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The Hilbert–Schinzel specialization property
By Arnaud Bodin at Lille, Pierre Dèbes at Lille, Joachim König at Cheongju and

Salah Najib at Khouribga

Abstract. We establish a version “over the ring” of the celebrated Hilbert Irreducibil-
ity Theorem. Given finitely many polynomials in k C n variables, with coefficients in Z, of
positive degree in the last n variables, we show that if they are irreducible over Z and satisfy
a necessary “Schinzel condition”, then the first k variables can be specialized in a Zariski-
dense subset of Zk in such a way that irreducibility over Z is preserved for the polynomials
in the remaining n variables. The Schinzel condition, which comes from the Schinzel Hypo-
thesis, is that, when specializing the first k variables in Zk , the product of the polynomials
should not always be divisible by some common prime number. Our result also improves on
a “coprime” version of the Schinzel Hypothesis: under some Schinzel condition, coprime poly-
nomials assume coprime values. We prove our results over many other rings than Z, e.g. UFDs
and Dedekind domains.

1. Introduction

The present paper is about specialization properties of polynomials P.t; y/ with coeffi-
cients in an integral domain Z. The k C n variables from the two tuples t D .t1; : : : ; tk/ and
y D .y1; : : : ; yn/ (k; n > 1) are of two types; the ti are those to be specialized, unlike the yi .
The next statement introduces both a central property and a main result of the paper.

Say that a non-unit a 2 Z, a 6D 0, is a fixed divisor of P with respect to t if

P.m; y/ � 0 .mod a/

for every m 2 Zk , and denote the set of all fixed divisors by Ft .P /.

Theorem 1.1. Let Z be the ring of integers of a number field of class number 1 or
any polynomial ring RŒx1; : : : ; xr � (r > 1) over a Unique Factorization Domain (UFD) R.
Then the ring Z has the Hilbert–Schinzel specialization property, for any integers k; n; s > 1;
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i.e. the following holds: Let P1.t ; y/; : : : ; Ps.t ; y/ be s polynomials, irreducible in ZŒt; y�, of
degree > 1 in y. Assume that the product P1 � � �Ps has no fixed divisor in Z with respect to t .
Then there is a Zariski-dense subsetH � Zk such thatP1.m; y/; : : : ; Ps.m; y/ are irreducible
in ZŒy� for every m 2 H .

Remark 1.2. The fixed divisor assumption Ft .P1 � � �Ps/ D ; is necessary, and may
fail. For example, the polynomial P D .tp � t /y C .tp � t C p/, with p a prime number, is
irreducible in ZŒt; y�; and p 2 Ft .P /, since p divides .mp �m/ for every m 2 Z. A sim-
ilar example occurs with Z D FqŒu�. Take P D .tq � t C u/y C .tq � t /2 C u. For every
m.u/ 2 FqŒu�, the constant term of m.u/q �m.u/ is zero, so P.m.u/; y/ is divisible by u.

The name “Schinzel” in our specialization property refers to the Schinzel Hypothesis
(see [11]), which corresponds to the case (k D 1, n D 0, Z D Z): if P1.t/; : : : ; Ps.t/ are irre-
ducible in ZŒt � and the product has no fixed prime divisor, then P1.m/; : : : ; Ps.m/ are prime
numbers for infinitely many m 2 Z. This statement implies many famous conjectures in num-
ber theory, like the Twin Prime conjecture (for P1.t/ D t and P2.t/ D t C 2). It is however
still out of reach; the case n D 0 is excluded in Theorem 1.1.

Another special case of interest is when Z D Z and each polynomial Pi is of the form

Pi D Pi1.t/y1 C � � � C Pi`.t/y`:

Theorem 1.1 then concludes, under the corresponding assumptions, that for every m in some
Zariski-dense subset of Zk , the valuesPi1.m/; : : : ; Pi`.m/ are coprime1) for each i D 1; : : : ; s.
This was proved by Schinzel [10]; see also [4] and [9] for the special case s D 1, ` D 2 but
with a positive density result for the good m.

This coprime conclusion is interesting for its own sake. Theorem 1.1 already carries it
over to more general rings than Z. We show that it holds on even more rings. For simplicity,
we restrict below to the situation that one set of polynomials Pj .t/ in one variable is given, and
refer to Theorem 3.7 for the general version.

Theorem 1.3. Assume that Z is a UFD or a Dedekind domain. Let Q be the fraction
field of Z. Then the coprime Schinzel Hypothesis holds for Z, i.e. the following is true: Let
P1.t/; : : : ; P`.t/ 2 ZŒt� be ` > 2 non-zero polynomials, coprime in QŒt� and such that:

(AV) No non-unit of Z divides all values P1.z/; : : : ; P`.z/ with z 2 Z.

Then there exists an element m 2 Z such that P1.m/; : : : ; P`.m/ are coprime in Z.

The Assumption on Values (AV) is the exact translation of the fixed divisor assumption
Ft .P / D ; for the polynomial P D P1.t/y1 C � � � C P`.t/y` considered above.

Remark 1.4. (a) The situation that Z is a UFD is the natural context for the coprime
Schinzel Hypothesis: primes are the irreducible elements, Gauss’s lemma is available, etc. We
will however not use the full UFD property and prove Theorem 1.3 for domains that we call
near UFD. These play a central role in the paper and are defined by this sole property: every
non-zero element has finitely many prime divisors, and every non-unit has at least one; we

1) Elements from an integral domain are coprime if they have no common divisor other than units.
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say more on near UFDs in Section 2.3. Theorem 1.3 also holds for some non-near UFDs,
starting with Dedekind domains; the ring of entire functions is another type of example (Propo-
sition 2.6); on the other hand, the coprime Schinzel Hypothesis may fail, e.g. for Z D ZŒ

p
5�

(Proposition 2.10).
(b) If Z is infinite, then infinitely many m in fact satisfy the conclusion of Theorem 1.3

(see Remark 2.2). IfZ is finite, it is a field, and for fields, “coprime” means “not all zero”. This
makes the coprime Schinzel Hypothesis obviously true, with the difference for finite fields that
the infiniteness of good m is of course not true.2)

(c) Theorem 1.3 withZ D Z, contained as we said in [10, Theorem 1], is also a corollary
of [1, Theorem 1.1], which shows this stronger property for Z a Principal Ideal Domain (PID):

(��) For P1.t/; : : : ; P`.t/ as in Theorem 1.3, but not necessarily satisfying assumption (AV),
the set D D ¹gcd.P1.m/; : : : ; P`.m// j m 2 Zº is finite and stable under gcd.

We show in Section 2.5 that this property is false in general when Z is only a UFD.

In addition to the original Schinzel Hypothesis and its coprime version, Theorem 1.1
relates to Hilbert’s Irreducibility Theorem (HIT). In the setup of Theorem 1.1 and with Q
the fraction field of Z, the classical Hilbert result concludes that for every element m in
some Zariski-dense subset H � Qk , the polynomials P1.m; y/; : : : ; Ps.m; y/ are irreducible
inQŒy� (see [6, Theorem 13.14.2]). In Theorem 1.1, we insist thatH � Zk and the irreducibil-
ity of P1.m; y/; : : : ; Ps.m; y/ be over the ringZ, i.e. inZŒy�. AsZ is a UFD, this is equivalent
to P1.m; y/; : : : ; Ps.m; y/ being irreducible in QŒy� and primitive with respect to Z.3)

For an integral domain that is not necessarily a UFD, we generalize the Hilbert–Schinzel
property as follows. Assume that Z is of characteristic 0 or imperfect.4)

Definition 1.5. The ring Z has the Hilbert–Schinzel specialization property for inte-
gers k; n; s > 1 if the following holds. Let P1.t ; y/; : : : ; Ps.t ; y/ be s polynomials, irreducible
in QŒt; y�, primitive with respect to Z, of degree > 1 in y. Assume that P1 � � �Ps has no
fixed divisor in Z with respect to t . Then there is a Zariski-dense subset H � Zk such that
for every m 2 H , the polynomials P1.m; y/; : : : ; Ps.m; y/ are irreducible in QŒy� and primi-
tive with respect to Z.

It follows from the conclusion that for m 2 H , the polynomials P1.m; y/; : : : ; Ps.m; y/
are irreducible in ZŒy�; this implication holds without the UFD assumption.

More classical definitions (recalled in Definition 4.1) disregard the primitivity part. For
a Hilbertian ring, only the irreducibility in QŒy� is requested in the conclusion, and the fixed
divisor condition Ft .P1 � � �Ps/ D ; is not assumed. If Z is a field (and so conditions on prim-

2) Passing from “at least one” to “infinitely many” prime values is not nearly as convenient for the original
Schinzel Hypothesis. Indeed, [13] establishes asymptotic results showing that “most” irreducible integer polyno-
mials without fixed prime divisors take at least one prime value, whereas the infiniteness assertion is not known for
a single non-linear polynomial.

3) A polynomial over an integral domain Z is primitive with respect to Z if its coefficients are coprime
in Z. A monomial is primitive iff its leading coefficient is a unit of Z. The zero polynomial is not primitive.

4) Imperfect means that Zp 6D Z if p D char.Z/. This “imperfectness assumption” is made to avoid some
subtlety from the Hilbertian field theory (e.g. explained in [2, Section 4.1]) that otherwise leads to distinguish
between Hilbertian fields and strongly Hilbertian fields and is irrelevant in this paper.
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itivity and fixed divisors automatically hold and may be omitted), Definition 1.5 is that of
a Hilbertian field.

The following result generalizes Theorem 1.1.

Theorem 1.6. Assume that Z is a Hilbertian ring. Then we have the following:

(a) If Z is a near UFD5), the Hilbert–Schinzel property holds for any k; n; s > 1.

(b) IfZ is a Dedekind domain, the Hilbert–Schinzel property holds with k D 1 and n; s > 1.

