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e-mail: arnaud.bodin@univ-lille.fr, pierre.debes@univ-lille.fr

Dedicated to Moshe Jarden on the occasion of his 80th birthday

ABSTRACT

Given two polynomials P (x), Q(x) in one or more variables and with

integer coefficients, how does the property that they are coprime relate

to their values P (n), Q(n) at integer points n being coprime? We show

that the set of all gcd(P (n), Q(n)) is stable under gcd and under lcm.

A notable consequence is a result of Schinzel: if in addition P and Q

have no fixed prime divisor (i.e., no prime dividing all values P (n), Q(n)),

then P and Q assume coprime values at “many” integer points. Conversely

we show that if “sufficiently many” integer points yield values that are

coprime (or of small gcd) then the original polynomials must be coprime.

Another noteworthy consequence of this paper is a version “over the ring”

of Hilbert’s irreducibility theorem.

Introduction

Let P1(x), . . . , Ps(x)∈Z[x] be s>2 polynomials in r>1 variables x=(x1, . . . , xr).

For n = (n1, . . . , nr) ∈ Zr, we consider the corresponding values Pi(n). Is there

a connection between (a) P1(x), . . . , Ps(x) being coprime as polynomials and (b)

“many” of the values P1(n), . . . , Ps(n) being coprime as integers? Answers exist

in both directions.
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Suppose that the polynomials P1(x), . . . , Ps(x) are coprime and their values

have no fixed divisors, i.e., no prime number p divides all Pi(n) (for all i, and

all n). Then it is true that for some n ∈ Zr, the integers P1(n), . . . , Ps(n)

are coprime: coprime polynomials assume coprime values. This is proved by

Schinzel in [10]; Ekedahl [4] and Poonen [9] even give, in the special case s = 2,

a formula for the density of the good n; see Section 1.3 below, and also [1] where

Schinzel’s result is extended to other rings than Z, including all UFDs and all

Dedekind domains.

Here we put forward a more general property of polynomials that implies

Schinzel’s coprime conclusion. Set dn = gcd(P1(n), . . . , Ps(n)), for n ∈ Zr, the

gcd of the values. We show, even without the fixed divisor assumption, that

the set D of all these dn is stable under gcd and lcm, i.e., is a lattice for the

divisibility (Theorem 1.1); the quick proof that it yields Schinzel’s theorem is

in Section 1.2. This generalizes previous results in one variable [2].

Regarding the Ekedahl–Poonen formula, we extend it to the case of s > 2

polynomials and to the situation that several families of such polynomials are

given (Section 1.3). We can then show a version “over the ring Z” of Hilbert’s

Irreducibility Theorem (Theorem 1.7).

In the reverse direction, it is not true that if P1(n), . . . , Ps(n) are coprime

at one integer point n (or even at infinitely many) then the polynomials

P1(x), . . . , Ps(x) are coprime. However, we show that the coprimality

of P1(x), . . . , Ps(x) does hold if “sufficiently many” n, in a density sense, can

be found such that P1(n), . . . , Ps(n) are coprime (Theorem 1.9).

The Hilbertian specialization property has always been a central topic in Field

Arithmetic. Through his work, Moshe Jarden has constantly promoted both

the area and this subtopic. The celebrated “Fried–Jarden book”, the Field

Arithmetic reference, has been quite influential to both authors. With this

paper, we are happy to contribute to the Israel Journal of Mathematics special

volume dedicated to Moshe Jarden and to offer him as a final application a

version “over the ring” of Hilbert’s irreducibility theorem.

1. Presentation

Throughout the paper, we adhere to the following notation. Given s > 2

nonzero polynomials P1(x), . . . , Ps(x) in Z[x] (where x=(x1, . . . , xr) with r>1),

we say that they are coprime (over the field Q) if no polynomial D(x) ∈ Q[x]
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with degD > 0 divides each of P1(x), . . . , Ps(x). In the definition of

dn = gcd(P1(n), . . . , Ps(n)) (n ∈ Zr),

we include the case where P1(n) = · · · = Ps(n) = 0 by defining

gcd(0, . . . , 0) = 0.

Finally we set D = {dn | n ∈ Zr}.

1.1. The stability result.

Theorem 1.1: If P1(x), . . . , Ps(x) ∈ Z[x] are s > 2 nonzero coprime polyno-

mials, then the set D = {dn | n ∈ Zr} is stable under gcd and lcm.

That is: if d, d′ ∈ D then gcd(d, d′) ∈ D and lcm(d, d′) ∈ D. This is a

generalization of the one-variable case (r = 1) done with S. Najib [2].

Example 1.2: Let P (x, y) = x2 − y3, Q(x, y) = x(y + 2) + 1. Let

dm,n = gcd(P (m,n), Q(m,n)) and D = {dm,n}m,n∈Z.

For instance P (5, 1) = 24 and Q(5, 1) = 16, hence d5,1 = gcd(24, 16) = 8.

For (m,n) = (1,−3), dm,n = 28. The gcd of 8 and 28 is 4, and 4 is an element

of D: d5,5 = 4. Experimentation yields an infinite set:

D = {1, 2, 4, 7, 8, 14, 16, 23, 28, 29, 32, 37, 41, 46, 47, 49,
53, 56, 58, 59, 61, 64, 67, 74, 79, 82, 83, 89, 92, 94, 97, 98, . . .}

1.2. Consequences. The following two corollaries are quick consequences of

Theorem 1.1. The first one is what we refer to as Schinzel’s result in our

introduction.

Corollary 1.3: Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero coprime poly-

nomials. Suppose that there is no prime number p that divides Pi(n) for

each i = 1, . . . , s and every n ∈ Zr. Then there exists n0 ∈ Zr such that

P1(n0), . . . , Ps(n0) are coprime integers.

Moreover, the set of such n0 will be shown to be Zariski-dense in Zr (Corol-

lary 4.2), and even of positive density (as discussed in §1.3 below and shown

in §6).
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Proof of Corollary 1.3 assuming Theorem 1.1. The set D ⊂ N is not necessarily

finite (for r > 2). Let {dij}j∈N be an enumeration of D⋆ = D \ {0} and

set δj = gcd(di0 , . . . , dij ). The sequence (δj)j∈N is a decreasing sequence of

positive integers, hence is ultimately constant equal to some value d⋆ ∈ N,

and d⋆ = gcd(D⋆) = min(D⋆).

By Theorem 1.1, D is stable by gcd; so is D⋆. Using the fact that

gcd(a, b, c) = gcd(gcd(a, b), c), we have δj ∈ D⋆, for every j ∈ N. It follows

that d⋆ ∈ D⋆. The no fixed divisor assumption yields d⋆ = 1. Hence 1 ∈ D⋆,

thus giving the conclusion.

Corollary 1.4: Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero polynomials

with no common zero in Cr. Then D is a finite subset of Z stable under gcd and

lcm. In particular, the smallest positive element d⋆ of D is a common divisor of

all elements of D and the largest positive element µ⋆ of D is a common multiple

of all elements of D.

Proof. Hilbert’s Nullstellensatz provides polynomials A1(x), . . . , As(x) ∈ Q[x]

such that
s

∑

i=1

Ai(x)Pi(x) = 1.

Clearing the denominators yields polynomials B1(x), . . . , Bs(x) ∈ Z[x] and

∆ ∈ Z, ∆ 6= 0, such that
s

∑

i=1

Bi(x)Pi(x) = ∆.

It readily follows that every element dn ∈ D divides ∆. Hence D is finite. The

rest is given by Theorem 1.1.

1.3. Ekedahl–Poonen formula. Given s > 2 nonzero coprime polynomials

P1(x), . . . , Ps(x) ∈ Z[x] as in Theorem 1.1, this formula provides another re-

finement of Corollary 1.3: it computes the density of integer points where the

values are coprime. Specifically let

R = {n ∈ Zr | P1(n), . . . , Ps(n) are coprime}.
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The density µ(S) of a subset S of points with non-negative integer coordi-

nates is defined as follows. For B > 0, set B = J0, B − 1Kr, where J0, B − 1K is

the set of integers from 0 to B − 1. Then

µ(S) = lim
B→+∞

#(S ∩ B)

#B
.

The sets we consider are subsets of Zr and our results are about their density

within the r-dimensional quadrant [0,+∞[r. For simplicity of notation, we ex-

tend the definition of µ to subsets S ⊂ Zr by setting: µ(S) = µ(S∩ ([0,+∞[r)).

Remark 1.6 explains that, in addition to giving the density of R, Theorem 1.5

shows that R is equidistributed among all r-dimensional quadrants.

Denote the set of prime numbers by P .

Theorem 1.5 (Ekedahl–Poonen density formula): Let x = (x1, . . . , xr) (r > 1).

