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The central theme of the paper is the specialization of 
algebraic function field extensions. Our main results are 
Tchebotarev type theorems for Galois function field exten-
sions, finite or infinite, over various base fields: under some 
conditions, we extend the classical finite field case to number 
fields, p-adic fields, PAC fields, function fields κ(x), etc. 
We also compare the Tchebotarev conclusion – existence of 
unramified local specializations with Galois group any cyclic 
subgroup of the generic Galois group (up to conjugation) – 
to the Hilbert specialization property. For a function field 
extension with the Tchebotarev property, the exponent of 
the Galois group is bounded by the l.c.m. of the local 
specialization degrees. Local–global questions arise for which 
we provide answers, examples and counter-examples.
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1. Introduction

Let K be a field, B a smooth projective and geometrically integral K-variety and 
F/K(B) a Galois extension of group G, finite or infinite. For every overfield k ⊃ K

and each point t0 ∈ B(k), there is a notion of k-specialization of F/K(B) at t0. For t0
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not in the branch locus of the extension F/K(B), it is a Galois extension (Fk)t0/k and 
the Galois group Gal((Fk)t0/k) identifies to some subgroup of G (well-defined up to 
conjugation by elements of G).

The leading question in this context consists in comparing the Galois groups of the 
specializations with the “generic” Galois group G. A classical tool is the Hilbert special-
ization property: essentially, a finite extension F/K(B) has the Hilbert specialization 
property if the “special” groups equal G for “many” specializations over k = K.

In this paper, we introduce another specialization property, the Tchebotarev existence 
property, which is, for finite extensions, a function field analog of the existence part in the 
Tchebotarev density theorem for number fields. We say that F/K(B) has the Tchebotarev 
existence property if for every cyclic subgroup H of G, there exists a local field k over 
K and a point t0 ∈ B(k) such that the specialization (Fk)t0/k is cyclic, unramified and 
its Galois group is conjugate to H in G (see Definition 2.5 for more details).

A first motivation to consider this property is the following: for an extension with 
the Tchebotarev existence property certain local behaviors encode informations on the 
structure of the Galois group of the extension and vice-versa, as explained later. This 
provides a function field analog to some results originally obtained over number fields 
by S. Checcoli and U. Zannier [6].

Compared to the Hilbert property, our property allows more general base fields and 
base varieties and it is also defined for infinite extensions. Moreover, even if it only 
preserves the “local” structures, it still encapsulates a good part of the Hilbert property: 
for example, over Q, Hilbert essentially follows from the Tchebotarev property merely 
conjoined with the Artin–Whaples theorem; actually, the Hilbert property is somehow 
squeezed between two variants of the Tchebotarev property (see Proposition 4.6).

The main results of this paper are some “Tchebotarev theorems for function fields” 
(Theorem 3.2 and Corollary 3.7), which provide concrete situations where the property 
holds. As a special case, we have the following:

Theorem 1.1. A Galois extension F/K(T ) with F/K regular1 has the Tchebotarev ex-
istence property if K is a number field, or a finite field, or a PAC field2 with cyclic 
extensions of any degree, or a rational function field κ(x) with κ a finite field of 
prime-to-|G| order.

With some extra good reduction condition on F/K(T ), the property is also shown 
to hold if K is a p-adic field or a formal Laurent series field with coefficients in a finite 
field, etc. Fields of the form K = k((θ))(x) are also considered in Theorem 3.10. To our 
knowledge only the finite field case was covered in the literature. The main ingredients 
in our proofs are the twisting lemma and the local specialization result of P. Dèbes 

1 I.e. F ∩ K = K as recalled in Definition 3.1.
2 Pseudo Algebraically Closed; the definition is recalled in Section 3.1.2 (a).
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and N. Ghazi [12], concerning whether a given Galois extension E/k comes from a 
specialization of a Galois extension F/K(B) with F/K regular.

As remarked above, it is natural to compare our property to the classical Hilbert 
specialization property. Recall that a field K is Hilbertian if the Hilbert specialization 
property holds for every finite Galois extension F/K(T ). In analogy, we say that a field 
K is Tchebotarev if the Tchebotarev existence property holds for every finite Galois 
extension F/K(T ) with F/K regular.

