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Prime and coprime values of polynomials

Arnaud Bodin, Pierre Dèbes and Salah Najib

Abstract. �e Schinzel Hypothesis is a celebrated conjecture in number theory linking
polynomial values and prime numbers. In the same vein we investigate the common divisors
of values P1.n/; : : : ; Ps.n/ of several polynomials. We deduce this coprime version of the
Schinzel Hypothesis: under some natural assumption, coprime polynomials assume coprime
values at in�nitely many integers. Consequences include a version “modulo an integer” of
the original Schinzel Hypothesis, with the Goldbach conjecture, again modulo an integer,
as a special case.
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Given polynomials with integer coe�cients, famous results and long-standing
questions concern the divisibility properties of their values at integers, in
particular their primality. �e polynomial x2 C x C 41 which assumes prime
values at 0; 1; : : : ; 39 is a striking example, going back to Euler. On the
other hand, the values of a nonconstant polynomial P.x/ cannot be all prime
numbers: if P.0/ is a prime, then the other value P.kP.0// is of the form
ad .kP.0//

d C � � � C a1kP.0/ C P.0/ , so is divisible by P.0/ , and, for all but
�nitely many k 2 Z , is di�erent from ˙P.0/ , and hence cannot be a prime.

Whether a polynomial may assume in�nitely many prime values is a deeper
question. Even for P.x/ D x2C1 , whether there are in�nitely many prime numbers
of the form n2 C 1 with n 2 Z is out of reach. Bunyakowsky conjectured that
the question always has an a�rmative answer, under some natural assumption
recalled below. �e Schinzel Hypothesis generalizes this conjecture to several
polynomials, concluding that they should simultaneously take prime values; see
Section 2.
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We follow this trend. Our main results are concerned with the common divisors
of values P1.n/; : : : ; Ps.n/ at integers n of several polynomials, see �eorem 1.1
in Section 1 (proved in Section 3) and further complements in Section 4. We can
then investigate the coprimality of values of polynomials. Generally speaking, we
say that n integers, with n > 2 , are coprime if they have no common prime
divisor. While the Schinzel Hypothesis is still open, we obtain this “coprime”
version: under some suitable assumption, coprime polynomials assume coprime
values at in�nitely many integers (Corollary 1.2).

We deduce a “modulo m” variant of the Schinzel Hypothesis, and versions
of the Goldbach and the Twin Primes conjectures, again “modulo m”; see
Section 2. A coprimality criterion for polynomials is o�ered in Section 5. Finally,
in Section 6, we discuss generalizations for which Z is replaced by a polynomial
ring.

1. Common divisors of values and the coprimality question

For the whole paper, f1.x/; : : : ; fs.x/ are nonzero polynomials with integer
coe�cients.

Assume that the polynomials f1.x/; : : : ; fs.x/ are coprime (s > 2 ), i.e. they
have no common root in C . Interesting phenomena occur when considering the
greatest common divisors:

dn D gcd
�
f1.n/; : : : ; fs.n/

�
with n 2 Z:

It may happen that f1.x/; : : : ; fs.x/ never assume coprime values, i.e., that none
of the integers dn is 1 . A simple example is f1.x/ D x2 � x D x.x � 1/ and
f2.x/ D x

2�xC2 : all values f1.n/ and f2.n/ are even integers. More generally
for f1.x/ D xp � x and f2.x/ D xp � x C p with p a prime number, all
values f1.n/ , f2.n/ are divisible by p , by Fermat’s theorem. Rule out these
polynomials by assuming that no prime p divides all values f1.n/; : : : ; fs.n/

with n 2 Z . Excluded polynomials are well-understood: modulo p , they vanish
at every element of Z=pZ , hence are divisible by xp � x D

Q
m2Z=pZ.x �m/ ;

so they are of the form pg.x/C h.x/.xp � x/ with g.x/; h.x/ 2 ZŒx� for some
prime p .

With this further assumption, is it always true that f1.n/; : : : ; fs.n/ are coprime
for at least one integer n? For example this is the case for n and nC 2 that are
coprime when n is odd. In other words, does the set

D? D ¹dn j n 2 Zº

contain 1? Studying D? , which, as we will see, is quite intriguing, is a broader
goal.
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Example 1. Let f1.x/ D x2�4 and f2.x/ D x3C3xC2 . �ese polynomials are
coprime since no root of f1 is a root of f2 . �e values dn D gcd.f1.n/; f2.n// ,
for n D 0; : : : ; 20 are:

2 3 16 1 6 1 4 3 2 1 24 1 2 3 4 1 6 1 64 3 2

We have in fact D? D ¹1; 2; 3; 4; 6; 8; 12; 16; 24; 32; 48; 64; 96; 192º . It seems
unclear to highlight a pattern from the �rst terms, but at least the integer 1
occurs.