Hilbert’s Irreducibility Theorem is one of the few general and powerful tools in Arith-
metic Geometry. Typically it is used when one needs to find irreducible fibers of some mor-
phism above closed points, defined over some field. The flagship example, Hilbert’s motivation
in fact, was the realization of the symmetric group Sk as a Galois group over Q, via the
consideration of the morphism Ak ! Ak=Sk , or equivalently, of the generic polynomial

P.t; y/ D yk C t1y
k�1
C � � � C tk

of degree k (see e.g. [12, Section 3]). More geometric situations à la Bertini are numerous too,
starting with that of an irreducible family of hypersurfaces .P.t ; y/ D 0/ � An parametrized
by t 2 Ak (see [6, Section 10.4] for a specific statement of the Bertini–Noether theorem).
Our Theorem 1.6 extends the scope of HIT and its applications to allow working over rings.
It is for example a good tool when investigating the arithmetic of families of number rings
ZŒt ; y�=hP.t; y/i with t 2 Zk , or, in a geometric context, to deal with Bertini irreducibility
conclusions over rings.

Remark 1.7. (a) Note that [2, Theorem 4.6] provides a large class of Hilbertian rings:
those domains Z such that the fraction field Q has a product formula (and is of characteris-
tic 0 or imperfect). We refer to [6, Section 15.3] or [2, Section 4.1] for a full definition. The
basic example isQ D Q. The product formula is

Q
p jajp � jaj D 1 for every a 2 Q?, where p

ranges over all prime numbers, j � jp is the p-adic absolute value and j � j is the standard abso-
lute value. Rational function fields k.x1; : : : ; xr/ in r > 1 variables over a field k, and finite
extensions of fields with the product formula are other examples [6, Section 15.3].

(b) The more concrete product formula condition on Q may thus replace the Hilbertian
ring assumption in Theorem 1.6. This shows Theorem 1.1 as a special case of Theorem 1.6 (a).
This also provides a large class of rings to which Theorem 1.6 (b) applies: all rings of integers
of number fields. On the other hand, as mentioned earlier, the coprime Schinzel Hypothesis
fails for Z D ZŒ

p
5�, and so, so does the Hilbert–Schinzel property. Yet, ZŒ

p
5� is a Hilbertian

ring; it is however neither a near UFD nor a Dedekind domain.
(c) It is unclear whether Theorem 1.6 (b) extends to the situation k > 1. We refer to

Theorem 4.4 for a version of Theorem 1.6 for Dedekind domains with k > 1 and s D 1.
(d) We show further, in Lemma 3.1, that for a near UFDZ, assumption Ft .P1 � � �Ps/ D ;

always holds in Definition 1.5 (and so can be omitted) if Z has this infinite residue property:
every principal prime ideal pZ is of infinite norm jZ=pZj. Furthermore, this property auto-
matically holds in these cases: (a) Z D RŒu1; : : : ; ur � is any polynomial ring over an integral
domain R unless Z D FqŒu�, (b) if Z contains an infinite field. The infinite residue property

5) As defined in Remark 1.4 (a).
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fails if Z is Z or, more generally, the ring of integers of a number field. Other ways to get rid
of the assumption Ft .P1 � � �Ps/ D ; are explained in Section 4.3.1.

The paper is organized as follows. The coprime Schinzel Hypothesis (from Theorem 1.3)
will be defined in its general form for s > 1 sets of polynomials ¹Pi1.t/; : : : ; Pi`i .t/º in k > 1

variables t1; : : : ; tk (see Definition 3.2). Section 2 is devoted to the special case k D s D 1, i.e.
the case considered in Theorem 1.3, and Section 3 to the general case k; s > 1. The Hilbert–
Schinzel specialization property (from Definition 1.5) is discussed in Section 4; in particular,
Theorem 1.6 is proved there.

2. The coprime Schinzel Hypothesis – Case k D s D 1

For simplicity, and to avoid confusion, we denote by CopSch.1; 1/ the coprime Schinzel
Hypothesis in the form given in Theorem 1.3 (which corresponds to the case k D s D 1 of
Definition 3.2 given later).

In Section 2.1, we introduce a basic parameter of the problem. We then prove Theo-
rem 1.3 for Dedekind domains in Section 2.2. The other case of Theorem 1.3 will be proved
in the more general situation k; s > 1 in Section 3 for near UFDs. We introduce them and
briefly discuss some basic properties in Section 2.3. In Section 2.4, we consider property
CopSch.1; 1/ over rings that are neither near UFDs nor Dedekind domains. Finally, Section 2.5
discusses the gcd stability property mentioned in Remark 1.4 (c) and displays the counter-
example announced there.

Let Z be an integral domain. Denote the fraction field of Z by Q and the group of
invertible elements, also called units, by Z�.

2.1. A preliminary lemma. Let t be a variable and let P1; : : : ; P` 2 ZŒt� be ` non-
zero polynomials (` > 2/, assumed to be coprime in QŒt�; equivalently, they have no common
root in an algebraic closure of Q. As QŒt� is a PID, we haveX̀

iD1

PiQŒt� D QŒt�:

It follows that .
P`
iD1 PiZŒt�/ \Z is a non-zero ideal of Z. Fix a non-zero element ı 2 Z

in this ideal. For example, if ` D 2, one can take ı to be the resultant � D Res.P1; P2/ (see
[7, Chapter V, Section 10]).

Lemma 2.1. For everym 2 Z, denote the set of common divisors of P1.m/; : : : ; P`.m/
by Dm. Then for every m 2 Z, the set Dm is a subset of the set of divisors of ı. Furthermore,
for every z 2 Z, we have Dm D DmCzı .

Proof. From the coprimality assumption in QŒt� of P1; : : : ; P`, there exist some poly-
nomials V1; : : : ; V` 2 ZŒt� satisfying a Bézout condition

V1.t/P1.t/C � � � C V`.t/P`.t/ D ı:

The same holds with anym 2 Z substituted for t . The first claim follows. For the second claim,
we adjust an argument of Frenkel and Pelikán [5] who observed this periodicity property in the
special case (` D 2, Z D Z) with ı equal to the resultant � D Res.P1; P2/.
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For every m; z 2 Z, we have Pi .mC zı/ � Pi .m/ .mod ı/, i D 1; : : : ; `. It follows
that the common divisors of P1.m/; : : : ; P`.m/; ı are the same as those of the values
P1.mC zı/; : : : ; P`.mC zı/; ı. As both the common divisors ofP1.m/; : : : ; P`.m/ and those
of P1.mC zı/; : : : ; P`.mC zı/ divide ı, the conclusion Dm D DmCzı follows.

Remark 2.2 (on the set of “good” m). It follows from the periodicity property that, if
Z is infinite, then the set, say S , of all m 2 Z such that P1.m/; : : : ; P`.m/ are coprime in Z,
is infinite if it is nonempty. The set S can nevertheless be of arbitrarily small density. Take
Z D Z, P1.t/ D t , P2.t/ D t C…h, with …h (h 2 N) the product of primes in Œ1; h�. The
set S consists of the integers which are prime to …h. Its density is

'.…h/

…h
D

�
1 �

1

2

�
� � �

�
1 �

1

ph

�
;

where ph is the h-th prime number and ' is the Euler function. The sequence '.…h/=…h tends
to 0 when h!1 (since the series

P1
hD0

1
ph

diverges).

2.2. Proof of Theorem 1.3 for Dedekind domains. The assumptions and notation of
this paragraph, including Proposition 2.3 below are as follows. The ring Z is a Dedekind
domain. As in the coprime Schinzel Hypothesis, P1.t/; : : : ; P`.t/ are ` > 2 non-zero poly-
nomials inZŒt�, coprime inQŒt� and satisfying assumption (AV); ı is the associated parameter
from Section 2.1 and ıZ D

Qr
iD1Q

ei
i is the factorization of the principal ideal ıZ into prime

ideals ofZ. We also define I as the ideal generated by all values P1.z/; : : : ; P`.z/with z 2 Z,
and factor I into prime ideals I D

Qq
iD1Q

gi
i ; we may assume that each of the prime ideals

Q1; : : : ;Qr dividing ıZ indeed occurs in the product by allowing exponents gi to be 0.
Consider then the ideals Q

giC1
i , i D 1; : : : ; r . Either r 6 1 or any two of them are

comaximal6). As none of them contains I , for each j D 1; : : : ; r , there exists ij 2 ¹1; : : : ; `º
and mj 2 Z such that

Pij .mj / 6� 0 .mod Q
gjC1

j /:

The Chinese Remainder Theorem yields an element m 2 Z such that

m � mj .mod Q
gjC1

j / for each j D 1; : : : ; r .

It follows that Pij .m/ … Q
gjC1

j , and so

.P1.m/; : : : ; P`.m// 6� .0; : : : ; 0/ .mod Q
giC1
i / for each i D 1; : : : ; r:

Proposition 2.3 (a) below (with z D 0 and ˛ D m) concludes that P1.m/; : : : ; P`.m/ are
coprime in Z, thus ending the proof of Theorem 1.3 for Dedekind domains. The more general
statement in Proposition 2.3 (a) and the additional statement (b) will be used later.

Proposition 2.3. Under the assumption and notation of Section 2.2, let ! 2 Z be a mul-
tiple of ı and let ˛ 2 Z be an element such that

(�) .P1.˛/; : : : ; P`.˛// 6� .0; : : : ; 0/ .mod Q
giC1
i /; i D 1; : : : ; r:

6) Two ideals U; V of an integral domain Z are comaximal if U C V D Z.
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Then the following statements hold:

(a) For every z 2 Z, the elements P1.˛ C z!/; : : : ; P`.˛ C z!/ are coprime in Z.

(b) If instead of (AV) it is assumed that no prime of Z divides all values P1.z/; : : : ; P`.z/
with z 2 Z, then for every z 2 Z, the elements P1.˛ C z!/; : : : ; P`.˛ C z!/ have no
common prime divisor.

Proof. (a) From Lemma 2.1, it suffices to show that P1.˛/; : : : ; P`.˛/ have no non-unit
divisors. Assume on the contrary that

.P1.˛/; : : : ; P`.˛// � 0 .mod a/ for some non-unit a 2 Z.

By the definition of ı and Lemma 2.1, the element a divides ı. Thus the prime ideal factoriza-
tion of aZ is of the form aZ D

Qr
iD1Q

fi
i , with exponents fi 6 ei . Due to assumption (AV),

there must exist an index i 2 ¹1; : : : ; rº such that fi > gi : otherwise I � aZ, i.e. a divides all
values P1.z/; : : : ; P`.z/ (z 2 Z). Consequently, fi > giC1 and so aZ � Q

giC1
i , for the same

index i . But this contradicts assumption (�).
(b) Merely replace in the proof of (a) the non-unit a by a prime p, and resort to the variant

of (AV) assumed in (b).