If K is a PAC field and GK denotes its absolute Galois group, then being Hilbertian 
corresponds to a well-identified property of GK . More precisely, basing on classical results 
of M.D. Fried, M. Jarden, H. Völklein [19,22] and to subsequent work of F. Pop [28] and 
P. Dèbes [9], it is known that K is hilbertian if and only if GK is ω-free (definition 
recalled in Section 4.1). Moreover, the fact that every finite group occurs as a quotient 
of GK is equivalent to a weak variant of the Hilbert property, called RG-Hilbertian (see 
Definition 4.1). In analogy to these results and as a consequence of Theorem 1.1, we 
prove that the property of being Tchebotarev can also be read on GK :

Corollary 1.2. Let K be a countable PAC field with absolute Galois group GK. Then K is 
Tchebotarev if and only if every cyclic group is a quotient of some open subgroup of GK .

If K is not PAC, the situation is more complex: some of the PAC conclusions still 
hold, others do not, and some are unclear. Still, as mentioned above, we are able to show 
that in general, the Hilbert property is comprised between a strong and a weak variant 
of the Tchebotarev property (see Proposition 4.6).

We finally investigate some local–global results for infinite extensions implied by 
the Tchebotarev existence property. Let again F/K(B) be a Galois extension of Ga-
lois group G. A nice feature is that if F/K(B) has the Tchebotarev property, then it 
has local specializations with any prescribed cyclic subgroup of G as Galois group. We 
have the following consequence, where by “local specialization degrees” we mean the 
degrees of all the cyclic unramified local specializations of F/K(B) (see Proposition 5.5
and Corollary 5.12 for more precise statements):

Theorem 1.3. Under the Tchebotarev existence property, if the local specialization degrees 
of F/K(B) are uniformly bounded, then the exponent of G = Gal(F/K(B)) is finite. The 
converse holds too under some standard assumptions on K. Moreover, if G is abelian, 
the uniform boundedness of the local specialization degrees of F/K(B) also implies that 
there exists an integer d ≥ 1 such that F is in the compositum K(B)(d) of all finite 
extensions of K(B) of degree ≤ d.

These results were established by the first author and U. Zannier in the situation 
F/K(B) is a number field extension F/K [6,5]. It turns out that the core of their argu-
ments is the Tchebotarev property that we have identified.

Checcoli and Zannier proved, in the number field case, that the hypothesis on G being 
abelian cannot be removed, providing counter-examples. We show that the same conclu-
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sion holds in the function field context in the situation where dim(B) > 0 by providing 
counter-examples based on several group-theoretical constructions. Some of them are 
obtained combining results from the theory of extra-special groups and their modules, 
as in [6], with Abhyankar’s Conjecture on Galois groups of function field extensions of 
characteristic p, proved by works of M. Raynaud [29] and D. Harbater [23]. Other con-
structions are given using pro-dihedral groups and generalized Frattini covers. One of 
them is re-used in a remark on a geometric analog of the Bogomolov property (definition 
recalled in Section 5.4.1).

The plan of the paper is the following.
In Section 2, after some preliminaries, we introduce the Tchebotarev existence prop-

erty for finite and infinite extensions. We establish a formal set-up around this property: 
this enables us, in particular, to approach the above-mentioned local–global problems by 
dealing with both the original number field and the new function field situations.

In Section 3 we prove Theorem 1.1, which is a consequence of the more general Theo-
rem 3.2, providing many fields having the Tchebotarev existence property. More specific 
examples are discussed in Corollary 3.7. We also study a strict variant of the property 
in Section 3.1.3.

In Section 4, we compare the Tchebotarev existence property to the classical Hilbert 
specialization property: in Section 4.1 we analyze the PAC case, proving Corollary 1.2; 
in Section 4.2 and Section 4.3 we study the general situation.

Section 5 is devoted to study some implications of the Tchebotarev existence property 
for infinite extensions and to the proof of Theorem 1.3 and some related questions. The 
paper ends with some remarks, in particular on the geometric Bogomolov property.