Let P1(x), . . . , Ps(x) ∈ Z[x] (s > 2) be nonzero coprime polynomials. We have

µ(R) =
∏

p∈P

(

1− cp
pr

)

where cp = #{n ∈ (Z/pZ)r | P1(n) = 0 (mod p), . . . , Ps(n) = 0 (mod p)}.

If we assume, as in Corollary 1.3, that there is no prime p dividing all values

P1(n), . . . , Ps(n) (n ∈ Zr), we obtain that R is of positive density: all terms

in the product from Theorem 1.5 are positive, and the product is convergent

if r > 2 and finite if r = 1 (as shown in Section 2.3).

Remark 1.6: It follows from the formula for µ(R) that the density of R would

be the same if computed w.r.t. to any other r-dimensional quadrant, instead of

[0,+∞[r: indeed the number cp of solutions of P1(n) = · · · = Ps(n) = 0 (mod p)

in a box of width p is independent of the choice of the box. This also shows that

for the density defined by µ̃(R)=limB→+∞
#(R∩B)

#B
with this time B=J−B,BKr ,

then

µ̃(R) = µ(R).

We provide a proof of the Ekedahl–Poonen formula in Section 6. It follows

Poonen’s proof with some adjustments. In particular, we consider the general

case s > 2 (and not just s = 2). We also consider in Section 6.7 the more

general situation that several families of coprime polynomials

{P1i(x)}i, {P2i(x)}i, . . . , {Pℓi(x)}i
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are given and one looks for the density of the set of points n ∈ Zr such that, for

each j = 1, . . . , ℓ, the integers Pj1(n), Pj2(n), . . . are coprime (Proposition 6.3).

This generalization will be used to prove the case of several polynomials in the

following result.

1.4. A version over the ring of Hilbert’s Irreducibility Theorem.

Theorem 1.7: Let y = (y1, . . . , yn) be n > 1 new variables. Let

P1(x, y), . . . , Pℓ(x, y) be ℓ > 1 polynomials, irreducible in Z[x, y], of degree > 1

in y. Assume there is no prime p such that
∏ℓ

j=1 Pj(n, y) ≡ 0 (mod p) for

every n ∈ Zr. Then the set of all n ∈ Zk such that P1(n, y), . . . , Pℓ(n, y) are

irreducible in Z[y] is Zariski-dense, and even of positive µ̃-density.

Here, for “many” n ∈ Zr, the specialized polynomials P1(n, y), . . . , Pℓ(n, y)

are irreducible in Z[y], and not only in Q[y] as Hilbert’s Irreducibility

Theorem would conclude: we have the additional conclusion that each poly-

nomial Pj(n, y) is primitive, i.e., its coefficients are coprime integers. The

assumption on the product
∏ℓ

j=1 Pj is clearly necessary and non void: for

P (x, y) = (x2 − x)y + (x2 − x+ 2), we have

P (n, y) ≡ 0 (mod 2)

and so P (n, y) is divisible by 2 in Z[y], for every n ∈ Z.

Theorem 1.7 compares to Theorem 1.6 from [1] (joint with Najib and König).

The latter considers more general rings (UFDs or Dedekind domains, with a

product formula), but does not have the density conclusion provided here in

the special case of the ring of integers. The density approach also allows a

quick proof of Theorem 1.7 assuming Theorem 1.5. The argument below is

for ℓ = 1; a reduction to this case is explained in Section 6.7.

Proof. Set P = P1 and let HP be the subset of Zr of all n such that P (n, y)

is irreducible in Q[y]. From Theorem 1 of [11, §13] (a result of S. D. Cohen),

HP is of density µ̃(HP) = 1 (with µ̃ the density from Remark 1.6). Denote

the coefficients of P , viewed as a polynomial in y, by P1(x), . . . , Ps(x) and

consider the set R from Section 1.3 of all n ∈ Zr such that P1(n), . . . , Ps(n)

are coprime. The assumption of Theorem 1.7 corresponds to P1(x), . . . , Ps(x)

having no fixed divisor. From Theorem 1.5 and Remark 1.6, we have µ̃(R) > 0.

It follows that H = HP ∩ R is of positive µ̃-density, thus proving the result

since for every n ∈ H , the polynomial P (n, y) is irreducible in Z[y].
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1.5. A criterion for coprimality. In our introduction, we raised this re-

verse question: to what extent does existence of coprime values force the co-

primality of the polynomials? For one-variable polynomials we have this copri-

mality criterion involving the gcd in Z of some values. Define the normalized

height of a degree d polynomial P (x) = adx
d + · · ·+ a0 by

H(P ) = max
i=0,...,d−1

∣

∣

∣

ai
ad

∣

∣

∣
.

Proposition 1.8 ([2, Proposition 5.1]): Let P1, . . . , Ps ∈ Z[x] be s > 2 nonzero

polynomials and H the minimum of the normalized heights H(P1), . . . , H(Ps).

Then P1, . . . , Ps are coprime if and only if there exists n > 2H + 3 such that

gcd(P1(n), . . . , Ps(n)) 6
√
n.

In particular, if P1(n), . . . , Ps(n) are coprime (as integers) for some suffi-

ciently large n then P1(x), . . . , Ps(x) are coprime (as polynomials). We wish

to generalize this result to polynomials in several variables. But the following

example proves that evaluation at one point, however big it is, may not give

information on the coprimality of the polynomials: with P (x, y) = (x − y)x

and Q(x, y) = (x − y)y, we have gcd(P (n + 1, n), Q(n+ 1, n)) = 1, and so in-

finitely many points (n+ 1, n) where the gcd is small, despite the polynomials

not being coprime.

The following result however ensures that if the gcd dn is small for “sufficiently

many” n, in a stronger density sense, then the polynomials are coprime.

Theorem 1.9: Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero polynomials in r

variables. Let ℓ = max(degP1, . . . , degPs) and S be a nonempty finite set of Z.

Let k > 0. If

πk :=
#{n ∈ Sr | dn 6 k}

#Sr
>

(2k + 1)ℓ

#S

then P1(x), . . . , Ps(x) are coprime polynomials.

For k = 1, we have π1 :=
#{n∈Sr|dn61}

#Sr . Theorem 1.9 states that if π1 > 3ℓ
#S

then P1(x), . . . , Ps(x) are coprime polynomials; and clearly this also implies

that P1(x), . . . , Ps(x) have no fixed prime divisor. This criterion is of interest be-

cause of the Ekedahl–Poonen density formula. If polynomials P1(x), . . . , Ps(x)

are coprime and have no fixed prime divisor, then π1 must be positive for suf-

ficiently large S, and so up to taking S large enough, the criterion will indeed

reach the coprimality conclusion.
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Example 1.10: Let P (x, y), Q(x, y) ∈ Z[x, y] be two nonzero polynomials of

degree 6 ℓ := 10. Let S = {1, 2, . . . , 100} with #S = 100. If for more

than 30% of (m,n) ∈ S2, we have dm,n = 1 (i.e., P (m,n) and Q(m,n) co-

prime) or dm,n = 0 (i.e., P (m,n) = Q(m,n) = 0), then we have π1 > 30
100 , and

so, from Theorem 1.9, P (x, y) and Q(x, y) are coprime polynomials.

Proof of Theorem 1.9. It relies on the Zippel–Schwartz lemma which is usually

stated as a probability result, but in fact is an enumerative result.

Zippel–Schwartz lemma: Let P (x1, . . . , xr) be a nonzero polynomial of de-

gree ℓ over a field K. Let S be a nonempty finite set of K. Then

#{(x1, . . . , xr) ∈ Sr | P (x1, . . . , xr) = 0}
#Sr

6
ℓ

#S
.

Let D(x) = gcd(P1(x), . . . , Ps(x)). Then degD 6 ℓ. Note further that D(n)

divides dn = gcd(P1(n), . . . , Ps(n)), so that |D(n)| 6 dn. Now assume, by

contradiction, thatD is a non constant polynomial. We use the Zippel–Schwartz

lemma to bound the number of solutions to the equationsD(n) = j. Specifically

we have

πk =
#{n ∈ Sr | dn 6 k}

#Sr
6

#{n ∈ Sr | |D(n)| 6 k}
#Sr

6

k
∑

j=−k

#{n ∈ Sr | D(n) = j}
#Sr

6 (2k + 1)
ℓ

#S
.

The paper is organized as follows. In Section 2, we focus on the case of

polynomials in one variable. In Section 3, we present a tool of frequent use in

the paper about how coprimality is preserved by specialization, in the vein of

the Bertini–Noether and Ostrowski theorems for irreducibility (Proposition 3.1).

