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Arithmetic variation of fibers in families of curves
Part I: Hurwitz monodromy criteria for
rational points on all members of the family

By Pierre Debes?) at Paris and Mike Fried?) at Irvine

Highly structured families of curves have played a large role in the service of such
well known problems as the production of high rank elliptic curves and the realization
of groups as Galois groups over @. Arithmetically the essential concern arising from the
consideration of families of curves is the variation of the set of rational (or integral
points) on each member (or fiber) of the family: e.g., the cardinality of these sets or the
rank of the rational points on the Jacobian, in a genus =1 situation. For example,
Silverman [Si] investigates the possibility of finding an upper bound for the cardinality
of the set of (quasi) integral points on each fiber of an algebraic family of curves. If K is
a field of definition for the family, for each fiber defined over K this bound is expected
to be an explicit function of the rank and the cardinality of the torsion points of the
Jacobian (over K). In two cases, Silverman has achieved a version of this goal [Si]:
when g=1; and when the family is geometrically constant (i.e., over the algebraic
closure K of K, all fibers are isomorphic).

From the “conceptual” theorems of diophantine geometry (Siegel, Mordell-Weil,
Faltings), the genus of the fibers is a controlling factor for these problems. This paper
uses a more precise invariant of a cover of [P': the Nielsen class. This data depends on
the ramification of the covering map: the monodromy group G of the cover, the number
of branch points and the conjugacy classes in G of the associated branch cycles are part
of this data; algebraically, the group G is identified with the Galois group of the Galois
closure of the associated function field extension, the branch cycles then correspond to
the generators of the inertia groups. The precise definitions are given in § 1. 1 and § 1. 2.

Under certain assumptions, there exists an algebraic family defined over a number
field K, called the universal Hurwitz family, among whose fibers are unique representa-
tives of all the covers in a given Nielsen class (§ 1.3, Theorem 1.7). The algebraic
structure can be taken advantage of to study the fibers of this family; all covers in the
Nielsen class then inherit properties of these fiber covers. For example, under suitable
assumptions, the existence of a rational point on the covering space is true on all the
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covers in a Nielsen class, if it is true generically on the associated Hurwitz family (§ 1. 3,
Prop. 1.8 and §3.1, Prop. 3.3). The Lewis-Schinzel [LSc] criterion for families of
conics to have sections shows furthermore that the converse holds as well in the genus 0
case (§ 3. 1, Prop. 3. 4).

The point of Hurwitz families is their somewhat abstract group theoretic produc-
tion: no equations are involved. The main emphasis/innovation of this paper: We dis-
play a method essentially based on group theory that leads to arithmetic results. There
is a natural group action attached to the definition of the Hurwitz family: the Hurwitz
monodromy action. In § 1 we recall from [Fr2] geometric interpretations of the Hurwitz
monodromy action. Then we define extensions of this action on pointed Nielsen classes
(§ 3. 3). Via identifications, these have a representative collection of points on each fiber
of the family. The Main Theorem (§ 3. 4, Theorem 3. 14) relates the monodromy action
on pointed Nielsen classes to the action of conjugation, over the field of definition of the
fiber, on these points. Specifically, the rational divisors with support contained in the set
of points above the branch points correspond, on the generic fiber, to orbits of these
group actions. Thus, explicit group actions provide information on the arithmetic of the
fibers of Hurwitz families. As a consequence of Theorem 3.14 we obtain a criterion,
based on ramification data, for the existence of a rational point on a cover of [P!; this
criterion is particularly efficient in the genus 0 or 1 cases. We conjecture, under suitable
assumptions (cf. § 3. 1), that the satisfaction of this criterion is the only obstruction to
the existence of a rational point on all covers of /P! in the Nielsen class.

Several examples, which originate in an exceptional case of the Hilbert-Siegel
problem [Fr3], illustrate the theory (§2). In § 3. 6, we apply the criterion of Th. 3. 14 to
our main example and show that no rational points are produced. We may then check
our conjecture in this special case. § 4 then shows that the Hurwitz family in question is
a family of conics defined over @@ some of which have rational points and others of
which don’t: the family is arithmetically nonconstant (§4.4, Th. 4.2). In the genus 1
case, we intend to continue this work to consider the production of families of high
rank elliptic curves over €Q; an introductory example is given in § 3. 7.

§ 1. Nielsen classes and Hurwitz families

This section sets up the notations and foundational definitions for this paper. We
start by recalling Riemann’s existence theorem, Nielsen classes, Hurwitz families and the
role of the Hurwitz monodromy group.

1. 1. Riemann’s existence theorem. Let ¢: X — /P! be a finite cover of the projec-
tive line by an irreducible projective nonsingular curve. This cover is ramified over a
finite set of points z,, ..., z, called the branch points of the cover. For zy¢{zy, ..., z,}
consider a labeling of the points py, ..., p, Of ¢ '(z,). There is a natural transitive
action T:m,—S,, called the monodromy action of the fundamental group =n; of
P\{zy, ..., z,} on {1,2,...,n}: for [I'] the homotopy class of a path I" based at z,,
T([I']) is the element of S, that maps i to j where p; is the terminal point of the unique
lift of I" (through f) which has initial point p;, i€ {1,2, ..., n}. Up to conjugation by an
element of §,, this action is independent of the choices of z,, the representative of [I'],
and the labeling of the p’s.
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The group G =T(n,) is called the monodromy group of the cover. It is defined up
to conjugation by an element of S,. Consider 7,. It is isomorphic to the free group on r
generators g, ..., g, with the one relation g, ---g,=1. For i=1,...,r, map g; to the
homotopy class [I;] of a path I'; homotopic to 4,5;4;! where §; is a clockwise bound-
ary of a small disc 4; about z; and 4, is any (piecewise smooth) path from z, to a point
on §; with these additional properties: no two of the AU A’s intersect anywhere (or go
through z,) besides at the already indicated endpoints of the A’s; and the first points of
intersection of the A’s with a small disc 4, about z, appear in order clockwise around
4,. The only complete proof we know that these conditions alone yield an isomorphism
is that of [Fr4], Theorem 2.10, where the paths I, ..., I, are called a “sample
bougquet”. Of course, it is well known when the paths are placed in some kind of
standard position relative to a simple triangulation of the sphere.

Then set g;=T([I7]) € S,; the o;s generate the monodromy group of the cover
and satisfy g, ---0,=1. The r-tuple (g4, ..., g,) is called a branch cycle description of the
cover. From Riemann’s existence theorem [Gro], this branch cycle information essenti-
ally determines the cover:

Theorem 1. 1. Fix r points zi, ..., z,€ [P}, a base point zo¢{zy,...,2,} and a
sample bouguet I'y, ..., T,. Then the association cover — branch cycle description asso-
ciated to this data produces a one-one correspondence between the following sets:

— degree n covers ¢: X — [P} ramified over {z,, ..., z,} (up to equivalence of
covers), and

— r-tuples (0, ..., 0,)€S,, such that ¢, ---0,=1 and the group G(o) generated by
the o/s is transitive on the set {1,2,...,n} (up to conjugation, componentwise, by an
element of S,,).

Furthermore, the disjoint cycles B in o; correspond to the points x € ¢~1(z;), the
ramification index of x over z; equals the length of j.

Through function fields, degree n covers ¢: X — [P} correspond to degree n exten-
sions of C(z). Tt is standard to identify the monodromy group of the cover with the
Galois group of the Galois closure of the function field extension and the entries of a
branch cycle description of the cover with generators of inertia groups over the branch
points. The specific identification is this: Let (g4, ..., ,) be any branch cycle description
of ¢: X— [P} Denote the Galois group of the Galois closure of the function field
extension C(X)/C(z) by G(X//P}). Then in any identification of G(X/P}) with a sub-
group of S, given by its action on the n conjugates of a primitive element of the exten-
sion C(X)/C(z), there exists y €S, such that

(1.1) yo;y~' is a generator of the inertia group of some prime of the Galois
closure of C(X), i=1, ..., r.

In particular, the monodromy group G(o) and the Galois group G(X/P}) are
conjugate subgroups of §,.

Also, for any subgroup H of G(X//P}), of index n(H), consider the cover
(1.2) ou: Xg— P}

associated to the function field extension C(X)?/C(z) of C(z) by the fixed field of H
in C(X). On the other hand, order the right cosets of H in G(o) to obtain a permuta-
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tion representation Ty: G(6) — S, ). Then Ty(6)=(Ty(oy), ... , Ty(o,)) are branch cycles
for (Xg, on)-

The Riemann-Hurwitz formula gives the genus, g(X)=g, of X by

r

(1.3 2(n+g(X)—1)= ) ind(s;)

i=1

where ind (o) denotes n minus the number of disjoint cycles of a.

Branch cycle descriptions provide a great deal of information but they depend on
the choice of much data: a base point z,; a labeling of the points in ¢ ' (z,); an order-
ing of the branch points z,, ..., z, and a sample bouquet I, ..., I',. The dependence on
these data has special significance for this paper since most of the complications in deal-
ing with families of covers, rather than one cover at a time, arise from careful considera-
tion of the deformation of these data. There exists a more intrinsic notion. Lemma 1 of
[Fr2] shows that for any branch cycle description (o4, ..., 6,) of a cover, the conjugacy
class of o; in the monodromy group G(o) does not depend on the sample bouquet
ry,..,I,i=1,...,r Denote by C, this conjugacy class. Up to conjugation by elements
of §,, the data consisting of the monodromy group G(o) and the set of conjugacy classes
{Cy,...,C,} of G(o) is an invariant of the cover. This is the key to the definition of
Nielsen classes.

1. 2. Nielsen Classes. Let G be a subgroup of S, and let C=(C,, ..., C,) be an
r-tuple of nontrivial (not necessarily distinct) conjugacy classes of G.

Definition 1. 2. The Nielsen Class of (C, G) is the collection (assumed nonempty)
ni(C)={6€G"|G(6)=G, g, ---0,=1 and for some woe€S,, 04,€C;,i=1,...,r}.

A cover X — P! is said to be in ni(C) if, up to conjugation by elements of §,, any
branch cycle description ¢ of the cover is in ni(C) (i.e., there exists y €S, such that

y6y '=(yoy" Y ..., y0,9 ) eni(C)). Note that it makes no difference in what order

we list the conjugacy classes.

The straight Nielsen class of (C, G) is
sni(C)={teni(C)|t;eC;,i=1,...,r}.

A cover X — [P! given with an ordering of its branch points is said to be in sni(C) if,
up to conjugation by elements of §,, any branch cycle description of the cover com-
puted with this ordering is in sni(C).

The normalizer (resp. the straight normalizer) of the Nielsen class is
N (C)= {y € S,|conjugation by y permutes C,, ..., C,},
SN (C) = {y € S,|conjugation by y fixes C,, ..., C,}.
Note that N(C) acts on the Nielsen class ni(C) by conjugation: y € N(C) maps ¢ € ni(C)

to y~'oy e ni(C). Similarly, SN (C) acts on the straight Nielsen class sni(C). Denote the
quotients of these actions by ni(C)?®, sni(C)*®, the absolute Nielsen classes.
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Example 1. 3. A Nielsen class representing genus 0 covers.

Let r=4, n=5, G=S5;. Consider the 4-tuple C=(C,, ..., C,) of conjugacy classes
in S5 represented, respectively, by o,=(23) (45), 0,=(12), 03=(14), 6,=(54321). The
normalizer N(C) of the Nielsen class is S5. Here is a listing of representatives of sni(C)*®
where in each case 1, =(54321) [Fr3], (1. 10):

(1. 4) a) 1,=023)45), 1,=(12), 13=(1 4);
b) 7,=(23@5), 1, =(14), 13=(24);
©) 11=(23)45), 1, =024), 13=(12);
d 7,=25064, 1,=012), 13=035);
e) 1,=(25(34), 1,=(35), 13=(12).

Remark 1. 6 of § 1. 3 derives ni(C)* from sni(C)*®. [

1. 3. Algebraic families, Hurwitz families and Hurwitz monodromy. Throughout
this paper an algebraic family & (of covers of P} over a field K< C) is defined by a
triple & = (7, #, ®) where ¢: T —# x [P} is a finite morphism between quasiprojective
varieties J and # defined over K; # is irreducible; & is a finite morphism; and the
generic fiber of pr, o @ is irreducible where pr, is projection onto the first factor of
H x [PL. We refer, respectively, to 7, # and & as the total space, the parameter space
and the covering map.