2. The Tchebotarev existence property

In this section we define the Tchebotarev existence property for finite and infinite 
extensions. We start with some preliminaries on local fields, local specializations and
Frobenius subgroups.

2.1. Preliminaries

Given a field k, we fix an algebraic closure k and denote the separable closure of k in 
k by ksep and its absolute Galois group by Gk.

Definition 2.1. Given a field K, what we call a local field over K is a finite extension kv
of some completion Kv of K for some discrete valuation v on K. The field kv is complete 
with respect to the unique prolongation of v to kv, which we still denote by v.

A localization set of K is a set M of finite places of K (i.e. of equivalence classes 
of discrete valuations on K). An M-local field over K is a local field kv over K with 
v ∈ M. When the context is clear, we will drop the reference to M.
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Here are some typical examples.

Example 2.2. (a) A complete valued field Kv for a non trivial discrete valuation v will 
be implicitly given with the localization set M = {v}. The M-local fields over Kv are 
Kv and its finite extensions.

(b) A number field K will be implicitly given with the localization set M consisting of 
all the finite places of K. The M-local fields over K are the non-archimedean completions 
of K and its finite extensions.

(c) If κ is a field and x an indeterminate, the rational function field κ(x) will be 
implicitly given with the localization set M consisting of all the (x −x0)-adic valuations 
where x0 ranges over P1(κ) (with the usual convention that x −∞ = 1/x). The M-local 
fields over κ(x) are the fields κ((x −x0)) of formal Laurent series in x −x0 with coefficients 
in κ and their finite extensions (x0 ∈ P1(κ)).

A variant of this example includes the π-adic valuations corresponding to all irre-
ducible polynomials π ∈ κ[x]. However, we will mostly consider the situation above 
with only degree 1 polynomials π: indeed, it is stronger for an extension to have the 
Tchebotarev existence property in this situation than for the variant.

(d) A field K, without any specification, will be implicitly given with the localization 
set M consisting of the sole trivial discrete valuation, denoted 0. The M-local fields over 
K are K and its finite extensions.

2.1.1. Local specializations and Frobenius subgroups
Suppose given a base field K, a smooth projective and geometrically integral3

K-variety B and a Galois extension F/K(B) of Galois group G.
The following notions are classical when the extension F/K(B) is finite and extend 

naturally to infinite extensions by writing F/K(B) as the union of an increasing sequence 
of finite Galois extensions.

Given a point t0 ∈ B(K), we denote by Ft0/K the specialization of F/K(B) at t0: 
if Spec(A) ⊂ B is some affine neighborhood of t0, At0 the localized ring of A at the 
maximal ideal p ⊂ A corresponding to t0, (At0)′F the integral closure of At0 in F , then 
Ft0/K is the residue extension of the integral extension (At0)′F /At0 at some prime ideal 
above p. In particular, it is a normal extension.

Definition 2.3. Given an overfield k of K and t0 ∈ B(k), the extension (Fk)t0/k is called 
a k-specialization of F/K(B) (notice that Fk/k(B) is well-defined as F/K(B) is Galois).

If kv is a local field over K, points t0 ∈ B(kv) are called local points of B, the associated 
kv-specializations (Fkv)t0/kv local specializations and the degrees [(Fkv)t0 : kv] local 
specialization degrees of F/K(B) (these are to be understood as supernatural numbers 
[19, §22.8] if F/K(B) is infinite).

3 In particular the function field extension K(B)/K is regular (as defined in Definition 3.1).
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Denote the branch locus of F/K(B) by D, i.e., the formal sum of all hypersurfaces of 
B×KKsep such that the associated discrete valuations are ramified in the field extension 
FKsep/Ksep(B). If the extension F/K(B) is finite, D is an effective divisor; in general 
D is an inductive limit of effective divisors.

Definition 2.4. Given a local field kv over K and a local point t0 ∈ B(kv) \D, the extension 
(Fk)t0/k is Galois and the Galois group Gal((Fkv)t0/kv) is called the Frobenius subgroup
of F/K(B) at t0 over kv. The local point t0 ∈ B(kv) \D is said to be kv-unramified for 
the extension F/K(B) if the associated kv-specialization (Fkv)t0/kv is unramified.4

The Frobenius subgroup is a subgroup of G whose order is the local specialization 
degree [(Fkv)t0 : kv]. We use the phrase unramified local specialization degree for this 
degree when t0 is kv-unramified for F/K(B).

