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Given fields k ⊆ L, our results concern one parameter L-parametric polynomials 
over k, and their relation to generic polynomials. The former are polynomials 
P (T, Y ) ∈ k[T ][Y ] of group G which parametrize all Galois extensions of L of 
group G via specialization of T in L, and the latter are those which are L-
parametric for every field L ⊇ k. We show, for example, that being L-parametric 
with L taken to be the single field C((V ))(U) is in fact sufficient for a polynomial 
P (T, Y ) ∈ C[T ][Y ] to be generic. As a corollary, we obtain a complete list of one 
parameter generic polynomials over a given field of characteristic 0, complementing 
the classical literature on the topic. Our approach also applies to an old problem 
of Schinzel: subject to the Birch and Swinnerton-Dyer conjecture, we provide one 
parameter families of affine curves over number fields, all with a rational point, but 
with no rational generic point.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the set RG(k) of all finite Galois extensions of a given number field k with given Galois 
group G is a central objective in algebraic number theory. A first natural question in this area, which goes 
back to Hilbert and Noether, is the so-called inverse Galois problem: is RG(k) �= ∅ for every number field 
k and every finite group G? A more applicable goal is an explicit description of the sets RG(k), such as a 
parametrization. A classical landmark in this context is the following definition (see the book [15]):

Definition 1.1. Let k be a (number) field, G a finite group, n ≥ 1, and P (T1, . . . , Tn, Y ) ∈ k[T1, . . . , Tn][Y ]
a monic separable polynomial of group G over k(T1, . . . , Tn).
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(1) Given an overfield L ⊇ k, say that P (T1, . . . , Tn, Y ) is L-parametric if, for every extension E/L ∈ RG(L), 
there exists (t1, . . . , tn) ∈ Ln such that E is the splitting field over L of P (t1, . . . , tn, Y ).
(2) Say that P (T1, . . . , Tn, Y ) is generic if it is L-parametric for every overfield L ⊇ k.

For example, the polynomial Y 2 − T is generic for the group G = Z/2Z over any number field k. On 
the other hand, some number fields k and finite groups G are known not to have a generic polynomial with 
coefficients in k, e.g., k = Q and G = Z/8Z (see [15, §2.6]). However, if k is a given number field and 
G is a given finite group, it is in general unknown whether there is a generic polynomial of group G with 
coefficients in k; existence of such polynomial implies RG(k) �= ∅, which is already open in general. Even 
for groups like G = Ad, for which RG(k) �= ∅ is known, the question is open (for d ≥ 6 and k = Q; see [15, 
§8.5]).

The case n = 1 is better understood. If k is any field of characteristic zero, finite groups G with a generic 
polynomial P (T, Y ) ∈ k[T ][Y ] are precisely known (see §2.3). In the case k = Q, those groups are exactly 
the subgroups of S3. If k is arbitrary, only cyclic groups and dihedral groups of order 2m with m ≥ 3 odd 
can have a generic polynomial P (T, Y ) ∈ k[T ][Y ].

Here are the main stages of the classification.
- If G �⊂ PGL2(k) and if P (T, Y ) ∈ k[T ][Y ] is of group G, then P (T, Y ) is not generic; indeed, the Noether 
invariant extension k(T)/k(T)G, with T = (T1, . . . , T|G|), cannot be reached by specializing P (T, Y ) at 
some T = t0 ∈ k(T)G (see [15, Proposition 8.1.4]).
- If G (⊂ PGL2(k) and) has a non-cyclic abelian subgroup, then the essential dimension theory of Buhler–
Reichstein (see [1,15]) shows that there is no generic polynomial P (T, Y ) ∈ k[T ][Y ] of group G.
- The remaining finite subgroups of PGL2(k) have a generic polynomial P (T, Y ) ∈ k[T ][Y ], except Z/nZ
when n is even and k contains ζn + ζ−1

n but not ζn (ζn a primitive n-th root of unity).
We present a new approach, which allows more precise non-parametricity conclusions, over some specific 

fields, and leads to improvements on the above results. Theorem 1.2 is a new general result on one parameter 
non-generic polynomials. Corollary 1.3 shows the concrete gain for the classification discussed above.

Theorem 1.2. Let k be a field of characteristic zero, P (T, Y ) ∈ k[T ][Y ] a monic separable polynomial, and 
U, V two indeterminates. Suppose P (T, Y ) is not generic. Then either P (T, Y ) is not k((V ))(U)-parametric 
or P (T, Y ) is not k(U)-parametric.

Thus Theorem 1.2 gives explicit base changes L/k such that any non-generic polynomial P (T, Y ) ∈
k[T ][Y ] is not L-parametric. Compared to the previous approach, our base changes are purely transcendental, 
of transcendence degree 1, and do not depend on the Galois group G of P (T, Y ) over k(T ), unlike the base 
change k(T)G/k of the first stage above.

We refer to Corollary 3.5 for a more general version of Theorem 1.2, which also presents some variants. 
For example, we prove that, if G is neither cyclic nor dihedral of order 2n with n ≥ 3 odd (in particular, 
P (T, Y ) is not generic), then P (T, Y ) is not k((V ))(U)-parametric.

The proof of Theorem 1.2 uses a variety of tools, including the arithmetic specialization methods of [19], 
patching methods from [12], and the geometric specialization methods of [8].

Using Theorem 1.2, we obtain an explicit list of all the one parameter generic polynomials over any field 
k of characteristic 0 (and not only the groups with such a polynomial). For simplicity, we give the list for 
k = Q (see Corollary 3.6 for the general case).

Corollary 1.3. Let G be a non-trivial finite group and P (T, Y ) ∈ Q[T ][Y ] a monic separable polynomial of 
group G and splitting field F over Q(T ). Then P (T, Y ) is generic if and only if one of these conditions 
holds (up to a Möbius transformation on T ):
(1) G = Z/2Z and F is the splitting field over Q(T ) of Y 2 − T ,
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(2) G = Z/3Z and F is the splitting field over Q(T ) of Y 3 − TY 2 + (T − 3)Y + 1,
(3) G = S3 and F is the splitting field over Q(T ) of Y 3 + TY + T .

Note that the list is essentially known to experts, and the given polynomials are also known to be 
generic. The list complements the literature by showing that these indeed are the only one parameter 
generic polynomials (over Q).

Our second type of results gives non-parametricity conclusions over k itself (i.e., no base change L/k
is allowed). Such conclusions depend more on the arithmetic of k. For example, if k is PAC, i.e., if every 
non-empty geometrically irreducible k-variety has a Zariski-dense set of k-rational points (see [10]), every
polynomial P (T, Y ) ∈ k[T ][Y ] (whose splitting field F over k(T ) fulfills F ∩ k = k) is k-parametric (see 
[5]).1

However, if k is a number field, it is expected that, as in the generic situation, most finite groups 
fail to have a k-parametric polynomial P (T, Y ) ∈ k[T ][Y ]. Yet, no such group was known before [18,19], 
which provide many examples. But the question remains of the classification of all the finite groups G
with a k-parametric polynomial P (T, Y ) ∈ k[T ][Y ], and of the associated polynomials. Could it be the 
same as in the generic situation? For n ≥ 2, this is not the case: Z/8Z has a Q-parametric polynomial 
P (T1, . . . , Tn, Y ) ∈ Q[T1, . . . , Tn][Y ] for some n ≥ 2 (see [32]) but no generic polynomial over Q. For n = 1, 
the question is subtler. We show that, for polynomials P (T, Y ) ∈ k[T ][Y ], “k-parametric” is still strictly 
weaker than “generic”, and even weaker than “k(U)-parametric”, but only under the Birch and Swinnerton-
Dyer conjecture.

This comparison between the various notions relates to the following old problem of Schinzel (see [33, 
Chapter 5, §5.1]):

Question 1.4. Let k be a number field and P ∈ C[U, T, Y ] a polynomial such that, for all but finitely many 
u0 ∈ Z, the polynomial P (u0, T, Y ) has a zero in k2. Does P, viewed as a polynomial in T and Y, have a 
zero in k(U)2?

We combine previous works producing “lawful evil” elliptic curves (see, e.g., [4,24]) and a result of [6] on 
the branch point number of rational pullbacks of Galois covers of P 1 to obtain infinitely many (conditional) 
counter-examples to Question 1.4. For example, we have the following (see Theorem 4.3 for a more general 
result):

Theorem 1.5. Let Q(T ) ∈ Q[T ] be a degree 3 separable polynomial such that the elliptic curve given by 
Y 2 = Q(T ) has complex multiplication by Q(

√
−m) for some m ∈ {11, 19, 43, 67, 163}. Set P (U, T, Y ) =

Y 2−UQ(T ). Under the Birch and Swinnerton-Dyer conjecture, there exist infinitely many quadratic number 
fields k such that
(1) the answer to Question 1.4 is negative for k and P , and
(2) the polynomial P (1, T, Y ) and the field k form a counter-example to this implication:

(∗) k-parametric ⇒ k(U)-parametric.