For each x € # denote the fiber (cover) of # over x by #,:
.7, — P} with I =7 x4 Spec(K(x))

obtained from & by taking the fiber product over the map Spec(K(x))— # that has
image x. When x is the generic point we use the subscript “gen”. The cover %, is
defined over K (x); throughout this paper, the phrase “rational on J, (or Pg, =P})’
means rational on J, (or Pg,) over the field K(x). For x € #(C), the cover %, ® C
obtained from £, by extension of scalars is a cover of /2! in the sense of § 1. 1. In the
sequal we drop the expression ®; C and any other field notation that is understood
from the context.

Let G be a transitive subgroup of S, and let C be an r-tuple of nontrivial
conjugacy classes of G.

Definition 1. 4. An algebraic family & is said to be a Hurwitz family associated
to the Nielsen class ni(C) if pr, o @ is smooth and projective [H], p. 268, and the covers
Z, are in the Nielsen class ni(C) for all x € #(C).

Note that all of the fibers &%, in a Hurwitz family have the same genus. We call
this the genus of #. Also, the fibers are covers with exactly r branch points. Lemma 1. 5
below is a converse to this.

Suppose # is an algebraic family such that each fiber %, with x € #(C) is a cover
with exactly r branch points, for r a given positive integer. There is a map naturally
attached to & that sends each cover %, to its branch point set: it is called the branch
point reference map. Formally this would be said in terms of the variety (P!)"\4,,
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denoted %,, with A, the subset of (/2')" with 2 or more coordinates equal. The process
of taking the quotient of the action of S, on %, gives the Noether map [Fr1], § 0,

(1. 5) V.. (PY\A,— P"\D, (denoted %"),

that takes an ordered r-tuple of distinct points of /P! to the symmetric functions in
these coordinates. Here D, is the discriminant locus of /P". Then the branch point
reference allusion would correspond to the map

(1. 6) VU

that takes each x € # to the unordered branch point set of the cover %,.

Lemma 1.5. Let # as above be an algebraic family such that each fiber %, with
x € # (C) is a cover with exactly r branch points. Suppose pr, o @ is smooth. Then

a) the branch point reference map W: # — U" is a morphism;
b) the family & is a Hurwitz family.

Proof. a) The map ¥ is defined everywhere so we just need to show that ¥ is
locally given by (r+ 1)-tuples of rational functions of #. Consider the ramification locus
of the finite morphism J —# x [P'; it is a positive divisor D=Y m;H; on # x [P*
(where each H; is a closed irreducible subscheme of codimension 1 of # x [P!). Then the
divisor D =Y H; has no multiplicities. Cover # by open subsets U such that D is given
on each Ux /' by a polynomial R e O(U) [z, t] homogeneous in (z t) and with
coefficients in ¢(U) (0 denotes the structure sheaf of the variety H). For x e U, the
divisor D, of /P!, obtained from D by specialization to x, can be written as D.=Ynz,
where the z; are the branch points of the cover &%, and the multiplicities n; are positive
integers. Furthermore n;=1, i=1,...,r, for all x e U excluding a proper Zariski closed
subset of U. But since we assume the support of D, is of constant cardinality, this
actually holds for all xe U. Thus, for all xeU, D,=)z (i.e. the branch points
Zy, ..., 2, are the r simple roots of the specialized polynomial R,). Therefore, the map
Y:# —4" is given on U by the (r+1)-tuple of the coefficients on @(U) of the
polynomial R. []

b) Since # is irreducible (hence connected), we only need to prove that if a fiber
F\S(, Fw) with x° € #(C) is in a specific Nielsen class ni(C), then all fibers %, are in
this same Nielsen class, for all x in a neighbourhood U = #(C) of x°. Denote the set of
branch points of %, by z°, and fix z, ¢ z° and a sample bouquet I';, ..., I, on PN\z°. It
follows from the definition of “sample bouquet™ (§ 1. 1) and the continuity of ¥: ¢ — %’
that we may choose a connected neighbourhood U of x° on #(C) with the following
property: for x e U, if z is the set of branch points of the cover #,, then I';, ..., I, is a
sample bouquet on [P}\z. Next use local sections of the map J — # x [P} to label the
points of ¢, !(z,) for x e U (restrict U if needed). For x e U compute a branch cycle
description of %, from this data; it is a continuous (well defined) function of x, therefore
it is a constant function on U. Since the Nielsen class of a cover is independent of the
choice of a sample bouquet, we are done. [

Under certain assumptions (below) we can assure the existence of a universal Hur-
witz family % (C) associated to the Nielsen class ni(C) in the following sense (cf.
condition (1.9) b)): any other Hurwitz family associated to the Nielsen class ni(C) is
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obtained by pullback of the parameter space of % (C) over the reference variety #". The
key to these assumptions is a fundamental tool for this paper: Hurwitz monodromy
action.

Consider the free group on generators, Q;, i=1, ..., r—1, with these relations:
(1.7) a) 0:i0i+10:=0:;+10:iQiv1, i=1,...,7r=2;

b) 0,0;=0;Q; for |i—j|>1; and

¢) 019, Q,-10,-1 Q=1

This group, a quotient of the Artin braid group [Bo], is called the Hurwitz monodromy
group of degree r. We denote it by H(r). The Qs act on ni(C)*® by this formula: for
6 € ni(C)*®

(18) (G)Qi=(017'--50i—150i0i+10;150i5 0i+25"'50r)5 i=15'-'5r_1'
Thus they induce a permutation representation of H(r) on ni(C)*®: the Hurwitz mono-

dromy action on the Nielsen class ni(C)*".

Remark 1. 6. The natural permutation representation «,: H(r)— S, by Q;— (i i +1),
i=1, ..., r—1, is surjective. Thus, each orbit of H(r) on sni(C)*® contains an element of
sni(C)*®.  [J

Theorem 1.7. Assume that the centralizer Ceng (G) of G in S, is trivial and that
the Hurwitz monodromy action is transitive on ni(C)*®. Then there is an algebraic family
F (C) (defined over C)

®(C): 7 (C)—H#(C)x P},
the universal Hurwitz family associated to ni(C), with these propertics:

(1.9) a) Z(C) is a Hurwitz family associated to ni(C);

b) If &: T —H# x [P} is any Hurwitz family & associated to ni(C), then there is
a unique morphism of families of covers & — % (C), i.e., a unigue commutative diagram
of morphisms (defined over ()

T 2 H X P} H
| =
T (C) 2© HCO)x P} ————— #(C)
that preserves the equivalence of covers (i.e., the fiber covers %, and ¥ (C),q, are equiva-

lent covers, for all x € # (C)). Furthermore:

c) The family F(C) can be defined over a number field K, which is minimal in that
for any 6 € G(Q/Q), if F(CY is isomorphic to F(C) (i.e., if F(C)° satisfies (1.9) a) and
(1.9) b)), then o is fixed on K,

d) Y(C): #(C)— U" is defined over K and étale of degree |ni(C)*®|.
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Comments. a) Theorem 1.7 appears as a special case of the results of [Fr2], §4
and 5. We recall that the fundamental group of %" is identified with the Hurwitz mono-
dromy group H(r) and that the cover # (C)— %" is just the analytic cover associated
to the action of H(r) on ni(C)*®. Transitivity of this action ensures connectedness of #(C)
and a result of Grauert and Remmert [GrR] to the effect that normal analytic covers of
quasiprojective varieties are themselves quasiprojective certifies that all varieties in
question are, indeed, quasiprojective (as in [Fr2]). A more algebraic approach, due to
Thompson [Th] can be used to replace [GrR].

b) Theorem 1.7 demonstrates a solution to a moduli problem: equivalence
classes of covers in ni(C) can be represented by a universal pair (% (C) — # x P*, #(C)).
That is, each cover ¢: X — [P} in ni(C) is equivalent to a unique fiber cover
F(O): T (C),— P! (xeA#(C)(C)), which has no automorphisms. Indeed, apply
(1.9) b) to the family consisting of the one cover ¢: X — [P} to get a fiber cover # (C),
equivalent to ¢: X — [P}; uniqueness of x € #(C) (C) follows from (1.9)d) and uni-
queness in (1. 9) b) implies that the automorphism group of the cover Aut(J (C),/P}) is
trivial. This, with the identification Aut(Z7 (C),/P,') ~ Ceng (G), explains the role of the
assumption Ceng (G)={1}.

¢) In addition, from this centralizer condition, a universal Hurwitz family is
necessarily unique, up to a unique isomorphism of families of covers. It is standard that
this guarantees condition (1.9)c). That is, there exists a minimal field of definition
Kc@: K is the fixed field in @ of the subgroup of G(@Q/@Q) consisting of all ¢ such
that # (C)° is isomorphic to % (C). This field K is called the field of moduli of the pair
(7 (C)—Hx P!, #(C)). This minimal field of definition can be computed under cer-
tain circumstances. For example, [Fr2], Theorem 5.1, and [Fr3], Proposition 1.5, show
that if the kernel SH(r) of the homomorphism of «, in Remark 1.6 is transitive on
sni(C)*®, then K is cyclotomic and easily computed. In particular these results show that
K=@ if in addition Cy,..., C, are rational conjugacy classes of G (see §1.4 for a
definition of “rational”). Also [Fr3], Prop. 1.7, provides a criteria for the parameter
space of # (C) to be a rational variety (i.e., a variety with a purely transcendental
extension of K as its function field). Note: Since ni(C)*® is the union of the sni(D)*®s
with D running over the r-tuples obtained by permuting the conjugacy classes of C, and
since each D is in the orbit of H(r)/SH(r) on C, it is clear that transitivity of SH(r} on
sni(C)*® immediately implies transitivity of H(r) on ni(C)?.

The following result allows us to concentrate on the universal Hurwitz family
from Theorem 1.7 for most of the concerns of this paper.

Proposition 1.8. Let x e #(C) and X — [P} be a cover defined over a field F.
Assume that the covers X — [P} and % (C), are equivalent. Then % (C), and the
isomorphism J (C), ~ X are defined over KF, with K the field of definition of # (C).

Proof. Since # (C), and X — [P} are equivalent, there is a commutative diagram

TOCO ———X

N
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where the right and left covers are defined, respectively, over K(x)c KF and F, and the
top arrow is an isomorphism defined over €. We descend from C to KF=F by the
following argument. The top arrow is defined over a finite type extension of F which
can be written in the form F(wy, ..., w,, ) with wy, ..., w, algebraically independent
over F and [F(wy, ..., w,, y): F(wy, ..., w,)] <co. Specialize w, ..., w,, y to have values
in F so as to get an isomorphism defined over F between 4 (C), and X (since these are
defined over F). As Aut(7 (C),/[P})={1}, this last isomorphism is the same as the
original.

Consider g € G(F/KF); o fixes the cover X — [P}, and the transform % (C)° is just
ZF (C). Thus ¢ transforms the cover % (C), to #(C),., the fiber corresponding to
x’ € #(C). This gives another diagram

Ty — 7 (O

7

P .

Necessarily x=x“ (from Comment b), two distinct fibers of # (C) are nonequivalent);
then again apply Aut(Z (C),/P})={1} to see that the horizontal map is necessarily the
identity. Therefore # (C), and the isomorphism 7 (C), — X are transformed into them-
selves by ¢. It is well known, as a consequence of Hilbert’s Theorem 90 and char(F)=0,
that a variety transformed into itself by each element of G(F/KF) is defined over KF.
Thus the Proposition follows. [

Thus, for example, such arithmetical results as the existence of a rational point on
the generic cover, once established for the universal Hurwitz family % (C), hold for any
Hurwitz family & associated with ni(C) defined over K: apply Prop. 1. 8 to the generic
cover of the family # From now on we consider universal Hurwitz families only.