2.2. The Tchebotarev existence property

2.2.1. Finite extensions
Definition 2.5. Let K be a field, given with a localization set M, and let F/K(B) be a 
finite Galois extension of group G.

F/K(B) is said to have the Tchebotarev existence property with respect to M if for 
every element g ∈ G, there exists an M-local field kv over K and a local point t0 ∈
B(kv) \D, kv-unramified for F/K(B), such that the Frobenius subgroup of F/K(B) at 
t0 over kv is cyclic and conjugate to the subgroup 〈g〉 ⊂ G.

We say further that F/K(B) has the strict Tchebotarev existence property if in addi-
tion to the above, the M-local fields kv can be taken to be completions Kv of K (i.e., 
no finite extension is necessary).

Remark 2.6. If K is a number field or if K = κ(x) with Gκ pro-cyclic, the Frobenius 
subgroups of F/K(B) at local points t0 ∈ B(kv) \ D, kv-unramified for F/K(B), are 
automatically cyclic as quotients of the pro-cyclic group Gal(kur

v /kv) (with kur
v the un-

ramified closure of kv).

Definition 2.5 is modeled upon the situation of number field extensions F/K. It is in 
fact a generalization: take B = Spec(K); for every finite place of K, there is only one 
point in B(Kv) = Spec(Kv) and the corresponding local specialization of F/K is the 
v-completion of F/K. From the classical Tchebotarev density theorem, Galois extensions 
of number fields indeed have the strict Tchebotarev existence property. As pointed out 
by M. Jarden, the weaker density property proved by Frobenius (e.g. [24, p. 134]), where 
is given a cyclic subgroup instead of a specific element of the Galois group, is sufficient 
to prove our property for number field extensions.

4 When v is the trivial valuation, this condition is vacuous as all finite extensions of kv are unramified.
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In this paper we will be more interested in function field extensions F/K(B) with 
dim(B) > 0. Concrete situations where the Tchebotarev existence property is satisfied 
are given in Section 3.

2.2.2. Infinite extensions
Definition 2.5 extends in a natural way to infinite extensions.

Definition 2.7. A Galois extension F/K(B) (possibly infinite) is said to have the Tcheb-
otarev existence property (w.r.t. a localization set M of K) if F/K(B) is the union of 
an increasing sequence of finite Galois extensions Fn/K(B) that all have the Tcheb-
otarev existence property (w.r.t. M); and similarly for the strict Tchebotarev existence 
property.

This definition does not depend on the choice of the increasing sequence {Fn}n≥1
such that 

⋃
n≥1 Fn = F . This follows from the fact (left as an exercise) that given two 

finite Galois extensions E/K(B) and E′/K(B) such that E′ ⊃ E, if E′/K(B) has the 
Tchebotarev existence property (strict or not), then so does E/K(B).

3. Situations with the Tchebotarev property

This section is devoted to state and prove our Tchebotarev theorems for function 
fields. In Section 3.1 we state the results, which are proved in Section 3.2. More spe-
cific examples where the Tchebotarev property holds are given in Section 3.1.2 and 
Section 3.3.

Unless otherwise specified, we assume dim(B) > 0 in this section. In this function field 
context, we will mostly consider extensions F/K(B) satisfying the following standard 
regularity condition.

Definition 3.1. A separable field extension F/K is said to be regular if F ∩ K = K. 
A separable extension F/K(B) is said to be K-regular if F/K is regular.5

3.1. Main results

Theorem 3.2 below is a central result of this paper: it provides various situations where 
the Tchebotarev existence property is satisfied. Theorem 1.1 follows as an easy corollary 
from it (see Remark 3.4 below). The proof of Theorem 3.2 is given in Section 3.2.