A �rst general observation is that the set D? is �nite. �is was noticed for
two polynomials by Frenkel–Pelikán [FP]. In fact they showed more: the sequence
.dn/n2Z is periodic. We will adjust their argument. A new result about the set D?
is the stability assertion of the following statement, which is proved in Section 3.

�eorem 1.1. Let f1.x/; : : : ; fs.x/ 2 ZŒx� be nonzero coprime polynomials
(s > 2 ). �e sequence .dn/n2Z is periodic and the �nite set D? D ¹dnºn2Z

is stable under gcd and under lcm. Consequently, the gcd d? and the lcm m?

of all integers dn (n 2 Z ) are in the set D? .

�e stability under gcd means that for every n1; n2 2 Z , there exists n 2 Z

such that gcd.dn1
; dn2

/ D dn . In Example 1, the sequence .dn/n2Z can be checked
to be periodic of period 192 and the set D? is indeed stable under gcd and lcm.

A consequence of �eorem 1.1 is the following result, proved in [Sch3,
�eorem 1]; as discussed below in Section 3, it is a “coprime” version of the
Schinzel Hypothesis.

Corollary 1.2. Assume that s > 2 and f1.x/; : : : ; fs.x/ are coprime polynomials.
Assume further that no prime number divides all integers f1.n/; : : : ; fs.n/ for
every n 2 Z . �en there exist in�nitely many n 2 Z such that f1.n/; : : : ; fs.n/
are coprime integers.

In Example 1, we have f1.1/ D �3 and f2.0/ D 2 , so no prime number
divides f1.n/ , f2.n/ for every n 2 Z . Corollary 1.2 asserts that f1.n/ and f2.n/
are coprime integers for in�nitely many n 2 Z .

Assuming �eorem 1.1, here is how Corollary 1.2 is deduced.

Proof. �e integer d? , de�ned as the gcd of all the dn , is also the gcd of all
values f1.n/; : : : ; fs.n/ with n 2 Z . �e assumption of Corollary 1.2 exactly says
that d? D 1 . By �eorem 1.1, we have 1 2 D? , that is: there exists n 2 Z such
that f1.n/; : : : ; fs.n/ are coprime. Due to the periodicity of .dn/n2Z , the set of
such n is in�nite.
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2. �e Schinzel Hypothesis

�e Schinzel Hypothesis is the following statement; it was denoted by (H)
in [SS].

Schinzel Hypothesis. Assume that s > 1 and f1.x/; : : : ; fs.x/ are irreducible in
ZŒx� . Assume further that no prime number divides the product

Q
iD1;:::;s fi .n/ for

every n 2 Z . �en there exist in�nitely many integers n such that f1.n/; : : : ; fs.n/
are all prime numbers.

�is statement would imply many other conjectures in number theory. For
instance with f1.x/ D x and f2.x/ D xC2 , it yields the Twin Primes conjecture:
there exist in�nitely many primes p such that p C 2 is also a prime number.
It also provides in�nitely many prime numbers of the form n2 C 1 with n 2 Z ;
see [SS] and [Rib, Ch. 3 and Ch. 6] for other problems.

�e Schinzel Hypothesis is however wide open. It is only known true when
s D 1 and deg.f1/ D 1 , and this case is already quite deep. It is indeed the
Dirichlet theorem: if a , b are coprime nonzero integers, then there are in�nitely
many ` 2 Z such that aC `b is a prime number.

Corollary 1.2 at least provides a “coprime” version of the Schinzel Hypothesis.
�is coprime version can then be conjoined with the Dirichlet theorem. �is yields
the following.

Corollary 2.1. Assume that f1.x/ and f2.x/ are coprime polynomials and that
no prime number divides f1.n/ and f2.n/ for every n 2 Z . �en, for in�nitely
many n 2 Z , there exist in�nitely many ` 2 Z such that f1.n/ C f̀2.n/ is a
prime number.