Section 4 is devoted to a technical lemma, used in Section 5 for the proof of

Theorem 1.1. We end in Section 6 with a proof of the Ekedahl–Poonen formula

in the case of several polynomials.

2. The one-variable case

The case of one-variable polynomials plays a central role: first, some of the

general results can be interestingly improved; secondly, most results in several

variables will follow by reduction from the one-variable case.
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2.1. Stability by gcd and lcm.

Theorem 2.1 ([2, Props. 3.2 and 3.3]): Let P1(x), . . . , Ps(x) ∈ Z[x] be nonzero

coprime polynomials. Set dn = gcd(P1(n), . . . , Ps(n)) (n ∈ Z). Then the

set D = {dn | n ∈ Z} is stable under gcd and lcm. Moreover there is a nonzero

δ ∈ Z that is a common multiple to all dn and such that the sequence (dn)n∈Z

is periodic of period δ. Hence D is a finite set.

As P1(x), . . . , Ps(x) are coprime, note that it cannot happen that

P1(n) = · · · = Ps(n) = 0. The periodicity result is specific to the one-variable

case (see [2, §2.5]); δ can be taken to be any nonzero element of the ideal

〈P1, . . . , Ps〉 ∩ Z ⊂ Z[x].

For two polynomials P (x) and Q(x), δ can be chosen as the resultant of P and

Q. More generally, as the polynomials P1(x), . . . , Ps(x) are coprime in Q[x],

one can write a Bézout identity:

A1(x)P1(x) + · · ·+As(x)Ps(x) = 1

for some A1(x), . . . , As(x) ∈ Q[x]. Then δ can be taken to be the right-hand

side of the identity obtained by clearing the denominators of the coefficients of

the Ai(x): for some B1(x), . . . , Bs(x) ∈ Z[x], we have

B1(x)P1(x) + · · ·+Bs(x)Ps(x) = δ ∈ Z.

Example 2.2: Theorem 2.1 is false for non coprime polynomials. Let

P (x) = 5(x2 − 1)(x− 1) and Q(x) = (x2 − 1)x2. Then D is an infinite set (be-

cause dn = gcd(P (n), Q(n)) > |n2−1| tends to infinity as n → +∞). The set D
is not stable by gcd: for instance d2 = 3 ∈ D and d6 = 8 ∈ D, but 1 /∈ D (by

contradiction, suppose that for some n ∈ Z we have dn = 1, then |n2 − 1| = 1,

so n = 0, but for n = 0, P (n) = 5, Q(n) = 0 and dn = 5). Neither D is stable

by lcm: 5 ∈ D, 8 ∈ D but 40 /∈ D (for |n| < 7 we have dn 6= 40 and for |n| > 7,

dn > |n2 − 1| > 40).

2.2. Proof of Theorem 2.1. Everything in Theorem 2.1 is proved in [2],

except the stability under lcm that was left to the reader (after the proof for

the gcd was given). For completeness we detail it here.
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Let dn1
and dn2

be two elements of D and let m(n1, n2) be their lcm. The

goal is to prove that m(n1, n2) is an element of D. The integer m(n1, n2) can

be factorized:

m(n1, n2) =
∏

i∈I

pαi

i

where, for each i ∈ I, pi is a prime divisor of δ (see Theorem 2.1) and αi ∈ N

(maybe αi = 0 for some i ∈ I).

Fix i ∈ I. As pαi

i divides m(n1, n2), then pαi

i divides dn1
or divides dn2

; say

that pαi

i divides dmi
with mi equal to n1 or n2.

The Chinese Remainder Theorem provides an integer n, such that

n = mi (mod pαi+1
i ) for each i ∈ I.

By definition, pαi

i divides dn1
or dn2

, so pαi

i divides all integers

P1(n1), . . . , Ps(n1), or divides all integers P1(n2), . . . , Ps(n2), so that p
αi

i divides

all P1(mi), . . . , Ps(mi). As for each j = 1, . . . , s, Pj(n) = Pj(mi) (mod pαi

i ),

we obtain that pαi

i also divides P1(n), . . . , Ps(n), whence pαi

i divides dn for

each i ∈ I.

On the other hand pαi+1
i does not divide dn1

or dn2
. In particular pαi+1

i

does not divide dmi
. Hence there exists j0 ∈ {1, . . . , s} such that pαi+1

i does

not divide Pj0(mi). As Pj0 (n) = Pj0(mi) (mod pαi+1
i ), then pαi+1

i does not

divide Pj0(n). Hence pαi+1
i does not divide dn.

We have proved that pαi

i is the greatest power of pi dividing dn, for every i ∈ I.

As dn divides δ, each prime factor of dn is one of the pi with i ∈ I. Conclude

that m(n1, n2) = dn.

2.3. Ekedahl–Poonen density formula in one variable. One main ques-

tion is to decide if dn = 1 for some value n ∈ Z. In Section 1.3, we discussed

the Ekedahl–Poonen density formula for any number r of variables. For r = 1,

it is an exact formula.

Proposition 2.3: Let P1(x), . . . , Ps(x) ∈ Z[x] be nonzero coprime polynomi-

als. Let δ ∈ Z be a positive period of (dn)n∈Z. The number of n ∈ Z with

0 6 n < δ such that dn = 1 is

δ
∏

p|δ

(

1− cp
p

)

where cp is the number of n ∈ Z/pZ such that Pi(n) = 0 (mod p) for

each i = 1, . . . , s.
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Note that, in the one-variable case, cp = 0 for all sufficiently large primes p.

Namely let δ be a nonzero element of the ideal 〈P1, . . . , Ps〉 ∩Z ⊂ Z[x]. Thus δ

is of the form δ = B1(x)P1(x) + · · · + Bs(x)Ps(x) for some B1, . . . , Bs ∈ Z[x].

Clearly, if p does not divide δ, then p does not divide gcd(P1(n), . . . , Ps(n)) for

any n ∈ Z, hence cp = 0.

The proof of Proposition 2.3 assuming Theorem 1.5 easily follows. For r = 1,

the density formula from Theorem 1.5 is a finite product: µ(R) =
∏

p|δ(1−
cp
p
).

As the sequence (dn)n∈Z is periodic of period δ (Theorem 2.1), the claimed

exact formula follows, for δ equal to the specific element of Z introduced above,

or equal to any positive period.

Example 2.4: For two polynomials we recover a formula of [5]: If

P (x), Q(x) ∈Z[x] are two monic coprime polynomials with a square-free re-

sultant R, then

#{n ∈ J0, R− 1K | dn = 1} =
∏

p|R

(p− 1).

In fact, for two polynomials, the integer δ can be chosen to be R. And if R is

square-free, then cp = 1 for all p|R (see [5, proof of Theorem 6]).

3. A Bertini–Noether–Ostrowski property for coprimality

Proposition 3.1 below is of frequent use in this paper. It explains how coprimal-

ity of polynomials is preserved by specialization. It is obtained in Section 3.3 as a

special case of Proposition 3.2, which is an analog for coprimality of the Bertini–

Noether theorem for irreducibility of polynomials (e.g., [6, Prop. 9.4.3]). This

more general result is stated and proved in Section 3.2. Section 3.4 shows an-

other standard special case concerned with reduction modulo p (Corollary 3.4),

which will be used later in the proof of Corollary 6.1.

3.1. Specialization and coprimality.

Proposition 3.1: Let k be an infinite field and P1(a, x), . . . , Ps(a, x) ∈ k[a, x]

be polynomials in the variables a = (a1, . . . , am) and x = (x1, . . . , xr)

(with s > 2, m > 1, r > 1). The following conditions are equivalent:

(i) The gcd of P1(a, x), . . . , Ps(a, x) ∈ k[a, x] is in k[a].

(ii) The polynomials P1(a, x), . . . , Ps(a, x) ∈ k[a, x] are coprime in k(a)[x].
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(iii) There exists a proper Zariski-closed subset Z of km such that for all

a⋆ ∈ km\Z, the polynomials P1(a
⋆, x), . . . , Ps(a

⋆, x) are coprime in k[x].

(iv) There exists a Zariski-dense subset Y of km such that for all a⋆ ∈ Y ,

the polynomials P1(a
⋆, x), . . . , Ps(a

⋆, x) are coprime in k[x].

3.2. Coprimality and reduction. Given an integral domain Z and an ideal

p ⊂ Z, we denote by zp the coset of an element z ∈ Z modulo p; we use the

same notation for the induced reduction morphisms, e.g., on polynomial rings

over Z. If p ⊂ Z is a prime ideal, we write kp for the fraction field of the integral

domain Z/p.