A concrete situation where Theorem 1.5 applies is Q(T ) = T 3−T 2−7T+41/4, m = 11, and k = Q(
√
−d), 

where d > 0 is squarefree and fulfills ( d
11 ) = 1 (see Remark 4.4).

All counter-examples to Question 1.4 known to us are in genus 1, i.e., when the C(U)-curve P (U, T, Y ) = 0
is of genus 1.2 This suggests that the genus 1 case is exceptional. It remains plausible that the answer to 

1 There are PAC fields k with RG(k) �= ∅ for every finite group G, and so for which the k-parametricity property is not trivial as 
it is for algebraically closed fields. A concrete example (due to Pop) is Qtr(

√
−1).

2 For an earlier counter-example, subject to a conjecture of Selmer, see [33, pp. 318-319].
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Question 1.4 is “Yes” in genus ≥ 2.3 The same could be true of Implication (∗). Indeed, by [6], a positive 
answer to (a close variant) of Question 1.4 implies (a close variant of) Implication (∗). See §4 for more 
details.

Our results are stated in terms of polynomials P (T, Y ). They translate immediately in terms of field 
extensions F/k(T ). The latter viewpoint is the one that we will prefer in the sequel. We refer to Lemma 2.3
for the exact connection between the two viewpoints.

Acknowledgments. We thank Danny Krashen and the referee for helpful comments. This work was supported 
in part by the Labex CEMPI (ANR-11-LABX-0007-01), and ISF grants No. 577/15 and No. 696/13.

2. Preliminaries

§2.1 and §2.2 are devoted to terminology and notation. In §2.3, we review the classification of all the 
finite groups with a one parameter generic polynomial with coefficients in a given field of characteristic 
zero (see Theorem 2.5). As said in §1, Corollary 3.6 will more precisely give the list of corresponding 
polynomials. Finally, in §2.4, we briefly discuss étale algebras, which will be used to prove Theorem 1.2 and 
its generalizations.

2.1. Basic terminology

Let k be a field of characteristic zero and F/k(T ) a finite Galois extension. Say that F/k(T ) is k-regular
if F ∩ k = k. By the branch point set of F/k(T ), we mean the finite set t of points t ∈ P 1(k) such that 
the associated discrete valuations are ramified in Fk/k(T ). As k has characteristic 0, we have the inertia 
canonical invariant C of F/k(T ): if t = {t1, . . . , tr}, then C is an r-tuple (C1, . . . , Cr) of conjugacy classes of 
Gal(Fk/k(T )), and Ci is the conjugacy class of the distinguished generators of the inertia groups IP above ti
in Fk/k(T ) (i.e., these generators correspond to e2iπ/ei in the canonical isomorphism IP → μei = 〈e2iπ/ei〉). 
We also use the notation e = (e1, . . . , er) for the r-tuple whose i-th entry is the ramification index ei = |IP|
of primes above ti; ei is also the order of elements of Ci. By the genus of F/k(T ), we mean the genus of Fk.

The specialization Ft0/k of F/k(T ) at t0 ∈ P 1(k) is defined as follows. For t0 ∈ k (resp., t0 = ∞), the field 
Ft0 is the residue field of the integral closure of k[T ] (resp., of k[1/T ]) in F at any prime ideal P containing 
T − t0 (resp., 1/T ). The extension Ft0/k is Galois and, if t0 /∈ t, its Galois group is the decomposition group 
of F/k(T ) at P. If F is the splitting field over k(T ) of a monic separable polynomial P (T, Y ) ∈ k[T ][Y ], 
then, for t0 ∈ k with P (t0, Y ) separable, t0 /∈ t and Ft0 is the splitting field over k of P (t0, Y ).

Lemma 2.1. We have (FL)t0 = Ft0L for every overfield L ⊇ k and every t0 ∈ P 1(k).

Proof. Without loss, we may assume t0 �= ∞. Denote the integral closure of k[T ] in F by Bk. Pick s ≥ 1
and b1, . . . , bs in Bk with Bk = k[T ]b1 + · · · + k[T ]bs. As k has characteristic zero, L/k is separable (in 
the sense of non-necessarily algebraic extensions; see, e.g., [22, Chapter VIII, §4]). Then, by, e.g., [10, 
Proposition 3.4.2], the integral closure BL of L[T ] in FL equals L[T ]b1 + · · · + L[T ]bs. Let PL be a prime 
ideal of BL containing T − t0. Then the restriction Pk = PL ∩ Bk of PL to Bk also contains T − t0. 
We then have (FL)t0 = BL/PL = L(b1, . . . , bs), where b1, . . . , bs denote the reductions modulo PL of 
b1, . . . , bs, respectively. But these reductions modulo PL are the reductions b1, . . . , bs modulo Pk of b1, . . . , bs, 
respectively. Hence, (FL)t0 = k(b1, . . . , bs)L = Ft0L. �
3 In genus 0, the answer to Question 1.4 is “Yes” (see [9, Theorem 2] and [31, Theorem 38]).
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2.2. Generic and parametric extensions

Given a finite group G and a field k (of characteristic zero), we will use the following notation.
• RG(k): set of all Galois extensions E/k of group G.
• R≤G(k): set of all Galois extensions E/k of group contained in G.
• For a finite Galois extension F/k(T ) of branch point set t, we define

SP(F/k(T )) = {Ft0/k | t0 ∈ P 1(k) \ t} (SP for “SPecialization”).

Definition 2.2. Let k be of characteristic 0 and F/k(T ) a Galois extension of group G.
(1) Given an overfield L ⊇ k, the extension F/k(T ) is L-parametric (resp., strongly L-parametric) if 
SP(FL/L(T )) ⊇ RG(L) (resp., if SP(FL/L(T )) = R≤G(L)).
(2) The extension F/k(T ) is generic if it is L-parametric for every overfield L ⊇ k.

The field extension viewpoint used in Definition 2.2 is of course equivalent to the polynomial one used 
in §1. The next two lemmas, which will be used on several occasions in the sequel, provide the precise 
arguments to pass from one viewpoint to the other.

Lemma 2.3. Let k be a field of characteristic zero, G a finite group, F/k(T ) a Galois extension of group 
G, and P (T, Y ) ∈ k[T ][Y ] a monic separable polynomial of splitting field F over k(T ). Let L ⊇ k be any 
overfield.
(1) Let E/L ∈ RG(L). If E is the splitting field over L of P (t0, Y ) for some t0 ∈ L, then E/L ∈
SP(FL/L(T )).
(2) Let E/L ∈ R≤G(L). If there exist infinitely many t0 ∈ P 1(L) such that E/L = (FL)t0/L, then E is the 
splitting field over L of P (t0, Y ) for infinitely many t0 ∈ L.

Proof. (1) Assume there is t0 ∈ L such that E is the splitting field over L of P (t0, Y ). It is always true that 
the splitting field of P (t0, Y ) is contained in the field (FL)t0 . As, in our situation, the former is of degree 
|G| over L, both fields coincide and we get E = (FL)t0 . To conclude, note that t0 is not a branch point of 
F/k(T ), since Gal((FL)t0/L) = G.
(2) By the assumption, there are infinitely many t0 ∈ P 1(L) with E = (FL)t0 . For such a t0 with t0 �= ∞
and P (t0, Y ) separable, the splitting field of P (t0, Y ) over L equals (FL)t0 (as recalled in §2.1), i.e., equals 
E. �

Our second lemma adjusts [15, Proposition 5.1.8] to our situation:

Lemma 2.4. Let k be a field of characteristic zero and F/k(T ) a generic extension. Then there exists a 
generic polynomial P (T, Y ) ∈ k[T ][Y ] of splitting field F over k(T ).