2.3. A few words on near UFDs. This subsection says more on near UFDs for which
we will prove the full coprime Schinzel Hypothesis in Section 3. They will also serve, with
Dedekind domains, as landmarks in the discussion of the Hypothesis over other domains in
Section 2.4.

Recall from Remark 1.4 that we call an integral domain Z a near UFD if every non-
zero element has finitely many prime divisors, and every non-unit has at least one. Of course,
a UFD is a near UFD. A simple example showing that the converse does not hold is the ring
Zp CXQpŒX� of polynomials over Qp with constant coefficient in Zp; see Example 2.4.

It is worth noting further that

(a) as for UFDs, every irreducible element a of a near UFD Z is a prime: indeed, such an a
is divisible by a prime p of Z; being irreducible, a must in fact be associate to p.

(b) unlike UFDs, near UFDs do not satisfy the Ascending Chain Condition on Principal
Ideals in general, i.e. there exist near UFDs which have an infinite strictly ascending
chain of principal ideals; see Example 2.4 below.

It is classical that being a UFD is equivalent to satisfying these two conditions: the
Ascending Chain Condition on Principal Ideals holds and every irreducible is a prime. Thus
a near UFD is a UFD if and only if it satisfies the Ascending Chain Condition on Principal
Ideals. In particular, a near UFD that is Noetherian is a UFD.

Example 2.4. Let R be a UFD, not a field, and let K the field of fractions of R. Let
Z D RCXKŒX� be the ring of polynomials over K with constant coefficient in R. Then it is
well known that Z is not a UFD. Indeed, any prime element p of R remains prime in Z, and
one has factorizations X D .X=p/ � p D .X=p2/ � p2, corresponding to an infinite ascending
chain .X/ � .X=p/ � .X=p2/ � � � � . Moreover, all irreducible elements of Z are prime, and
the non-constant prime elements are (up to associates) exactly the non-constant polynomials
with constant coefficient 1. Clearly, every non-constant element of Z has at least one, but
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finitely many prime divisors of this kind. Assume now additionally that R has only finitely
many non-associate prime elements. Then every non-constant polynomial inZ has only finitely
many prime divisors altogether, and the same holds more obviously for (non-zero) constants.
Therefore, Z is a near UFD in this case.

Remark 2.5 (A further advantage of near UFDs). In near UFDs, a non-unit is always
divisible by a prime. This is not the case in general. For example a D 6 in the ring ZŒ

p
�5� does

have irreducible divisors but no prime divisors; or a D 2 in the ring of algebraic integers does
not even have any irreducible divisors (the ring has no irreducibles). Pick an element a 2 Z
as in these two examples. The polynomials P1.y/ D ay and P2.y/ D a.y C 1/ are coprime
in QŒy� and a common prime divisor of all values of P1 and P2 would have to divide a and
therefore does not exist. Yet there is no m 2 Z such that P1.m/ and P2.m/ are coprime. To
avoid such examples, we insist in our assumption (AV) that all elements P1.m/; : : : ; P`.m/
with m 2 Z be coprime, and not just that no prime divides them all. This subtelty vanishes of
course if Z is a near UFD.

2.4. Other domains. While property CopSch.1; 1/ is completely well behaved in the
class of Dedekind domains and, as we will see in Section 3, in that of near UFDs, we show in
this subsection that the behavior inside other classes is rather erratic. For example, we produce
a non-Noetherian Bézout domain7) for which CopSch.1; 1/ holds (Proposition 2.6) and another
one for which it does not (Remark 2.11). We also show that CopSch.1; 1/ fails over certain
number rings, such as the domain ZŒ

p
5� (Proposition 2.10).

2.4.1. Non-Noetherian domains satisfying CopSch.1; 1/. The following proposition
shows a ring that is not a near UFD but satisfies CopSch.1; 1/. Proposition 2.7 even produces
a domain Z that fulfills CopSch.1; 1/ even though Z has non-units not divisible by any prime.

Proposition 2.6. The ring Z of entire functions is a Bézout domain which satisfies
CopSch.1; 1/, but is not Noetherian and is not a near UFD.

Proof. The ring Z is a Bézout domain (see e.g. [3]) whose prime elements, up to multi-
plication with units, are exactly the linear polynomials x � c (c 2 C); indeed, an element of Z
is a non-unit if and only if it has a zero in C, and an element with a zero c is divisible by
x � c due to Riemann’s theorem on removable singularities. In particular, every non-unit of Z
has at least one prime divisor. However the set of zeroes of a non-zero entire function may be
infinite. This shows that the ring Z is not a near UFD, and is not Noetherian either. Note also
that existence of a common prime divisor for a set of elements of Z is equivalent to existence
of a common root in C.

Consider now finitely many polynomials P1.t/; : : : ; P`.t/ 2 ZŒt� which are coprime in
QŒt� and for which no prime ofZ divides all values Pi .m/ (i D 1; : : : ; `;m 2 Z). For each Pi ,
we may factor out the gcd di of all coefficients and write Pi .t/ D di QPi .t/, where the coeffi-
cients of QPi are coprime. Then d1; : : : ; d` are necessarily coprime (since their common prime
divisors would divide all values Pi .m/ (i D 1; : : : ; `;m 2 Z)). We now consider specialization
of QP1; : : : ; QP` at constant functions m 2 C.

7) Recall that a domain is called Bézout if any two elements have a greatest common divisor which is a linear
combination of them. Equivalently, the sum of any two principal ideals is a principal ideal.
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Recall that by Lemma 2.1, there exists a non-zero ı 2 Z such that for every m 2 Z, and
in particular for every m 2 C, every common divisor of P1.m/; : : : ; P`.m/ is a divisor of ı.
The entire function ı has a countable set S of zeroes. To prove CopSch.1; 1/, it suffices to find
m 2 C for which no z 2 S is a zero of all of P1.m/; : : : ; P`.m/. For i 2 ¹1; : : : ; `º, denote
by Si the set of all z 2 S which are not a root of di . Since d1; : : : ; d` are coprime, one hasS`
iD1 Si D S . Now fix i for the moment, and write

QPi .t/ D

kX
jD0

 
1X
kD0

ajkx
k

!
tj

with ajk 2 C, via power series expansion of the coefficients of QPi . Let z 2 Si . Since z is not
a root of all coefficients of QPi , evaluation x 7! z yields a non-zero polynomial, which thus has
a root at only finitely many values t 7! m 2 C. This is true for all z 2 Si , whence the set of
m 2 C such that Pi .m/ D di QPi .m/ has a root at some z 2 Si is a countable set. In total, the
set of allm 2 C such that P1.m/; : : : ; P`.m/ have a common root in S (and hence in some Si )
is countable as well. Choose m in the complement of this set to obtain the assertion.

Proposition 2.7. LetZ D Zp be the integral closure of Zp in Qp. ThenZ has non-units
that are not divisible by any prime and satisfies CopSch.1; 1/.

Proof. The domainZ is a (non-Noetherian) valuation ring, whose non-zero finitely gen-
erated ideals are exactly the principal ideals prZ with r a non-negative rational number. Prime
elements do not exist in Z, whence the first part of the assertion.

Now take finitely many non-zero polynomials P1.t/; : : : ; P`.t/2ZŒt�, coprime in QpŒt �,
and assume that all values Pi .m/ (i D 1; : : : ; `; m 2 Z) are coprime. Then the coefficients of
P1; : : : ; P` must be coprime, and since Z is a valuation ring (i.e. its ideals are totally ordered
by inclusion), one of these coefficients, say the coefficient of td , d > 0, of the polynomial P1,
must be a unit. We will proceed to show that there exists m 2 Z such that P1.m/ is a unit,
which will clearly prove CopSch.1; 1/. To that end we draw the Newton polygon (with respect
to the p-adic valuation) of the polynomial P1.t/ � u, with u 2 Z a unit to be specified. Since
any non-increasing slope in this Newton polygon corresponds to a set of roots of P1.t/ � u
of non-negative valuation (i.e. roots contained in Z), it suffices to choose u such that there
exists at least one segment of non-increasing slope (see e.g. [8, Proposition II.6.3] for the
aforementioned property of the Newton polygon). This is trivially the case if d > 0, so we
may assume that the constant coefficient of P1 is the only one of valuation 0. But then simply
choose u D P1.0/ and m D 0.

2.4.2. Rings not satisfying CopSch.1; 1/.

Proposition 2.8. Let Z be a domain and let p; q be non-associate irreducible elements
of Z such that Z=.pZ \ qZ/ is a finite local ring. Then CopSch.1; 1/ fails for Z.

The proof rests on the following elementary fact.

Lemma 2.9. Let R be a finite local ring and let a; b 2 R be two distinct elements. Then
there exists a polynomial f 2 RŒt� taking the value a exactly on the units of R, and the value b
everywhere else.
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Proof. Start with a D 1 and b D 0. The unique maximal ideal of a finite local ring is
necessarily the nilradical, i.e. every non-unit of R is nilpotent. In particular, there exists n 2 N
(e.g. any sufficiently large multiple of jR�j) such that rn D 0 for all nilpotent elements r 2 R,
and rn D 1 for all units r . Setting f .t/ D tn finishes the proof for a D 1, b D 0. The general
case then follows by simply setting f .t/ D .a � b/tn C b.

Proof of Proposition 2.8. Set J D pZ \ qZ. As already used above, locality of Z=J
implies that all non-units ofZ=J are nilpotent. In particular, p; q … J , but there existm; n 2 N
such that pm 2 J and qn 2 J . By Lemma 2.9, there exist polynomials P1; P2 2 ZŒt� such that

P1.z/ 2

´
p C J for z C J 2 .Z=J /�;

J otherwise,

and

P2.z/ 2

´
J for z C J 2 .Z=J /�;

q C J otherwise.

By adding suitable constant terms in J to P1 and P2, one may additionally demand that
p 2 P1.Z/ and q 2 P2.Z/. In particular, P1 and P2 satisfy assumption (AV). However, by
construction, p divides both P1.z/ and P2.z/ for all z such that z C J 2 .Z=J /�, and q
divides P1.z/ and P2.z/ for all other z, showing that CopSch.1; 1/ is not satisfied.