Proposition 3.2: Let Z be a Unique Factorization Domain (UFD) with frac-

tion fieldQ, let x = (x1, . . . , xr) be r>1 variables and let P1(x), . . . , Ps(x)∈Z[x]

be s > 2 nonzero polynomials. Suppose we are also given a Zariski-dense subset

P ⊂ SpecZ.1 Then the following five conditions are equivalent:

(i) The gcd in Z[x] of P1(x), . . . , Ps(x) is in Z.

(ii) P1(x), . . . , Ps(x) are coprime in Q[x].

(iii) There is a nonzero element R0 ∈ Z with this property: for every prime

ideal p ⊂ Z such that R
p

0 6= 0, the polynomials P1
p
(x), . . . , Ps

p
(x) are

coprime in kp[x].

(iv) For every nonzero element R ∈ Z, there exists a prime ideal p ∈ P
such that R

p 6= 0 and the polynomials P1
p
(x), . . . , Ps

p
(x) are coprime

in kp[x].

(v) For every nonzero element R ∈ Z, there exists a maximal ideal p ⊂ Z

such that R
p 6= 0 and the polynomials P1

p
(x), . . . , Ps

p
(x) are coprime

in kp[x].

Proof of Proposition 3.2. (ii) =⇒ (i). Assume on the contrary that the gcd, say

D(x) ∈ Z[x], of P1(x), . . . , Ps(x) is not in Z. Then D(x) is of degree > 1 (so

not a unit of Q[x]) and is a common divisor of P1(x), . . . , Ps(x) in Q[x]. This

contradicts (ii).

1 The subset P ⊂ SpecZ only appears in condition (iv) below. The assumption that P is

Zariski-dense means that for every nonzero element R ∈ Z, there is a prime ideal p ∈ P

such that R
p
6= 0. This is clearly necessary for (iv) to hold. In fact (iv) reformulates

as saying that, with C ⊂ SpecZ the set of primes p such that P1
p
(x), . . . , Ps

p
(x) are

coprime in kp[x], the set C ∩ P is Zariski-dense in SpecZ. In the same vein, condition

(iii) means that C contains a nonempty Zariski-open subset of SpecZ.
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(i) =⇒ (ii). Assume on the contrary that P1(x), . . . , Ps(x) are not coprime

in Q[x], i.e., a non-constant polynomial D(x) ∈ Q[x] divides all Pi(x) in Q[x].

We may assume that D is in Z[x], and even, using that Z[x] is a UFD, that D

is irreducible in Z[x]. Write Pi(x) = D(x)P ′
i (x) with P ′

i ∈ Q[x], i = 1, . . . , s.

Clearing the denominators, one obtains polynomial equalities in Z[x]:

qiPi(x) = D(x)P̃ ′
i (x),

with P̃ ′
i ∈ Z[x] and qi ∈ Z, qi 6= 0, i = 1, . . . , s. It follows that qi divides P̃ ′

i

in Z[x], i = 1, . . . , s, and so that D is a common divisor in Z[x] of all the Pi(x).

This contradicts (i).

Remark 3.3: The equivalence (i)⇔(ii) has this close variant:

P1(x), . . . , Ps(x) are coprime polynomials in Z[x] if and only if the equivalent

conditions (i), (ii) hold and the coefficients of P1(x), . . . , Ps(x) are coprime in Z.

Indeed, if P1(x), . . . , Ps(x) are coprime in Z[x], they are coprime in Q[x]

(by (i)⇒(ii)), and obviously, the coefficients of P1(x), . . . , Ps(x) must be coprime

in Z. Conversely, if P1(x), . . . , Ps(x) are coprime in Q[x] and their coefficients

are coprime in Z, then their gcd in Z[x] is in Z (by (ii)⇒(i)), so must necessarily

be 1.

(iii) =⇒ (iv). For a given nonzero element R ∈ Z, let p ∈ P be a prime ideal

such that RR0
p 6= 0, where R0 ∈ Z is the nonzero element given by (iii); such

a p exists as P is assumed to be Zariski-dense. Then R
p 6= 0 and R

p

0 6= 0, and

by (iii), the latter gives that P1
p
(x), . . . , Ps

p
(x) are coprime in kp[x].

(iv) =⇒ (i). Assume that the gcd, say D(x) ∈ Z[x], of P1(x), . . . , Ps(x) is a

polynomial of degree > 1. Let R ∈ Z be a nonzero coefficient of a monomial

of degree > 1 of D(x). Then for every prime ideal p ∈ P such that R
p 6= 0,

the reduced polynomial D
p
(x) is of degree > 1 and is a common divisor of

P1
p
(x), . . . , Ps

p
(x) in kp[x]. This contradicts (iv).

(ii) =⇒ (iii). We proceed by induction on the number of variables r > 1.

case 1: r = 1, i.e., x is a single variable x. The assumption (ii) that the

polynomials P1(x), . . . , Ps(x) are coprime in the Principal Ideal Domain (PID)

Q[x] provides a Bézout identity which, after clearing the denominators, is of

this form:
s

∑

i=1

Ai(x)Pi(x) = R0

with A1, . . . , As ∈ Z[x] and R0 ∈ Z,R0 6= 0.
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Clearly then, for every prime ideal p ⊂ Z such that R
p

0 6= 0, the reduced

polynomials P1
p
(x), . . . , Ps

p
(x) satisfy a Bézout identity in the PID kp[x], hence

are coprime in kp[x].

case 2: r > 2. Let x = (x1, . . . , xr−1, xr) and assume that (ii)⇒(iii) is true for

polynomials in the r − 1 variables (x1, . . . , xr−1). We will apply the induction

hypothesis to the set of all coefficients Pi,j(x1, . . . , xr−1) of the polynomials

Pi(x1, . . . , xr) viewed as polynomials in xr.

The polynomials P1(x), . . . , Ps(x) are supposed to be coprime inQ[x1, . . . , xr ].

Thus, by the already proven implication (i) ⇒ (ii) (applied with Z being

Q[x1, . . . , xr−1]), they are coprime in Q(x1, . . . , xr−1)[xr ], and their coefficients

Pi,j(x1, . . . , xr−1) are coprime in Q[x1, . . . , xr−1]. The former condition pro-

vides a Bézout identity which, after clearing the denominators, is of this form:

s
∑

i=1

Ai(x)Pi(x) = ∆(x1, . . . , xr−1)

with A1, . . . , As ∈ Z[x] and ∆ ∈ Z[x1, . . . , xr−1], ∆ 6= 0. Let R1 ∈ Z be

a nonzero coefficient of a monomial of ∆. For every prime ideal p ⊂ I such

that R
p

1 6= 0, the polynomial ∆
p
(x) is nonzero in kp[x1, . . . , xr−1], and so the

polynomials P1
p
(x), . . . , Ps

p
(x) are coprime in kp(x1, . . . , xr−1)[xr ].

Furthermore, as the coefficients

Pi,j(x1, . . . , xr−1)

are coprime in Q[x1, . . . , xr−1], the induction hypothesis provides a nonzero

element R2 ∈ Z such that for every prime ideal p ⊂ I such that R
p

2 6= 0, the

polynomials Pi,j
p
(x1, . . . , xr−1) are coprime in kp[x1, . . . , xr−1].

Using the already proven implication (ii)⇒(i) (more exactly its variant from

Remark 3.3), it follows that the element R0 = R1R2 satisfies the requested

conclusion (iii).

Equivalence of (v) with all other conditions. This follows from the fact that (v)

is the special case of (iv) for which P is the set of all maximal ideals of Z. This

subset P ⊂ SpecZ is indeed Zariski-dense: as Z is an integral domain, the

nilradical nil(Z) (consisting of all nilpotent elements of Z) is {0}. But nil(Z)

is classically the intersection of all maximal ideals of Z. Thus if R ∈ Z, R 6= 0,

there is a prime ideal p ∈ P such that R
p 6= 0 (which is the definition of P

being Zariski-dense in SpecZ).
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3.3. Proof of Proposition 3.1. Proposition 3.1 corresponds to the special

case of Proposition 3.2 for which Z = k[a] is a polynomial ring inm > 1 variables

a = (a1, . . . , am) over a field k. Equivalence (i)⇔(ii) from Proposition 3.2

exactly yields equivalence (i)⇔(ii) from Proposition 3.1 in this special case; the

field k need not be infinite here.

Assume now that k is infinite and take for P the set of maximal ideals of the

form

〈a− a⋆〉 = 〈a1 − a⋆1, . . . , ar − a⋆r〉
with a⋆ ∈ km. With k infinite, the subset P = An(k) is indeed Zariski-dense.

Condition (iv) from Proposition 3.2 then yields condition (iv) from Proposi-

tion 3.1.

Finally note that condition (iii) from Proposition 3.2 implies condition (iii)

from Proposition 3.1, which itself implies condition (iv) from Proposition 3.2,

and so all three conditions are equivalent, thus ending the proof of Proposi-

tion 3.1.