Proof. As no prime number divides f1.n/ and f2.n/ for every n 2 Z , we
can apply Corollary 1.2 to get in�nitely many integers n 2 Z such that f1.n/
and f2.n/ are coprime. By the Dirichlet theorem for primes in an arithmetic
progression, for each of these n except roots of the product f1f2 , there exist
in�nitely many ` 2 Z such that f1.n/C f̀2.n/ is a prime number.

Corollary 2.1 extends to the case s > 2 . Under the generalized assumption that
no prime divides all f1.n/; : : : ; fs.n/ for every n 2 Z , the conclusion becomes:
for in�nitely many n 2 Z , there exists a “large”1 set L � Zs�1 of tuples
.`2; : : : ; `s/ such that f1.n/ C `2f2.n/ C � � � C `sfs.n/ is a prime number. We
leave the reader work out the generalization.

1 “Large” should be understood as Zariski dense in Zs�1 ; this is the generalization of “in�nite” for
a subset L � Zs�1 : if a polynomial P.x2; : : : ; xs/ vanishes at every point of L , it has to be the zero
polynomial.
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We also obtain this “modulo m” version of the Schinzel Hypothesis.

Corollary 2.2. For s > 1 , assume that no prime integer divides
Q
iD1;:::;s fi .n/

for every n 2 Z . �en, given any integer m > 0 , there exist n 2 Z such that
each of the values f1.n/; : : : ; fs.n/ is congruent to a prime number modulo m .
In fact, there are in�nitely many integers n such that for each i D 1; : : : ; s , there
are in�nitely many prime numbers pi such that fi .n/ D pi .mod m/ .

Proof. Fix an integer m > 0 . Consider the two polynomials F1.x/ DQ
jD1;:::;s fj .x/ and F2.x/ D m . Clearly, F1.x/ and F2.x/ satisfy the assumptions

of Corollary 1.2. It follows that there exists n 2 Z such that F1.n/ D f1.n/ � � � fs.n/
is coprime with m . In particular, each of the integers f1.n/; : : : ; fs.n/ is coprime
with m . Hence, by the Dirichlet theorem, there exists a prime number pj such
that pj D fj .n/C ajm (for some aj 2 Z ). In fact the Dirichlet theorem asserts
that there are in�nitely many such primes pj . For j D 1; : : : ; s the congruences,

fj .nC `m/ D fj .n/ .mod m/

provide the in�niteness of the integers n . �ese congruences are easily deduced
from the basic ones for which fj .x/ is a monomial xk ; they will again be used
later.

Corollary 2.2 has this nice special case, which can also be found in Schinzel’s
paper [Sch2] following works of Sierpiński.

Example 2 (Goldbach �eorem modulo m ). Let m; ` be two positive integers.
�en there exist in�nitely many prime numbers p and q such that p C q D 2`
.mod m/ .

Proof. Take f1.x/ D x and f2.x/ D 2` � x . As f1.1/f2.1/ D 2` � 1 and
f1.�1/f2.�1/ D �.2` C 1/ , no prime number divides f1.n/f2.n/ for every
n 2 Z . By Corollary 2.2, there exist n 2 Z and prime numbers p and q such
that f1.n/ D n is congruent to p .mod m/ and f2.n/ D 2` � n is congruent to
q .mod m/ , whence p C q D 2` .mod m/ .

Another example with f1.x/ D x and f2.x/ D x C 2 gives the Twin Primes
�eorem modulo m : For every m > 0 , there are in�nitely many primes p , q
such that q D p C 2 .mod m/ .
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3. Proof of �eorem 1.1

After a brief reminder in Section 3.1, �eorem 1.1 is proved in Sections 3.2
and 3.3. Recall that f1.x/; : : : ; fs.x/ are nonzero polynomials with integer
coe�cients.

3.1. Reminder on coprimality of polynomials. Denote the gcd of
f1.x/; : : : ; fs.x/ in QŒx� by d.x/ ; it is a polynomial in QŒx� , well-de�ned up to
a nonzero multiplicative constant in Q . Polynomials f1.x/; : : : ; fs.x/ are said to
be coprime if d.x/ is the constant polynomial equal to 1 . �ese characterizations
are well-known:

Proposition 3.1. For s > 2 , the following assertions are equivalent:

(i) f1.x/; : : : ; fs.x/ are coprime polynomials (i.e., d.x/ D 1 ),

(ii) the gcd of f1.x/; : : : ; fs.x/ in ZŒx� is a constant polynomial,

(iii) f1.x/; : : : ; fs.x/ have no common complex roots,

(iv) there exist u1.x/; : : : ; us.x/ 2 QŒx� such that a Bézout identity is satis�ed,
i.e.:

u1.x/f1.x/C � � � C us.x/fs.x/ D 1:

A brief reminder: (iv) ) (iii) is obvious; so is (iii) ) (ii) (using that C

is algebraically closed); (ii) ) (i) is an exercise based on “removing the
denominators” and Gauss’s Lemma [Lan, IV, §2]; and (i) ) (iv) follows
from QŒx� being a Principal Ideal Domain.