Proposition 2.10. CopSch.1; 1/ does not hold for Z D ZŒ
p
5�.

Proof. Set � D
p
5C 1, so that Z D ZŒ��. Note the factorization 2 � 2 D �.� � 2/

in Z, in which 2 and � are non-associate irreducible elements. Due to Proposition 2.8, it
suffices to verify that Z=.2Z \ �Z/ is a local ring. However, since 4; 2� and �2 are all in
2Z \ �Z, the set ¹0; 1; 2; 3; �; � C 1; � C 2; � C 3º is a full set of coset representatives, and
the non-units (i.e. 0; 2; �; � C 2) are exactly the nilpotents in Z=.2Z \ �Z/. These therefore
form the unique maximal ideal, ending the proof.

Remark 2.11 (The finite coprime Schinzel Hypothesis). (a) The proof above of Propo-
sition 2.10 even shows that a weaker variant of CopSch.1; 1/ fails over ZŒ

p
5�, namely the

variant, say (FinCopSch), for which the exact same conclusion holds but under the following
stronger assumption on values:

(Fin-AV) The set of values ¹Pi .m/ j m 2 Z; i D 1; : : : ; `º contains a finite subset whose
elements are coprime in Z.

(b) Here is an example of a domain fulfilling (FinCopSch) but not CopSch.1; 1/. Con-
sider the domain Z D ZpŒpp

�n

j n 2 N�. This is a (non-Noetherian) valuation ring, and in
particular a Bézout domain (the finitely generated non-trivial ideals are exactly the principal
ideals .pm=p

n

/ with m; n 2 N).
Property CopSch.1; 1/ does not hold for Z. Take P1.t/ D pt and P2.t/ D tp � t C p.

These are coprime inQŒt�. Furthermore,P1 andP2 satisfy assumption (AV) – indeed, any com-
mon divisor certainly divides p D P1.1/ as well as m.mp�1 � 1/ for every m 2 Z; choosing
m in the sequence .pp

�n

/n2N shows the claim. But note that every m 2 Z lies inside some
ring Z0 D ZpŒpp

�n

� (for a suitable n), and the unique maximal ideal of that ring has residue
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field Fp, meaning that it necessarily contains m.mp�1 � 1/. Thus m.mp�1 � 1/ is at least
divisible by pp

�n

, which is thus a common divisor of P1.m/ and P2.m/.
On the other hand, Z fulfills property (FinCopSch). Indeed, if P1.t/; : : : ; P`.t/ are poly-

nomials in ZŒt� for which finitely many elements Pi .m/ with m 2 Z, i 2 ¹1; : : : ; `º, exist
that are coprime, then automatically one of those values must be a unit (since any finite set
of non-units has a suitably high root of p as a common divisor!), yielding an m for which
P1.m/; : : : ; P`.m/ are coprime.

2.5. A UFD not satisfying the gcd stability property. Recall, for Z D Z, the follow-
ing result from [1] already mentioned in the introduction.

Theorem 2.12. Let P1; : : : ; P` 2 ZŒt� be ` > 2 non-zero polynomials, coprime inQŒt�.
Then the set D D

®
gcd.P1.m/; : : : ; P`.m// j m 2 Z

¯
is finite and stable under gcd.

The proof is given for Z D Z in [1] but is valid for any PID. Theorem 2.12 implies
property CopSch.1; 1/. Indeed, assumption (AV) exactly means that the gcd of elements of D

is 1. By Theorem 2.12, D is finite and stable by gcd. Therefore 1 2 D , i.e. there exists m 2 Z
such that P1.m/; : : : ; P`.m/ are coprime. The stability property however cannot be extended
to all UFDs.

Example 2.13 (A counter-example to Theorem 2.12 for the UFD Z D ZŒx; y; z�). Let

P1.t/ D .x
2y2z C t2/.x2yz2 C .t � 1/2/ 2 ZŒt�

and
P2.t/ D .xy

2z2 C t2/.x2y2z2 C .t � 1/2/ 2 ZŒt�

These non-zero polynomials are coprime in QŒt�: they have no common root in Q.
We prove next that the set

D D ¹gcd.P1.m/; P2.m// j m 2 Zº

is not stable by gcd. Set´
d0 D gcd.P1.0/; P2.0// D gcd.x2y2z; xy2z2/ D xy2z;

d1 D gcd.P1.1/; P2.1// D gcd.x2yz2; x2y2z2/ D x2yz2;

and d D gcd.d0; d1/ D xyz. We prove below that d … D .
By contradiction, assume that d D gcd.P1.m/; P2.m// for some m D m.x; y; z/ 2 Z.

As xyz j P1.m/ it follows that

xyz j .x2y2z Cm2/.x2yz2 C .m � 1/2/

whence xyz j m2.m � 1/2 and xyz j m.m � 1/. We claim that the last two divisibilities imply
that xyz j m or xyz j m � 1.

Namely, if for instance we had xy j m and z j m � 1, then, on the one hand, we would
havem D xym0 for somem0 2 Z and som.0; 0; 0/ D 0, but on the other hand, we would have
m.x; y; z/ � 1 D zm00 for some m00 2 Z and so m.0; 0; 0/ D 1. Whence the claim.

Now if xyz jm, then x2y2z2 jm2. But then x2y2z jP1.m/ and xy2z2 jP2.m/, whence
xy2z j d , a contradiction. The other case for which xyz j m � 1 is handled similarly.
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3. The coprime Schinzel Hypothesis – General case

The fully general coprime Schinzel Hypothesis and the almost equivalent Primitive Spe-
cialization Hypothesis are introduced in Section 3.2. Our main result on them, Theorem 3.7, is
stated in Section 3.3. Sections 3.4 and 3.5 show three lemmas needed for the proof, which is
given in Section 3.6. We start in Section 3.1 with some observations on fixed divisors.

Fix an arbitrary integral domain Z.

3.1. Fixed divisors. We refer to Section 1 for the definition of “fixed divisor with
respect to t” of a polynomial P.t; y/ and for the associated notation Ft .P /.

Lemma 3.1. Let Z be an integral domain.

(a) Let P 2 ZŒt; y� be a non-zero polynomial and p be a prime of Z not dividing P . If p is
in the set Ft .P / of fixed divisors of P , it is of norm jZ=pZj 6 maxiD1;:::;k degti .P /.

(b) Assume that Z is a near UFD and every prime of Z is of infinite norm. Then, for
any polynomials P1.t ; y/; : : : ; Ps.t ; y/ 2 ZŒt; y�, primitive with respect to Z, we have
Ft .P1 � � �Ps/ D ;.

(c) If Z D RŒu1; : : : ; ur � is a polynomial ring over an integral domain R, and if either R is
infinite or r > 2, then every prime p 2 Z is of infinite norm. The same conclusion holds
if Z is an integral domain containing an infinite field.

On the other hand, Z and FqŒx� are typical examples of rings that have primes of finite
norm. As already noted, (b) is in fact false for these two rings.

Proof. (a) This is classical. If p is a prime of Z such that P is non-zero modulo p
and jZ=pZj > maxiD1;:::;k degti .P /, there exists m 2 Zk such that P.m; y/ 6� 0 .modp/,
i.e. p … Ft .P /.

(b) Assume that the set Ft .P1 � � �Ps/ contains a non-unit a 2 Z. As Z is a near UFD,
one may assume that a is a prime ofZ. It follows from P1; : : : ; Ps being primitive with respect
to Z that the product P1 � � �Ps is non-zero modulo a. From (a), the norm jZ=aZj should be
finite, whence a contradiction. Conclude that the set Ft .P1 � � �Ps/ is empty.

(c) With Z D RŒu1; : : : ; ur � as in the statement, assume first that R is infinite. Let
p 2 RŒu1; : : : ; ur � be a prime element. Suppose first that p 62 R, say

d D degur .p/ > 1:

The elements 1; ur ; : : : ; ud�1r areRŒu1; : : : ; ur�1�-linearly independent in the integral domain
Z=pZ. As R is infinite, the elements

Pd�1
iD0 piu

i
r with p0; : : : ; pd�1 2 R are infinitely many

different elements in Z=pZ. Thus Z=pZ is infinite. In the case that p 2 R, the quotient ring
Z=pZ is .R=pR/Œu1; : : : ; ur �, which is infinite too.

If Z D RŒu1; : : : ; ur � with r > 2, write

RŒu1; : : : ; ur � D RŒu1�Œu2; : : : ; ur �

and use the previous paragraph with R taken to be the infinite ring RŒu1�.
If Z is an integral domain containing an infinite field k, the containment k � Z induces

an injective morphism k ,! Z=pZ for every prime p of Z. The last claim follows.
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3.2. The two hypotheses. Definition 3.2 introduces the coprime Schinzel Hypothesis
in the general situation of s sets of polynomials in k variables ti , with k; s > 1. The initial
definition from Theorem 1.3 (denoted CopSch.1; 1/ in Section 2) corresponds to the special
case s D k D 1; in particular assumption (AV) from there is (AVt ) below with t D t and s D 1.

Definition 3.2. Given an integral domain Z of fraction field Q, the coprime Schinzel
Hypothesis holds forZ if for any integers k; s > 1, the following property CopSch.k; s/ is true:
Consider s sets ¹P11; : : : ; P1`1º; : : : ; ¹Ps1; : : : ; Ps`sº of non-zero polynomials in ZŒt� (with
t D .t1; : : : ; tk/) such that `i > 2 and Pi1; : : : ; Pi`i are coprime inQŒt�, for each i D 1; : : : ; s.
Assume further that

(AVt ) for every non-unit a 2 Z, there exists m 2 Zk , such that, for each i D 1; : : : ; s,
the values Pi1.m/; : : : ; Pi`i .m/ are not all divisible by a.

Then there existsm 2 Zk such that, for each i D 1; : : : ; s, the values Pi1.m/; : : : ; Pi`i .m/ are
coprime in Z.

This property is the one used by Schinzel (over Z D Z) in his 2002 paper [10]. The next
definition introduces an alternate property, which is equivalent under some assumption, and
which better suits our Hilbert–Schinzel context.