3.4. The Ostrowski corollary. For Z = Z, Proposition 3.2 yields the fol-

lowing result, which is the coprimality analog of the Ostrowski theorem for

irreducibility.

Corollary 3.4: Let P1(x), . . . , Ps(x) ∈ Z[x] be s > 2 nonzero polynomials.

The following four conditions are equivalent:

(i) The gcd of the polynomials P1(x), . . . , Ps(x) is in Z.

(ii) The polynomials P1(x), . . . , Ps(x) ∈ Z[x] are coprime in Q[x].

(iii) For all but finitely many primes p ∈ Z, P1
p
(x), . . . , Ps

p
(x) are coprime

in Z/pZ[x].

(iv) For infinitely many primes p ∈ Z, P1
p
(x), . . . , Ps

p
(x) are coprime in

Z/pZ[x].

Example 3.5: How big should a prime number p be to guarantee that two poly-

nomials in Z[x] that are coprime in Q[x] remain coprime modulo p? In the

one-variable case, it suffices that the prime p does not divide the resultant of

the two polynomials (which can be quite large). Here is an example in two vari-

ables. Let P (x, y) = x3y − 3x3 − 2x+ 3y + 2 and Q(x, y) = y(2x− 11). These

polynomials are coprime in Z[x, y]. For p = 5, the gcd of P and Q modulo 5

is x+2. For p = 271, the gcd of P andQmodulo 271 is x+130. Experimentation

shows that for other values of p, P and Q are coprime modulo p.
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4. Further tools

We prove some more tools needed to establish the stability result in the next

section.

Lemma 4.1: Let P1(x), . . . , Ps(x) ∈ Z[x] be nonzero coprime polynomials

in r > 2 variables. Suppose that Pi(0) 6= 0 for at least one i ∈ {1, . . . , s}.
Then the polynomials P1(ta), . . . , Ps(ta) are coprime in Q[a, t]. Consequently

there is a proper Zariski-closed subset Z ⊂ Zr such that, for all a⋆ ∈ Zr \ Z,

the polynomials P1(ta
⋆), . . . , Ps(ta

⋆) are coprime in Q[t].

This is false if P1, . . . , Ps vanish simultaneously at 0. For instance, with

P (x, y) = x and Q(x, y) = y, then P (at, bt) = at and Q(at, bt) = bt are not

coprime, for any (a, b) ∈ Z2.

Corollary 4.2: Let P1(x), . . . , Ps(x) be s > 2 nonzero coprime polynomials.

If dn
0
=1 for some n0∈Zr , then dn=1 for every n in a Zariski-dense subset of Zr.

Proof of Corollary 4.2. With no loss of generality, assume that n0 = 0. By

Lemma 4.1, for all directions a⋆ in a Zariski-open set of Qr, the one-variable

polynomials P1(ta
⋆), . . . , Ps(ta

⋆) are coprime. From Theorem 2.1, for each of

these a⋆, we have gcdi Pi(ka
⋆) = gcdi Pi(0) = 1 for all k in some nonzero

ideal δZ ⊂ Z. The set of all such ka⋆ ∈ Zr, with varying k and a⋆, form a

Zariski-dense subset of Zr.

Proof of Lemma 4.1. We prove the first part; the second part easily

follows by combining it with Proposition 3.1. On the contrary, suppose that

Pi(ta) = D(a, t) · P ′
i (a, t), (i = 1, . . . , s) with degD > 0. If degt(D) = 0,

then setting t = 1 leads to a factorization Pi(a) = D(a, 1) · P ′
i (a, 1) where

degD(a, 1) > 0; changing the variable a to x proves that the polynomials Pi(x)

are not coprime.

Suppose next that degt D(a, t) > 0. One may assume that

degt D(a⋆1, a2, . . . , ar, t) > 0 for some a⋆1 ∈ k.

For simplicity take a⋆1 = 1 (the general case only introduces some technicalities).

Set a′ = (1, a2, . . . , ar) and write the decomposition in Q[a′, t]:

Pi(ta
′) = D(a′, t) · P ′

i (a
′, t) (i = 1, . . . , s)

with degD(a′, t) > 0.
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Set x = ta′, that is, xi = ait (and x1 = t); hence ai = xi/x1 (and a1 = 1),

i = 1, . . . , r. Using the change of variables (a′, t) 7→ x, we obtain

Pi(x) = D
( x

x1
, x1

)

· P ′
i

( x

x1
, x1

)

(i = 1, . . . , s).

By hypothesis we have Pi0(0) 6= 0 for some i0 ∈ {1, . . . , s}. This is equivalent
to t 6 |Pi0(ta

′) and implies t 6 |D(a′, t) in Q[a′, t].

Write

D(a′, t) =
∑

i,j

αi,ja
′itj in Q[a2, . . . , ar, t].

As a1 = 1, the multi-index i stands for (0, i2, . . . , ir) and |i| = i2 + · · · + ir.

Then

D
( x

x1
, x1

)

=
∑

i,j

αi,j

( xi

x
|i|
1

)

xj
1 =

∑

i,j

αi,jx
ix

j−|i|
1

=
1

xd
1

∑

i,j

αi,jx
ix

j−|i|+d
1

=
1

xd
1

D̃(x)

where d ∈ Z, and D̃(x) ∈ Q[x] is not divisible by x1. A similar computation

yields P ′
i (

x

x1

, x1) =
1

x
di
1

P̃ ′
i (x) with di ∈ Z, and P̃ ′

i (x) ∈ Q[x] not divisible by x1.

This gives

xd+di

1 Pi(x) = D̃(x)P̃ ′
i (x) (i = 1, . . . , s).

By definition D̃(x) is not a monomial in x1. Moreover D̃(x) is a non-constant

polynomial. Assume on the contrary that D̃(x) is constant. Then αi,j = 0

for (i, j) 6= (0, d). This impliesD(a′, t) = α0,dt
d, in contradiction with t 6 |D(a′, t)

and degD(a′, t) > 0. Conclusion: D̃(x) is a non-trivial factor of each of the

Pi(x), hence P1(x), . . . , Ps(x) are not coprime.

We end by a generalization of Lemma 4.1. Let P1(x), . . . , Ps(x) ∈ Z[x] be a

family of coprime polynomials in two or more variables (r > 2).

Lemma 4.3:Let P1(x), . . . , Ps(x)∈Z[x] be nonzero coprime polynomials in r>2

variables. Let n ∈ Zr such that Pi(n) 6= 0 for at least one i ∈ {1, . . . , s}.
Then the polynomials P1(un + ta), . . . , Ps(un + ta) are coprime in Q[a, u, t].

Consequently there is a proper Zariski-closed set Z ⊂ Zr such that for all

a⋆ ∈ Zr\Z, the polynomials P1(un+ta⋆), . . . , Ps(un+ta⋆) are coprime inQ[u, t].
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Proof. For every u⋆ ∈ Q, the polynomials P̃i(x) := Pi(u
⋆n + x), i = 1, . . . , s,

are coprime in Q[x] (they are deduced from the Pi(x) by a mere translation

on the variables). As Pi(n) 6= 0 for some i, then P̃i(0) = Pi(u
⋆n) 6= 0

for all but finitely many u⋆ ∈ Q. By Lemma 4.1, for such u⋆, the polyno-

mials P̃1(ta), . . . , P̃s(ta) are coprime in Q[a, t], hence so are the polynomials

P1(u
⋆n + ta), . . . , Ps(u

⋆n + ta). It follows from Proposition 3.1 that the poly-

nomials P1(un+ ta), . . . , Ps(un+ ta) are coprime in Q(u)[a, t].

Assume next that their gcd in Q[u, a, t] is a non-constant polynomial

D(u) ∈ Q[u]. Thus we have Pi(un+ta) = D(u)P ′
i (a, u, t) for some P ′

i ∈ Q[u, a, t],

i = 1, . . . , s. Choose t⋆ = 1 and a⋆(u) = −un + c, where c is a constant

such that Pi(c) 6= 0, for at least one i ∈ {1, . . . , s}. For this choice, we have

Pi(un+t⋆a⋆(u)) = Pi(c) = D(u)P ′
i (a

⋆(u), u, t⋆). As Pi(c) is a nonzero constant,

D(u) is a constant polynomial.

By Remark 3.3(a), the polynomials P1(un+ ta), . . . , Ps(un+ ta) are coprime

in Q[u][a, t].

This proves the first assertion of Lemma 4.3; the second one follows by com-

bining it with Proposition 3.1.

5. Proof of the stability

This section is devoted to the proof of Theorem 1.1.