Theorem 3.2. Let K be a field given with a localization set M. A finite K-regular Galois 
extension F/K(B) has the Tchebotarev existence property in each of the three following 
situations:

5 Note that the assumption that the extension K(B)/K is separable (Section 2.1.1) guarantees that F/K
is separable if F/K(B) is.
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(a) K is a field that is PAC and has cyclic extensions of any degree (with M = {0}),
(b) K is a finite field (with M = {0}),
(c) there exists a non trivial discrete valuation v ∈ M that is good for the extension 

F/K(B) and such that the residue field κv is finite, or is PAC, perfect and has 
cyclic extensions of any degree.

Remark 3.3. The precise definition of good place for F/K(B) that appears in (c) requires 
some additional notation and we prefer to postpone it below in Section 3.1.1; it essentially 
corresponds to a set of conditions which classically guarantee good reduction of F/K(B).

Remark 3.4. If B = P1, condition (c), and consequently the Tchebotarev property, clearly 
hold in each of the concrete situations of Theorem 1.1 of the introduction (see also 
Corollary 3.7 for some higher dimensional generalization).

In this situation and in cases (a), (b), which only depend on the field K and not 
on the extension F/K(B), the conclusion that F/K(B) has the Tchebotarev existence 
property also holds if F/K(B) is infinite.

On the other hand, there are examples for which the Tchebotarev existence property 
does not hold in general: for instance if K is algebraically closed or if K = R, as then, 
for any Galois extension F/K(B), all specializations are of degree 1 or 2.

3.1.1. Good places
We now give the definition of good places appearing in the statement of Theorem 3.2.
Let F/K(B) be a finite K-regular extension with branch locus D. This corresponds, 

through the function field functor, to a K-cover f : X → B which is étale above B \D, 
from the Purity of the Branch Locus (see e.g. [8] for more on covers and the correspon-
dence).

Given a local field kv over K, denote by Av the valuation ring, by pv the valuation 
ideal and by κv the residue field, which is assumed to be perfect and of characteristic pv.

If Bv is an integral smooth projective model of B over Av, denote by Fv : Xv → Bv

the morphism corresponding to the normalization of Bv in kv(X), by Fv,0 : Xv,0 → Bv,0
its special fiber and by Dv the Zariski closure of D in Bv.

Also recall that f is said to have no vertical ramification at v if Fv : Xv → Bv is 
unramified above pv viewed as a prime divisor of Bv. We can now give the following 
definition:

Definition 3.5. A place v of K is said to be good for F/K(B) if

(i) B has an integral smooth projective model Bv over Av,
(ii) pv = 0 or pv does not divide the order of G,
(iii) each irreducible component of Dv is smooth over Av and Dv ∪ Bv,0 is a sum of 

irreducible regular divisors with normal crossings over Av,
(iv) there is no vertical ramification at v in the cover f .
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The kv-cover fv := f ×K kv : Xv → Bv then has good reduction at v: specifically, the 
special fiber Fv,0 : Xv,0 → Bv,0 is a cover over the residue field κv with group G and 
branch divisor Dv,0; this follows from classical results of Grothendieck as explained in 
[12, §§2.4.1–2.4.4].

Example 3.6. In the typical situation where kv = Qp and B = P1
Zp

, condition (iii) amounts 
to the branch divisor t being étale at p, and more specifically to no two branch points 
ti, tj ∈ Qp∪{∞} coalescing at v. Here coalescing at v means that |ti|v ≤ 1, |tj |v ≤ 1 and 
|ti− tj |v < 1, or else |ti|v ≥ 1, |tj |v ≥ 1 and |t−1

i − t−1
j |v < 1, where v is any prolongation 

of v to Qp. As to the non-vertical ramification in condition (iv), a practical test is this: 
if an affine equation P (t, y) = 0 of X is given with t corresponding to f and P ∈ Zp[t, y]
monic in y, there is no vertical ramification if the discriminant Δ(t) of P with respect 
to y is non-zero modulo p.