Proof. First, denote the integral closure of k[T ] in F by Bk. Pick a positive integer s and an s-tuple 
(b1, . . . , bs) of elements of Bk with Bk = k[T ]b1 + · · ·+k[T ]bs. Up to reordering, we may assume there exists 
s′ ≤ s satisfying these two conditions:
• for 1 ≤ i �= j ≤ s′, bi and bj are not conjugate over k(T ),
• for i > s′, there exists 1 ≤ j ≤ s′ such that bi and bj are conjugate over k(T ).
For each i ∈ {1, . . . , s′}, denote the minimal polynomial of bi over k(T ) by mi(T, Y ). Set P1(T, Y ) =∏s′

i=1 mi(T, Y ). Then P1(T, Y ) is a monic separable polynomial with coefficients in k[T ], and its splitting 
field over k(T ) is equal to F .

Now, let L ⊇ k and E/L ∈ R≤G(L) (with G = Gal(F/k(T ))). Assume E/L = (FL)t0/L for some t0 ∈ L. 
Let PL be a maximal ideal of the integral closure BL of L[T ] in FL containing T − t0. As in the proof of 
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Lemma 2.1, we have BL = L[T ]b1 + · · · + L[T ]bs. Hence, with b1, . . . , bs the respective reductions modulo 
PL of b1, . . . , bs, we have (FL)t0 = BL/PL = L(b1, . . . , bs). Thus, E is the splitting field over L of P1(t0, Y ).

Next, if we replace T by 1/T , the same arguments yield a monic separable polynomial P2(T, Y ) ∈ k[T ][Y ]
of splitting field F over k(T ) which fulfills this: for all L ⊇ k and E/L ∈ R≤G(L), if E = (FL)∞, then E is 
the splitting field over L of P2(0, Y ).

Finally, since F/k(T ) is assumed to be generic, we get the following: for every overfield L ⊇ k and every 
extension E/L ∈ RG(L), there are i ∈ {1, 2} and t0 ∈ L such that E is the splitting field over L of Pi(t0, Y ). 
It then remains to use [15, Corollary 1.1.6] to get that either P1(T, Y ) or P2(T, Y ) is generic. �
2.3. Finite groups with a one parameter generic polynomial/extension

We give the classification of these groups over any given field of characteristic zero:

Theorem 2.5. Let k be a field of characteristic 0 and G a finite group. Then the following three conditions 
are equivalent:
(1) there exists a generic extension F/k(T ) of group G,
(2) there exists a generic polynomial P (T, Y ) ∈ k[T ][Y ] of group G,
(3) one of the following three conditions holds:

(a) G is cyclic of even order n and e2iπ/n ∈ k,
(b) G is cyclic of odd order n and e2iπ/n + e−2iπ/n ∈ k,
(c) G is dihedral of order 2n with n ≥ 3 odd and e2iπ/n + e−2iπ/n ∈ k.

Proof. Implication (2) ⇒ (1) is an immediate consequence of Lemma 2.3(1) while Lemma 2.4 yields Impli-
cation (1) ⇒ (2). It then remains to show (2) ⇔ (3). This equivalence is known to experts but does not 
seem to appear explicitly in the literature. For the convenience of the reader, we recall the main ingredients.

First, assume there is a generic polynomial P (T, Y ) ∈ k[T ][Y ] of group G. By [15, Proposition 8.2.4], the 
essential dimension of G over k is 1. Over fields of characteristic 0 containing all roots of unity, such groups 
are exactly cyclic groups and dihedral groups of order 2n with n ≥ 3 odd (see [1, Theorem 6.2]). Hence, G
is cyclic or dihedral of order 2n with n ≥ 3 odd.

Now, suppose G = Z/nZ (n ≥ 2). Using again [15, Proposition 8.2.4], if there is a generic polynomial 
P (T, Y ) ∈ k[T ][Y ] of group G, the essential dimension of G over k is 1. Theorem 1.3 of [3] then yields 
e2iπ/n + e−2iπ/n ∈ k if n is odd, and e2iπ/n ∈ k if n is even. Conversely, assume either n is even and 
e2iπ/n ∈ k, or n is odd and e2iπ/n + e−2iπ/n ∈ k. In the even case, Y n−T has Galois group G over k(T ) and 
is generic (by the Kummer theory). Now, in the odd case, there is a generic polynomial P (T, Y ) ∈ k[T ][Y ]
of group G, by [15, §2.1 and Exercise 5.13].

Finally, given n ≥ 3 odd, suppose G is dihedral of order 2n. If there is a generic polynomial P (T, Y ) ∈
k[T ][Y ] of group G, then, by [15, Proposition 8.2.4] and [3, Theorem 1.4], we have e2iπ/n + e−2iπ/n ∈ k. 
Conversely, if e2iπ/n + e−2iπ/n ∈ k, then, by a classical construction of Hashimoto and Miyake (see [15, 
Theorem 5.5.4]), there is a generic polynomial P (T, Y ) ∈ k[T ][Y ] of group G. �
Remark 2.6. Groups with essential dimension 1 over a given field k (of any characteristic) are classified in [3]. 
It might then be possible to derive the list of all groups with a one parameter generic polynomial/extension 
over k, as done above in characteristic 0.

2.4. Étale algebras

Let k be a field of characteristic 0. A general reference for this section is [15, §4.3]. Every G-Galois 
extension L/k of étale algebras is an induced from a Galois field extension L′/k whose Galois group H =
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Gal(L′/k) is a subgroup of G. In particular, L =
⊕

σH∈G/H σ(L′). The Galois group of the field extension 
L′/k is then its stabilizer under the action of G. The underlying field L′ is determined up to choosing a direct 
summand of L. When picking a conjugate copy σ(L′), the resulting stabilizer is the conjugate subgroup 
σHσ−1.

Remark 2.7. Given an overfield M ⊇ k, the tensor product (L ⊗k M)/M is well-known to be a G-Galois 
extension of étale algebras, whose underlying field is a compositum L ·M via some embedding of k into M .

The induced G-Galois extension k|G| from the trivial extension k/k is called the split G-Galois extension.

3. Parametricity and genericity

§3.1 states the main results of this section. These results are proved in §3.2–§3.5. Finally, in §3.6, we 
explain how Theorem 1.2 and Corollary 1.3 are derived.

3.1. Main results

Let G be a non-trivial finite group, k a field of characteristic 0, and U, V two indeterminates. Let F/k(T )
be a Galois extension of group G and branch point set t = {t1, . . . , tr}. We also denote the genus of F by 
g and the ramification indices of t1, . . . , tr by e1, . . . , er, respectively. The unordered r-tuple (e1, . . . , er) is 
denoted by e.

The main topic of this section is this question:
(∗) Given an overfield L ⊇ k, is F/k(T ) L-parametric?
In the next result, we give three explicit base changes L1/k, L2/k, and L3/k, independent of either the 
extension F/k(T ) or the group G, such that the answer to (∗) is negative in general, if L is taken among 
the fields L1, L2, and L3.

Recall that a field K is ample (or large) if every smooth K-curve has 0 or infinitely many K-rational 
points. Ample fields include algebraically closed fields, the complete valued fields Qp, R, κ((Y )), the field 
Qtr of totally real numbers (algebraic numbers such that all conjugates are real). See [14,2,29] for more 
details.

Theorem 3.1. (1) Let K ⊇ k be an ample overfield and L1 = K(U). Assume g ≥ 1. Then RG(L1) \
SP(FL1/L1(T )) contains infinitely many K-regular extensions.
(2) Let K ⊇ k be an algebraically closed overfield and L2 = K((V ))(U). Assume G has a non-cyclic abelian 
subgroup. Then RG(L2) \ SP(FL2/L2(T )) contains infinitely many K((V ))-regular extensions.
(3) Let L3 = k(U). Assume either one of the following two conditions holds:

(a) G is cyclic of even order, r = 2, and t �⊂ P 1(k),
(b) G is dihedral of order 2n with n ≥ 3 odd, r = 3, and t �⊂ P 1(k).

Then RG(L3) \ SP(FL3/L3(T )) contains infinitely many k-regular extensions.

The extensions for which none of the statements of Theorem 3.1 applies are of genus 0 (by (1)). Recall 
that, if F ∩ k = k, the case g = 0 can occur only in the next situations:
• G is cyclic and e = (|G|, |G|),
• G is dihedral and e = (2, 2, |G|/2),
• G = A4 and e = (2, 3, 3),
• G = S4 and e = (2, 3, 4),
• G = A5 and e = (2, 3, 5).
Hence, taking now (2) and (3) into account, we obtain that, if F ∩ k = k, the only cases for which none of 
the statements of Theorem 3.1 applies are the following ones:
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(a) G is cyclic of even order, r = 2, and t ⊂ P 1(k),
(b) G is cyclic of odd order and r = 2,
(c) G is dihedral of order 2n with n ≥ 3 odd, r = 3, and t ⊂ P 1(k).