Idea of the proof.Consider two coprime polynomials P (x, y) andQ(x, y) and

the special case of two pairs (m,n1) and (m,n2) (with the same x-coordinate).

We will find n3 such that gcd(dm,n1
, dm,n2

) = dm,n3
. As P (x, y) and Q(x, y)

are coprime and by Bézout, there exist A(x), B(x), R(x) ∈ Z[x] such that

A(x)P (x, y) +B(x)Q(x, y) = R(x).

For all m ∈ Z but finitely many, we have R(m) 6= 0. For such m, P (m, y)

and Q(m, y) are coprime (in Q[y]). By the gcd stability result in one variable

(Theorem 2.1), there exists n3 such that gcd(dm,n1
, dm,n2

) = dm,n3
.

The proof extends this idea: we need (a) to deal with the case where P (m, y)

and Q(m, y) are no longer coprime; (b) also consider pairs (m1, n1) and (m2, n2)

with m1 6= m2.
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Step 1. Let m ∈ Zr and n ∈ Zr. For simplicity, and with no loss of gen-

erality, we assume m = 0. We may also assume that Pi(0) 6= 0 for at least

one i ∈ {1, . . . , s}: otherwise d0 = 0 so that we can directly conclude that

gcd(d0, dn) = dn. We may also assume that Pi(n) 6= 0 for at least one

i ∈ {1, . . . , s}. We reduce from several variables to one variable by restrict-

ing the polynomials on the line passing through 0 and n. That is, we set

P 0
i (t) = Pi(tn), i = 1, . . . , s.

Then

P 0
i (0) = Pi(0) and P 0

i (1) = Pi(n).

However, the polynomials P 0
1 (t), . . . , P

0
s (t) are not necessarily coprime. Figure 1

helps visualize the next steps of the proof.

0

n

Step 1. P 0
i (t)

may be not coprime

and not stable by gcd

Step 3. P 3
i (u)

coprime and stable by gcd

Step 2. P 1
i (t)

coprime

Step 2. P 2
i (t)

coprime

same gcd

same gcd

a⋆

Figure 1.
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Step 2. By Lemma 4.1, for all a⋆ ∈ Zr but in a proper Zariski-closed set,

the polynomials P1(ta
⋆), . . . , Ps(ta

⋆) are coprime in Q[t]. Moreover, again by

Lemma 4.1 centered at n, for all a⋆ ∈ Zr but in a proper Zariski-closed set,

the polynomials P1(n + ta⋆), . . . , Ps(n + ta⋆) are coprime in Q[t]. Finally by

Lemma 4.3, for all a⋆ ∈ Zr but in a proper Zariski-closed set, the polynomials

P1(un+ ta⋆), . . . , Ps(un+ ta⋆) are coprime in Q[u, t].

Pick a⋆ ∈ Zr such that the following conditions are satisfied:

– P 1
i (t) := Pi(ta

⋆), i = 1, . . . , s, are coprime in Q[t],

– P 2
i (t) := Pi(n+ ta⋆), i = 1, . . . , s, are coprime in Q[t],

– Pi(un+ ta⋆), i = 1, . . . , s, are coprime in Q[u, t].

In the computations below, all gcds are computed with respect to the in-

dices i = 1, . . . , s.

By the one-variable case for P 1
1 (t), . . . , P

1
s (t), the corresponding sequence of

gcd is periodic, for some (nonzero) period δ1 ∈ Z (Theorem 2.1). This yields

that for any k ∈ Z, we have gcdP 1
i (0) = gcdP 1

i (0 + kδ1), and so

d0 = gcdPi(0) = gcdPi(kδ1a
⋆).

We do the same for P 2
i (t). For some period δ2 ∈ Z, for any k ∈ Z, we

have gcdP 2
i (0) = gcdP 2

i (0 + kδ2), and so

dn = gcdPi(n) = gcdPi(n+ kδ2a
⋆).

We also have P1(un + ta⋆), . . . , Ps(un + ta⋆) coprime in Q[u, t]. Thus,

by Proposition 3.1, for all but finitely many t⋆ ∈ Q, the polynomials

P1(un+ t⋆a⋆), . . . , Ps(un+ t⋆a⋆) are coprime in Q[u].

Step 3. Set t⋆ = kδ1δ2 with k ∈ Z and P 3
i (u) := Pi(un + t⋆a⋆), i = 1, . . . , s.

Pick k large enough to guarantee that P 3
1 (u), . . . , P

3
s (u) are coprime in Q[u]

(Proposition 3.1).

Note that

gcdP 3
i (0) = gcdPi(t

⋆a⋆) = gcdPi(kδ1δ2a
⋆) = gcdPi(0) = d0

and

gcdP 3
i (1) = gcdPi(n+ t⋆a⋆) = gcdPi(n+ kδ1δ2a

⋆) = gcdPi(n) = dn.
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Now by the gcd stability (resp. lcm stability) assertion from Theorem 2.1,

applied to the one-variable coprime polynomials P 3
1 (u), . . . , P

3
s (u), there ex-

ists ℓ ∈ Z such that

gcd(gcdP 3
i (0), gcdP

3
i (1)) = gcdP 3

i (ℓ)

(resp. lcm(gcdP 3
i (0), gcdP

3
i (1)) = gcdP 3

i (ℓ)). Setting m = ℓn + t⋆a⋆, so

P 3
i (ℓ) = Pi(m), we obtain

gcd(d0, dn) = dm

(resp. lcm(d0, dn) = dm), which proves the stability of D by gcd (resp. lcm).

6. Proof of the Ekedahl–Poonen formula

This section is mainly devoted to the proof of the Ekedahl–Poonen formula

as stated in Theorem 1.5. While [9, Theorem 3.1] is valid over the rings Z

and Fq[t], here we state and prove Theorem 1.5 over Z only, which enables

simplifications. Another simplification is that our density is defined by squared

boxes, while [9] allows rectangular ones. Another difference (minor for the proof,

but important for the applications) is that we allow any s > 2 polynomials

(instead of 2). Finally in Section 6.7, we generalize the formula to the situation

of several families of coprime polynomials (Proposition 6.3), and then use this

generalization to extend the proof of Theorem 1.7 given in Section 1.4 for one

polynomial to several polynomials.

6.1. Sets. As usual, fix s > 2 nonzero polynomials P1(x), . . . , Ps(x) ∈ Z[x]. In

the following, p is a prime number, and P the set of prime numbers.

For p ∈ P , consider the set

Rp = {n ∈ Zr | p does not divide all P1(n), . . . , Ps(n)}.

Then, with R the set (introduced in Section 1.3) of all n ∈ Zr such that

P1(n), . . . , Ps(n) are coprime, we have

R =
⋂

p∈P

Rp = {n ∈ Zr | gcd(P1(n), . . . , Ps(n)) = 1}.

We will approximate R by sets R6M defined by

R6M =
⋂

p6M

Rp

= {n ∈ Zr | for every p 6 M,p does not divide all P1(n), . . . , Ps(n)}.
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We will also work with

Qp = Zr \ Rp = {n ∈ Zr | p divides P1(n), . . . , Ps(n)}
= {n ∈ Zr | p divides gcd

16i6s

Pi(n)}.

and

Q>M =
⋃

p>M

Qp = {n ∈ Zr | there exists p > M, p divides P1(n), . . . , Ps(n)}

= {n ∈ Zr | there exists p > M such that p divides gcd
16i6s

Pi(n)}.

Here are the main steps of the proof:

– Compute the density of Qp (and Rp) in terms of cp.

– Prove that this density is in O( 1
p2 ).

– Compute the density of R6M from Rp, using the Chinese Remainder

Theorem.

– Prove that µ(R6M ) −−−−−→
M→+∞

µ(R).

For r = 1, the last step is not necessary since, following notation of Sec-

tion 2.3, for M > δ, we have R6M = R.

6.2. Density of Qp and Rp. By definition, n ∈ Qp if and only if Pi(n) = 0

(mod p) for each i = 1, . . . , s. Hence

(1) #(Qp ∩ J0, p− 1Kr) = cp.

In fact, p divides Pi(n1, . . . , nr) if and only if p divides Pi(n1+k1p, . . . , nr+krp)

for any kj ∈ Z. Hence Qp is invariant by any translation of vector (k1p, . . . , krp)

(with kj ∈ Z). Hence, as a function of B, the cardinality #(Qp ∩ B) (with

B = J0, B − 1Kr) is asymptotic to cp(
B
p
)r as B → ∞ (this formula is exact if p

divides B).

Then

(2) µ(Qp) = lim
B→+∞

#(Qp ∩ B)

#B
=

cp
pr

.