In the case of two polynomials, we have this additional equivalence: f1.x/
and f2.x/ are coprime if and only if their resultant Res.f1; f2/ 2 Z is non-
zero. Section 5 o�ers an alternate method to check coprimality of two or more
polynomials.

For the rest of this section, assume that s > 2 and f1.x/; : : : ; fs.x/

are coprime. Denote by ı the smallest positive integer such that there exist
u1.x/; : : : ; us.x/ 2 ZŒx� with u1.x/f1.x/C � � �Cus.x/fs.x/ D ı . Such an integer
exists from the Bézout identity of Proposition 3.1, rewritten after multiplication
by the denominators.

3.2. Finiteness of D? and periodicity of .dn/n2Z .

Proposition 3.2. We have the following:

� Every integer dn divides ı (n 2 Z ). In particular, the set D? is �nite.

� �e sequence .dn/n2Z is periodic of period ı .
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Note that the integer ı need not be the smallest period. Proposition 3.2 is
an improved version of results by Frenkel and Pelikán [FP]: for two coprime
polynomials f1.x/ , f2.x/ , they show that every dn divides the resultant
Res.f1; f2/ of f1.x/ and f2.x/ . In fact our ı divides Res.f1; f2/ . Next example
shows that Res.f1; f2/ and ı may be huge and the sequence .dn/n2Z may have
a complex behavior despite being periodic.

Example 3. Let f .x/ D x8 C x6 � 3x4 � 3x3 C x2 C 2x � 5 and
g.x/ D 3x6 C 5x4 � 4x2 � 9x C 21 . �ese two polynomials were studied by
Knuth [Knu, Division of polynomials, p. 427]. We have Res.f; g/ D 25 095 933 394
and ı D 583 626 358 D 2�72�43�138 497 . Here are the terms dn for 0 6 n 6 39 :

1 2 1 2 7 2 1 2 1 2 1 14 1 2 1 2 1 2 7 2 1 86 1 2 1 14 1 2 1 2 1 2 7 2 1 2 1 2 1 98

Higher values occur: for instance d1999 D 4214 , d133139 D 276 994 . For this
example, the set D? is exactly the set of all divisors of ı and the smallest period
is ı .

Proof of Proposition 3.2. �e identity u1.n/f1.n/C� � �Cus.n/fs.n/ D ı implies
that dn D gcd.f1.n/; : : : ; fs.n// divides ı (n 2 Z ). To prove that the sequence
.dn/n2Z is periodic, we use again that fj .n C `ı/ D fj .n/ .mod ı/ for every
` 2 Z and every n 2 Z .

Fix n; ` 2 Z . As dn divides fj .n/ and ı , then by this congruence, dn divides
fj .nC `ı/ . �is is true for j D 1; : : : ; s , whence dn divides dnC`ı . In the same
way we prove that dnC`ı divides dn (n; ` 2 Z ). �us dnC`ı D dn and .dn/n2Z

is periodic of period ı .

3.3. Stability by gcd and lcm.

Proposition 3.3. �e set D? is stable under gcd and lcm.

Denote by d? the gcd of all elements of D? and by m? the lcm of those of
D? . Using that gcd.a; b; c/ D gcd.a; gcd.b; c// we obtain:

Corollary 3.4. �e integers d? and m? are elements of D? . Furthermore
d? D min.D?/ is the greatest integer dividing f1.n/; : : : ; fs.n/ for every n 2 Z .
Similarly m? D max.D?/ .

Proof of Proposition 3.3 for the gcd. We only prove the gcd-stability part and
leave the lcm part (which we will not use) to the reader.