Proposition 3.2. Assume F ∩ k = k and that (a) or (b) or (c) holds. Then, for every field L ⊇ k and every 
E/L in R≤G(L), we have E = (FL)t0 for infinitely many t0 ∈ P 1(L).

3.2. Proof of Theorem 3.1(1)

As K is ample, RG(L1) contains infinitely many pairwise linearly disjoint K-regular extensions (see [28, 
Main Theorem A]). If F ∩k �= k, at most one of these is in SP(FL1/L1(T )). Hence, assume F ∩k = k. Then, 
as g ≥ 1 and K is ample, [8, Theorem 3.10(a-1)] and its proof yield infinitely many K-regular extensions 
E/L1 ∈ RG(L1) each of which satisfies E �= (FL1)t0 for any t0 ∈ L1 \K. Pick such an E/L1 and assume 
E = (FL1)t0 for some t0 ∈ P 1(L1). Then t0 ∈ P 1(K) and Lemma 2.1 gives E = (FK)t0L1. As E ∩K = K, 
we get (FK)t0 = K and so E = L1, a contradiction.

3.3. Proof of Theorem 3.1(2)

Set M = K((V )) (so L2 = M(U) = K((V ))(U)). For each u ∈ M , denote by Pu the prime ideal of M [U ]
generated by U − u.

We will need the following two lemmas. The first one is a function field analog of [19, Proposition 6.3]
(which is stated over number fields):

Lemma 3.3. Assume F ∩ k = k. For each t0 ∈ P 1(L2) and all but finitely many u ∈ M (not depending on 
t0), the Galois group of the completion at Pu of (FL2)t0/L2 is cyclic.

Proof. The proof is similar to that in the number field case, and relies on [19, Theorem 4.1] (the main 
result of that paper). For the convenience of the reader, we offer a proof, with the needed adjustments. 
Let u ∈ M and t0 ∈ P 1(L2). If (FL2)t0/L2 is unramified at Pu, then the Galois group of its completion 
at Pu is cyclic (as M = K((V )) with K algebraically closed of characteristic 0). We may then suppose 
(FL2)t0/L2 is ramified at Pu. In particular, t0 /∈ t. Indeed, if t0 ∈ t, then t0 ∈ P 1(k). By Lemma 2.1, we 
would have (FL2)t0 = (Fk)t0L2 = L2, which cannot happen as (FL2)t0/L2 ramifies at Pu. Up to dropping 
finitely many values of u (depending only on FL2/L2(T )), we may use the Specialization Inertia Theorem 
of [23, §2.2] to get that t0 meets some branch point of F/k(T ), say t, modulo Pu (see [23, Definition 2.2]). 
As above, (FL2)t = L2. Let It be the inertia group of Fk(t)/k(t)(T ) at 〈T − t〉. Up to dropping finitely 
many values of u (depending only on FL2/L2(T )), [19, Theorem 4.1] yields that the Galois group of the 
completion at Pu of (FL2)t0/L2 embeds into It. As It is cyclic, we are done. �
Lemma 3.4. For every u ∈ M , there exists an M -regular extension E/L2 ∈ RG(L2) whose completion at Pu

has a non-cyclic abelian Galois group.

Proof. By a linear change of the variable U , we may without loss of generality assume that Pu = 〈U〉. 
To prove the lemma, we follow the construction and patching methods of [12, §4], and adjust these to our 
setup. Let X = P 1

K be the closed fibre of X̂ = P 1
K[[V ]]. Our prime Pu corresponds to a maximal ideal 

〈V, U〉 � K[[V ]][U ] whose image in K[U ] is 〈U〉, the prime corresponding to the point 0 ∈ P 1
K of the closed 

fibre.
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Let C be the set of cyclic subgroups of G, and S ⊆ A1
K ⊆ X a finite set of points4 consisting of 

u0 = 0 ∈ A1
K and distinct non-zero points uc ∈ A1

K , c ∈ C. For uc ∈ S, let Fc = K((V, U − uc)) denote the 
fraction field of the complete local ring R̂c = K[[V, U − uc]] at uc. For the (open) complement O = X \ S, 
consider the V -adic completion of the subring of functions on X̂ that are regular on O, and let FO be its 
fraction field. For uc ∈ S, also consider the localization of R̂c at the prime 〈V 〉 (corresponding to a branch 
in [12]), and let F℘(c) = K((U − uc))((V )) be the fraction field of its V -adic completion.

Consider the inverse system I whose objects are the above fields FO and Fc, F℘(c) for uc ∈ S, and 
whose morphisms are the natural inclusions Fc ⊆ F℘(c) and FO ⊆ F℘(c) for uc ∈ S. A collection of 
G-Galois extensions Eξ/Fξ, ξ ∈ I of étale algebras, together with isomorphisms EO ⊗FO

F℘(c)→E℘(c), 
Ec ⊗Fc

F℘(c)→E℘(c) for all uc ∈ S, is called a patching data (of G-Galois étale algebras).
We construct the fields Eξ, ξ ∈ I following the proof of [12, Proposition 4.4]. Let EO = F

|G|
O and 

E℘(c) = F
|G|
℘(c), uc ∈ S be split G-Galois extensions. It now remains to define the G-Galois extensions Ec/Fc

whose underlying field E′
c is contained in F℘(c), and hence Ec ⊗Fc

F℘(c) ∼= F
|G|
℘(c) = E℘(c), giving the desired 

isomorphisms.
Put fc = U − uc ∈ R̂c and set

ac = fc
fc − V

for uc ∈ S, and b0 = U − V 2

U − V − V 2 .

For c ∈ C, let E′
c = Fc( m

√
ac) for m = |c|. As ac is not a d-th power for any d > 1, Kummer theory yields 

Gal(E′
c/Fc) = c. Moreover, since E℘(c) is complete with respect to 〈V 〉, the element ac is an m-th power in 

F℘(c) by Hensel’s lemma, and hence E′
c ⊆ F℘(c). Then let Ec/Fc be the G-Galois extension induced from 

the c-Galois field extension E′
c/Fc.

Finally, let H ∼= Z/qZ × Z/qZ be a non-cyclic abelian subgroup of G for a prime q, and E′
0 =

F0( q
√
a0, q

√
b0). Using Kummer theory as before, F0( q

√
a0)/F0 and F0( q

√
b0)/F0) both have Galois group 

Z/qZ. The extension F0( q
√
a0)/F0 is ramified at the prime 〈U〉 � R̂0 while F0( q

√
b0)/F0 is unramified there. 

Hence, F0( q
√
a0) and F0( q

√
b0) are linearly disjoint over F0, and E′

0/F0 is a Galois extension of fields with 
Galois group H. Applying Hensel’s lemma as before, one has E′

0 ⊆ F℘(0). Then let E0/F0 be the extension 
induced from E′

0/F0. As E′
c ⊆ F℘(c), uc ∈ S, we conclude that Eξ, ξ ∈ I is a patching data.

By [12, Theorem 4.1], there exists a G-Galois extension E/F of étale algebras such that E ⊗L2 Fc is 
isomorphic to Ec for every uc ∈ S. Moreover, identifying the two via this isomorphism, Ec is generated 
by E and Fc, and the subalgebra E′ ⊗L2 Fc ⊆ Ec, generated by Fc and the underlying field E′ of E, 
contains a conjugate copy of E′

c, for every uc ∈ S. We claim that E/L2 is an M -regular field extension. 
Put G′ = Gal(E′/L2). For every c ∈ C, the subgroup c of G is the stabilizer of E′

c under the action of G. 
As E′ ⊗L2 Fc contains a conjugate copy of E′

c and is stabilized by G′, we get that G′ contains a conjugate 
of c. As G′ contains a conjugate of every cyclic subgroup c of G, Jordan’s theorem (see [16]) implies that 
G′ = G, and hence E′ = E is a field. To show that E is M -regular, let G � G be the subgroup fixing the 
constant field E ∩M . As E′

c is a compositum of E′ and Fc by Remark 2.7 and E′
c/Fc is M -regular, we get 

that G contains a conjugate of c. As G is normal, c ≤ G for every c ∈ C, and hence G = G, as claimed.
Finally, since the completion of E at Pu is the field underlying E⊗L2 M((U)), and since the field E′

0 is a 
compositum of E and F0, the completion of E at 〈U〉 is isomorphic to the underlying field M((U))( q

√
a0, q

√
b0)

of E′
0 ⊗F0 M((U)). Now, M((U))( q

√
a0)/M((U)) has Galois group Z/qZ and is totally ramified. On the 

other hand, M((U))( q
√
b0)/M((U)) is unramified and hence linearly disjoint from M((U))( q

√
a0)/M((U)). 