1. 4. Specializing z, to co. We introduce an additional hypothesis for this section.
For i=1, ..., r denote the order of the elements of C; by ¢;, Le.m. (¢4, ..., ¢) by N and

|J Cf by C,, the rational closure of the conjugacy class C;. Consider the group
(a,N)y=1

N§:‘(C) = {y € Ng (G)|there exists f€S, and an integer b prime to N such that
'))Ci’y_l = C(bl)ﬂ, 1=1, eey r}.

Note that we have the following chain of containments:
N5, (G) > NE(C)>N(C)>SN(C)>G.

As John Thompson has pointed out, there are examples of (G, C) such that G<=S§,, G is
transitive, Ceng (G)={1}, ni(C)=%0, and such that in the above chain, each containment
is proper. In addition to the two hypotheses of Theorem 1.7 we assume that one
conjugacy class, say C,, has this property:

(1. 10) for each y e N¥'(C) and i=1,...,r—1, C, is distinct from yC;y *.
We recall that a conjugacy class C is said to be rational if it is closed under put-

ting elements to power relatively prime to the order of elements in the class; in that
case, C=C. In all the examples given in this paper, the group G is a symmetric
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group S,,, for some integer m. Therefore all the conjugacy classes are rational. Condition
(1.10) then only requires that C,+C,,...,C,_,, since in our cases we will also have
Ng (G)=G with G=§,, (m not necessarily equal to n). This kind of assumption is natural
in those problems that arise from the consideration, for example, of maps

o(f): Py— P;
with f a polynomial in w, since such a map is totally ramified over co.

With hypothesis (1. 10), the branch point associated to C, in a cover & (C), is
automatically rational over K(x): it is consequence of the following result called the
branch cycle argument in [Fr2]. Set {, =exp(2in/N).

Proposition 1.9. Let ¢: X — [P} be a cover defined over a field F and o € G(F/F).
Let zy, ..., z, be an ordering of the branch points for which the cover is in sni(C). Let
ae(Z/NY* such that (={y. Then o acts on the branch point set {z,, ..., z,} with this
property: if & denotes the permutation of {1,...,r} induced by o then there exists
y € N, (G) such that yCiy ™ = Cyy (in particular, y e N§'(C)).

Now we wish to specialize the branch point corresponding to C, to oo. This may
be done as follows. For each cover, we may assume that the branch point corresponding
to C, is z,. But that requires us to somewhat modify the Nielsen class data. This
imposes that the r-th branch cycle itself is in C,. We may then also assume a fixed
representative o, of the r-th branch cycle for the absolute Nielsen class. Thus we are led
to consider

ni(C_)={t e ni(C)tr,=0,} and N(C,)={yeN(C)|y centralizes s,},
with the latter replacing N(C) in order to form the quotient ni(C,_)*®.

This requires some adjustments to % (C). Consider first the fiber product
(%,,1 x le)l

N

H(CYx (U™ % PLY u

#(C)

where ' indicates that the last coordinate z of a point (D, z), with D a divisor of degree
r—1 on [P} is not in the support of D. The south-east arrow maps (D, z) to the divisor
D+z on [P}. The fiber product on the left of the diagram has a component consisting
of the points (x, (D, z,)) for which the cover # (C), has C, corresponding to the branch
point z,. Call this #(C;r). From assumption (1.10), it is isomorphic to #(C).
Therefore it is irreducible.

Next, consider the subset #(C,) of #(C;r) that lies over the collection of
points (D, z,)e %" ! x [P} for which z,= 0. Denote this last set by %", '. It is clearly
A’ "N\D,_,, affine (r—1)-space minus its discriminant locus. A further hypothesis is
needed to insure irreducibility of #°(C,). In § 1. 3 (Comment 1), we recall that the cover
# (C)— %" is just the analytic cover associated to the action of H(r) (identified with the
fundamental group of #’) on ni(C)y™® given by the action of the generators
Q.,i=1,...,r—1, in (1. 8). Denote the subgroup of H(r) generated by Q,, ..., Q,_, by
H(r—1)*. This is most naturally identified with the Artin Braid group of degree r—1 as
the fundamental group of %" ! (e.g., [BFr], § 1).
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Proposition 1. 10. In addition to (1. 10) assume that
(1. 11) the action of H(r—1)* on ni(C_)*® is transitive.
Then the variety #(C) is irreducible.

Proof. Clearly #(C,) is identified with the fiber product of #(C;r) and %" !
over (%" ! x P1y. The action of H(r) on ni(C)*® induces an action of the fundamental
group of %", ! on ni(C_)*® through its embedding in (%" "' x P}Y: and this action is
transitive if and only if 5 (C,) is irreducible. Thus Prop. 1. 10 follows with the identifi-
cation of H(r—1)* with the fundamental group of " '. )

Assume (1. 11) holds. Then the universal Hurwitz family associated to ni(C) with
the additional stipulation that z, has been specialized to oo is the family & (C,) given by
T(C,)— H(C,)x P} where 7(C,,) is defined to be the fiber product 7(C) X, #(C.).
Since all fibers of the family % (C) are connected (Def. 1. 4), 7 (C,,) is irreducible. Com-
patible with the discussion of (1.5) and (1.6) of § 1.3 the branch point reference for
# (C,) corresponds to the map

1. 12) L P(CL): H(C,) — U

that takes an equivalence class of a fiber cover of # (C,) to the unordered set of its
finite branch points. This is an étale morphism of degree |ni(C)*"|.

1. 5. Adjunction of the branch points. In our use of the unordered branch point
set as reference data for the family #(C,) we sometimes have need to use a less
symmetrical situation by putting an ordering on the finite branch point set. First
consider the fiber product

%r—l,ao

H(Co)Xar Uy 1,0 @t

\Jf (Cw)/

where U,y ,=A"""\4,_, is affine (r—1)-space minus the subset of points with two or
more coordinates equal. The map %,_, ,,— %', ' is the Noether map induced by the
elementary symmetric functions in »r— 1 variables.

The fiber product isn’t usually connected. For example there are (r—1)! connected
components corresponding to the different orderings of the branch points in the case
that, in addition to (1.10), the other conjugacy classes C,, ..., C,_, are also distinct
modulo N(C,). More generally, consider SH(r—1)* the kernel of the morphism
H(r—1)*—S,_, that maps Q; to (ii+1), i=1,...,r—2. Similarly, consider sni(C)®,
the analogue of sni(C)*® of §1.2. The following may be proved in the manner of
Prop. 1. 10.
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Proposition 1. 11.  [n addition to (1. 10) assume that
(1. 13) the action of SH(r—1)* on sni(C_)* is transitive.

Then the number of connected components of H(C,) Xy U, _,, is the number of distinct
orderings of the conjugacy classes C,, ..., C, | modulo N(C.).

Since %, ., ,— ;" is a Galois cover, all of the connected components of the
fiber product are isomorphic. Select one of them, 5#(C_ ). Under assumption (1. 13}, the
universal Hurwitz family associated with ni(C,) with the branch points adjoined is the
family # (C,,) given by I (C,Y —H#(C,) x P}, where 7 (C,Y is T (C ) Xy, H#(C,).
The branch point reference corresponds to the map ¥(C,): #(C,) — #%,_, ., that takes
the equivalence class of a fiber cover of # (C_) to its ordered branch point set. It is an
étale morphism of degree [sni(C,)*"|. Note that the fiber covers # (C,),, of the family
F(C,) derive from the corresponding covers & (C.), (i.e., x lies below x' in the
natural map #(C,)— #(C,)) by extension of scalars: the field of definition of
F (C ). is the field K (x) with the finite branch points of the cover adjoined.

§ 2. Two introductory examples

This section uses two examples to acquaint the reader with the general theory of
Nielsen classes and Hurwitz families developed in §1 and to introduce the problems
considered in the subsequent sections.

2. 1. The Hurwitz families & (0) and % (@). Throughout most of this section we
take r=4, G=S5 and C=(C,, ..., C,) as the respective conjugacy classes in S5 of
a,=02 3)4 5), o,=(1 2), 65=(1 4) and o,=(5 4 3 2 1). Our first example extends
Ex. 1.3 (of § 1. 2) for n=5. The 2nd example, however, considers S5 as a subgroup of
S0 (m=10) through the representation T,:S;— S, given by action of S on the 10
unordered pairs from {1,2, 3,4, 5}. For example, label the pairs {1,2}, {1,3}, {1,4],
{1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4, 5} respectively as 1,2,3,4,5,6,7,8,9, 10.
Then, T,(o) is this 4-tuple of elements of S,,: )

2.1)  T,0)=(12)34)78)(69), 25)(36)47), (16)(28)(410), (141085)(27396)).

For the sake of computing absolute Nielsen classes these two copies of S5 must be
regarded as a priori distinct, and so we decorate them, respectively, as ni(C)2® and
ni(C)3%. But the act of applying T, to the coordinates of elements of the former induces
a natural map T;: ni(C)2® — ni(C)3%. The following lemma demonstrates that this map
identifies the two sets.

Lemma 2. 1. The normalizer Ng, (Ss) of Ss in S, is Ss. Thus, T5* is one-one.

Proof. Every automorphism of Ss is inner [Bu], p. 209. Thus, Ng (S5)=S5xC,
where C=Ceng (Ss5). The stabilizer in S5 of a point is isomorphic to S5 x S,, which is
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its own normalizer in Ss. Recall that if G is a transitive subgroup of S, and G(1) is its
stabilizer, then Ng(G(1))/G(1) is isomorphic to Ceng (G). Therefore C=1; Ss is
selfnormalizing in S,,. Thus, T is a bijection. O

Lemma 2.1 is a useful point. Quite a few properties of Hurwitz families depend
only on the absolute Nielsen classes, without regard to the particular embedding of G in
S.- Thus this group theory check has established considerable sharing of properties for
our two examples: for example, the second assumption of Theorem 1.7 i.e., transitivity
of H@4) on ni(C)*® (c.f., (2.2) below). As for the first assumpiion of Theorem 1.7,
Ceng,(Ss) is clearly trivial and the triviality of Ceng, (S5) follows from Lemma 2. 1.

Thus Theorem 1.7 ensures the existence of universal Hurwitz families #5(C) and
Z10(C) associated with the considered Nielsen classes. For simplicity, denote, respective-
ly, the total space, parameter space and covering map of %;(C) by 75, #; and &, and
of %1,(C) by J,,, H#,o and P,,. The next result shows the effect of the representation T,
at the level of the covers in the families.

Proposition 2. 2. There is a natural isomorphism between the respective parameter
spaces #Hs and H,, of the two families. Let @: X — [P} be any cover of the famtly %(C)
Then the corresponding cover of the family %,,(C) is equivalent to the cover ¢g: X yz— [P}
(as in (1. 2)) where H is the stabilizer of {1, 2} in Ss.

Proof. First note that the representation T,: S; — S, is equivalent to the repre-
sentation Ty of S5 on the cosets of the subgroup stabilizing {1, 2}. Therefore from (2. 1),
if © is a description of the branch cycles of ¢: X — [P}, then T,(x) is a description of the
branch cycles of ¢g: Xz — [P That is, this last cover is a fiber of the family %;,(C)
(i.e., lies in the Nielsen class ni(C)y,).

Geometrically we construct this cover from ¢: X — [P} as follows. Form the fiber
product X xp, X ={(x;, x,) € X x X|@(x,)=¢(x,)}; remove the diagonal 4= {(x, x)|x € X};
quotient out by the action of Z/2 by switching the coordinates in X x X; and take the
normalization of the resulting complex analytic set. (This last is necessary because when-
ever both coordinates of y =(x,, x,) consist of points that are ramified over [}, then y
will be a singular point of X xp;X.) This leads to geometric construction of the family
Z10(C) by following the same rules applied to the fiber product J5 x4, 75. The result is
a family of covers in the Nielsen class ni(C),, over the parameter space #; with total
space denoted J4. In addition, consider the natural map of (1.9) of Theorem 1.7,
Wy H — Ao, given by mapping x to the equivalence class of the cover Iy, — P;.
Identify ., (resp., 2#;,) with the cover of %* given by the action of H(4) on ni(C)2°
(resp., ni(C)jy). We then identify ¥, with the natural map from the theory of
fundamental groups induced by the identification via Lemma 2. 1 of ni(C)z® and ni(C)}%
Thus ¥y is an isomorphism and the result follows. |

Now consider the absolute straight Nielsen class whose elements are listed in
Ex. 1. 3: denote these elements, respectively, by 0,,0,,0.,0,,0,. Check easily (for details
see [Fr3], Part 1, Ex. 1. 2 cont.) that

2.2) 0:2=(0,0,0,)(0.0,) and ©,0,%Q;"=(0,0.0,)(0,0,).