Let dn1
and dn2

be two elements of D? . Let d.n1; n2/ be their gcd. �e
goal is to prove that d.n1; n2/ is an element of D? . �e integer d.n1; n2/ can
be written:
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d.n1; n2/ D
Y
i2I

p
˛i

i

where, for each i 2 I , pi is a prime divisor of ı (see Proposition 3.2) and
˛i 2 N (maybe ˛i D 0 for some i 2 I ). Fix i 2 I . As p˛iC1

i does not divide
d.n1; n2/ , p˛iC1

i does not divide dn1
or does not divide dn2

; we name it dmi

with mi equals n1 or n2 .
�e Chinese remainder theorem provides an integer n , such that

n D mi .mod p˛iC1
i / for each i 2 I:

By de�nition, p˛i

i divides d.n1; n2/ , so p
˛i

i divides all f1.n1/; : : : ; fs.n1/ ,
f1.n2/; : : : ; fs.n2/ . In particular p

˛i

i divides f1.mi /; : : : ; fs.mi / , hence also
f1.n/; : : : ; fs.n/ . Whence p˛i

i divides dn for each i 2 I .
Now p

˛iC1
i does not divide fj0

.mi / , for some j0 2 ¹1; : : : ; sº . As fj0
.n/ D

fj0
.mi / .mod p˛iC1

i / , then p
˛iC1
i does not divide fj0

.n/ . Hence p
˛iC1
i does

not divide dn .
We have proved that p˛i

i is the greatest power of pi dividing dn , for all
i 2 I . As dn divides ı , each prime factor of dn is one of the pi . Conclude
that d.n1; n2/ D dn .

4. More on the set D?

Further questions on the set D? are of interest. �e stability under gcd and
lcm gives it a remarkable ordered structure. Can more be said about elements
of D? ? �e smallest element d? particularly stands out: it is also the gcd of all
values f1.n/; : : : ; fs.n/ with n 2 Z . Can one determine or at least estimate d? ?

Proposition 4.1. Assume that f1.x/; : : : ; fs.x/ are monic. �en d? divides each
of the integers .degf1/Š; : : : ; .degfs/Š .

�e proof relies on the following result.

Lemma 4.2. Let f .x/ D adx
d C � � � C a1x C a0 be a polynomial in ZŒx� of

degree d . Fix an integer T > 0 and �x m 2 Z . If an integer k divides each of
f .m/; f .mC T /; f .mC 2T /; : : : then k divides adT ddŠ .

For T D 1 , this lemma was obtained by Schinzel in [Sch1]. If f .x/ is assumed
to be a primitive polynomial (i.e., the gcd of its coe�cients is 1 ) and k divides
f .mC `T / (for all ` 2 Z ) then Bhargava’s paper [Bha] implies that k divides
T ddŠ (see theorem 9 and example 17 there). Moreover using a theorem of Pólya
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(see [Bha, �eorem 2]), in Proposition 4.1, we could replace the hypothesis “fj .x/
is monic” by “fj .x/ is primitive” with the same conclusion on d? .

We give an elementary proof below of Lemma 4.2 which was suggested to
us by Bruno Deschamps. It uses the following operator:

� W QŒx� �! QŒx�

P.x/ 7�! P.xCT /�P.x/
T

:

If P.x/ D adx
d C � � � C a0 is a polynomial of degree d , then �.P /.x/ is

a polynomial of degree d � 1 of the form �.P /.x/ D dadx
d�1 C � � � By

induction, if we iterate this operator d times, we obtain that �d .P /.x/ D dŠad
is a constant polynomial. �e polynomial �.P /.x/ is a discrete analog of the
derivative P 0.x/ . In particular �d .P /.x/ D dŠad should be related to the higher
derivative P .d/.x/ D dŠad .

Proof of Lemma 4.2. �e key observation is that if k divides f .m/ and f .mC
T / , then k divides T�.f /.m/ . We prove the statement by induction on the
degree d .
� For d D 0 , “k divides f .m/” is exactly saying “k divides a0 ”.
� Fix d > 0 and suppose that the statement is true for polynomials of degree

less than d . Let f .x/ D adx
d C � � � C a0 be a polynomial of degree d

satisfying the hypothesis. As k divides f .mC `T / for all ` 2 N , then k

divides
T�.f /.mC `T / D f

�
mC .`C 1/T

�
� f .mC `T /:

By induction applied to T�.f /.x/ D Tdadxd�1C� � � , the integer k divides
the integer .Tdad /T d�1.d � 1/Š D adT ddŠ .