We claim that Gal(M((U))( q
√
b0)/M((U))) = Z/qZ. Given the claim, the above shows that the extension 

M((U))( q
√
a0, q

√
b0)/M((U)) is of group H, which is non-cyclic abelian, as desired.

4 Note that, although in [12] the set S is chosen specifically, [13, Proposition 3.4] shows that the set S can be chosen to be an 
arbitrary finite set.
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To prove the claim, observe that b0 ≡ V/(V + 1) modulo U , and put b0 = V/(V + 1). As M( q
√
b0)/M

is totally ramified at 〈V 〉, we deduce that Gal(M( q
√
b0)/M) = Z/qZ. Hensel’s lemma then implies that 

M((U))( q
√
b0)/M((U)) also has Galois group Z/qZ. �

Proof of Theorem 3.1(2). If F ∩ k �= k, then Gal(FL2/L2(T )) �= G. Hence, RG(L2) ∩ SP(FL2/L2(T )) = ∅. 
But, as K is algebraically closed of characteristic 0, Riemann’s existence theorem yields RG(K(U)) �= ∅ and 
so RG(L2) contains infinitely many M -regular extensions. Hence, we may assume F∩k = k. Lemmas 3.3 and 
3.4 then yield that RG(L2) \ SP(FL2/L2(T )) contains infinitely many M -regular extensions, as needed. �
3.4. Proof of Theorem 3.1(3)

First, recall that, if a finite group G is a regular Galois group over an infinite field k, i.e., if there is a 
k-regular Galois extension of k(U) of group G, then applying suitable Möbius transformations on U leads 
to infinitely many k-regular Galois extensions of k(U) of group G such that the branch point sets of any 
two such extensions are disjoint. The Riemann–Hurwitz formula then shows that these k-regular Galois 
extensions of k(U) are pairwise linearly disjoint. In the present situation, G is cyclic or dihedral of order 
2n with n ≥ 3 odd, and k is of characteristic 0. Since abelian groups and dihedral groups are regular 
Galois groups over all fields, we get that RG(L3) contains infinitely many pairwise linearly disjoint k-regular 
extensions. If F/k(T ) is not k-regular, at most one of these can be in SP(F (U)/L3(T )). Hence, assume 
F ∩ k = k.

Now, assume G = Z/nZ for some even n ≥ 2 and r = 2. As n is even, there is an L3-regular Galois 
extension of L3(T ) of group G with a branch point in P 1(L3), and with another branch point of ramification 
index n. Then, by [23, Corollary 3.4], there is a prime Q of k[U ] such that, for all but finitely many u in 
k, there is Eu/L3 ∈ RG(L3) which ramifies at Pu = 〈U − u〉, and whose ramification index at Q is n. In 
particular, Eu/L3 is k-regular (by the last condition). Suppose Eu/L3 ∈ SP(F (U)/L3(T )) for infinitely many 
u ∈ k. Without loss, we may assume ∞ /∈ t. For i ∈ {1, 2}, denote the minimal polynomial of ti over k by 
mi(T ). Then, by [23, Corollary 2.12 and Remark 3.11], the reduction modulo Pu of m1(T )m2(T ) ∈ k[U ][T ]
has a root in the residue field k[U ]/Pu for some u ∈ k. As this residue field is k, m1(T )m2(T ) has a root in 
k. Hence, by the Branch Cycle Lemma (see [11] and [36, Lemma 2.8]), t1 and t2 are in P 1(k).

Finally, assume G is dihedral of order 2n for some odd n ≥ 3 and r = 3. As n is odd, the ramification 
indices e1, e2, and e3 are 2, 2, and n, respectively (up to reordering). In particular, by the Branch Cycle 
Lemma (and as n �= 2), t3 is in P 1(k). By [10, §16.2 and Proposition 16.4.4], every k-regular extension in 
RZ/2Z(L3) embeds into a k-regular extension in RG(L3). Hence, if all but finitely many k-regular extensions 
in RG(L3) are in SP(F (U)/L3(T )), then, as G has a unique subgroup of index 2, all but finitely many 
k-regular extensions in RZ/2Z(L3) are specializations of the quadratic subextension of F (U)/L3(T ). As the 
latter has only two branch points (namely, t1 and t2), a similar argument as in the cyclic case yields that 
these branch points have to be in P 1(k).

3.5. Proof of Proposition 3.2

Assume F ∩ k = k and one of the following holds:
(a) G is cyclic of even order, r = 2, and t ⊂ P 1(k),
(b) G is cyclic of odd order and r = 2,
(c) G is dihedral of order 2n with n ≥ 3 odd, r = 3, and t ⊂ P 1(k).
Let L ⊇ k and E/L ∈ R≤G(L). By the twisting lemma (see [5]), there is a k-regular extension (FL)E/L(T )
such that (FL)EL = FL and such that, given t0 ∈ P 1(L) \ t, if there is a prime ideal lying over 〈T − t0〉 in 
(FL)E/L(T ) with residue degree 1, then E/L = (FL)t0/L. In each case, the genus of F is 0 (if (c) holds, 
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this follows from e being (2, 2, |G|/2)). Hence, (FL)E has genus 0 as well. It then suffices to find t ∈ P 1(L)
for which there is a prime ideal lying over 〈T − t〉 in (FL)E/L(T ) with residue degree 1.

If (a) holds, then the unique prime ideal lying over 〈T − t1〉 in (FL)E/L(T ) has residue degree 1. If (b) 
holds, the desired conclusion follows from G being of odd order and the genus being 0; see, e.g., end of Page 
1 of [34]. Finally, assume (c) holds. As already seen, the ramification indices e1, e2, and e3 are 2, 2, and 
n, where |G| = 2n, respectively (up to reordering). As {t1, t2} ⊂ P 1(k), we may assume that the quadratic 
subfield of F is k(

√
T ) (up to applying a suitable change of variable). Hence, there is d ∈ L \ {0} such 

that (FL)E contains L(
√
dT ). Set Y =

√
dT . The extension (FL)E/L(Y ) is of degree n and it has only 

two branch points; it is then Galois of group Z/nZ and of genus 0. As n is odd, there is y0 ∈ L such that 
the specialization of (FL)E/L(Y ) at y0 is L/L. Hence, there is a prime ideal lying over 〈T − (y0)2/d〉 in 
(FL)E/L(T ) with residue degree 1.

3.6. Proofs of Theorem 1.2 and Corollary 1.3

We conclude this section by explaining how Theorem 1.2 and Corollary 1.3 follow from Theorem 3.1 and 
Proposition 3.2.

We start with the following consequence, of which Conclusion (1) is Theorem 1.2 and Conclusion (2) is 
mentioned in the abstract:

Corollary 3.5. Let k be of characteristic 0, let U, V be indeterminates, and let P (T, Y ) ∈ k[T ][Y ] be a monic 
separable polynomial of group G and splitting field F over k(T ).
(1) Assume P (T, Y ) is not generic. Then either P (T, Y ) is not k(U)-parametric or P (T, Y ) is not 
K((V ))(U)-parametric for any algebraically closed overfield K ⊇ k.
(2) Assume P (T, Y ) is not generic and k is algebraically closed. Then P (T, Y ) is not K((V ))(U)-parametric 
for any algebraically closed overfield K ⊇ k.
(3) Assume G is neither cyclic nor dihedral of order 2n with n ≥ 3 odd. Then P (T, Y ) is not K((V ))(U)-
parametric for any algebraically closed overfield K ⊇ k.
(4) If G �⊂ PGL2(C), then P (T, Y ) is K(U)-parametric for no ample overfield K ⊇ k.