Definition 3.3. Given an integral domain Z, the Primitive Specialization Hypothesis
holds for Z if for any integers k; n; s > 1 the following property PriSpe.k; n; s/ is true: Let
P1.t ; y/; : : : ; Ps.t ; y/ 2 ZŒt; y� be s non-zero polynomials (in the variables t D .t1; : : : ; tk/
and y D .y1; : : : ; yn/). Assume that they are primitive with respect to QŒt� and that

Ft .P1 � � �Ps/ D ;:

Then there existsm 2 Zk such that the polynomialsP1.m; y/; : : : ; Ps.m; y/ are primitive with
respect to Z.

Lemma 3.4. The following statements hold:

(1) For all integers k; s > 1, we have

CopSch.k; s/ H) PriSpe.k; n; s/ for every n > 1.

(2) The converse holds as well

(a) if Z has the property that every non-unit is divisible by a prime element, or,

(b) in the special situation that s D 1.

(3) For all integers k; n; s > 1, we have

PriSpe.k; n; 1/ H) PriSpe.k; n; s/:

Thus the coprime Schinzel Hypothesis is stronger than the Primitive Specialization Hypo-
thesis and they are equivalent in either case (a) or (b) from (2), in particular ifZ is a near UFD.
Assertion (3) allows reducing to the case of one polynomial P.t; y/ 2 ZŒt; y� for proving the
Primitive Specialization Hypothesis. For a near UFD, the analogous reduction to one family
¹P1.t/; : : : ; P`.t/º of polynomials in ZŒt� also holds for the (equivalent) coprime Schinzel
Hypothesis, but this is not clear for a general domain.
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Proof. (1) Assuming CopSch.k; s/ for some k; s > 1, let y D .y1; : : : ; yn/ be n > 1

variables and Pi .t ; y/ (i D 1; : : : ; s) as in PriSpe.k; n; s/. Consider the sets

¹Pi1.t/; : : : ; Pi`i .t/º .i D 1; : : : ; s/

of their respective coefficients in ZŒt�. Condition Ft .P1 � � �Ps/ D ; rewrites:

.8a 2 Z nZ�/ .9m 2 Zk/

 
a does not divide

sY
iD1

Pi .m; y/

!
:(�)

This obviously implies that

.8a 2 Z nZ�/ .9m 2 Zk/ .8i D 1; : : : ; s/ .a does not divide Pi .m; y//;(��)

which is equivalent to condition (AVt ) for the sets ¹Pi1.t/; : : : ; Pi`i .t/º (i D 1; : : : ; s). If
`1; : : : ; `s are > 2, then the coprime Schinzel Hypothesis yields some m 2 Zk such that the
polynomial values Pi1.m/; : : : ; Pi`i .m/ are coprime in Z, which equivalently translates as
Pi .m; y/ being primitive with respect to Z (i D 1; : : : ; s). Taking Remark 3.5 (1) below into
account, we obtain that CopSch.k; s/ implies PriSpe.k; n; s/.

Remark 3.5. If `i D 1 for some i 2 ¹1; : : : ; sº, i.e. if the polynomialPi .t ; y/ is a mono-
mial in y, then this polynomial should be treated independently. In this case, Pi .t ; y/ being
primitive with respect toZŒt�, it is of the form cy

i1
1 � � �y

in
n for some integers i1; : : : ; in > 0 and

c 2 Z�. Then Pi .m; y/ D cy
i1
1 � � �y

in
n remains primitive with respect to Z for every m 2 Zk .

(2) Suppose that we are given sets ¹Pi1.t/; : : : ; Pi`i .t/º as in CopSch.k; s/ for some
integers k; s > 1. Consider the polynomials

Pi .t ; y/ D Pi1.t/y1 C � � � C Pi`i .t/y`i ; i D 1; : : : ; s;

where y D .y1; : : : ; y`/ is an `-tuple of new variables and ` D max.`1; : : : ; `s/.8) Condi-
tion (AVt ) rewrites as (��) above. In either one of the situations (a) or (b) of the statement,
condition (��) does imply condition (�), and equivalently Ft .P1 � � �Ps/ D ;, for the poly-
nomials Pi .t ; y/ defined above. Thus if PriSpe.k; n; s/ holds (for every n > 1), we obtain
some m 2 Zk such that the polynomials P1.m; y/; : : : ; Ps.m; y/ are primitive with respect
to Z, which, in terms of the original polynomials Pij .t/, corresponds to the conclusion of the
requested property CopSch.k; s/.

(3) Let P1.t ; y/; : : : ; Ps.t ; y/ be as in PriSpe.k; n; s/. Set

P D P1 � � �Ps:

We have P 2 ZŒt; y�, and from Gauss’s lemma (applied to the UFDQŒt�), P is primitive with
respect to QŒt�. By hypothesis, Ft .P / D ;. Assuming PriSpe.k; n; 1/, it follows that there
exists m 2 Zk such that P.m; y/ is primitive with respect to Z. But then, the polynomials
P1.m; y/; : : : ; Ps.m; y/ are primitive with respect to Z as well.

8) Any polynomial in ZŒt�Œy1; : : : ; y`i � with coefficients Pi1.t/; : : : ; Pi`i .t/ may be used instead of the
polynomial Pi1.t/y1 C � � � C Pi`i .t/y`i (i D 1; : : : ; s).
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3.3. Main result. Before stating the main conclusions on our Hypotheses, we introduce
the following variant of the Primitive Specialization Hypothesis, which is more precise and
more involved but turns out to be quite central and useful.

Definition 3.6. Let Z be an integral domain such that every non-zero a 2 Z has only
finitely many prime divisors (modulo units). We say that the starred Primitive Specializa-
tion Hypothesis holds for Z if the following property PriSpe?.k; s/ is true for any integers
k; s > 1: Let n > 1 and let P1.t ; y/; : : : ; Ps.t ; y/ 2 ZŒt; y� be s non-zero polynomials (with
t D .t1; : : : ; tk/ and y D .y1; : : : ; yn/), primitive with respect to QŒt� and such that the prod-
uct P1 � � �Ps has no fixed prime divisor in Z with respect to t . Let P0 2 ZŒt� with P0 6D 0.
Then there exist .m1; : : : ; mk�1/2Zk�1 and an arithmetic progression �k D .!k`C˛k/`2Z
with !k; ˛k 2Z, !k 6D 0 such that for all but finitely many mk 2 �k , the polynomials

P1.m1; : : : ; mk; y/; : : : ; Ps.m1; : : : ; mk; y/

have no prime divisors in Z, and P0.m1; : : : ; mk/ 6D 0 (with the convention that for k D 1,
existence of .m1; : : : ; mk�1/ 2 Zk�1 is not requested).

IfZ is a near UFD (and so it is equivalent to request that prime or non-unit divisors exist),
PriSpe?.k; s/ is a more precise form of (PriSpe.k; n; s/ for all n > 1) saying where to find the
tuples m, the existence of which is asserted in PriSpe.k; n; s/; thus we have

PriSpe?.k; s/ H) .PriSpe.k; n; s/ for all n > 1/ ” CopSch.k; s/:

Because the existence of non-unit vs. prime divisors issue is not void in Dedekind domains,
Definition 3.3 and Definition 3.6 do not compare so obviously for Dedekind domains.

Theorem 3.7. The following statements hold:

(a) If Z is a near UFD or a Dedekind domain, then the starred Primitive Specialization
Hypothesis holds for Z.

(b) If Z is a near UFD, then both the Coprime Schinzel Hypothesis and the Primitive Spe-
cialization Hypotheses hold.

(c) IfZ is a Dedekind domain, then the Primitive Specialization Hypothesis holds with k D 1
and n; s > 1 (i.e. for polynomials with one variable t to be specialized), and the Coprime
Schinzel Hypothesis holds if in addition s D 1 (one family of polynomials).

Theorem 1.3 for UFDs is the special case s D k D 1 of Theorem 3.7 (b), and Theo-
rem 1.3 for Dedekind domains (already proved in Section 2.2) is the second part of Theo-
rem 3.7 (c).

3.4. Two lemmas. The following lemmas are used in the proof of Theorem 3.7 and of
Theorem 1.6. The first one is a refinement of the Chinese Remainder Theorem.

Lemma 3.8. Let Z be an integral domain. Let I1; : : : ; I� be � maximal ideals of Z
and let I�C1; : : : ; Ir be r � � ideals assumed to be prime but not maximal (with 0 6 � 6 r).
Assume further that Ij 6� Ij 0 for any distinct elements j; j 0 2 ¹1; : : : ; rº. Let t , y be tuples
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of variables of length k; n > 1 and let F 2 ZŒt; y� be a polynomial, non-zero modulo each
ideal Ij , j D �C 1; : : : ; r . Then for every .a1; : : : ; a�/ 2 .Z

k/�, there exists m 2 Zk such
that

m � aj .mod Ij / for each j D 1; : : : ; �,

and
F.m; y/ 6� 0 .mod Ij / for each j D �C 1; : : : ; r .

Proof. Assume first 0 6 � < r . A first step is to show by induction on r � � > 1 that
there exists m0 2 Z

k such that F.m0; y/ 6� 0 .mod Ij /, j D �C 1; : : : ; r .
Start with r � � D 1. The quotient ring Z=I�C1 is an integral domain but not a field,

hence is infinite; and F is non-zero modulo I�C1 (i.e. in .Z=I�C1/Œt ; y�). Thus elements
m0 2 Z

k exist such that F.m0; y/ 6� 0 .mod I�C1/. Assume next that there is an element
ofZk , saym1, such that F.m1; y/ 6� 0 .mod Ij /, j D �C 1; : : : ; s with s < r . It follows from
the assumptions on I�C1; : : : ; Ir that the product I�C1 � � � Is is not contained in IsC1. Pick an
element � in I�C1 � � � Is that is not in IsC1 and consider the polynomial F.m1 C �t; y/. This
polynomial is non-zero modulo IsC1 since both F andm1 C �t are non-zero modulo IsC1. As
above, the quotient ringZ=IsC1 is an infinite integral domain and so there exists t0 2 Z

k such
that F.m1 C �t0; y/ 6� 0 .mod IsC1/; and for each j D �C 1; : : : ; s, since � 2 Ij , we have
F.m1 C �t0; y/ � F.m1; y/ 6� 0 .mod Ij /. Set m0 D m1 C �t0 to conclude the induction.