Proof of Proposition 4.1. For each j D 1; : : : ; s , the integer d? divides fj .n/

for every n 2 Z . �us d? divides .degfj /Š by Lemma 4.2 (applied with T D 1

and ad D 1 ).

We can also derive a result for m? D max.D?/ D lcm.D?/ .

Proposition 4.3. Let T be the smallest period of the sequence .dn/n2Z and
f1.x/ D adx

d C � � � be a polynomial of degree d . �en:

T jm? and m?jadT
ddŠ

Proof. �e proof that m? is a period is the same as the one for ı (see
Proposition 3.2). It follows that T divides m? . On the other hand, if .dn/n2Z is
periodic of period T , then every term dn divides f1.nC `T / for all ` 2 Z . By
Lemma 4.2, dn divides adT ddŠ . �is is true for each n , so m? D lcm¹dnºn2Z

also divides adT ddŠ .



178 A. Bodin, P. Dèbes and S. Najib

5. A coprimality criterion for polynomials

A constant assumption of the paper has been that our polynomials f1.x/; : : : ;
fs.x/ are coprime. To test this condition, we o�er here a criterion only using
the values f1.n/; : : : ; fs.n/ that may be more practical than the characterizations
from Proposition 3.1.

De�ne the normalized height of a degree d polynomial f .x/ D adxdC� � �Ca0
by

H.f / D max
iD0;:::;d�1

ˇ̌̌̌
ai

ad

ˇ̌̌̌
:

Proposition 5.1. Let H be the minimum of the normalized heights
H.f1/; : : : ;H.fs/ . �e polynomials f1.x/; : : : ; fs.x/ are coprime if and only
if there exists n > 2H C 3 such that gcd.f1.n/; : : : ; fs.n// 6

p
n .

In particular if f1.n/; : : : ; fs.n/ are coprime (as integers) for some su�ciently
large n then f1.x/; : : : ; fs.x/ are coprime (as polynomials).

Example 4.

� Take f1.x/ D x4 � 7x3 C 3 , f2.x/ D x3 � 3x C 3 . We have H.f1/ D 7 ,
H.f2/ D 3 , so H D 3 . For n D 9 .D 2H C 3/ , we have f1.n/ D 1461 ,
f2.n/ D 705 . �us gcd.f1.n/; f2.n// D 3 6

p
n . From Proposition 5.1, the

polynomials f1.x/ and f2.x/ are coprime.

� Here is an example for which the polynomials are not coprime. Take
f1.x/ D x2 � 1 D .x C 1/.x � 1/ , f2.x/ D x2 C 2x C 1 D .x C 1/2 .
�en gcd.f1.x/; f2.x// D x C 1 and gcd.f1.n/; f2.n// > nC 1 .

Remark. Proposition 5.1 is a coprime analog of the classical idea consisting
in using prime values of polynomials to prove their irreducibility. For instance
there is this irreducibility criterion by Ram Murty [RM], which can be seen as
a converse to the Bunyakovsky conjecture: Let f .x/ 2 ZŒx� be a polynomial
of normalized height H . If f .n/ is prime for some n > H C 2 , then f .x/ is
irreducible in ZŒx� .

We �rst need a classical estimate for the localization of the roots of a
polynomial, as in [RM].

Lemma 5.2 (Cauchy bound). Let f .x/ D adx
d C � � � C a1x C a0 2 ZŒx� be a

polynomial of degree d and of normalized height H . Let ˛ 2 C be a root of f .
�en j˛j < H C 1 .
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Proof of Lemma 5.2. We may assume j˛j > 1 , since for j˛j 6 1 , Lemma 5.2 is
obviously true. As f .˛/ D 0 , ˛ satis�es:

ˇ̌
ad˛

d
ˇ̌
D
ˇ̌
ad�1˛

d�1
C � � � C a1˛ C a0

ˇ̌
6
d�1X
iD0

ˇ̌
ai˛

i
ˇ̌
:

By dividing by ad , we get:

ˇ̌
˛d
ˇ̌

6
d�1X
iD0

H
ˇ̌
˛i
ˇ̌
D H

j˛jd � 1

j˛j � 1
then

ˇ̌
˛
ˇ̌
� 1 6 H

j˛jd � 1

j˛d j
D H

�
1 �

1

j˛jd

�
:

So that j˛j � 1 6 H and the proof is over.

Proof of Proposition 5.1.