Debes and Fried, Arithmetic variation of fibers in families of curves. Part 1 119

It follows that the hypothesis (1. 13) and (a fortiori) (1. 11) of § 1 hold. Therefore we may
consider the families %#5(C,), %#o(C,) of §1.4 and % (C,), %o(C,) of §1.5. For
simplicity denote these respectively by % (o), #(a), # (o) and % (a). These will be used
as illustrations throughout the remainder of this paper.

The following is a consequence ([Fr3], Ex. 1.2 cont.) of general principles as a
result of a numerical check involving Hurwitz monodromy action (cf. Comment c) on
Theorem 1. 7).

Proposition 2. 3. The families % (0), % (a), F(0) and ¥ (a) are defined over
K =@, and each of their parameter spaces— A for F(0) and F (a) and #' for F (o) and
F (a) — is a rational variety over @Q.

To fix the ideas note that the function field @(#) (resp., @(s#"'))—the field of
definition of the generic cover in either # (o) or % (a) (resp., # (o) or & (a))—is a finite
extension of @(zy,z, + 23, z,23) (resp., @(zy, z,, z3)) With z,, z,, z5, the branch points of
a generic cover, ordered so that z; corresponds to o¢; in the labeling of Ex. 1.3. Tt is
actually shown that @Q(#) (resp., @(s#)) is a pure transcendental extension of
Q2+ 23, 2, 23) (resp., Q(z,, 23))-

2. 2. Study of the family & (o). The fiber covers of the family % (0), as we will
see, are quite simple: each is equivalent to a cover P} — [P} given by a degree 5 poly-
nomial. In addition to preparing for the subtler study of the family & (a), the next two
subsections will display by example some of the standard arguments and potential dif-
ficulties.

Proposition 2. 4. For each x € #, the fiber cover ¢.:7 (0),— [P} is equivalent
(over its field of definition @ (X)) to a cover @ (h): P} — [P} with h a degree 5 polynomial.

Proof. With g equal to the genus of 7 (0), the Riemann-Hurwitz formula applied
to a description ¢ of the branch cycles gives 2 (5+g—1)=2+1+1+4 or g=0. Since g,
comnsists of just one disjoint cycle, there is a unique point of  (0),, say p.,, lying over oo
and it is automatically rational (over @(x)). The rational degree 1 divisor p,, gives an
embedding y: 7 (0), —P; of degree 1, which is therefore an isomorphism. Specifically, if
{1,f} is a basis of the linear system Z(p,), v is given by sending p € 7 (0), to f(p) if
P =P and to co otherwise. Thus the rational function @, oy~ ': P} — P} of degree 5 is
a polynomial. O

Proposition 2. 5. The polynomial h in Proposition 2.4 may be taken to have the
form a((y3/5)—s(y*/4)+2ty* =5 st(y*/2)+ 5t y)+ B with a,B,s,t € Q(x), a0 and t+0.

Proof. Fix a fiber cover %, with x € #, defined over @ (x), and identify it with
@(h): P} — P}. Denote the branch points of % by z, i=1,2,3. Then z, is auto-
matically defined over @(x). And while it is possible (e.g., if x is generic) that the

branch points z, and z; can be interchanged by G(@(x)/@(x)), the divisor z,+z; on
P} is necessarily @(x)-rational. Let a; and a, be the points of /2 that have
ramification index 2 over z;. Similarly, let ¢ (resp.,d) be the point of P} having
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d .
ramification index 2 over z, (resp., z3). Thus rm (h(y)=m(y) (y—c) (y—d) with
m(yy=a(y—a,) (y—a,). With a further linear change in y we may assume a, = —a, =a.
Thus, we obtain:

d
@3 ()= —a) (=) (y=d) with e’ edc+de@), x+0
y
and h(@)=h(—a)=z,, h{c)=2z, and h(d)=1z,.

Expanding ?ld? (h(y)) out gives

2.4 h(=o((y>/9)—(c+d) (y*/4)+(cd—a*) (y*/3) +a*(c +d) (y*/2)—a’cdy) +

with B e @(x). The condition h(a)=h(—a) gives a*/5+(cd—a?) a?/3—a%’cd=0 or
a*= —5cd. Substituting back completes the proof with s=c+d and t=cd; a% —a
gives t 0. 1

The last result suggests the introduction of the family of polynomials parametrized
by G, x A% x G, (with G,,=A"'—{0})
he(9)=o((y°/5)—s(y* /9 +21ty* =55t (y*/2)+5 2 y)+
for x=(a, B, s, t) € G, xA?*x G,,. Check that
4
dy

where a denotes a square root of 5¢.

(2.5) (he(M)=0(y*+51) (y*—sy+t) and h(a)=h(—a)=a(25 st*/4)+ B

Thus the morphism z*: &,, x A% x (z,,— A* that sends a point x to the unorder-
ed set of finite branch points of the cover ¢ (h,): P} — [P} is defined over @(a, §, s, t).

In the notation of § 1.5 let ¢ be the Zariski open subset (z*)™! (%2). The above
discussion shows:

Proposition 2. 6. For each x € O, ¢(h,): P} — [P} lies in the Nielsen class ni(C,)s.

2. 3. Cech cohomology interpretation of families of rational functions. Consider
again the family of covers % given by @: O x P} — 0 x [P} with the restriction of & to
xx [P} given by ¢(h,) on the second factor. From Prop. 2.6 it is a Hurwitz family
associated to ni(C), and the natural morphism z: O — U3 is surjective. But it is not the
universal Hurwitz family % (0): since the fibers of z} have dimension 1, it is not a
covering map. This brings up a delicate question:

Question 2. 7. Is # (o) a family of polynomials?

A rephrasing of this considers a morphism A:%# — A°® (representing the
coefficients of polynomials of degree at most 5) such that x e # is mapped to a
polynomial A (x) which gives a cover ¢(4(x)): P} — [P} in the equivalence class of x.

We also know that for each x € s# there exists a neighbourhood U, of x with a
morphism A,: U, — A° such that the polynomial A,(x’) is as desired for each x' e U,.
Indeed, such a neighbourhood can be taken to be a ball. We now show that U, can be
given by pullback to an étale cover of #.
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Recall that the family % (o) is given by pullback over # According to Prop.
1. 11, this is a connected component of 5# X 43 %5 . Also, the degree of #'— # is the
number of permutations of (C,, C,, C;) that leave this 3-tuple of conjugacy classes fixed.
In this case this is 2 (given by the switch of C, and C;). Now, there is a morphism
A" #'— A° with the desired properties: for X’ € #' the branch points z, and z, of the
corresponding cover are rational over @ (x’) and therefore so are the corresponding
points ¢ and d used in the proof of Prop. 2. 5. Thus we can normalize any polynomial
that gives the cover corresponding to x’ so that, say, c=0 and d=1. There is a unique
polynomial with these properties and thus we define A" using this.

Over # form the sheaf of groups ¥ x.of (resp., #%.%) such that over each analytic
open subset U (or cover of a Zariski open subset) of s#, the global sections I'(U, % x <)
(resp., ['(U, #%%)) are the analytic maps U — G, xA" (resp., U — PGL(1)). Here is
how # (o) produces a 1-chain with coefficients in % x o7. Let ¥"={V}|j € J} be an open
cover of # consisting of polydiscs (we leave the étale cover description for those
familiar, say, with [Ar]). In particular, the V;’s are simply connected. Thus the pullback
of V; to #’ consists of two connected components. Select one of these and call it W;. It
maps one-one to V; and thus turns the restriction of # (o) over V; into a family of poly-
nomial covers: ¢(A4'(x")): Py — [P} for x € V; where x' is the unique point of W; over x.
For the discussion below denote x by pr(x’). This uniquely defines an element 7,; of
r'\v,nV;, 4 xs).

(2.6) eAX)eoy)=0UAEX"), pr(X)=ptX")eV,nV;, x'eW, and x"eW,.

In our case y;; is either the identity map or the affine map y — 1—y that switches
0 and 1. It is standard to recognize that y={y;};;c;«, defines an element of the set
H} (#, %9 x of). 1t is trivial if and only if there exists A4: # — A °® such that

2.7 for xe # @(A(x): P} — P} is in the equivalence class of x.

Furthermore, the natural map HJ(#, 9 x /) — HL(#, % x /), induced by mapping a
cover of #' to a cover of # maps vy to the trivial element. Warning! It is tempting to
identify y with an element 4 of HX(s# Z/2) by regarding the group generated by the
transformation y— 1—y as a copy of the constant sheaf Z/2 in ¥ x.«. But ¥ may be
nontrivial in HL (5, 7 /2) although its image y in HL (3, % x &) is trivial.

This works for a general Hurwitz family % (C) of genus 0 (with 7 (C) the total
family, # (C) the parameter space, etc.) except that we must replace #’ (resp., Z/2) by a
more general, but explicitly computable cover # (C)* (resp., sheaf B of finite groups).
Denote the rational functions of degree n by #,, an algebraic variety through some
convenient choice of coordinates.

Theorem 2.8. Consider a general Hurwiiz family whose fibers are covers in a
Nielsen class ni(C) (resp., with one of the branch points specialized to be oo, ni(C,)).
There is an unramified cover # (C)* — # (C) (resp., # (C)* — # (C..)), explicitly com-
putable from a permutation representation of the Hurwitz monodromy group, with the
following properties. Attached to it is an explicitly computable locally constant subsheaf B
(resp., B,) whose stalks are isomorphic to a finite subgroup B of PGL(1) (resp., B, of
G, xA'). The Hurwitz family defines an element §€HL(#(C),B) (resp., HL(#(C), B.,))
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whose image y in HY(H#(C), PYL) (resp., HL(H(C), ¥ xA)) is trivial if and only if
there exists A: # (C)— R, (resp., A: # (C ) — A, +1) such that

(2.8) for x e #(C), p(A(x)): P} — [P} is in the equivalence class of X.

Also the image v* of y in HL(#(C)*, B) (resp., HL(# (C,)*, B,,) is trivial.

Proof. The first point that needs explanation beyond our example is the general
production of # (C)*. The construction and application for #(C,)* is similar, so we
only do the former. We really need # (C)* to have the property that pullback of the
family to #(C)* gives a family & (C)* with 3 disjoint sections: y;: # (C)* — 7 (C)*
with @(C)* o y; the identity on #'(C)*, i=1,2,3; and y, (A (C)*)ny;(# (C)*) is empty
for i#j. The pointed Nielsen class technique of § 3. 3 shows exactly how to do this so
that the images of the y,’s are in the sublocus 7 of 7 (C)* lying over the branch locus
of the cover 7 (C)* — # (C)* x [P} (as in § 3. 5, Part 1). Then pullback of the family to
A (C)* gives a unique isomorphism & from the pulled back total space Z (C)* to
H(CY* x P} so that for pe#(C)*, p,;(p)=0, y,(p)=1 and y,(p)=oc0. Note that the
rest of our proof shows that the simplicity of the cohomological obstruction definitely
depends on which pointed Nielsen classes we use to give the three sections.

Denote the image of vy; in Z; followed by the restriction of the projection map
T (C)* -7 (C) by J,;, i=1,2,3. Observe, as our example above shows, that these
three sets may overlap (even be equal), but their union intersects 7 (C), in a finite set of
points (at least 3). Define B to be the sheaf of groups of automorphisms of the stalks of
the sheaf 7 (C)— #°(C) that leave the sets I, ;, i=1, 2,3, invariant. Using this B the
construction works as in our example. |

A last observation about 7 the generator of the cyclic group Aut(s#'/#°) of order 2
and 1. the polynomial produced from A": #’ — A°® in our example above. Assume also
that §: #'— (,, x A! is any morphism for which

(2.9) Mo d(X)=Axyo0(t(x") foreach x' e

Then ..o §(x’) actually defines the desired 4: # — A® and # (0) is a family of poly-
nomial maps. Indeed, (2. 9) is clearly an if and only if condition for the existence of 4.
For the general situation of Theorem 2. § we would let 7 run over automorphisms of the
Galois closure of the cover # (C)* — # (C). This observation, of course, does not yet
answer Question 2. 7.