As Rp = Zr \ Qp we also get

(3) µ(Rp) = 1− cp
pr

.
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6.3. Bound for Qp. We need to bound the number cp of solutions in (Z/pZ)r

of the set of equations Pi(n) = 0 (mod p) (i = 1, . . . , s). If r = 1, we explained

in Section 1.3 that cp = 0 for all suitably large primes p. For r > 2, one

can bound cp using the Bézout theorem over Z/pZ. For r = 2, one can use

for instance [12, Theorem 4.1]. For r > 2, we have this general version, by

Lachaud–Rolland [8, Corollary 2.2]:

General Bézout theorem: Let r > 2. We have cp 6 ds · pm, where m is

the dimension of the zero-set of the polynomials P1(x), . . . , Ps(x), assumed to

be of degree 6 d.

Corollary 6.1: For all sufficiently large p, we have cp 6 ds · pr−2. Conse-

quently, we obtain µ(Qp) = O( 1
p2 ).

Proof of Corollary 6.1.The polynomials P1(x), . . . , Ps(x) are coprime in Z[x]. By

Corollary 3.4, they are coprime in Q[x] and the polynomials P1
p
(x), . . . , Ps

p
(x)

(reduced modulo p) are nonzero and coprime in Fp[x] for all suitably large

primes p. It follows that they are coprime in Fp[x] for the same primes p (this

is explained for example in [3, §2.1]).
Fix such a prime p and consider the ideal I = 〈P1

p
, . . . , Ps

p〉 ⊂ Fp[x]. We

estimate below the dimension of the zero-set Z(I) ⊂ Fp
r
of I and then we will

apply the general Bézout theorem. Classically this dimension is also the Krull

dimension dimFp[x]/I of the quotient ring Fp[x]/I (e.g. [7, Proposition 1.7]).

By definition, dimFp[x]/I is the supremum of the heights of minimal prime

ideals of Fp[x] containing I. We may assume that degP1
p
> 1; otherwise cp = 0.

Then P1
p
has at least one irreducible factor ∆ ∈ Fp[x]. Furthermore, the prime

ideal 〈∆〉 ⊂ Fp[x] is not maximal (by Nullstellensatz and r > 2), but is contained

in a maximal ideal. We deduce that height(〈∆〉) > 1 and, by [7, Theorem 1.8 A],

that

dimFp[x]/I 6 dimFp[x]/〈P1
p〉 6 r − 1.

Assume that dimFp[x]/I = r−1. Let p ⊂ Fp[x] be a minimal prime ideal con-

taining I; thus dimFp[x]/p = r− 1, or, equivalently p is of height 1. By Krull’s

Hauptidealsatz [7, Theorem 1.11 A & Proposition 1.13], the variety Z(p) is a

hypersurface Z(f), for some irreducible polynomial f ∈ Fp[x]. But then it fol-

lows from 〈f〉 = p ⊃ I that f divides each polynomial Pi
p
in Fp[x], i = 1, . . . , s,

a contradiction. Conclude that dimFp[x]/I 6 r − 2.
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The first assertion of Corollary 6.1 then readily follows from the General

Bézout theorem, and the second one from this easy estimate:

µ(Qp) =
cp
pr

6
ds · pr−2

pr
=

ds

p2
= O

( 1

p2

)

.

6.4. The set R6M . Let M > 0, let {p1, . . . , pℓ} be the set of primes 6 M

and N be the product of these primes.

The Chinese Remainder Theorem gives an isomorphism from Z/NZ to

Z/p1Z× · · · × Z/pℓZ, which we extend to the dimension r by

n ∈ (Z/NZ)r 7→ (n1, . . . , nℓ) ∈ (Z/p1Z)
r × · · · × (Z/pℓZ)

r ,

where nj is n modulo pj . We have a 1-1 correspondence between the sets R6M

and Rp1
× · · · × Rpℓ

. Namely

n ∈ R6M∩J0, N − 1Kr

⇐⇒ ∀j ∈ {1, . . . , ℓ} ∃i ∈ {1, . . . , s} Pi(n) 6= 0 (mod pj)

⇐⇒ ∀j ∈ {1, . . . , ℓ} ∃i ∈ {1, . . . , s} Pi(nj) 6= 0 (mod pj)

⇐⇒ ∀j ∈ {1, . . . , ℓ} nj ∈ Rpj
∩ J0, pj − 1Kr.

Recall that Rp = Zr \ Qp. Thus, with (1), we obtain

#(Rp ∩ J0, p− 1Kr) = pr −#(Qp ∩ J0, p− 1Kr) = pr − cp,

whence

#(R6M ∩ J0, N − 1Kr) =
ℓ
∏

j=1

(prj − cpj
).

This provides the density of R6M :

µ(R6M ) = lim
B→+∞

#(R6M ∩ B)

#B

= lim
B→+∞

(B
N
)r
∏ℓ

j=1(p
r
j − cpj

)

Br
=

ℓ
∏

j=1

(

1− cpj

prj

)

,

whence

(4) µ(R6M ) =
∏

p6M

(

1− cp
pr

)

.
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6.5. Limit of µ(Q>M ).

Lemma 6.2: We have:

(5) µ(Q>M ) −−−−−→
M→+∞

0.

The proof (here, for several polynomials) is similar to [9, Lemma 5.1] (for two

polynomials) with some simplifications.

Proof. Fix M > 0 and B > M and consider the decomposition:

Q>M = Q>M,6B ∪ Q>B,

where

Q>M,6B =
⋃

M<p6B

Qp and Q>B =
⋃

p>B

Qp.

We will prove that each term has a relatively small cardinal compared to

Br = #B, where B = J0, B − 1Kr.

Estimate for Q>M,6B. From Corollary 6.1, we have

cp = #(Qp ∩ J0, p− 1Kr) 6 ds · pr−2.

This gives #(Qp ∩ B) 6 Cpr−2(B
p
)r for some constant C (depending only on d

and s). Thus we obtain

(6)

#(Q>M ∩ B)

#B
6

∑

M<p6B

#(Qp ∩ B)

#B

6
∑

M<p6B

Cpr−2(B
p
)r

Br
6 C

∑

p>M

1

p2
.

The last term does not depend on B and tends to 0 as M → +∞.

Estimate for Q>B.

Preliminaries. Firstly, we may reduce to the case where each polynomial Pi is

irreducible in Z[x]. Indeed assume P1 = Q · R with Q,R ∈ Z[x]. If p|P1(n)

then p|Q(n) or p|R(n). Hence

Q>B(QR,P2, . . . , Ps) ⊂ Q>B(Q,P2, . . . , Ps) ∪ Q>B(R,P2, . . . , Ps).

This reduction process will eventually replace the tuple (P1, . . . , Ps) by several

such tuples but with irreducible components, the number of these tuples only

depending on d and s.
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Secondly, we may also reduce to the case where one of the polynomials, say Ps,

is a polynomial in x1, . . . , xr−1 only. Namely, as P1, . . . , Ps are coprime, we have

a Bézout identity

s
∑

i=1

Ai(x)Pi(x) = ∆(x1, . . . , xr−1)

with Ai ∈ Z[x], i = 1, . . . , s and ∆ ∈ Z[x1, . . . , xr−1], ∆ 6= 0. If p|Pi(n) for

i = 1, . . . , s then p|∆(n). Hence Q>B(P1, . . . , Ps) ⊂ Q>B(P1, . . . , Ps−1,∆)

and P1, . . . , Ps−1,∆ are coprime polynomials (if some non-constant polyno-

mial R divides P1, a polynomial where all the variables x1, . . . , xr occur,

then R = P1 up to some multiplicative constant, because P1 is irreducible,

but then R cannot divide ∆ in the variables x1, . . . , xr−1 only).

Thirdly, we may assume that the leading coefficient of Pi(x), i=1, . . . , s−1,

seen as a polynomial in xr , is not divisible by the last polynomial Ps(x1,. . ., xr−1).

Indeed, write Pi(x) = P 0
i (x1, . . . , xr−1)x

δi
r + · · · ∈ Z[x1, . . . , xr−1][xr].

If P 0
i =QiPs, then P ′

i =Pi−QiPsx
δi
r is a polynomial with degxr

(P ′
i )<degxr

(Pi).

We proceed by induction on degxr
(Pi) until Ps does not divide P 0

i (or

degxr
(Pi) = 0). Note that the set Qp is preserved in this process (p|Pi(n)

and Ps(n) iff p divides (Pi−QiPsx
δi
r )(n) and Ps(n)), and that one may have to

apply the first reduction to the new polynomials, to get irreducible polynomials.

We prove below that

(7)
#(Q>B ∩ B)

#B
−−−−−→
B→+∞

0.