� H) Since f1.x/; : : : ; fs.x/ are coprime polynomials, we have a Bézout
identity: u1.x/f1.x/ C � � � C us.x/fs.x/ D 1 for some u1.x/; : : : ; us.x/ in
QŒx� . By multiplying by an integer k 2 Zn¹0º , we obtain Qu1.x/f1.x/C� � �C
Qus.x/fs.x/ D k , with Qu1.x/; : : : ; Qus.x/ being this time in ZŒx� . �is gives
Qu1.n/f1.n/C� � �C Qus.n/fs.n/ D k for all n 2 Z , so that gcd.f1.n/; : : : ; fs.n//
divides k . �us the gcd of f1.n/; : : : ; fs.n/ is bounded, hence it is 6

p
n

for all su�ciently large n .

� (H Let d.x/ 2 ZŒx� be a common divisor of f1.x/; : : : ; fs.x/ in
ZŒx� . By contradiction, assume that d.x/ is not a constant polynomial.
Consider an integer n > 2H C 3 such that gcd.f1.n/; : : : ; fs.n// 6

p
n .

On the one hand d.n/ divides each of the f1.n/; : : : ; fs.n/ , so jd.n/j 6
gcd.f1.n/; : : : ; fs.n// 6

p
n .

On the other hand
d.n/ D c

Y
i2I

.n � ˛i /

for some roots ˛i 2 C , i 2 I , of f1 (and of the other fj ), and c 2 Z n ¹0º .
By Lemma 5.2, we obtain:

jd.n/j D jcj
Y
i

jn � ˛i j > jcj
Y
i

jn � .H C 1/j > jn � .H C 1/j:

We obtain jn � .H C 1/j 6
p
n , which is impossible for n > 2H C 3 .

We conclude that the common divisors of f1.x/; : : : ; fs.x/ in ZŒx� are
constant. �erefore by Proposition 3.1, the polynomials f1.x/; : : : ; fs.x/ are
coprime.
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6. Polynomials in several variables

�e Schinzel Hypothesis and its coprime variant can be considered with the
ring Z replaced by a more general integral domain Z . Papers [BDN1] and
[BDN2] are devoted to this. �e special case that Z is a polynomial ring ZŒu�

stands out; here u can be a single variable or a tuple .u1; : : : ; ur / of several
variables. “Prime in ZŒu�” then means “irreducible in ZŒu�”.

In [BDN1], we prove the Schinzel Hypothesis for ZŒu� instead of Z :

�eorem 6.1. With s > 1 , let f1.u; x/; : : : ; fs.u; x/ be s polynomials, irreducible
in ZŒu; x� , of degree > 1 in x . �en there are in�nitely many polynomials
n.u/ 2 ZŒu� (with partial degrees as large as desired) such that

fi
�
u; n.u/

�
is an irreducible polynomial in ZŒu� for each i D 1; : : : ; s .

We also prove the Goldbach conjecture for polynomials: any nonconstant
polynomial in ZŒu� is the sum of two irreducible polynomials of lower or equal
degree. Furthermore, �eorem 6.1 is shown to also hold with the coe�cient ring
Z replaced by more general rings R , e.g. R D FqŒt � . However not all integral
domains are allowed. For example, with u a single variable, the result is obviously
false with R D C , is known to be false for R D Fq by a result of Swan [Swa]
and is unclear for R D Zp .

In contrast, we prove in [BDN2] that the coprime analog of �eorem 6.1 holds
in a much bigger generality.

�eorem 6.2. Let R be a Unique Factorization Domain and assume that RŒu� is
not the polynomial ring FqŒu1� in a single variable over a �nite �eld. With s > 2 ,
let f1.u; x/; : : : ; fs.u; x/ be s nonzero polynomials, with no common divisor
in RŒu; x� other than units of R . �en there are in�nitely many polynomials
n.u/ 2 RŒu� such that

f1
�
u; n.u/

�
; : : : ; fs

�
u; n.u/

�
have no common divisor in RŒu� other than units of R .

�eorem 6.2 fails if RŒu� D FqŒu1� . Take indeed f1.u1; x/ D xq � x C u1

and f2.u1; x/ D .x
q � x/2 C u1 . For every n.u1/ 2 FqŒu1� , the constant term of

n.u1/
q � n.u1/ is zero, so f1.u1; n.u1// and f2.u1; n.u1// are divisible by u1 .
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