels que pour tous $(x_1, \ldots, x_n) \in \mathbb{R}^n$, on a

$$c||(x_1,\ldots,x_n)||_2 \leqslant N(x_1,\ldots,x_n) \leqslant C|(x_1,\ldots,x_n)||_2$$

- où $||(x_1,\ldots,x_n)||_2$ désigne la norme euclidienne sur \mathbb{R}^n . (<u>Indication</u>: on commencera par établir une inégalité du type demandé pour (x_1,\ldots,x_n) de norme euclidienne égale à 1).
- (b) Montrer qu'une inégalité comme ci-dessus demeure si la norme euclidienne est remplacée par toute autre norme sur \mathbb{R}^n .