Set J D I�C1 � � � Ir . The ideals I1; : : : ; I�; J are pairwise comaximal. We may apply
the Chinese Remainder Theorem, and will, component by component. More specifically write
m0 D .m01; : : : ; m0k/ and ai D .ai1; : : : ; aik/, i D 1; : : : ; �. For each h D 1; : : : ; k, there is
an element mh 2 Z such that

mh � ajh .mod Ij / for each j D 1; : : : ; �,

and
mh � m0h .mod J /:

Set m D .m1; : : : ; mk/. Clearly, we have

m � aj .mod Ij / for each j D 1; : : : ; �,

and
m � m0 .mod J /:

The last congruence implies that, for each j D �C 1; : : : ; r , we have m � m0 .mod Ij /, and
so F.m; y/ 6� 0 .mod Ij /.

If r D �, then there is no ideal J and the sole second part of the argument, applied with
the maximal ideals I1; : : : ; I�, yields the result.

Lemma 3.9. Let Z be an integral domain such that every non-zero element a 2 Z has
only finitely many prime divisors (modulo units). Then, for every real number B > 0, there are
only finitely many prime principal ideals pZ of norm jZ=pZj less than or equal to B .

The assumption on Z is satisfied in particular if Z is a near UFD or a Dedekind domain.

Proof. One may assume that Z is infinite. Fix a real number B > 0. For every prime
power q D `r 6 B , pick an element mq 2 Z such that mqq �mq 6D 0. Let a be the product
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of all elements mqq �mq with q running over all prime powers q 6 B . From the assumption
on Z, the list, say Da, of all prime divisors of a (modulo units), is finite.

Consider now a prime p 2 Z such that jZ=pZj 6 B . The integral domainZ=pZ, being
finite, is a field. Hence jZ=pZj is a prime power q D `r , and q 6 B . Of course we have
m
q
q �mq � 0 .modp/. Hence p divides a, i.e. p 2 Da.

3.5. A reduction lemma. This lemma is a central tool of the proof of Theorem 3.7.

Lemma 3.10. Let Z be an integral domain such that every non-zero a 2 Z has only
finitely many prime divisors (modulo units). Let k; s > 1 be two integers. Assume that property
PriSpe?.1; 1/ holds. Then property PriSpe?.k; s/ holds for all integers k; s > 1.

This reduction is explained in the proof of [10, Theorem 1, pp. 242–243], with two dif-
ferences. First, Schinzel uses the coprime Hypothesis formulation instead of the Primitive
Specialization one (from Lemma 3.4, they are equivalent if Z is a near UFD). Secondly,
Schinzel works over Z D Z. Our proof adapts his arguments to the Primitive Specialization
formulation and shows that they carry over to our more general domains Z.

Proof of Lemma 3.10. Observe that using the same argument as for Lemma 3.4 (3), one
can reduce from s to one polynomial P.t; y/:

PriSpe?.k; 1/ ” PriSpe?.k; s/:

Thus we merely need to prove that if PriSpe?.1; 1/ holds then so does PriSpe?.k; 1/ (k > 1).
Assume that PriSpe?.1; 1/ holds. By the induction principle, we need to prove that

PriSpe?.k � 1; 1/ H) PriSpe?.k; 1/ for k > 2.

Assume PriSpe?.k � 1; 1/ and let n, P.t; y/ and P0.t/ be as in PriSpe?.k; 1/.
One may assume that degtk .P / > 0. Let P be the set of all primes p 2 Z (modulo

units) such that jZ=pZj 6 max16h6k degth.P /. By Lemma 3.9, the set P is finite. Let � be
the product of its elements.

The first step is to construct a k-tuple u D .u1; : : : ; uk/ 2 Zk such that

(3.1) P.u; y/ 6� 0 .mod p/ for every p 2 P .

By assumption, no prime of Z is a fixed divisor of P with respect to t . Thus for every p 2 P ,
there exists a k-tuple up D .up1; : : : ; upk/ 2 Z

k such that P.up; y/ 6� 0 .modp/. Denote by
P1 � P the subset of primes p such that the ideal pZ is maximal in Z. We now apply Lem-
ma 3.8. From above, P is non-zero modulo each p 2 P nP1, and we have pZ 6� p0Z for any
distinct p; p0 2 P . Thus Lemma 3.8 provides a k-tuple u0 D .u01; : : : ; u0k/ 2 Z

k such that
u0 � up .modp/ for every prime p 2 P1 and P.u0; y/ 6� 0 .modp/ for every p 2 P nP1.
These congruences imply that P.u0; y/ 6� 0 .modp/ for every p 2 P . Furthermore, denoting
by �h the arithmetic progression �h D .�`C u0h/`2Z (h D 1; : : : ; k), conclusion (3.1) holds
for every u D .u1; : : : ; uk/ 2 �1 � � � � � �k . Fix such a k-tuple u.

Consider the following polynomial, where v0 D .v1; : : : ; vk�1/ is a tuple of new vari-
ables, and u0 D .u1; : : : ; uk�1/:eP .v0; tk; y/ D P.�v0 C u0; tk; y/ 2 ZŒv0; tk; y�:
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We check below that as a polynomial in the nC 1 variables tk; y with coefficients in
ZŒv0�, it satisfies the assumptions allowing using the induction hypothesis PriSpe?.k � 1; 1/.

Clearly, the polynomial eP is non-zero. Set t 0 D .t1; : : : ; tk�1/. The polynomial P is
primitive with respect to QŒt 0�. Hence eP is primitive with respect to QŒv0�. Also note that
by (3.1), we have, for every p 2 P ,

(3.2) eP .`0; uk; y/ 6� 0 .mod p/ for every `0 2 Zk�1.

The next paragraph shows that eP has no fixed prime divisor in Z with respect to v0.
Assume that there is a prime p 2 Z such thateP .`0; tk; y/ � 0 .mod p/ for every `0 2 Zk�1.

It follows from (3.2) that p … P . This gives that for every h D 1; : : : ; k � 1, we have

�vh C uh 6� 0 .modp/

(as a polynomial in vh). This, conjoined with P.t 0; tk; y/ D P.t; y/ 6� 0 .modp/ shows that
P.�v0 C u0; tk; y/ 6� 0 .modp/. In other words, eP is non-zero modulo p. A contradiction
then follows from Lemma 3.1 (a) and

jZ=pZj > max
16h6k�1

.degth.P // D max
16h6k�1

.degvh.eP //:
We will apply assumption PriSpe?.k � 1; 1/ to eP 2 ZŒv0�Œtk; y�, and for the following

choice of a non-zero polynomial eP 0 2 ZŒv0�. The polynomial P is primitive with respect
to QŒt�. Thus if ¹Pj .t/ j j 2 J º is the set of coefficients of P (viewed as a polynomial in
y), by writing a Bézout relation in the PID Q.t 0/Œtk� and then clearing the denominators, we
obtain elements Aj 2 ZŒt� and � 2 ZŒt 0�, � 6D 0, such that

(3.3)
X
j2J

Aj .t
0; tk/Pj .t

0; tk/ D �.t
0/:

Set then eP 0.v0/ D P01.�v0 C u0/ ��.�v0 C u0/;
where P01.t 0/ 2 ZŒt 0� is the leading coefficient of P0 viewed as a polynomial in tk .

From PriSpe?.k � 1; 1/, there exists `0 D .`1; : : : ; `k�1/ 2 Zk�1 such that

(3.4) the polynomial eP .`0; tk; y/ D P.�`0 C u0; tk; y/ has no prime divisors in Z,

and

(3.5) eP 0.`0/ D P01.�`0 C u0/ ��.�`0 C u0/ 6D 0:
It follows from (3.3) and (3.5) that the polynomial eP .`0; tk; y/ is non-zero and primitive

with respect to QŒtk�. We check below that eP .`0; tk; y/ has no fixed prime divisor in Z with
respect to the variable tk .

Assume that for some prime p 2 Z, we haveeP .`0; mk; y/ � 0 .mod p/ for every mk 2 Z.

In view of (3.1), we have p … P . Hence, by choice of P , we have

(3.6) jZ=pZj > degtk .P / D degtk .eP / > degtk .eP .`0; tk; y//:
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From (3.4) we know that the polynomial eP .`0; tk; y/ is non-zero modulo p (i.e. non-zero
in .Z=pZ/Œtk; y�). This, conjoined with (3.6), contradicts Lemma 3.1 (a).

Use next assumption PriSpe?.1; 1/ to conclude that there exists an arithmetic progression
�k D .!k`C ˛k/`2Z , with !k; ˛k 2 Z, !k 6D 0, such that for every mk 2 �k , the polynomial

eP .`0; mk; y/ D P.�`0 C u0; mk; y/
has no prime divisors inZ. Furthermore, taking into account thatP01.�`0Cu0/ 6D 0 (by (3.5)),
we have P0.�`0 C u0; mk/ 6D 0 for all finitely manymk 2 �k . The requested conclusion is thus
proved for .m1; : : : ; mk�1/ D �`

0
C u0 and the arithmetic progression �k .

3.6. Proof of Theorem 3.7.

3.6.1. Proof of (a). Let Z be a near UFD or a Dedekind domain. By Lemma 3.10,
proving PriSpe?.1; 1/ will give PriSpe?.k; s/ for all integers k; s > 1, i.e. the starred Primitive
Specialization Hypothesis.

First case: Z is a near UFD. Let P.t; y/ be as in PriSpe?.1; 1/. From Remark 3.5 (1),
one may assume that P is not a monomial in y. Let ı 2 Z be the parameter associated in
Section 2.1 with the non-zero coefficients P1.t/; : : : ; P`.t/ 2 ZŒt� of P.t; y/ viewed as a
polynomial in y.

Let p1; : : : ; pr be the prime divisors of ı (distinct modulo units). From the condition
Ft .P / D ;, for every h D 1; : : : ; r , there exists mh 2 Z such that P.mh; y/ 6� 0 .modph/.