Induction. The proof is by induction on the dimension r. For r = 1, a Bézout

identity
∑s

i=1 Ai(x)Pi(x) = ∆ (with Ai ∈ Z[x], ∆ ∈ Z, ∆ 6= 0) implies that

if p|Pi(n) for every i = 1, . . . , s, then p|∆ ∈ Z. Hence for B > ∆, Q>B = ∅.

For r > 1, we introduce the three following subsets S1, S2, S3 and work with

the inclusion: Q>B ∩ B ⊂ S1 ∪ S2 ∪ S3.

– S1 = {n ∈ B | Ps(n) = 0}. By the Zippel–Schwartz lemma, #S1/#B

tends to 0 as B → +∞.

– S2 = {n ∈ B | ∃p > B, p|P 0
1 (n), . . . , p|P 0

s−1(n), p|Ps(n)}. By induc-

tion, #S2/#B tends to 0 as B → +∞.
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– S3 = {n ∈ B |Ps(n) 6= 0, ∃p > B, p|P1(n), . . . , p|Ps(n), p ∤ P 0
i0
(n)

for some 1 6 i0 < s}.
For all n ∈ B,

Ps(n) = O(Bγ)

with γ = deg(Ps). Fix (n1, . . . , nr−1) ∈ J0, B − 1Kr−1 and consider a r-

tuple n = (n1, . . . , nr−1, nr) in the set S3. For any sufficiently large B,

there are at most γ possible primes p > B such that p divides the

nonzero integer Ps(n). Pick such a prime p and let i ∈ {1, . . . , s− 1} be

an index such that p ∤ P 0
i (n1, . . . , nr−1). Then write:

Pi(n1, . . . , nr−1, x) = P 0
i (n1, . . . , nr−1)x

δi + · · ·

There are at most δi integers x = nr with 0 6 nr < p, hence a fortiori

with 0 6 nr < B, such that p|Pi(n1, . . . , nr−1, nr). This shows that for

each (n1, . . . , nr−1) ∈ J0, B − 1Kr−1, there are at most

C′ = (s− 1) · γ · δ1 · · · δs−1

values of nr ∈ J0, B − 1K such that (n1, . . . , nr−1, nr) ∈ S3. Hence

#S3/#B 6
Br−1·C′

Br = C′

B
and so #S3/#B tends to 0 as B → +∞.

Conclusion. As Q>M = Q>M,6B ∪ Q>B, then by (6):

#Q>M

#B
6

#(Q>M,6B ∩ B)

#B
+

#(Q>B ∩ B)

#B
6 C

∑

p>M

1

p2
+

#(Q>B ∩ B)

#B
.

By (7), the last term tends to 0 as B → +∞, and the first term tends to 0

as M → +∞. This indeed proves that µ(Q>M ) −−−−−→
M→+∞

0.

6.6. Limit of R6M . We have R ⊂ R6M . Note that R6M \ R ⊂ Q>M : in

fact R6M \ R is the set of n for which the primes p that divide all the Pi(n)

verify p > M ; such n are in the union of the Qp, for p > M .

Consider the decomposition

R6M = R∪ (R6M \ R) ⊂ R ∪Q>M .

It yields the inequalities

µ(R) 6 µ(R6M ) 6 µ(R) + µ(Q>M ).

As, by Lemma 6.2, µ(Q>M ) tends to 0 as M → +∞, we obtain

(8) µ(R6M ) −−−−−→
M→+∞

µ(R).
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As µ(R6M ) =
∏

p6M (1 − cp
pr ) by (4), then

µ(R) =
∏

p∈P

(

1− cp
pr

)

.

This infinite product is nonzero if no prime p divides all the values of

P1(n), . . . , Ps(n) for all n ∈ Zr, i.e., if cp 6= pr for all primes p.

6.7. Generalization to several families of polynomials. Consider ℓ>1

families Pj = {Pj1(x), . . . , Pjsj (x)} of nonzero coprime polynomials in Z[x],

j = 1, . . . , ℓ. For each j = 1, . . . , ℓ, consider the set

R(Pj) = {n ∈ Zr | gcd(Pj1(n), . . . , Pℓsℓ(n)) = 1}.

Our goal is to evaluate the set R =
⋂ℓ

j=1 R(Pj).

Proposition 6.3: Let Π = P1 · · · Pℓ ⊂ Z[x] be the set of all possible products

A1 · · ·Aℓ with Aj ∈ Pj for j = 1, . . . , ℓ. Then we have the following:

(a) The elements of Π are nonzero coprime polynomials (in Q[x]).

(b) R = R(Π).

(c) µ(R) =
∏

p∈P(1−
cp
pr ) where

cp = #{n ∈ (Z/pZ)r | Q(n) = 0 (mod p), ∀Q ∈ Π}.

(d) For every p ∈ P , we have cp = pr if and only if for every n ∈ Zr,

there exists j ∈ {1, . . . , ℓ} such that the prime p divides all values

Pj1(n), . . . , Pjsj (n).

Note that cp can also be computed with the following formula:

cp = #

ℓ
⋃

j=1

{n ∈ (Z/pZ)r | Pj1(n) = 0 (mod p), . . . , Pjsj (n) = 0 (mod p)}.

This equality follows from the relation V (I · J) = V (I) ∪ V (J) for ideals and

their varieties, applied to Π = P1 · · · Pℓ.

Proof. (a) Assume that some irreducible polynomial D ∈ Q[x] divides all ele-

ments of Π. Then the product of all ideals 〈Pj〉 ⊂ Q[x] (j = 1, . . . , ℓ), which

is generated by the set Π, is contained in the ideal 〈D〉 ⊂ Q[x]. As 〈D〉 is

a prime ideal, we have 〈Pj〉 ⊂ 〈D〉 for some j ∈ {1, . . . , ℓ}. This contradicts

Pj1(x), . . . , Pjsj (x) being coprime.
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(b) R(Π) ⊂ R: If n /∈ R, i.e., n /∈ R(Pj) for some j ∈ {1, . . . , ℓ}, then some

prime p divides Pj1(n), . . . , Pjsℓ(n). Clearly then, p divides allQ(n) with Q ∈ Π,

i.e., n /∈ R(Π).

R(Π) ⊃ R: Let n /∈ R(Π), i.e., some prime p divides all Q(n) with Q ∈ Π.

Observe that the ideal generated by all these Q(n) is the product of the ideals

〈Pj1(n), . . . , Pjsj (n)〉 ⊂ Z with j ranging over {1, . . . , s}. So this product is

contained in pZ. But then pZ must contain some ideal 〈Pj1(n), . . . , Pjsj (n)〉;
hence n /∈ R(Pj) and so n /∈ R.

(c) Follows from (b) and the Ekedahl–Poonen formula, for the case ℓ = 1,

with the polynomials in Π (Theorem 1.5).

(d) We have cp = pr if and only if p divides all Q(n) with Q ∈ Π for ev-

ery n ∈ Zr . Arguing as in (b) above for each fixed n ∈ Zr, we obtain that,

for each n, p divides Pj1(n), . . . , Pjsj (n) for some j ∈ {1, . . . , ℓ}, which is the

claimed condition. The converse is clear.

Finally we can give the proof of Theorem 1.7 in the general case ℓ > 1.

Proof of Theorem 1.7 (ℓ > 1). Let P1(x, y), . . . , Pℓ(x, y) be as in the

statement. The first point is based on the same result of Cohen used in the

case ℓ = 1. Specifically let H(P1, . . . , Pℓ) be the subset of Zr of all n such

that P1(n, y), . . . , Pℓ(n, y) are irreducible in Q[y]. From Theorem 1 of [11, §13],
we have µ̃(H(P1, . . . , Pℓ)) = 1, with µ̃ the density introduced in Remark 1.6.

For each j = 1, . . . , ℓ, denote by Pj ⊂ Q[x] the set of coefficients

Pj1(x), . . . , Pjsj (x) of Pj , viewed as a polynomial in y; these polynomials are

coprime. Using then the notation of Proposition 6.3, the set R ⊂ Zr is the sub-

set of all n such that the polynomials P1(n, y), . . . , Pℓ(n, y) are primitive. Thus,

for every n ∈ H = H(P1, . . . , Pℓ)∩R, the polynomials P1(n, y), . . . , Pℓ(n, y) are

irreducible in Z[y].

Observe that the assumption that there is no prime p such that

ℓ
∏

j=1

Pj(n, y) ≡ 0 (mod p) for every n ∈ Zr

forbids the equivalent conditions from Proposition 6.3(d) to happen. Thus, by

Proposition 6.3(c), we have µ(R) > 0, and also µ̃(R) > 0 (as explained in

Remark 1.6). Conclude that µ̃(H) > 0 as well.
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[2] A. Bodin, P. Dèbes and S. Najib, Prime and coprime values of polynomials,
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