Proof. (1) Assume P (T, Y ) is k(U)-parametric and K((V ))(U)-parametric for some algebraically closed 
overfield K ⊇ k. Then, by Lemma 2.3(1), the same holds for F/k(T ). As in the proof of Theorem 3.1(2) 
(see the end of §3.3), F/k(T ) being K((V ))(U)-parametric implies that F/k(T ) is k-regular. Moreover, by 
Theorem 3.1, one of the three conditions stated before Proposition 3.2 holds. Hence, by that proposition, 
we have that, for every overfield L ⊇ k and every E/L ∈ RG(L), there exist infinitely many t0 ∈ P 1(L) such 
that E = (FL)t0 . It then remains to use Lemma 2.3(2) to conclude that P (T, Y ) is generic.
(2) The proof is similar to that of (1), except that we have to use that neither Condition (a) nor Condition 
(b) of Theorem 3.1(3) can happen (since k is algebraically closed).
(3) If P (T, Y ) is K((V ))(U)-parametric for some algebraically closed overfield K ⊇ k, then, as in (1), 
F/k(T ) is K((V ))(U)-parametric and k-regular. Moreover, Theorem 3.1(1) and Theorem 3.1(2) yield that 
we are in the situation of Theorem 3.1(3) or in that of Proposition 3.2. In both cases, G is cyclic or dihedral 
of order 2n with n ≥ 3 odd.
(4) Assume P (T, Y ) is K(U)-parametric for some ample overfield K ⊇ k. As in the proof of (1), F/k(T ) is 
K(U)-parametric. As already recalled in §3.2, RG(K(U)) contains infinitely many pairwise linearly disjoint 
extensions. Hence, F/k(T ) is k-regular. Finally, Theorem 3.1(1) gives that F/k(T ) is of genus 0, and so 
G ⊂ PGL2(C). �

We finally get to the classification of all the one parameter generic polynomial/extensions over a given 
field of characteristic zero:
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Corollary 3.6. Let k be of characteristic 0 and P (T, Y ) ∈ k[T ][Y ] a monic separable polynomial of group G
and splitting field F over k(T ). Denote the branch point number (resp., branch point set) of F/k(T ) by r
(resp., by t). The following three conditions are equivalent:
(1) F/k(T ) is generic,
(2) P (T, Y ) is generic,
(3) F ∩ k = k and one of the following three conditions holds:

(a) G is cyclic of even order n such that e2iπ/n ∈ k, r = 2, and t ⊂ P 1(k),
(b) G is cyclic of odd order n such that e2iπ/n + e−2iπ/n ∈ k and r = 2,
(c) G is dihedral of order 2n with n ≥ 3 odd and e2iπ/n + e−2iπ/n ∈ k, r = 3, and t ⊂ P 1(k).

We need the next lemma, which is classical in inverse Galois theory. The “only if” part is an immediate 
consequence of the Branch Cycle Lemma (see [11] and [36, Lemma 2.8]) and the “if” part is due to the 
rigidity method (see, e.g., [36, Chapter 3]).

Lemma 3.7. Let k be a field of characteristic zero.
(1) Given n ≥ 2, there is a k-regular Galois extension of k(T ) of group Z/nZ and with two branch points 
if and only if e2iπ/n + e−2iπ/n ∈ k; both branch points can be chosen in P 1(k) if and only if e2iπ/n ∈ k.
(2) Given n ≥ 3 odd, there is a k-regular Galois extension of k(T ) with dihedral Galois group of order 2n, 
with three branch points, and all branch points in P 1(k) if and only if e2iπ/n + e−2iπ/n ∈ k.

Proof of Corollary 3.6. First, (2) ⇒ (1) follows from Lemma 2.3(1). Now, assume (1) holds. Then, as already 
seen, F/k(T ) is k-regular. Moreover, by Theorem 3.1, one of the conditions stated before Proposition 3.2
holds. Then, by Lemma 3.7, (3) holds. Finally, if (3) holds, then P (T, Y ) is generic, by Lemma 2.3(2) and 
Proposition 3.2. �
Remark 3.8. (1) Corollary 3.6 and Lemma 3.7 give another proof of Theorem 2.5.
(2) In the spirit of Definition 2.2, say that F/k(T ) is strongly generic if it is strongly L-parametric for 
every overfield L ⊇ k. Clearly, we have F/k(T ) strongly generic ⇒ F/k(T ) generic. The converse holds by 
combining Proposition 3.2 and Corollary 3.6.
(3) Definition 1.1 is the definition of generic polynomials of [15]. Variants could have been used. For example, 
a strong one, used by Kemper (see [17]), requires extensions in R≤G(L) to be parametrized. In [7], DeMeyer 
even requires every extension in R≤G(L) to be realized by a separable specialized polynomial. Lemma 2.3(2), 
Proposition 3.2, and Corollary 3.6 show that, for one parameter polynomials over fields of characteristic 0, 
the three definitions are equivalent. In particular, we retrieve [17, Theorem 1] in this case (Kemper’s result 
asserts, more generally, that the first two definitions are equivalent over infinite fields, for polynomials with 
an arbitrary number of parameters).

Proof of Corollary 1.3. Let G be finite non-trivial and P (T, Y ) ∈ Q[T ][Y ] be monic separable of group G
and splitting field F over Q(T ). By (2) ⇔ (3) in Corollary 3.6 (with k = Q), P (T, Y ) is generic if and only 
if F ∩Q = Q and one of these conditions holds:
- G = Z/2Z and F/Q(T ) has two branch points, which are Q-rational,
- G = Z/3Z and F/Q(T ) has two branch points,
- G = S3 and F/Q(T ) has three branch points, which are Q-rational.

In the first case, observe next that any Q-regular quadratic extension of Q(T ) with two branch points, 
which are Q-rational, equals Q(

√
d(T − a)(T − b))/Q(T ) or Q(

√
d(T − a))/Q(T ) for some d ∈ Z and 

a, b ∈ Q. All of these are derived from Q(
√
T )/Q(T ), by applying a suitable Möbius transformation on T . 

Hence, if G = Z/2Z, the polynomial P (T, Y ) is generic if and only if F = Q(
√
T ), up to some Möbius 

transformation on T .
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In the second case, let F1/Q(T ) and F2/Q(T ) be Q-regular Galois extensions of group Z/3Z with two 
branch points. Fix j ∈ {1, 2}. By the Branch Cycle Lemma, the branch points of Fj/Q(T ) are Q-conjugate 
and generate Q(e2iπ/3) over Q. Moreover, (Fj)tj = Q for some tj ∈ P 1(Q). Up to applying T �→ 1/(T − tj), 
we may assume tj = ∞. Then, up to applying T �→ (T − a)/b for some a, b ∈ Q with b �= 0, which fixes ∞, 
we may also assume the branch point set of Fj/Q(T ) is {e2iπ/3, e4iπ/3}. Then F1Q = F2Q. Indeed, we would 
have otherwise that F1F2Q/Q(T ) has Galois group Z/3Z ×Z/3Z, and so has at least three branch points, 
which cannot happen. Hence, [F1F2Q : Q(T )] = 3. If F1 �= F2, then [F1F2 : Q(T )] = 9 and F1F2/Q(T ) has 
a degree 3 constant subextension. But the latter cannot happen as (F1F2)∞ = (F1)∞(F2)∞ = Q (see [10, 
Lemma 2.4.8] for the first equality). We then have F1 = F2. Hence, a Q-regular Galois extension of Q(T ) of 
group Z/3Z with two branch points is unique, up to Möbius transformations on T . Let F ′ be the splitting 
field of Y 3 − TY 2 + (T − 3)Y + 1 over Q(T ). As F ′/Q(T ) is Q-regular of group Z/3Z, and has two branch 
points, we are done in the case G = Z/3Z.

Finally, consider the case G = S3. The inertia canonical invariant of a Q-regular Galois extension of Q(T )
of group S3 with 3 branch points is (C2, C2, C3), with Cn the conjugacy class of the n-cycles. As (C2, C2, C3)
is a rigid triple of rational conjugacy classes of the centerless group S3, there is only one Q-regular Galois 
extension of Q(T ) of group S3 with three Q-rational branch points, up to Möbius transformation on T (see 
[34, Chapters 7 and 8]). Then we are done as, if F ′ is the splitting field of Y 3 + TY + T over Q(T ), then 
F ′/Q(T ) is Q-regular, of group S3, and of branch point set {0, ∞, −27/4}. �
4. On Schinzel’s problem and its variants

We investigate the connections between k-parametricity and k(U)-parametricity, in relation with 
Schinzel’s problem (Question 1.4).

In §1, we mentioned a close variant of Question 1.4. It corresponds to the following diophantine working 
hypothesis, which is introduced in [6, §2.4.2]:
(WH) Let k be a number field, and let fi : Xi → P 1

k(U), i = 1, . . . , N , be k(U)-regular covers. Assume 
that no curve Xi has a C(U)-rational point that is unramified w.r.t. the cover fi, i = 1, . . . , N . Then, for 
infinitely many u0 ∈ k, the covers f1, . . . , fN have good reduction at U = u0 and no reduced curve Xi|u0 has 
a k-rational point that is unramified w.r.t. the cover fi|u0 : Xi|u0 → P 1

k , i = 1, . . . , N .
Proposition 4.2 below summarizes some of the connections between our notions of parametricity and 

genericity. As already said, if k is a number field, a close variant of the implication “k-parametric ⇒
k(U)-parametric” holds under (WH). It is given by the implication “strongly k-parametric ⇒ weakly k(U)-
parametric” below.