§ 3. Ramification prediction

Hurwitz families are determined by giving a prescription for the ramification of
their fibers. § 1 has described, based on [Fr2], §4, how the Hurwitz monodromy action
provides information on the elementary geometry properties of Hurwitz families. In this
section we show that the Hurwitz monodromy action can also be used to determine
arithmetic properties of the fibers. We concentrate on the investigation of rational points
on the fibers of the family.

3. 1. Statement of the problem. Return to the general notation of §1: G is a
transitive subgroup of S, with Ceng (G)={1}: and C=(C,,...,C,) is an r-tuple of
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nontrivial conjugacy classes of G. As in § 1. 4 we make these assumptions: C, is distinct

from each of Cy, ..., C,_; modulo N§"(C) and H(r— 1)* is transitive on ni(C_)* (i.e.,
(1. 10) and (1. 11) hold). Consider the minimal Hurwitz family & (C,) of § 1. 4 associated
with ni(C) where z, has been specialized to co. Denote this by #:7 — # x [P}. Finally,
we assume that the family & is defined over K, as in Theorem 1.7, where K is a

number field. Our main example is a special case of this with K= .

Remark 3. 1. The results of this section hold equally well for the family % (C)
(i.e., for the situation where z, has not been specialized to oo) with the following
changes: H(r), N(C) and ni(C)*® replace H(r—1)*, N(C,_) and ni(C_)*®. The same is
true for the family #(C_) of §1.5 with these changes: SH(r—1)*, H(r—1)* and
sni(C,)*® replace H(r), N(C) and ni(C)*".

The main problem: How to test for the answer to the following question.

Question 3.2. Does the fiber J, have a K-rational point for each x e #(K)
excluding at most a proper Zariski closed subset?

If the generic cover 4., does have a rational point, then Question 3.2 has an
affirmative answer. Prop. 3 3 asserts that, in addition, the answer is yes without the
restriction excluding a proper Zariski closed subset.

Proposition 3. 3. Under our assumptions, if there is a rational point on the generic
cover Jyen, then there is a rational point on each fiber cover I, with x € # (K).

Proof. The variety s is smooth and rational. Hence every point x has a
neighbourhood isomorphic to an open subset of A" Since the property is clearly
dependent only on a Zariski local neighbourhood of x, we may assume that # =A"
with coordinate ring K[¢,, ..., t,] and x is the origin 0=(0, ..., 0). Consider a projective
embedding of 7,i:.9 — P™ (for m sufficiently large). Denote the natural map
prio®: 7 — A" of the family # by ¢. Then the embedding 7 — A" x [P™ given by the
product map (¢, i) displays pr, « @ as a projective morphism. By assumption, there is a
rational point pg., on g, (i.e., a section to the map 7, — Spec(K(t, ..., t,)) given by
a nonzero (m+ 1)-tuple (g, ..., gm+1) of polynomials in K[t,, ..., t,]. With no loss, we
may assume that the g;’s are relatively prime in the p.i.d. K(tq,...,t, ;) [t,]. Then the
polynomials g, (t,...,t,_1,0), ..., Ems1(ty, ..., t,—;, 0) cannot be all equal to O in
K[tq,...,t,_1]. This produces a point p, on A" x [P™, rational over K(ty,...,t, ),
above the point x, € 5 obtained from the generic point of # by specializing ¢, to 0. But
the point p, is necessarily in 7 : since the map 4 — A" is projective, it is proper. So
there exists a point on I < A" x [P™ above X, € # This point must be the rational point
p. since the projection map A" x P™— A" is separated. This proves the existence of a
rational point on the fiber cover 7, (i.e., on the fiber of 4 above the generic point
“(ty, ..., t,_y, 0y of the hyperplane {t,=0} (=A"') of A’). Repeat the argument r—1
times to eventually get a K-rational point on the fiber 7, over the point 0. O

The converse of Prop. 3. 3 is of course the point of interest. We do not happen to
know of any families of genus 1 curves over ) parametrized by a rational variety with
rational points on each (Q-fiber, but none on the generic fiber. But we suspect that it
can happen (cf. Selmer conjecture remark for x*—(8:%+5)*=y* on p. 140 of [LSc]).
For families of genus 0, however, thanks to [LSc] the converse does hold.
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Proposition 3. 4. In addition to the previous assumptions, consider the case when F
is a Hurwitz family of genus 0. The following are equivalent:

(1) Excluding a proper Zariski closed subset of x e #(K), 7 has a rational point;
(i1) For each x € 3 (K) the fiber T, has a rational point;
(iii) The generic fiber I, has a rational point.

Proof. Let D, be the divisor of the differential dz on /P! regarded as a divisor
on the generic cover J,,. Since g=0, the Riemann-Roch theorem implies that
deg(D,.,)= —2. Consider the linear system L(—D,.,) of meromorphic functions on .,
whose divisors added to —D,., are positive. Then L(—D,.,) has dimension 3. A basis
(f1> f2, f3)=f for L(—D,.,) gives an embedding of 7,., in /P? as a nonsingular conic
[H], p. 296-7. For specializations of the generic point in an open subset of J#, f speciali-
zes to a basis embedding the corresponding fiber as a nonsingular conic in /2. Thus
since s is rational, we reduce consideration of Prop.3.4 to the corresponding
statement for a family of conics over K in /P? parametrized by an open subset of A"
For a generic point of the parameter space, the generic conic has a rational point if and
only if the conics corresponding to K-specializations of the generic point in some
K-open subset of the parameter space have K-points ([LSc] for the case K=@Q; [Sc],
p. 211, for the general case). This gives the equivalence of (i) and (iii). Prop. 3. 3 gives
the equivalence of these with (ii). ]

When # is a Hurwitz family of genus 0, for each x e # the fiber 7, is a
projective smooth variety geometrically isomorphic to /!. An affirmative answer to
Question 3. 2 implies that all of the fibers 7, are isomorphic to P! over @(x), the field
of definition of 7. In this case we say that the family % is arithmetically constant.

3. 2. Points produced by ramification. Our next example considers, for our con-
text, “the classical numerical check provided by ramification” for producing rational
points on curves.

Example 3.5. The fibers of F (a) (of §2. 1) have rational points. The family & (a)
lies in ni(C),,. Apply the Riemann-Hurwitz formula to any element of ni(C),, (e.g.,
T,(6) given in (2. 1)) to get the genus g of the family % (a): 2(10+g—1)=18 or g=0.
The family # (@) derives from % (a) by “adjunction of the branch points” (§ 1. 5); we
may assume that the branch points have been ordered in such a way that on each fiber
cover & (a),, the i-th branch point z; corresponds to C;, i=1,...,4. Then consider the
divisor D, of ramified points above z,: it is rational on Z (a), and of degree 3. Now the
canonical class on 7 (a), is represented by a degree —2 rational divisor §. This gives a
rational degree one divisor, D, +9, on 7 (a), and from an application of the Riemann-
Roch theorem, a positive degree 1 rational divisor (i.e., a rational point) on J (a),. [

Remark 3. 6. Generalization of the argument of Ex. 3.5 gives this well known
statement. A nonsingular curve % of genus O defined over a field K has a K-rational
point if and only if it has an odd degree K-rational divisor.

We explain in more generality what we mean by the phrase “ramification produces
rational points”. For x € # consider the corresponding cover ¢,: 7, — P! Let &, be
the collection of K(x)-rational divisors on J, with support in ¢_'(z) where z denotes
the collection of branch points of ¢,. Also, denote the set of rational principal divisors
on 7, (i.e., divisors of functions on 7, defined over K (x)) by Div, ,.
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Definition 3. 7. We say that ramification produces rational points on 7, if the
group generated by &, UDiv, ,, inside the group of all rational divisors on Z,, contains
a positive degree one divisor (i.e., a point). We say that ramification produces rational
points (on the family %) if ramification produces rational points on the generic fiber
g,

gen*

From Prop. 3. 3, if ramification produces rational points, then it does on all fibers
T, for x e # In the case of genus 0 or 1 there is a simple criterion for ramification to
produce rational points (of 7). Let C be a choice of one of the conjugacy classes that
appears in C and let ¢ be one of the lengths of the disjoint cycles of an element ¢ of C.
From this point refer to such a pair (C, t) as a marked conjugacy class. Consider those
of the conjugacy classes C; that are equal to C® modulo the normalizer N (C) for
some integer a relatively prime to N (i.e., with the notations of §1.4, such that
yC;y 1=C for some y e N§"'(C)). Then denote the branch points, after a possible re-
numbering, corresponding to these conjugacy classes by z,, ..., z,; finally, let p,;,
j=1,...,u, be the points of 7, above z;, i=1, ..., v, that correspond to the disjoint
cycles of length ¢ in the branch cycle description for the cover .%,.%) The set

(3.1 P(C t)={p;;,j=1,...,ui=1,...,v}

is G(K(x)/K(x)) invariant (use Prop. 1.9). Denote the collection of all K(x)-rational
divisors on 7, corresponding to the orbits of G(K(x)/K(x)) on the set P (C,t) by
2.(C, ).

Proposition 3. 8. a) If the genus of the Hurwitz family is 0, then ramification pro-
duces rational points of 7, if and only if for some marked conjugacy class (C, t) the set
2,(C, t) contains an odd degree divisor.

b) If the genus of the Hurwitz family is 1, then ramification produces rational
points of F, if and only if the collection of degrees of all divisors in the set
U D.(C, t) are relatively prime.

(C,t) marked conj. classes

For g=0 (resp., g=1) we say that (C, t) produces rational points on I, if 2,(C,t)
contains an odd degree divisor (resp., if the degree of divisors in 2,(C, ) are relatively
prime). If g =0, ramification produces rational points on 7, if and only if some (C, t)
does. This is false for g=1.

Proof. From the G (K (x)/K (x))-invariance of P,(C, 1),

(3.2) 9, is generated by U 2.(C, 1).

(C,t) marked conj. classes

Necessity of the condition is therefore immediate since principal divisors have degree 0.
The converse for a) is immediate from Remarks 3. 6 and 3. 9. It remains to prove the
converse in case b). From (3. 2) conclude that &, contains a degree one divisor. From
the Riemann-Roch theorem, the linear system of a degree one divisor has dimension 1.
Thus it contains a positive rational divisor. O

3) For the family #(C,) — Remark 3.1 — v is always equal to 1.

63 Journal fir Mathematik. Band 409
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Remark 3. 9. Since z, has been placed at oo, for any genus g there is a
representative of the canonical class in 2, :

3.3) b= Y (t=1)D(C,t)=Y (t+1) Dy(C,, t)

(C,1),C*C,

where D, (C, t) denotes the divisor sum of all points in P,(C, t).

Definition 3. 7 suggests several problems:

Question 3. 10. a) Analogous to §3. 1, Comment 2, is there an equivalence be-
tween the existence of rational points produced by ramification on all fibers 7, x € /#,
on one hand, and on the generic fiber ., on the other hand?

gen

b) Is there a simple criterion for ramification to produce rational points?

¢} Does knowledge of existence of rational points produced by ramification
decide the existence of rational points on all fibers 7, for x € 5#?

Prop. 3. 8 gives an affirmative answer to Question 3. 10 a) in the case g=0 or 1
(Theorem 3. 11 below), but we do not know if this is the case for each g (assuming # is
K-rational).

Theorem 3. 11. The following are equivalent for # a Hurwitz family of genus O or 1:
(i) Ramification produces rational points;
(i1} Ramification produces rational points on I, for each x € #{K); and

(iii) Ramification produces rational points on I, for each x € #(K) excluding a
proper Zariski closed subset of .