We may assume without loss of generality that, for some � 2 ¹0; 1; : : : ; rº, the ideals
p1Z; : : : ; p�Z are maximal in Z, whereas the ideals p�C1Z; : : : ; prZ are not. From above,
P is non-zero modulo each ph, h D �C 1; : : : ; r , and we have piZ 6� pi 0Z for any distinct
i; i 0 2 ¹1; : : : ; rº. Lemma 3.8 (with t D t ), applied with Ih D phZ, h D 1; : : : ; r , yields that
there exists an element m0 2 Z such that

m0 � mh .mod ph/; h D 1; : : : ; �;

and
P.m0; y/ 6� 0 .mod ph/; h D �C 1; : : : ; r:

These congruences imply that P.m0; y/ 6� 0 .modph/ for each h D 1; : : : ; r .
Conclude that the polynomial P.m0; y/ is primitive with respect to Z. Indeed assume

that some non-unit a 2 Z divides P.m0; y/. From Lemma 2.1, a then divides ı. But using
that Z is a near UFD, we obtain that some prime divisor of a divides ı and P.m0; y/, con-
trary to what we have established. Furthermore, our conclusion “P.m; y/ is primitive with
respect to Z” is not only true for m D m0, but also for every m in the arithmetic progression
.ı`Cm0/`2Z .

Remark 3.11. More generally, if several polynomials Pi .t; y/ are given as in condi-
tion PriSpe.1; n; s/, then, denoting the corresponding ı-parameters by ı1; : : : ; ıs , the conclu-
sion of the Primitive Specialization Hypothesis “P1.m; y/; : : : ; Ps.m; y/ are primitive with
respect to Z” holds for every m in some arithmetic progression .!`C ˛/`2Z . Specifically,
one can take !; ˛ 2 Z such that every prime divisor p of ı D ı1 � � � ıs divides ! and satisfiesQs
iD1 Pi .˛; y/ 6� 0 .modp/.
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Second case: Z is a Dedekind domain. We noted in Proposition 2.3 that the proof
from Section 2.2 of the Dedekind domain part of Theorem 1.3 gives a more precise form of
CopSch.1; 1/. Namely it produces a whole arithmetic progression, the elements of which sat-
isfy the conclusion of the CopSch.1; 1/ (Proposition 2.3 (a)). Furthermore, Proposition 2.3 (b)
shows that the same holds if non-unit divisors are replaced by prime divisors in the statement of
the property. Finally, adjusting the observation made in Lemma 3.4 (1) to show that “Coprime
Schinzel” is stronger than “Primitive Specialization”, what we eventually obtain from this chain
of arguments is that the proof from Section 2.2 indeed gives property PriSpe?.1; 1/.

3.6.2. Proof of (b). This clearly follows from (a) as for near UFDs, the starred Prim-
itive Specialization Hypothesis is stronger than the Primitive Specialization Hypothesis, and
that by Lemma 3.4 (2a), the latter and the coprime Schinzel Hypothesis are equivalent.

3.6.3. Proof of (c). Let Z be a Dedekind domain. As already pointed out, the second
part of (c), i.e. CopSch.1; 1/, is the Dedekind domain part of Theorem 1.3 proved in Section 2.2.
By Lemma 3.4 (1), we deduce PriSpe.1; n; 1/ for every n > 1. Combined with Lemma 3.4 (3),
we obtain PriSpe.1; n; s/ for all integers n; s > 1.

4. The Hilbert–Schinzel specialization property

The goal of this section is to show Theorem 1.6. We distinguish two cases: k D 1 in
Section 4.1 and k > 1 in Section 4.2. We consider refinements of Theorem 1.6 in Section 4.3.

A new assumption on Z in this section is that it is a Hilbertian ring.

Definition 4.1. Let Z be an integral domain such that the fraction field Q is of char-
acteristic 0 or imperfect. The ring Z is called a Hilbertian ring if the following holds: Let
t D .t1; : : : ; tk/ and y D .y1; : : : ; yn/ be tuples of variables .k; n > 1/, P1.t ; y/; : : : ; Ps.t ; y/
be s polynomials (s > 1), irreducible in QŒt; y�, of degree at least 1 in y, and F.t/ 2 QŒt� be
a non-zero polynomial. Then the so-called Hilbert subset

HQ.P1; : : : ; PsIF / D ¹m 2 Q
k
j Pi .m; y/ is irreducible in QŒy� .i D 1; : : : ; s/

and F.m/ 6D 0º

contains a k-tuple m 2 Zk . If Z is a field, it is called a Hilbertian field.

The original definition of Hilbertian ring from [6, Section 13.4] has the defining condition
only requested for n D 1 and polynomials P1.t ; y1/; : : : ; Ps.t ; y1/ that are further assumed to
be separable in y1. But [2, Proposition 4.2] shows that it is equivalent to Definition 4.1 under
the imperfectness condition. Note further that since Zariski open subsets of Hilbert subsets
remain Hilbert subsets, it is equivalent to require in Definition 4.1 thatHQ.P1; : : : ; PsIF / con-
tains a Zariski-dense subset of tuples m 2 Zk . In particular, a Hilbertian ring Z is necessarily
infinite.

For the proof of Theorem 1.6, note that one may assume that none of the polynomials
P1; : : : ; Ps are monomials in y (with coefficients in ZŒt�): to fulfill the assumptions of Theo-
rem 1.6, such a monomial must be of the form cyi for some c 2 Z� and i 2 ¹1; : : : ; nº; the
required conclusion for this monomial then trivially holds for every m 2 Zk .
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4.1. Proof of Theorem 1.6: Case k D 1. In this subsection, we will prove more gen-
erally that the Hilbert–Schinzel property holds with k D 1 and given integers n; s > 1 if Z is
a Hilbertian ring and the Primitive Specialization Hypothesis holds for Z with k D 1 and the
integers n and s. From Theorem 3.7, the latter holds if Z is a near UFD or a Dedekind domain.

Let P1.t; y/; : : : ; Ps.t; y/ be s polynomials, irreducible inQŒt; y�, primitive with respect
to Z, of degree > 1 in y and such that

Ft .P1 � � �Ps/ D ;:

The polynomials P1.t; y/; : : : ; Ps.t; y/ are also primitive with respect to QŒt�, as they are
irreducible inQŒt; y�. The Primitive Specialization Hypothesis with k D 1 provides an element
˛ 2 Z such that P1.˛; y/; : : : ; Ps.˛; y/ are primitive with respect toZ. Let ıi be the parameter
associated in Lemma 2.1 with the coefficients Pij .t/ 2 ZŒt� of Pi (i D 1; : : : ; s), and let ! be
a multiple of ı D ı1 � � � ıs . From Lemma 2.1, for every ` 2 Z, the polynomials

P1.˛ C `!; y/; : : : ; Ps.˛ C `!; y/

are primitive with respect to Z. Consider next the polynomials

P1.˛ C !t; y/; : : : ; Ps.˛ C !t; y/:

They are in ZŒt; y� and are irreducible in QŒt; y�. As Z is a Hilbertian ring, infinitely many
` 2 Z exist such that the polynomials

P1.˛ C !`; y/; : : : ; Ps.˛ C !`; y/

are irreducible in QŒy�. From above, these polynomials are also primitive with respect to Z.

4.2. Proof of Theorem 1.6: Case k > 1. We may assume that we are in case (a), and
Z is a near UFD. Let P1.t ; y/; : : : ; Ps.t ; y/ be s polynomials, irreducible inQŒt; y�, primitive
with respect to Z, of degree > 1 in y and such that Ft .P1 � � �Ps/ D ;. Fix a non-zero polyno-
mial P0 2 ZŒt�. We need to produce a k-tuple m 2 Zk such that P1.m; y/; : : : ; Ps.m; y/ are
irreducible inQŒy� and primitive with respect to Z, and P0.m/ 6D 0. This clearly follows from
successive applications of the following lemma to each of the variables t1; : : : ; tk .

Lemma 4.2. If Z is a near UFD and a Hilbertian ring, then Z has the following
property HilSch?.k; n; s/, for all k; n; s > 1: With t D .t1; : : : ; tk/, y D .y1; : : : ; yn/, let

P1.t ; y/; : : : ; Ps.t ; y/

be s polynomials, irreducible in QŒt; y�, of degree > 1 in y and such that the product

P D P1 � � �Ps

has no fixed prime divisor in Z with respect to t . Then there is an arithmetic progression
� D .!`C ˛/`2Z (!; ˛ 2 Z, ! 6D 0) such that, for infinitely many m1 2 � , the polynomials

P1.m1; t2; : : : ; tk; y/; : : : ; Ps.m1; t2; : : : ; tk; y/

are irreducible in QŒt2; : : : ; tk; y�, of degree > 1 in y, and such that their product, i.e. the
polynomial P.m1; t2; : : : ; tk; y/, has no fixed prime divisor in Z with respect to .t2; : : : ; tk/.
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(For the application to Theorem 1.6 (a), note that for near UFDs, the fixed prime divisor
condition, both in the assumption and the conclusion of the property, implies that each of the
s polynomials in question are primitive with respect to Z. Also note that the extra condition
in the general definition of Hilbert subsets that F.m/ 6D 0 for some given non-zero polynomial
F 2 QŒt� is easily guaranteed: in the successive applications of Lemma 4.2 to each variable ti ,
it suffices to exclude finitely many values mi , i D 1; : : : ; k).

Proof of Lemma 4.2. Set t 0 D .t2; : : : ; tk/. Consider P1; : : : ; Ps as polynomials in t 0; y
and with coefficients in ZŒt1�. As such, they are primitive with respect to QŒt1� (being irreduc-
ible inQŒt; y�). For each i D 1; : : : ; s, denote by ıi 2 Z the parameter associated in Section 2.1
with the coefficients of Pi (which are in ZŒt1� and coprime).

Set ı D ı1 � � � ıs and let P be the set of primes p 2 Z that divide ı or such that

jZ=pZj 6 max
26h6k

degth.P /:

From Lemma 3.9, the set P is finite (up to units). Let ! be the product of all primes in P .
The first step is to construct a k-tuple u D .u1; : : : ; uk/ 2 Zk such that

(4.1) P.u; y/ 6� 0 .mod p/ for every p 2 P .

As P has no fixed prime divisor with respect to t , for every p 2 P , there is a k-tuple
up 2 Z

k such that P.up; y/ 6� 0 .modp/. Using Lemma 3.8 and arguing as in the proof of
Lemma 3.10 (first step), one finds u0 D .u01; : : : ; u0k/ 2 Z

k satisfying (4.1). Furthermore,
denoting by �h the arithmetic progression �h D .!`C u0h/`2Z (h D 1; : : : ; k), the conclusion
holds for every u D .u1; : : : ; uk/ 2 �1 � � � � � �k . Fix such a k-tuple u and set ˛ D u1.