Definition 4.1. Let G be a finite group, k a subfield of C, and F/k(T ) a k-regular extension in RG(k(T )). 
We say that F/k(T ) is weakly k(U)-parametric if every k-regular extension E/k(U) ∈ RG(k(U)) is a spe-
cialization of F (U)/k(U)(T ), after base change C/k.

Proposition 4.2. For a field k of characteristic zero and a finite k-regular Galois extension of k(T ), we have

k(U)-parametric
k ⊆ C

generic k-parametric weakly k(U)-parametric.

strongly k-parametric

[k : Q] <
∞

(WH)
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Proof. The implications “generic ⇒ k(U)-parametric” and “strongly k-parametric ⇒ k-parametric” are 
clear, while “generic ⇒ strongly k-parametric” follows from Remark 3.8(2). Next, [6, Remark 2.3] proves 
“strongly k(U)-parametric ⇒ strongly k-parametric”. With the same arguments as there, we get “k(U)-
parametric ⇒ k-parametric”. Now, if k ⊆ C, the implication “k(U)-parametric ⇒ weakly k(U)-parametric” 
follows from Lemma 2.1. Finally, if k is a number field and (WH) holds, then the implication “strongly 
k-parametric ⇒ weakly k(U)-parametric” is [6, Proposition 2.17(b)]. �

The implication “strongly k-parametric ⇒ weakly k(U)-parametric”, which holds under (WH) and if 
k is a number field, was used in [6] to produce (conditionally) examples of finite groups with no strongly 
k-parametric extension F/k(T ), by first providing examples of finite groups with no weakly k(U)-parametric 
extension F/k(T ). The following theorem suggests, however, that this approach fails in general.

To word it, we denote by W (C/k) ∈ {±1} the root number of an elliptic curve C over a number field 
k. We refer to, e.g., [35,30] for the definition and, more generally, for more on the terminology of elliptic 
curves that is used below.

Theorem 4.3. Let k be a number field and Q(T ) ∈ k[T ] an irreducible degree 3 polynomial such that the 
elliptic curve C : Y 2 = Q(T ) fulfills W (C/k) = −1, but W (C/L) = +1 for every quadratic extension 
L/k. Set F/Q(T ) = Q(T )(

√
Q(T ))/Q(T ) and P (U, T, Y ) = Y 2 − UQ(T ). Then, under the Birch and 

Swinnerton-Dyer conjecture, we have:
(1) F/Q(T ) is strongly k-parametric but neither weakly k(U)-parametric nor k(U)-parametric,
(2) Y 2 −Q(T ) is strongly k-parametric but not k(U)-parametric,
(3) the answer to Question 1.4 is negative for the field k and the polynomial P (U, T, Y ),
(4) the above hypothesis (WH) fails for the number field k and the sole k(U)-regular Galois cover X → P 1

k(U)
given by the polynomial P (U, T, Y ).

Proof of Theorem 4.3. Under the Birch and Swinnerton-Dyer conjecture, and by our assumption on 
W (C/k), the elliptic curve C has odd rank over k, and so infinitely many k-rational points. Similarly, for 
every non-square u0 ∈ k, the twisted elliptic curve Cu0 : Y 2 = u0Q(T ) has positive rank, and so infinitely 
many k-rational points. See [4] for more details. Hence, the next two statements (which are equivalent) hold:
(a) for each u0 ∈ k∗, the polynomial P (u0, T, Y ) has a zero (t, y) in k2 such that y �= 0,
(b) every trivial or quadratic extension of k is the splitting field over k of some separable polynomial Y 2 −
Q(t0) with t0 ∈ k.

Now, we have:
(c) given a field L of characteristic zero, L(

√
U)/L(U) /∈ SP(FL(U)/L(U)(T )).

Indeed, let L be a field of characteristic 0. Since F/Q(T ) has 4 branch points while Q(
√
T )/Q(T ) has only 

2, [6, Theorem 2.1] yields L(
√
U) �= (FL(U))t0 for every t0 ∈ L(U) \ L. Then use Lemma 2.1 as in §3.2 to 

rule out the constant specializations at points t0 ∈ P 1(L).
Next, (c) is equivalent to the following:

(d) for L of characteristic zero, P (U, T, Y ) has no zero (t, y) ∈ L(U)2 such that y �= 0.
In particular, we have:
(e) the polynomial P (U, T, Y ) has no zero in k(U)2.
Indeed, suppose P (U, T, Y ) has such a zero (t, y). As Q(T ) is assumed irreducible over k, we have that t is 
not a root of Q(T ). Hence, y �= 0, which cannot happen by (d).

Finally, by (b) and (c), F/Q(T ) is strongly k-parametric but not weakly k(U)-parametric. The (weaker) 
conclusion that it is not k(U)-parametric then follows from Proposition 4.2. Now, (2) follows from (b), 
(1), and Lemma 2.3(1). Next, (3) follows from (a) and (e). As to (4), it basically follows from (1) and 
Proposition 4.2 (in fact, from (a) and (d)). �

We now explain how Theorem 1.5 follows from Theorem 4.3:
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Proof of Theorem 1.5. Let Q(T ) ∈ Q[T ] be a degree 3 separable polynomial such that the elliptic curve 
C/Q given by Y 2 = Q(T ) has complex multiplication by k0 = Q(

√
−m) for some m ∈ {11, 19, 43, 67, 163}. 

As k0 �= Q(
√
−1), Q(

√
−2), Q(

√
−3), we may apply [24, Corollary 4.10] to get that there exist infinitely 

many quadratic number fields k such that W (C/k) = −1 and W (C/L) = +1 for every quadratic extension L
of k. Moreover, since C/Q has complex multiplication by k0 = Q(

√
−m) for some m ∈ {11, 19, 43, 67, 163}, 

the elliptic curve C/Q has trivial Q-torsion (see the table in [26]). In particular, the triviality of the rational 
2-torsion subgroup is equivalent to the irreducibility of Q(T ) over Q, and so over every quadratic number 
field. Consequently, there exist infinitely many quadratic number fields k such that the elliptic curve C/k

fulfills the assumptions of Theorem 4.3, thus yielding the assertion. �
Remark 4.4. (1) First explicit examples of elliptic curves C and number fields k as in Theorem 4.3 were 
given in [4], where they are called “lawful evil” elliptic curves. See [24, Theorem 4.9] for an even more 
general construction of such curves C and fields k. The explicit example given right after the statement of 
Theorem 1.5 is taken from [24, Example 4.12(ii)].
(2) In the context of Theorem 4.3, the polynomial Q(T ) is separable of degree 3. Hence, the C(U)-curve 
P (U, T, Y ) = 0 is of genus 1. It remains plausible that (WH) holds if f1, . . . , fN are all of genus ≥ 2, which 
would yield that any given finite k-regular Galois extension F/k(T ) of genus ≥ 2 which is not weakly k(U)-
parametric is actually not strongly k-parametric. Similarly, it is plausible that the answer to Question 1.4
is affirmative for C(U)-curves P (U, T, Y ) = 0 of genus at least 2.

As recalled in Proposition 4.2, if a k-regular Galois extension of k(T ) is k(U)-parametric, then it is k-
parametric. Theorem 4.3(1) shows that the converse fails (conditionally) over number fields. Here is another 
counter-example, unconditional, over Laurent series fields:

Proposition 4.5. Let k be algebraically closed of characteristic zero and G a finite group.
(1) There exists F/k(T ) ∈ RG(k(T )) fulfilling the following. Let K ⊇ k be algebraically closed and L =
K((V )). Then F/k(T ) is strongly L-parametric. More precisely, given E/L ∈ R≤G(L), we have E = (FL)t0
for infinitely many t0 ∈ P 1(L).
(2) If G is neither cyclic nor dihedral of order 2n with n ≥ 3 odd, then, for L = K((V )) where K is any 
algebraically closed field containing k, the extension F/k(T ) is not L(U)-parametric.

Lemma 4.6. Let k be of characteristic zero, K ⊇ k an algebraically closed overfield, G a finite group, 
and L = K((V )). Then a given k-regular extension F/k(T ) ∈ RG(k(T )) with inertia canonical invariant 
(C1, . . . , Cr) is strongly L-parametric if and only if
(∗) for each element order n in G, there is i ∈ {1, . . . , r} such that elements of Ci have order divisible by n.
Moreover, if (∗) holds, then, given E/L ∈ R≤G(L), there exist infinitely many t0 ∈ P 1(L) such that E =
(FL)t0 .

