Specialization and Localization in Inverse Galois Theory PIERRE DÈBES

Specialization and localization have always been at the core of Inverse Galois Theory (IGT): Hilbert's Irreducibility Theorem, the Noether Program, the Grunwald Problem, the Hurwitz moduli space approach are prominent milestones in this context.

We focus on the situation that the base field is a number field. The goal of the talk, based on the diagram in $\S 2$, was twofold. First, explain how we see the two operations, specialization and localization, and the somehow inverse ones that are parametrization and lifting still structure the area. Second, present a series of new results which are part of a joint program with J. Koenig, F. Legrand and D. Neftin. In various situations, these results roughly show that the sets of Galois extensions obtained by specialization or/and localization from natural sets of geometric Galois covers of fixed group G (singletons, families, moduli spaces) are big (in some density sense), but also cannot be too big (e.g. they generally do not contain all Galois extensions of group G).

The diagram in $\S 2$ displays a number of IGT properties for a finite group G over a given number field k. The abbreviations used for these properties refer to our two part glossary where they are fully defined: $\S 1$ for the classical ones and $\S 3$ for the more recent ones. For example:

IGP (Inverse Galois Problem): There is a Galois extension E/k of group G.

Left side of our diagram is more geometric than the right side; presence of indeterminates is the recognition sign of the former. Specialization connects the two. We specialize a k-regular Galois extension F/k(T) or the corresponding k-cover $f: X \to \mathbb{P}^1_T$ in two ways:

- for $t_0 \in k$, F_{t_0}/k , also denoted by f_{t_0} , is the classical specialized extension of F at t_0 : the residue field extension at some prime ideal above t_0 in the extension F/k(T). As number fields are Hilbertian (HIT), the extension F_{t_0}/k is Galois of group G for "many" $t_0 \in k$.
- if $T_0 \in k(U) \setminus k$, $f_{T_0} : X_{T_0} \to \mathbb{P}^1_U$ is the pull-back of f along $T_0 : \mathbb{P}^1 \to \mathbb{P}^1$. As k(U) is Hilbertian, for "many" $T_0 \in k(U)$, X_{T_0} is connected and the function field extension $k(X_{T_0})/k(U)$, which is equivalently obtained by specializing T to $T_0(U)$ in k(X)/k(T), is Galois of group G.

1. Classical properties

RIGP (Regular IGP): There exists a k-regular Galois extension F/k(T) of group G (k-regular: $F \cap \overline{k} = k$), or, equivalently, a k-regular Galois cover $f: X \to \mathbb{P}^1_k$ of group G.

HIT (Hilbert Irreducibility Theorem): For every polynomial P(T,Y), irreducible in k(T)[Y], there exist infinitely many $t_0 \in k$ such that $P(t_0,Y)$ is irreducible in k[Y].

G has a parametric extension F/k(T): There is a Galois extension F/k(T) of group G that is k-parametric, i.e., every Galois extension E/k of group contained in G is the specialized extension $F_{\mathbf{t_0}}/k$ of F/k(T) at some point $\mathbf{t_0} \in k$. Example: $k(\sqrt{T})/k(T)$ for $G = \mathbb{Z}/2\mathbb{Z}$.

G has a generic extension F/k(T): There exists a Galois extension F/k(T) of group G such that FK/K(T) is K-parametric for every field extension K/k.

G has a generic extension $F/k(T_1, \ldots, T_s)$: as above with T replaced by T_1, \ldots, T_s and t_0 by $\mathbf{t}_0 = (t_{01}, \ldots, t_{0s})$.

Noether: If $\mathbf{Y} = Y_1, \dots, Y_d$ are d = |G| indeterminates, the fixed field $k(\mathbf{Y})^G$ of G in $k(\mathbf{Y})$, with $G \hookrightarrow S_d$ acting via its regular representation, is a pure transcendental extension of k. Equivalently the Noether variety \mathbb{A}^d/G is k-rational.

Noether has WWA: The Noether variety $V = \mathbb{A}^d/G$ has the Weak Weak Approximation property: there is a finite set \mathcal{S}_{exc} of finite places of k such that for every finite set \mathcal{S} of finite places of k, disjoint from \mathcal{S}_{exc} , the set V(k) is dense in $\prod_{v \in S} V(k_v)$.

2. The diagram

The implication arrows show the hierarchy between the properties. Groups appearing above a given box satisfy the corresponding property, those appearing below do not, both over $k = \mathbb{Q}$. The symbol ... (resp. •) means that the list is open (resp. closed), possibly as a question if used with a question mark. The main recent results are those assertions about groups satisfying or not satisfying a property which come with a reference. The references are given in the end.