Proof. Hilbert’s irreducibility theorem produces a Hilbert subset H of #(K)
with the property that for each x e H and each marked conjugacy class (C,t) the degrees
of the divisors in 2,(C,t) and Z,.,(C,t) are in one-one correspondence. For g=0 or 1
the criteria of Prop. 3. 8 for “ramification produces points” depends only on these de-
grees. ]

All of § 3. 4 is devoted to Question 3. 10 b): Theorem 3. 14 is our main theorem.
Group theoretic preliminaries appear in § 3. 3. These define an extension of the Hurwitz
monodromy action. Theorem 3.14 explains how this new action relates to the
G(K(x)/K(x)) action on the set P,(C,t). As to Question 3.10 c), we feel that for
Hurwitz families with a rational parameter space J#, the existence of rational points
produced by ramification should be decisive for the existence of rational points on each
K-fiber. We check this conjecture in the particular case of the family % (a), for which we
will see that ramification does not produce rational points (§ 4).

3. 3. Pointed Nielsen classes and Hurwitz monodromy action. Let (C,t) be a
marked conjugacy class (below Def. 3. 7). Consider the pointed Nielsen class ni(C,; C, t)
whose elements are related to elements of ni(C,) as follows. For teni(C,) and
j=1,...,r, write 7; out as a product of disjoint cycles B --- fi;; then ni(C,; C, t) is the
set consisting of all (t, j, B,) with t € ni(C,), t;€ C modulo N§'(C) (as in (1. 10)) and B,
a t-cycle in t;. We refer to the (v, j, ) as a (C, t)-pointing of 1. The following notation is
convenient for calculations: we point t; by replacing f, by a marked version f; of it;
then t is pointed by replacing t; in t by the marked clement.
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Example 3.12. Pointings of elements of ni(C);o, (§2.1). Consider the 4-tuple
t="T,(06) € ni(C),, given in (2. 1). Here are three pointed versions of t (... indicates the
remainder is as in t):

(3.5 a) (t,1,34)=((12)34'(78(69),...) where (C, t)=(C,, 2),

b) (7,2,8) =(...,2536E47NE®,...) where (C, t)=(C,, 1), and
o (£305) =(..,....,(16)(28)(410)(5)",...) where (C, t)=(C,, 1).

Note that disjoint cycles of length 1 are an important part of these considerations.

There is a natural notion of absolute pointed Nielsen class ni(C,, C, t)**. The
normalizer N(C,) acts on the set ni(C,, C, t) as follows: y e N(C,) sends t with 1;
marked on f, to yty~" with yt;p™! marked on yf,y " (i.e.,(t,j, Bi) to (yTy ' j, vBey ™)
The set ni(C,, C, t)* is the quotient of ni(C_, C, t) by this action.

Hurwitz monodromy action of H(r—1)* naturally extends to pointed Nielsen
classes in the most natural way, too. Informally, extend the action of Q; by applying to
the selected r-cycle f3, in t; whatever rule that applies to 1;€ C in the definition of () Q;
(cf. (1. 8)). Specifically, for i=1, ..., r—1, (t, j, B,) (Q;) is defined by

(3.6 (.4, B (Q)=((0) Qi i+ 1, Bi); (. i+ 1 B (Q)=((v) Qi i, T;Be7i ') and
(ts ja ﬁk) (Q1)=((t) Qia j’ ﬁk) If l:':], ]_1

It is a simple check that this action extends from an action of generators to all of
H(r—1)*. Since the Hurwitz monodromy action commutes with the action of the nor-
malizer N(C_), the group H(r—1)* actually acts on the absolute pointed Nielsen class
ni(C,, C, )™

We now define our main tool for this paper: for any ¢ € ni(C,,), a natural action
on the set of all the (C, t)-pointings of the given r-tuple 6 can be derived from the action
described above. Consider the following subgroup of H(r— 1)*:

3.7) H,={Q € H(r— 1)*|(6) @ = 6 modulo N(C,.)}.

Denote the set of all possible (C, t)-pointings of ¢ by 6(C, t); its cardinality is |6(C, t)|=uv
where u and v are the integers defined in (3. 1) of § 3. 2. Now note that any element of
H,, by definition, fixes the r-tuple 6, but may move its (C, t}-markings; this is the action
alluded to above. More formally, this action of H, on ¢(C, t) is defined as follows: for
Q € H, there is a unique y € N(C,) such that y(6¢) Qy '=o0. (Existence of y is part of
the definition of H,, while uniqueness is a consequence of the assumption that
Ceng, (G)={1}.) The action of Q as an element of H, is then defined as the composition
of the action of Q as an element of H(r— 1)* followed by conjugation by 7.

Remark 3.13. a) As a consequence of the transitivity of H(r—1)* on ni(C_)*
this action of H, on ¢(C, t) does not depend (up to equivalence) on the choice of .
Indeed, given ;€ ni(C,), i=1,2, there exists Q,, in the subgroup of Per(ni(C,))
generated by H(r—1)* and N(C,) such that (¢,) Q;,=06,; the induced bijection
6,(C,t)—> 6,(C, t) and the isomorphism H, — H,, (sending Q e H,, to (0;,00,,)eH,,)
identify the representations H, — Per(6,(C, 1)), i=1, 2.
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b) Clearly two elements of 6(C, t) are in the same orbit of H, if and only if their
equivalence classes in ni(C_, C, t)*® are in the same orbit of H(r—1)*. That is, the
following diagram is commutative:

¢(C,t) ——— ni(C,, C, 1)*®
(3.8)

6(C, t)/H, ————— ni(C,, C, t)**/H(r— 1)*

where the lower horizontal arrow is injective. Again from transitivity of H(r—1)* on
ni(C,)*™ it is also bijective.

3. 4. Ramification prediction. Riemann’s existence theorem identifies points over
branch points with disjoint cycles in a branch cycle description of a given cover (§ 1. 1).
We reformulate this to say that the correspondence identifies points over branch points
and pointings of a branch cycle description. Let (C, t) be a marked conjugacy class and
x € #. Then, by definition, the elements of the set P,(C, t) (§ 3. 2) correspond in this
identification to elements of the set o,(C, t) of all (C, t)-pointings of a branch cycle
description o, of a cover %,. We now compare the action of H,_ on ¢,(C, t) with the
action of G (Q(x)/@(x)) on P,(C, t).

We state the result with x the generic point of 4. From Hilbert’s irreducibility
theorem (as in the proof of Theorem 3. 11), the result still holds for all points x in a Za-
riski dense subset of # In the following we denote the field of definition of the generic
cover %, by F and we assume that the conjugacy class C is distinct from C,:(C,,t)
should be studied separately. The proof of our main theorem takes up all of § 3. 5.

Theorem 3. 14. Let 6 € ni(C). Then orbits of H, on 6(C, t) corresponds to orbits
of G(F/FQ) on P,.,(C, t). Each orbit of G(F/F) on P,,(C,t) corresponds to a disjoint
union of orbits O; of the same length, i=1,...,m, of H, on o(C, t). Furthermore, the
induced representations of Hy in Per(¢;), i=1, ..., m, are isomorphic (as groups).

In the last statement of the theorem we imply only that the images of H, in
Per(0),), i=1, ..., m, are isomorphic groups. Indeed as group representations they are
equivalent, but they may not be permutation equivalent representations of the image
group. Below we say that H, acts equivalently on two orbits (¢; and ¢/, (not necessarily
in the same G(F/F)-orbit) if the group representations are equivalent. From Remark
3.13 a), the conclusions of Theorem 3.14 do not depend on the choice of ¢ (in
particular, the integers m, |(/;] and the image of H, in Per((;) don’t depend on o).

We list corollaries of Theorem 3. 14. To each orbit ¢ of H, on o(C, t) associate
the number Im where [ is the length of the orbit and m counts the number of orbits @’
of length | on which H, acts equivalently to ¢.

Corollary 3. 15. Assume that the Hurwitz family & has genus O and that there is
an orbit @ of H, on 6(C, t) with Im odd (e.g., if the number of orbits of length a given
odd number | is odd). Then the marked conjugacy class (C, t) produces rational points on
any cover in the Nielsen class ni(C) defined over a field containing K.

Proof. Denote the m orbits on which H, acts equivalently on &(C, t) by 0,
i=1,...,m From Theorem 3. 14 there is a partition (I,,..., ;) of {1,...,m} so that
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eachset | ) O, j=1,...,s, corresponds to an orbit of G(F/F) on P,.,(C, t). Necessarily

iEIj —
one of the sets I,,..., I has odd cardinality. The corresponding orbit of G(F/F) has
odd length. The rest of the proof follows from Prop. 3.8, Prop. 3.3 and Prop.1.8. [

Corollary 3. 16. Assume that the Hurwitz family & has genus 0 and that all orbits
of H, on 6(C, t) have even length. Then (C, t) does not produce rational points.

The proof is immediate and left to the reader. Genus 1 versions of these corolla-
ries are not so simple to state because the quantification in Prop. 3. 8 by is over all (C, 1).
In particular this requires inspection of the Galois conjugation on the points over co —
of necessity an ad hoc consideration — purposely excluded from the statement of
Theorem 3. 14. With this included the genus 1 case is usually best treated by returning
directly to Theorem 3. 14. Nevertheless one important special case is an immediate con-
sequence of this and Prop. 3. 8 b).

Corollary 3. 17. Assume that the Hurwitz family has genus 1 and that for each
marked conjugacy class (C, t) with C+C,, all numbers m associated to orbits of H, on
6(C, t) are equal to 1 (e.g., action of H, on o(C, t) is transitive, in which case the group
H, has a single orbit on o(C,t) of length uv). Let A (resp., N) be the collection of
lengths of orbits of H, on o(C, t) over all (C,t) with C+C, (resp., lengths of orbits of
G(F/F) on the set of points of Tyeq over o). Then ramification produces rational points if
and only if the collection N AN, consists of relatively prime integers.

We conclude this section with a few words on how we intend to apply this work in
a subsequent paper to consider the production of elliptic curves with high rank over Q.
Theorem 3. 14 essentially says that, given a group G and an r-tuple € of conjugacy
classes of G, inspection of the Hurwitz monodromy action may provide rational points
on covers in the Nielsen class ni(C). Riemann’s existence theorem asserts furthermore
that there exist actual covers in the Nielsen class ni(C). So, we seem to be reduced to a
pure group theory problem: finding a data (G, C} that produces sufficiently many
rational points through the inspection of the Hurwitz monodromy action. Of course, a
major problem remains: can the associated covers be defined over @7 In fact, existence
of covers in ni(C) defined over @ is equivalent to existence of {2-rational points on the
Hurwitz space #(C). At this stage we refer back to Comment c) of Theorem 1.7:
criteria for the variety # (C) to be, for example, a @ -rational variety (and so, with a lot
of @-points) are available. So, the production of elliptic curves defined over @ with
“many” rational points may already be handled through pure group theoretical
calculations (cf. §3.7). This leaves us, of course, with the question of the rank of the
group generated by these rational points produced by ramification, a subject that we
expect to treat in detail in the sequel to this paper.

3. 5. Proof of Theorem 3.14. Consider the subset #(C, )"« () P,(C, t) (§3.2)
X €N
of 7. The proof is in four parts. The first three show that #(C, t)” is an unramified

cover of # defined over K that corresponds, via fundamental groups, to the action of
H, on ¢(C, 1).

Part 1:  The natural quasiprojective structure on #(C,t)" shows that #(C, t)'—H
is unramified. Denote the branch locus of the map 7 —# x P! by #. Consider
Ta3=T Xppr A as a subscheme of J with its reduced structure. Note that the points
of I, T, are exactly the points of J, that lie over one of the branch points of the
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cover %, . Since such points are in number independent of x, the natural map J43— 3 is
unramified. The multiplicity of p €757, on the fiber of I over @(p)=(x, z) e # x P!
can be identified with the order of ramification of p in the cover %, From the construc-
tion of Hurwitz families [Fr2], §4, this number is locally constant, as is the conjugacy
class of the canonical inertial group generator {modulo N(C)) for a point p lying above
p in the Galois closure of the cover %,. Thus if £ is a connected component of 7, then
Z is either disjoint from or entirely contained in 5 (C, t)". This proves that s#(C, t)” is
a union of irreducible components of F.