It follows from the fixed prime divisor assumption with respect to t that P has no fixed
prime divisor with respect to the variable t1. From Remark 3.11, we have that, for every `1 2 Z,

(4.2) the polynomials Pi .!`1 C ˛; t 0; y/, i D 1; : : : ; s, have no prime divisors in Z.

(Note that condition from Remark 3.11 that P.˛; t 0; y/ 6� 0 .modp/ and every prime divisor
of ı is guaranteed by (4.1)).

Consider the following polynomials, where v1 is a new variable:eP i .v1; t 0; y/ D Pi .!v1 C ˛; t 0; y/ 2 ZŒv1; t 0; y�; i D 1; : : : ; s:

The polynomials eP 1; : : : ;eP s are irreducible inQŒt 0�Œv1; y� and of degree at least 1 in y. As Z
is a Hilbertian ring, there exist infinitely many `1 2 Z such that

the polynomials eP i .`1; t 0; y/ (i D 1; : : : ; s) are irreducible in QŒt 0; y�,(4.3)
of degree > 1 in y.

Fix `1 2 Z as in (4.3) and set eP DQs
iD1

eP i . To end the proof, it remains to check thateP .`1; t 0; y/ has no fixed prime divisor with respect to t 0. Assume that for some prime p 2 Z,
we have eP .`1; m0; y/ � 0 .modp/ for every m0 2 Zk�1. Note that due to (4.1) we haveeP .`1; u2; : : : ; uk; y/ 6� 0 .mod p/ for every p 2 P .

Therefore p … P . Hence, by choice of P ,

(4.4) jZ=pZj > max
26h6k

degth.P / > max
26h6k

degth.eP .`1; t 0; y//:
By (4.2), eP 1.`1; t 0; y/; : : : ;eP s.`1; t 0; y/ are non-zero modulo p (in .Z=pZ/Œt 0; y�). Hence so
is their product eP .`1; t 0; y/. This, conjoined with (4.4) contradicts Lemma 3.1 (a).
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4.3. Variants of Theorem 1.6.

4.3.1. Relaxing the fixed divisor assumption. LetZ be a near UFD and letP1; : : : ; Ps
be as in Definition 1.5, except that Ft .P1 � � �Ps/ D ; is no longer assumed. By Lemma 3.1,
the set of primes in Ft .P1 � � �Ps/ is finite (modulo units). Let ' be the product of them. One
can then conclude that

(*) there is a Zariski-dense subsetH � ZŒ1='�k such that for everym 2 H , the polynomials
P1.m; y/; : : : ; Ps.m; y/ are irreducible in QŒy� and primitive with respect to ZŒ1='�.

Of course, if Ft .P1 � � �Ps/ D ;, then ' D 1 and we merely have Theorem 1.6. Conversely, the
improved conclusion follows from Theorem 1.6 by just taking Z to be ZŒ1='�: simply note
that the assumptions on Z are preserved by passing to ZŒ1='�.

Remark 4.3. One can avoid inverting ' and still not assume Ft .P1 � � �Ps/ D ;, but
then specializing to pointsm 2 Zk should be replaced by specializing to pointsm.y/ 2 ZŒy�k:
a Zariski-dense subset of m.y/ 2 ZŒy�k exists such that P1.m.y/; y/; : : : ; Ps.m.y/; y/ are
irreducible in ZŒy� (see [2, Theorem 1.1]).

4.3.2. A variant of Theorem 1.6 for Dedekind domains with k > 1. Compared to
Theorem 1.6 (b) where k D 1, the following result, for Dedekind domains, has k > 1 but s D 1,
i.e. concerns one polynomial with k > 1 variables ti to be specialized.

Theorem 4.4. Let Z be a Dedekind domain and a Hilbertian ring. Let P.t; y/ be
a polynomial, irreducible in QŒt; y�, of degree > 1 in y (with k; n > 1). Assume that P has
no fixed prime divisor with respect to t . There is a Zariski-dense subset H � Zk such that for
every m 2 H , the polynomial P.m; y/ is irreducible in QŒy� and has no prime divisor in Z.

The cost of the generalization to k > 1 is that the primitivity with respect to Z of the
polynomial P.m; y/ in the conclusion is replaced by the non-divisibility by any prime p 2 Z.
On the other hand the assumption is weaker: P.t; y/ is not assumed to be primitive with respect
to Z and the fixed divisor assumption is restricted to primes.

Proof. As before, one may assume that P is not a monomial in y. The statement clearly
follows from successive applications of property HilSch?.k; n; 1/ from Lemma 4.2 to each
of the variables t1; : : : ; tk . In Lemma 4.2, this property was proved in the case that Z is
a near UFD. We prove it below in the case that Z is a Dedekind domain (and a Hilbertian
ring as also assumed in Lemma 4.2). The strategy is the same.

Recall that here s D 1. Let P1.t1/; : : : ; PN .t1/ 2 ZŒt1� be the coefficients of P viewed
as a polynomial in t 0; y, where t 0 D .t2; : : : ; tk/. They are coprime in QŒt1� (a consequence
of P being irreducible inQŒt; y�). Let ı 2 Z be the associated parameter from Section 2.1 and
let Q1; : : : ;Qr be the prime ideals of Z dividing ı. One may assume that the first ones, say
Q1; : : : ;Q�, are principal, generated by prime elements q1; : : : ; q� respectively, while the last
ones Q�C1; : : : ;Qr are not principal.

Let P be the union of the set ¹q1; : : : ; q�º and of the set of primes p 2 Z such that
jZ=pZj 6 max26h6k degth.P /. From Lemma 3.9, the set P is finite. Let ! be the product of
all primes in P .
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Let I be the ideal ofZ generated by all values P1.z/; : : : ; PN .z/ with z 2 Z. Denote by
g1; : : : ; gr > 0 the respective exponents of Q1; : : : ;Qr in the prime ideal factorization of I .

As P has no fixed prime divisor inZ with respect to t , for every p 2 P , there is a k-tuple
up D .up1; : : : ; upk/ 2 Z

k such that

P.up; y/ 6� 0 .mod p/:

Consider next the ideals Q
g�C1C1

�C1 ; : : : ;Q
grC1
r . As none of these ideals contains I , for

each j D �C 1; : : : ; r , there exist ij 2 ¹1; : : : ; N º and uj1 2 Z such that

Pij .uj1/ 6� 0 .mod Q
gjC1

j /;

or equivalently,

.P1.uj1/; : : : ; PN .uj1// 6� .0; : : : ; 0/ .mod Q
gjC1

j /;

or, again equivalently,
P.uj1; t

0; y/ 6� 0 .mod Q
gjC1

j /:

Any two ideals in the set P [ ¹Q
g�C1
�C1 ; : : : ;Q

g�
r º are comaximal (or this set is empty or

a singleton). The Chinese Remainder Theorem gives a tuple u D .u1; : : : ; uk/ 2 Zk such that

(1) (a) P.u; y/ 6� 0 .modp/ for each p 2 P ,

(b) P.u1; t 0; y/ 6� 0 .mod Q
gjC1

j / for each j D �C 1; : : : ; r .

Note that condition (1a) implies that P.u1; t 0; y/ 6� 0 .mod qgjC1j /, for each j D 1; : : : ; �.
So condition (1b) in fact holds for each j D 1; : : : ; r . Note further that the fixed prime divisor
assumption with respect to t implies that P has no fixed prime divisor with respect to the
variable t1. Set ˛ D u1. Proposition 2.3 (b) can be applied to conclude that

(2) the polynomial P.!`1 C ˛; t 0; y/ has no prime divisors p 2 Z for every `1 2 Z.

The end of the proof of Lemma 4.2 can now be reproduced mutatis mutandis. Consider
the following polynomial, where v1 is a new variable:eP .v1; t 0; y/ D P.!v1 C ˛; t 0; y/ 2 ZŒv1; t 0; y�:
The polynomial eP is irreducible in QŒt 0�Œv1; y� and of degree at least 1 in y. Since Z is
a Hilbertian ring, there exist infinitely many `1 2 Z such that

(3) the polynomial eP .`1; t 0; y/ is irreducible in QŒt 0; y�, of degree > 1 in y.

Fix `1 2 Z as in (3). It remains to check that eP .`1; t 0; y/ has no fixed prime divisor with
respect to t 0. Assume that for some prime p 2 Z, we haveeP .`1; m0; y/ � 0 .mod p/

for every m0 2 Zk�1. Note that due to (1a), we haveeP .`1; u2; : : : ; uk; y/ 6� 0 .mod p/ for every p 2 P .

Therefore p … P . Hence, by the choice of P ,

(4) jZ=pZj > max26h6k degth.P / > max26h6k degth.eP .`1; t 0; y//.
As, by (2), eP .`1; t 0; y/ is non-zero modulo p, this contradicts Lemma 3.1 (a).
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[11] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958),
185–208, erratum 5 (1958), 259.

[12] J.-P. Serre, Topics in Galois theory, Res. Notes Math. 1, Jones and Bartlett, Boston 1992.
[13] A. N. Skorobogatov and E. Sofos, Schinzel Hypothesis with probability 1 and rational points, preprint 2020,

https://arxiv.org/abs/2005.02998.

Arnaud Bodin, CNRS, UMR 8524, Laboratoire Paul Painlevé, Université de Lille,
F-59000 Lille, France

e-mail: arnaud.bodin@univ-lille.fr

Pierre Dèbes, CNRS, UMR 8524, Laboratoire Paul Painlevé, Université de Lille,
F-59000 Lille, France

https://orcid.org/0000-0001-9506-1380
e-mail: pierre.debes@univ-lille.fr

Joachim König, Department of Mathematics Education, Korea National University of Education,
28173 Cheongju, South Korea
e-mail: jkoenig@knue.ac.kr

Salah Najib, Equipe ETRES, Faculté Polydisciplinaire de Khouribga,
Université Sultan Moulay Slimane, BP 145, Hay Ezzaytoune, 25000 Khouribga, Morocco

e-mail: slhnajib@gmail.com

Eingegangen 2. Oktober 2020, in revidierter Fassung 24. November 2021

https://arxiv.org/abs/2005.02998