Proof. The set R≤G(L) precisely consists of all the extensions of the form L( n
√
V )/L, where n is any element 

order in G. As such an extension L( n
√
V )/L is totally ramified of index n at the unique maximal ideal P

of K[[V ]], a given k-regular extension F/k(T ) ∈ RG(k(T )) is strongly L-parametric if and only if FL/L(T )
has a specialization at some t0 ∈ P 1(L), which is not a branch point of F/k(T ), of ramification index n at 
P, for each element order n in G.

Firstly, assume (∗) holds. Let n be an element order in G. Pick i ∈ {1, . . . , r} such that the order e of 
every element of Ci is a multiple of n, and set e = nm. By [23, Theorem 3.1], there are infinitely many 
t0 ∈ L such that the inertia group at P of (FL)t0/L is generated by an element of Cm

i . In particular, the 
ramification index at P of such a specialization is n. Hence, F/k(T ) is strongly L-parametric. Conversely, 
assume F/k(T ) is strongly L-parametric. Let n be an element order in G. By the above characterization, 
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FL/L(T ) has a specialization of ramification index n at P. Then, by the Specialization Inertia Theorem, 
the inertia canonical invariant of F/k(T ) contains the conjugacy class of an element of G of order divisible 
by n. Hence, (∗) holds. �
Proof of Proposition 4.5. By Riemann’s existence theorem, there is F/k(T ) ∈ RG(k(T )) whose inertia 
canonical invariant contains the conjugacy class of every element of G \ {1}. In particular, F/k(T ) ful-
fills Condition (∗) of Lemma 4.6. Hence, F/k(T ) is strongly L-parametric, for K ⊇ k algebraically closed 
and L = K((V )), and, given E/L ∈ R≤G(L), there are infinitely many t0 ∈ P 1(L) with E = (FL)t0 . 
Finally, if G is neither cyclic nor dihedral of order 2n with n ≥ 3 odd, F/k(T ) is not L(U)-parametric by 
Theorem 3.1 and the subsequent paragraph. �
Remark 4.7. Using Lemma 2.3 yields this polynomial analog of Proposition 4.5:
Let k be algebraically closed of characteristic 0 and G a finite group. There is a monic separable polynomial 
P (T, Y ) ∈ k[T ][Y ] of group G such that, for K ⊇ k algebraically closed and L = K((V )), the polynomial 
P (T, Y ) is strongly L-parametric. Furthermore, if G is neither cyclic nor dihedral of order 2n with n ≥ 3
odd, then P (T, Y ) is not L(U)-parametric.

5. Polynomials with more variables

We conclude with several remarks on polynomials with more than one variable. The first one compares 
a single parametric polynomial with a finite “parametric set”.

Remark 5.1. As already used in the proof of Lemma 2.4, it is well-known that, over infinite fields, 
using more than one polynomial is redundant in the setup of generic polynomials. Namely, suppose 
P1(T1, . . . , Tn, Y ), . . ., Pr(T1, . . . , Tn, Y ) ∈ k[T1, . . . , Tn][Y ] are finitely many monic separable polynomi-
als of group G over k(T1, . . . , Tn) fulfilling this: for every overfield L ⊇ k and every E/L ∈ RG(L), there 
are i ∈ {1, . . . , r} and (t1, . . . , tn) ∈ Ln such that E is the splitting field over L of Pi(t1, . . . , tn, Y ). By [15, 
Corollary 1.1.6], it follows that at least one of the polynomials Pi(T1, . . . , Tn, Y ) has to be generic itself.

On the other hand, the analogous property for parametric polynomials fails in general, e.g., for 
G = Z/8Z and k = Q(

√
17). Namely, there exist n ≥ 1 and finitely many monic separable polynomi-

als P1(T1, . . . , Tn, Y ), . . . , Pr(T1, . . . , Tn, Y ) ∈ k[T1, . . . , Tn][Y ] of group G over k(T1, . . . , Tn) fulfilling this: 
for every E/k ∈ RG(k), there are i ∈ {1, . . . , r} and (t1, . . . , tn) ∈ kn such that E is the splitting field 
over k of Pi(t1, . . . , tn, Y ) (see [25, Theorems 3.3 and 4.2]).5 Such a set is called a finite k-parametric set of 
polynomials for G. However, there exists no k-parametric polynomial P (T1, . . . , Tn, Y ) ∈ k[T1, . . . , Tn][Y ] of 
group G over k(T1, . . . , Tn), for any number of variables n (see [20, Remark A.2]).

Our second remark suggests a notion of “parametric dimension” measuring the complexity of all the 
Galois extensions of a given field with any given finite Galois group.

Remark 5.2. Recall that the generic dimension of a finite group G over a field k, denoted by gdkG, is either 
the smallest n ≥ 1 such that there is a generic polynomial P (T1, . . . , Tn, Y ) ∈ k[T1, . . . , Tn][Y ] of group G, or 
∞ if there is no generic polynomial of group G with coefficients in k (see [15, §8.5]). In view of Remark 5.1, 
for the analogous notion of parametric dimension, we allow finite k-parametric sets of polynomials. Define 
the (generalized) parametric dimension of G over k, denoted by pdkG, to be either the smallest n ≥ 1 for 

5 By the proof of [25, Theorem 4.2], one can actually take n = 5.
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which there exists a finite k-parametric set of polynomials in k[T1, . . . , Tn][Y ] for G, or ∞ if there is no such 
set.6

Clearly, pdkG ≤ gdkG, and it may happen that equality does not hold. For example, if k is PAC (the 
definition is recalled in §1), we always have pdkG = 1 (while gdkG ≥ 2 for many groups G; see [15, 
Proposition 8.2.4] and [3]), by [5] and the fact that the answer to the regular inverse Galois problem over 
PAC fields is positive (see [28, Main Theorem A]). A family of non-PAC examples is given by Remark 4.7: 
if k is algebraically closed of characteristic 0, then we always have pdk((V ))G = 1.

Finally, let us recall the following definition (see [1,15]):

Definition 5.3. Let k be a field.
(1) Let M/L be a finite separable field extension with k ⊆ L. If, for an intermediate field k ⊆ L′ ⊆ L, there 
is a field extension M ′ of L′ contained in M , and with [M ′ : L′] = [M : L] and M = M ′L, we say that M/L

is defined over L′. Moreover, the essential dimension of M/L over k is the minimum of the transcendence 
degree of L′/k, when L′ runs through all intermediate fields over which M/L is defined.
(2) Let G be a finite group, acting regularly on a set T = {T1, . . . , T|G|} of indeterminates. Then the essential 
dimension edkG of G over k is the essential dimension of k(T)/k(T)G over k.

Note that edkG ≤ gdkG and, when gdkG is finite, it is conjectured that edkG = gdkG (see [15, §8.5]). 
However, the following known example (see [27, Theorem 3.4]) shows that pdkG may be strictly smaller 
even than edkG (with k a number field).

Example 5.4. Let k = Q(
√
−1), G = (Z/2Z)5, and consider the three polynomials Pi(T1, T2, T3, T4, Y ) =

(Y 2 − T1 − . . .− Ti) 
∏4

i=1(Y 2 − Ti), i = 2, 3, 4, over k(T1, T2, T3, T4). We claim that {P2, P3, P4} is a finite 
k-parametric set for G, and hence pdkG ≤ 4 < 5 = edkG (see, e.g., [15, Theorem 8.2.11] for the last 
equality).

To show the claim, note that any Galois extension E of k of group G is of the form E = k(
√
t1, . . . , 

√
t5)

for some ti ∈ k×, i = 1, . . . , 5. Then, by the Hasse–Minkowski theorem (see [21, Chapter VI, Corollary 3.5]), 
and as k is totally imaginary, there is (a1, . . . , a4) ∈ k4 such that t5 =

∑4
j=1 tja

2
j (up to reordering the ti’s). 

Rearrange the values of tj, so that aj �= 0 for j ≤ i, and aj = 0 for j > i, for some 2 ≤ i ≤ 4 (note that 
i = 1 is impossible as [k(

√
t1, 

√
t5) : k] = 4). The splitting field of Pi(s1, . . . , s4, Y ) over k, where sj = tja

2
j

for j ≤ i and sj = tj for j > i, is then E, as desired.

Ongoing research will investigate further the connection between generic, essential, and parametric di-
mensions.
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