Part2: 3#(C,t) and the natural map # (C,t)' —>H are defined over K. The
natural map is just the restriction of pr, o @ to 4 (C, t)". Therefore we have only to
show that 5#(C, t)" (a priori defined over a finitely generated extension of Q) is defined
over K. Since #(C, t)” is a union of irreducible components of 75, which is defined
over K, #(C, t)" is defined over @Q. Consider ¢ € G(@/K) and pe Z4(@Q). f pe #(C, t)’
then so is p° (apply Prop. 1.9). Thus #(C, ¢t)” is transformed into itself by ¢. It is a well
known consequence of Hilbert’s Theorem 90 that 5 (C, t)” is therefore defined over K.

Part 3:  Identification of the permutation group actions. The coordinate charts of
[Fr2], p. 50—51, show the effect of transporting a path, representing a branch cycle on
a fiber of the Hurwitz family, around the members of the family that lie over a path in
the parameter space that represents the path Q;, i=1,...,r. The correspondence of a
coordinate neighbourhood of a ramified point p in a cover 7, with a disjoint cycle of
the branch point z over which p lies extends the construction in the following way: it
gives the transport of the actual coordinate neighbourhoods surrounding the ramified
points (as we move over a path that represents Q,). Restriction of this transport to just
the ramified points themselves gives the data for the effect of Q; in the permutation
representation associated to the cover #(C, t)' — ;' (§1.4). The formula for this
action [Fr2], p. 50, in terms of the coordinate neighbourhoods associated to the rami-
fied points, is that of § 3. 3 on the pointed Nielsen classes. Since the fundamental group
of o is identified with H,, the cover #(C, t)’ — s corresponds to restriction of the
permutation representation of H(r —1)* to H,.

Part 4:  Comparison with the Galois group action. Let ¢ be an orbit of H, on
6(C, t); it corresponds to a connected component S of the space s#(C,t)". Thus, the ac-
tion of the fundamental group of # on the points of S over the generic point of i is
equivalent to the action of H(r—1)* on the orbit ¢@. On the other hand, since the cover
H(C, t)' — A 1is unramified, S is geometrically irreducible and the points of S over the
generic point of J# are transitively permuted by G(F/F@). That is, they form an orbit
of G(F/FQ@) on the set P,,(C, t). This proves the first point of Theorem 3. 14. Let now
O’ be an orbit of G(F/F) on the set P, .(C,t). A standard group theoretical argument
shows that ¢’ is a disjoint union of orbits ¢, ..., O, of G(F/F@Q) on P, (C,t). The
corresponding orbits of H, on ¢(C, t) are the required orbits O, ..., ¢, in Theorem
3. 14. They have the same length; indeed, the orbits ¢, i=1, ..., m, are pairwise con-
jugate under G(F@)/F). This also implies that the associated connected components S;,
i=1,....,m, of #(C,t) are conjugate under the action of G(@Q/K). We conclude by
noting that the monodromy groups of the covers S;— # (which are the images of H, in
Per(0))) are isomorphic. Indeed, the transform of S; to S under ¢ € G(@Q/K) induces an
isomorphism of the function fields K(S;) and K(S?) that is fixed on the function field F
of s Thus ¢ extends to an isomorphism of the Galois closures of the field extensions
K(S))/F and K(S7)/F. Their respective Galois groups-(which are clearly isomorphic to each
other) are isomorphic to the monodromy groups of the covers §;— 4 and S —# O
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Final comments. As we see from the corollaries above, Theorem 3. 14 has some
implied numerical checks for the cardinality of the orbits of G(F/F) on P, (C, t). The
subtler test is to check if the action of H, on two distinct orbits @, i=1, 2, gives iso-
morphic groups. If not, then the orbits are not G(F/F)-conjugate. But if the groups are
isomorphic, then the images of H,(1) in Per(¢;) will also be isomorphic, i=1, 2. This
latter test may give an easier check to distinguish between H, orbits that are not
G(F/F)-conjugate. On the other hand, as noted under the opening transitivity assump-
tion of § 3, H, orbits on ¢(C, t) are in one-one correspondence with H(r— 1)* orbits on
ni(C,, C, t)**. The corresponding transitive groups are the monodromy groups of the
covers S;— %%, i=1, 2. Exactly as in the proof of Part 4, S; and S, cannot be con-
jugate under G(@Q/K) if these groups are not isomorphic.

3. 6. The family % (a). We will prove that ramification does not produce rational
points on the family & (a). Recall the elements of sni(C)*® derived by applying T, to
(1.4)a),...,e):

(3.10) a) 7,=12)34)(78)(69), 1,=250B6¢47, 1;=(16)(28)410);
b) 7,=(12)(34)(78)(69), 1,=(16)(28)(410), 3=(58)(710)(1 3);
c) 1,=(12)34)(78)(69), 1,=(13)(58)(710), 13=25(36)47);
d) 1,=14923)(510(69), 1,=2536147), 13=2457)@810);
e) 1,=(14)(23)(5100(69), 1,=24)EN®10), 13=2536)47

(in each case 7,=T,((54321))=(26937) (4158 10)) 7).

The Hurwitz family has genus 0, so we need to show that no marked conjugacy class
(C, t) produces rational points.

Case 1: C=C,, t=1. We start with o=1,, the branch cycles of (3. 10) d). There
are 2 (=uv) (C,, 1)-markings of t,. We have

(3. 11) (ta 1, (7) (219301 ) = (ta, 1, (8)).

In particular H_, acts transitively on 1,(C,, 1). From Corollary 3. 16, this marked con-
jugacy class does not produce rational points.

Case 2: C=C,, t=2.1In this case |t,(C,, 2)|=4(u=4,v=1) and
(ta, 1,(14) Q0501 )= (1, 1, (2 3)); (14, 1, (5 10)) (©, 0301 1) = (14, 1, (6 9)).

Therefore the group H,, has either a single orbit of cardinality 4 or two orbits of
cardinality 2. In either case the orbits are of even length. Conclude as in Case 1.

Case 3: C=C,=C; (mod N(C,_)), t=1, 2. Here there are v=2 conjugacy classes
equal modulo N(C,,). Thus each orbit of H,, on 1,(C,, t) will be of even length if there
is Q € H(3)* that takes markings of t, on the second component to markings of 1, on
the third component. Check that Q=02 (0,0, 2071 0,20, does the job.

Case 4: C=C,, t=5. This case is not covered by Theorem 3. 14. We must use
an ad hoc argument. We show that the two points of 7., over co are conjugate over a
degree two extension of F, where F is the field of definition of the generic point. From
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Prop. 2. 3 the function field F(X) of 7 (0),., is (isomorphic to) the field F(y,) generated
over F by a root y, of a polynomial h(y)—x where h is a degree 5 polynomial (e.g., that
of Prop. 2. 5). Also the function field F(Xy) of X, =7 (@)ge is the subfield of the split-
ting field F(y;), i=1, ..., 5, of the polynomial h(y)—x, fixed by the stabilizer of {1, 2} in
Ss. The function y,y,/(y;+y,)? lies in F(Xy). Check that its Puiseux expansion at co
begins with {/(1+¢)* where { denotes a primitive 5th root of 1, and that this number
generates F (ﬁ) The field F( ﬁ) is therefore contained in the field of definition of each
of the points over co. Since # (a) is a {Q-rational variety, it is regular over ). Thus
F (]/5) is a degree 2 extension of F. ]

It is of interest to inspect further the-transitivity of H_, on t,(C, t), or equivalently
of H(3)* on ni(C,, C, t)*®, in Cases 2 and 3. The history of the Hurwitz monodromy
action shows it to be a common instance when it is transitive on absolute Nielsen
classes (cf. [BFr1], [BFr2], [CP]). Thus it is a bit of a surprise that our simple example
F (a) provides an extension of the Nielsen class action in which H(r—1)* acts intransi-
tively. We show that the action of H(3)* on ni(C,, C, t)*® is intransitive for the marked
conjugacy classes (C, t)=(C,, 2) and (C,, 1). It is transitive for (C, t)=(C,, 2).

For the last statement we are done if we can go from (t,, 3, (2 4)) to the other
three pointings of the 3rd coordinate: check that (t,, 3, (2 4)) (@3)=(t4,3,(5 7)) and
(ta» 3, 5 T (Q,0207 1) =(r;,3,(8 10)). In particular the conjugation action on the
points of P,.,(C,, 2) shows that

(3.12) the points in P,.,(C,, 2) generate a degree 6 extension of F.

A direct by hand calculation can be used for the two intransitivity examples; we leave
the details to the reader; the method is shown on a similar example in § 3. 7 (below). We
concentrate on an alternative to the Hurwitz monodromy check of intransitivity in the
case (C, t)=(C,, 1). Assume that H_, is transitive on 1,(C,, 1). Then (3.12) holds with
(C,, 1) replacing (C,, 2) and 8 replacing 6. Thus each point on 7 (a),,, over the branch
point z, (or z;) is defined over a degree 6 or 8 extension of F. The following shows that
this is impossible.

Lemma 3. 18. There is a point on 7 (a)g, above z,, rational over the field
F(z,, z3) (a degree 2 extension of F).

Proof. Consider the generic cover X =7 (0),., of the family # (o). The branch
cycle associated to z, consists of a 2-cycle, so the point m corresponding to that 2-cycle is
rational over F(z,, z;). Now let X,, be the subcover (identified with the normalization
of X xp; X —A) of the Galois cover X of X associated with the subgroup H,, of S5 fixing
both 1 and 2. Since m has 2 as ramification index over z,, it can be lifted to an F(z,, z;)-
rational point m;, on X, defined (as in Case 4 above) by y,(m,,)=y,(m;,)=y,(m).
Observe that H,, is contained in the subgroup H of §2.1 that stabilizes {1,2}.
Therefore X,, projects onto X, =9 (@)gen- The projection of m,, onto Xy is the requir-
ed point. []

3.7. An example of genus 1. We introduce a third example based on the data of
§2.1: r=4, G=S5 and C=(Cy, C,, C;, C,) the 4-tuple of conjugacy classes in S5 of

(3.13) 0,=(23)(45, 0,=(12), o3=(14), a,=(54321).
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In this case, however, G is considered as a subgroup of S, through the representation
Ty: Ss— S5 given by the action of S5 on the 15 partitions of {1,2,3,4,5} into 2 un-
ordered pairs plus a single element. As in § 2. 1, the representation T, identifies the abso-
lute Nielsen classes ni(C)3® and ni(C)i} (e.g., Lemma 2.1 holds with S, replaced by S,5).
Thus we may consider the Hurwitz family associated with ni(C)3% with the additional
condition that z, has been specialized to oo. Denote this family by % (b); it is defined
over @ and its parameter space is the usual @@-rational variety s of our previous
examples.

Apply T; to the 4-tuple of (3. 13). Label the partitions of {1, 2, 3,4, 5}, by indicat-
ing the singleton and the pair that contains the smallest integer excluding the singleton:
[1,{2,3}1, [1,{2,4}1, [1,{2,5}1, [2, {1, 3}], [2,{1,4}], ..., [5, {1,4}]. If these are relabel-
ed in order as 1, 2, ..., 15, then in S, we have

(3.14) T,(0)=((68)(59) (47)(1215) (11 13) (10 14), (14)(25)(36) (89) (1211) (14 15),
(112)(210)(3 11)(4 6)(79)(13 14), (113127 6)(214 118 5)(315 109 4)).

The genus g of the Hurwitz family is given by 2(15+g—1)=6+6+6+12 or g=1. In
order to show that this is a family of elliptic curves we now show that each fiber has a
rational point produced by ramification: an application of Theorem 3. 14 through Hur-
witz monodromy action on pointed Nielsen classes.

Consider the marked conjugacy class (C,, 1). Here u=3, v=1 (i.e., three (C,, 1)-
pointings of ¢). We claim that H, has 2 orbits on ¢(C;, 1). Thus one of these will be of
length 1 and corresponds, from Theorem 3. 14, to a rational point on the generic fiber
T (b)gen- For the proof we check that H(3)* has two orbits on ni(C,, Cy, 1)*®; this is
equivalent (Remark 3. 13b)) and this is easier: we know that Q,, Q, generate H(3)*. The
complete list of ni(C,)* derives from (3. 10): ni(C_)**={r,(t) Q1, (r) Q,Q,|resni(C)™}.
If we denote elements of sni(C,)* by 0’s, application of Q, to these by 1’s and applica-
tion of 0,0, to 0’s by 2’s, then the action of Q;, i=1,2, on ni(C,)*™® may be
summarized by ([Fr3], Ex. 2 cont.)