3. More recent properties

W-Grunwald: There is a finite set S_{exc} of finite places of k such that for every finite set $\mathcal{E} = \{E_i/k_{v_i} | i = 1, ..., m\}$ of Galois extensions E_i/k_{v_i} of group $H_i \subset G$, with $v_i \notin S_{\text{exc}}$, there is an extension E/k of group G such that $Ek_{v_i}/k_{v_i} = E_i/k_{v_i}$, i = 1, ..., m. (The original Grunwald property, i.e. with $S_{\text{exc}} = \emptyset$, is denoted by **Grunwald**).

W-Grunwald^{ur}: The property **W-Grunwald** above but with the additional condition that the extensions E_i/k_{v_i} , i = 1, ..., N, are unramified.

BB-N (Beckmann-Black Arithmetic lifting property): For the given integer $N \geq 1$ and every N Galois extensions $E_1/k, \ldots, E_N/k$ of group contained in G, there exists a k-regular Galois extension F/k(T) of group G that specializes to the extensions $E_1/k, \ldots, E_N/k$.

G has a regularly parametric extension F/k(T): The corresponding k-regular Galois cover $f: X \to \mathbb{P}^1_k$ (of function field extension F/k(T)) has this property: every k-regular Galois cover $g: Y \to \mathbb{P}^1_k$ of group G is some rational pullback $f_{T_0}: X_{T_0} \to \mathbb{P}^1_k$ of f (for some T_0 in $k(U) \setminus k$). Equivalently, every k-regular Galois extension L/k(U) of group G can be obtained from the k-regular Galois extension F/k(T) by specializing F(U)/k(U,T) at some T_0 in $k(U) \setminus k$.

reg-BB-N (Regular Beckmann-Black lifting property): For the given integer $N \geq 1$ and every N k-regular Galois covers $g_1: Y_1 \to \mathbb{P}^1, \ldots, g_N: Y_N \to \mathbb{P}^1$ of group G, there exists a k-regular Galois cover f of group G such that g_1, \ldots, g_N are rational pullbacks of f.

Malle: The number N(G, y) of sub-Galois extensions E/k of \overline{k} of group G and discriminant of norm $|N_{k/\mathbb{Q}}(d_E)| \leq y$ satisfies

$$c_1 y^{a(G)} \le N(G, y) \le c_2 y^{a(G)+\varepsilon}$$
 for every $y \ge y_0$

Here $a(G) = (|G|(1-1/\ell))^{-1}$ with ℓ the smallest prime divisor of |G| and c_1 , c_2 , $y_0 > 0$ depend on G for c_1 and on G, ε for c_2 and y_0 .

LB-Malle (Lower Bound part of Malle conjecture):

$$N(G, y) \ge y^{\alpha(G)}$$
 for every $y \ge y_0$

Here $\alpha(G)$ and y_0 are positive constants depending on G.

Complement: We refer to http://math.univ-lille1.fr/~pde/pub.html— item 57 for the sequence of slides (converging to the diagram) used during the talk and for a more detailed description of our research project.

REFERENCES

- [1] P. Dèbes, On the Malle conjecture and the self-twisted cover, Israel J. Math. 218 (2017), 101–131.
- [2] P. Dèbes, Groups with no parametric Galois realizations, Annales Sci. E.N.S. 51/1 (2018), 143-179.
- [3] C. Demarche, G. Lucchini-Arteche, D. Neftin, The Grunwald problem and approximation properties for homogeneous spaces, Ann. Inst. Fourier 67/3 (2017), 1009-1033.
- [4] D. Harari, Quelques propriétés d'approximation reliées à la cohomologie galoisienne d'un groupe algébrique fini, Bull. Soc. Math. France 135/4 (2007), 549?564.
- [5] J. Harpaz and O. Wittenberg, Zéro-cycles sur les espaces homogènes et problème de Galois inverse, preprint (2018), arXiv:1802.09605 28 pages.
- [6] J. König, F. Legrand, Non-parametric sets of regular realizations over number fields, J. Algebra, 497 (2018), 302-336
- [7] J. König, F. Legrand, D. Neftin, On the local behaviour of specializations of function field extensions, International Mathematics Research Notices, to appear, 27 pages
- [8] F. Motte, Specialization results Towards the Grunwald Problem and the Malle Conjecture, preprint, (2018), 35 pages.