(3 15) a) Ql = (Oalaoblbodld) (Oclcoele) (2a2c2b) (2d2e); and
b) Q2 = (ancob) (Odoe) (laza ]'ezelczc) (] b2b ]'dzd)'

A total calculation for the effect of the Q’s on ni(C,; C;, 1)*® can be had by extending
indication of the possible pointings on, say 1,, by superscripts. For example, 1 indicates
that, with the ordering on the 1-cycles that appear in the 2nd position of 1, induced by
its derivation from the order on the 1l-cycles that appear in the lst position of 0,, it is
the 2nd of these that has been marked. With these notations:

(3.16) a) Q,=(0;1;0717031302130,1,0317) (031307 1;0515)(0;1,0712) (07 1207 1)
(07120710) (2:2/25) (252 (232227 (232) (232227) (232¢);  and
b)  Q,=(0;0;05)(0;0;) (07070;) (0302) (020707) (0707) (13231, 2 1222)
(132212221, 20132012221222) (152, 1323) (152713.23) (1527 1322).

The two orbits of H(3)* on ni(C,,C,,1)* are {03,12,02,17,05,15,02,02,11,13,23,23,23, 23,21}
and its complement. |
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§ 4. Arithmetic nonconstancy of the family % (a)

4. 1. Preliminaries. In this section we continue to investigate Question 3. 2 for the
specific family # (a). We saw in § 3. 5 that ramification does not produce rational points,
but the existence of rational points in general has still to be investigated. Here we show
(Theorem 4. 2) that there are @-fibers of % (a) with no rational points. Equivalently
(Prop. 3.4), there is no rational point on the generic fiber; or the Hurwitz family is
arithmetically nonconstant (end of § 3. 1). Thus, this example supports our conjecture
that the production of rational points by ramification is the only obstruction to pro-
duction of rational points. Philosophically: For Hurwitz families, arithmetic constancy
of the family can be divined by inspection of ramification. This gives credence to the
possibility for inspecting many arithmetic properties of the general fiber from pure
group theory.

Here is a description of the treatment of this section. From Proposition 1.8, a
@ -fiber of # (a) with no rational points comes from a cover of P} in ni(C,),, defined
over @ having no rational points. Prop. 2.5 of §2. 2 provides an explicit family of
polynomials h(y) such that the associated covers ¢(h): P, — [P} lie in ni(C,)s. For
each of them, denoted X — [P}, form the cover X, — P} associated with the subgroup
H of Ss fixing {1, 2} (§1.1(1.2)). From Prop. 2.2 (§2. 1), this cover is in ni(C),o. For
suitable choice of the polynomial & we show that X,; has no rational point.

In the following fix a 4-tuple (o, f,s,t) of rational numbers in the open subset
O=(z*)" (#3) (cf. Prop. 2.6). In addition assume that

4.1 —5t is not a square in Q.

Then, h(y)=a((y*/5)—s(y*/4)+2ty* —5st(y*/2)+5¢%y)+ B gives the cover ¢(h):X =Pi— P}
in ni(C,k)s. Further recall that

d
(4.2) a) E(h(y))=a(y2+5t)(yz—sy+t); and

b) h@=h(—a)=a@Q5st*/4)+f for a=)/—5¢.

Also, let z be an indeterminate over @ and let y,, i=1,...,5, be the roots of
h(y)—z in the algebraic closure of @Q(z). Then the function field @Q(X) of the curve X is
identified with @(y,). The cover X, — P} lies in ni(C,),,. The function field @(X,,) is
identified with @(z, y; +y,, y;¥,). We also consider X, — [P}, the subcover of X — /P!
associated with the subgroup H,, of S, fixing both 1 and 2: @Q(X,,) is identified with
@(y,, ¥,)- The following diagrams summarize this:

X Q(yy)
4 \S 5/ N4
X—X,, Covers P!, Q@) Fields Q (Y1, Y1) = QY15 V2, V35 Ya» ¥s)
N /10 10, /2
Xy Q(z, y1+y2. y1¥2)

where the numbers are the relative degrees of the covers or field extensions.
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Here is the strategy. The branch cycle of the cover X; — P! in C,, which corres-
ponds to the branch point at oo, is the product in S;, of two S5-cycles. Let D =m, +m,
be the divisor on X, over co. Since D is a degree two (Q-rational divisor on the genus 0
curve X, the linear system % (D) gives an embedding of X, into /2 of degree 2 (as in
the proof of Prop. 3. 4). We inspect if this conic has a rational point.

4. 2. A basis for (D). This subsection produces a basis for £ (D) in a three part
argument.

Part 1: y,+y, e Z(D). Note that the polar divisor of the function z on X is
. 5w 1
(z)”=5D. Consider the functions y,,...,ys on X. Since h(y,)=z, (y;)~ =3 @,
- 1 .
i=1,...,5, on X. Thus 3 (z)"=(y,+y,)” on X. But y, +y, is a function on X, where

the previous inequality is written as (y, +y,)=D.

Part 2: (y,y,—58)/(y;+y,) € £(D). The component of the branch cycle descrip-
tion of X — /P! in the conjugacy class C, is a product of two disjoint 2-cycles. Let p,
and p, be the points of X corresponding to these two disjoint cycles. From (4. 2), they
lie over the branch point z; =h(a)=h(—a). Thus

4.3) yi(p)=a and y,(p,)=—a.

Denote the degree four divisor on X,, above p; by p;y +Pin +Piz +Pis, i=1, 2. Since a
and —a are roots of order 2 of the polynomial h(y)—z,, two out of four of the points
P11 Pi2> P13s Pra (T€SP., P21, P2z, P23, Pag) are sent to —a (resp., a) by y,. Indeed, these
may be identified with the two points of X,, (regarded as the normalization of X x X — 4,
where 4 is the diagonal) that lie above (p;, p,). To be explicit we assume that

4.4 y2(p11)=a, V2(P21) = —a,
Y2(P12)=y2(P13) = —a, y2(P22)=y2(p23)=a,
y2(P1a) =2, y2(pra) =2,

where a’ is the root of h(y)—z, of multiplicity one.

Consider the projection onto X, of the divisor p,+Pp3+Ppas+p,s: it is a
degree 2 divisor q; +q,. Since y,+y, is 0 when evaluated at p;;, i=1,2 and j=2,3,
conclude that q;, i=1, 2, are zeros of y, +y, regarded as functions on X,. Also, the
poles of this function are m;, i=1,2 (see Part 1). Therefore, deg(y,+y,)=2 and the
divisor of y, +y, is q; +q, —m; —m,. Finally, consider the divisor of zeros and of poles
of the function y,y,—a* (=yy,—5¢t): (y;y,—5t)"=q,+q, and (y,y,—5¢t)" =2D.
Since the zeros of y, +y, are zeros of y,y, —5t, the polar divisor of (y,y,—51)/(y, +2)
is D,

Part 3: {1, y,4 Y2, (31Y2—58)/(y1+y,)} is a basis for £ (D). We have only to
check that the three functions are linearly independent over @). Suppose that
ay+a,(y+y)+as(y1y2—50/(y1+y,)=0 with g, @, i=1,2,3. The leading coeffi-
cient of the Puiseux expansion over z=oco gives that a,(1+{s)+a;((s/(1+{5)=0,
where {5 is a primitive 5th root of 1. From §3.6 Case 4, a,=a;=0 and the linear
independence follows. O
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4. 3. The conic equation. With U=y, +y, and V=(y,y,—5¢)/(y,+y,) the pre-
vious section gives an embedding X — P2 by p— (1, U(p), V(p)) as a nonsingular
conic defined over @:

4. 5) aU?+bV?+cUV+dU+eV+f=0, ab,cd, e fe@.

Inspection of the z?/> term of the Puiseux expansions over oo gives a, b, c¢. Indeed, the
respective z%° terms in U2 V2 and UV are (1+{s)% (2/(1+(5)* and (% With
E=(1+{5)*/{s we get al?+cE+b=0. Since ¢ is quadratic over (), we may choose
a=1. Conclude that b=Nge()=1 and c=—Trgg()=—3. Therefore (4. 5)
becomes

(4. 6) U?+V?—-3UV+dU+eV+f=0.

To determine d, e, f consider the points that are the projections onto X, of pyy
and p,,. Denote these respectively by p* and p%. Here we again use a for the parameter
that appeared in §4. 2. From (4. 3) and (4. 4) we get

.7 { ity @) =2a, { Uph=2a,
(y1y2) (PP =a?, V(p}) =a,
{ (yity2)(pf)=a+d, ~ { U(pi)=a+td,
(y1y2) (pf)=ad’, V(p¥)=a.

Substitution of p* back in (4. 6) gives 4a*+a?>—6a*+2ad+ae+f=0. Simplification
and the similar formula for p} gives

4.8) (—a*+f)+QRd+e)a=0 and (—a’+(a)*+da' +f)+(—a +d+e)a=0.

and

A priori we know that a' is in @Q: it corresponds to the unique simple point on X

: a
above z,. But we can compute it from h(y)—z, =— (y*—a?) (y—a’). Thus

5
,_ 5(z,—=h(0) _ 5(h(e)—B)
a'= 4 = T .
oa oa
From (4. 2) and a*= —5t we get a’=5 s/4. From assumption (4. 1), a is quadratic over

@. This gives —a*+f=0, 2d+e=0, —a’+(a’)*+da’+f=0 and —a’'+d+e=0. That is,
f=a*=-5t d=—a'=-55/4 and e=2a'=5s/2. The final equation for the conic,
denoted €, ; ;.. (=% when there is no possible confusion):

4.9) U?+V2-3UV-5sU/4+5sV/2=5t=0.

4. 4. Demonstration of the arithmetic nonconstancy of % (a). Let 4, ,, be the
Zariski closure in /22 of the curve given by (4.9) and consider the cover

qD:qDa,B,s,t: (ga,ﬂ,s,t——) le
derived from the isomorphism of X, with €, Bosit-

Proposition 4. 1.  Assume that (4.1) holds and that (o, B, s, t) € O. Then the cover
O=Qy p.s1 G p.s,c— P; lies in ni(C),o and is defined over @.

Proof. We have only to show that the covering map ¢, ; ., is defined over @.
That is, we must show that the function z can be expressed as a polynomial in U and V
with coefficients in @. From z=h(y;), i=1,...,5, we have z=(h(y,)+h(y,))/2. The
right side is symmetric in y, and y,; thus it can be written as m(y,+y,, y,y,) with
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me @[x,, x,]. But from our previous expressions for U and V, we may replace y, +y,
by U and y,y, by UV+5+t. OJ

Theorem 4. 2. The Hurwitz family % (a) is arithmetically nonconstant.

Proof. Classical reductions show that 4, , ., is isomorphic to the conic
U2—-5V?/4—5(s*+161)/16=0. Its Hilbert symbol is (5/4,5(s*+16t)/16)=(5,5(s*+161))
=(5,5)(5,s>+16 t)=(5,s>+16t). Choose a=1,8=0, s=0, t=1/8. Check easily that
(4.1) holds and that (1,0,0,1/8) € . Then (5,s*+ 16 t)=(5,2). This last is —1 in the p-adic
field @, as 5x*+2y*=z* has no solution mod8. Thus %, ;,, has no @-rational
points. Let x € # be the unique point such that the covers @, 4, %, 4..— [P, and
Z (a), are equivalent. From Prop. 1.8, #(a), and this equivalence are defined over @.
Conclude that % (a), is a @-fiber of % (a) with no rational points. Prop. 3. 3 completes
the proof. O

From Example 3. 5, any point of & (a) that is the image of a rational point on
F (a) corresponds to a fiber of the family that has a rational point. Since % (a) is a
rational variety, that means that there is a dense set of @@ points of # (@) with fibers
with rational points, and a dense set of @@ points with fibers without rational points.
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