3.1.2. Some concrete examples in situations (a)–(c) of Theorem 3.2
Situation (a) Recall that a field k is said to be PAC if every non-empty geometrically 
irreducible k-variety has a Zariski-dense set of k-rational points. Classical results show 
that, in some sense, PAC fields are “abundant” [19, Theorem 18.6.1]; a concrete example 
is the field Qtr(

√
−1), where Qtr is the field of totally real numbers (algebraic numbers 

such that all conjugates are real).
There are many fields as in situation (a) of Theorem 3.2. We list some examples:

• It is a classical result [19, Corollary 23.1.3] that for every projective profinite group G, 
there exists a PAC field K such that GK � G.
For G chosen so that Ẑ is a quotient, the field K satisfies condition (a) of Theorem 3.2. 
Any non-principal ultraproduct of distinct finite fields is a specific example of a 
perfect PAC field with absolute Galois group isomorphic to Ẑ [19, Proposition 7.9.1].

• Examples of subfields of Q can be given. The PAC field Qtr(
√
−1) is one: indeed it is 

known to be hilbertian and, consequently (see Proposition 4.4), its absolute Galois 
group is a free profinite group of countable rank. It has been also proved that for 
every integer e ≥ 1, for almost all σ = (σ1, . . . , σe) ∈ Ge

Q, the fixed field Qσ of σ
in Q is PAC and GQσ is isomorphic to the free profinite group F̂e of rank e [19, 
Theorems 18.5.6 & 18.6.1]; here “almost all” is to be understood as “off a subset of 
measure 0” for the Haar measure on Ge

Q. We note that for such fields Qσ, a related 
Tchebotarev property already appeared in [25].

Situation (b) The situation “K finite” is rather classical. There even exist quantitative 
forms of the property, similar to the Tchebotarev density property for number fields; see 
[34,31,20,17], [19, §6]. As shown in [11, §3.5] and [15, §4.2], our approach also leads to 
the quantitative forms. We focus here on the existence part which also applies to infinite 
fields.



S. Checcoli, P. Dèbes / Journal of Algebra 446 (2016) 346–372 355
Situation (c) The following statement provides examples. By the phrase used in (c1) 
and (c2) that the branch locus D is good (over K), we mean that it is a sum of irreducible 
smooth divisors with normal crossings over K. This is automatic if B is a curve, or if, 
as in (c3) and (c4), K has a place that is good for the extension F/K(B).

Corollary 3.7. A finite K-regular Galois extension F/K(B) has the Tchebotarev existence 
property in each of the following situations:

(c1) K is a number field and the branch locus D is good,
(c2) K = κ(x), char(κ) = p � |G|, the branch locus D is good, and κ is either a finite 

field, or a perfect, PAC field having cyclic extensions of any degree,
(c3) K = Kv is the completion of a number field at some finite place v that is good for 

F/K(B),
(c4) K = κ((x)), the x-adic valuation is good for F/K(B) and κ is either a finite field, 

or a perfect, PAC field having cyclic extensions of any degree.

Proof. (c3) and (c4) are obvious special cases of Theorem 3.2 (c). This is true too for (c1) 
and (c2): the main point is that in these cases, the localization set M contains infinitely 
many places and that only finitely many can be bad, which is clear from Definition 3.5
(under the assumption that the branch locus D is good over K). �
3.1.3. The strict variant
Addendum 3.8 (to Theorem 3.2). The strict Tchebotarev existence property is satisfied 
in case (a) of Theorem 3.2. It also holds in case (c1) of Corollary 3.7 and in cases (c2),
(c4) when κ is PAC having cyclic extensions of any degree.

Finite fields are typical examples over which the non-strict variant holds (Theorem 3.2) 
but the strict variant does not: for example if p is an odd prime, the extension F/Fp(T )
given by the polynomial Y 2 − Y − (T p − T ) has trivial specializations at all points 
t0 ∈ Fp and so at all unbranched points t0 ∈ P1(Fp) (∞ is a branch point). A similar 
argument (given in Section 4.2) shows that over Qp the strict variant does not hold 
either. However we do not know whether the non-strict variant holds over Qp, i.e. if the 
condition “v good” can be removed in Corollary 3.7 (c3).

3.2. Proof of Theorem 3.2 and of its Addendum 3.8

A central ingredient is [12]: we notably use two statements called there twisting lemma
and local specialization result. Both are answers to the question as to whether a Galois 
extension E/k is a specialization of a K-regular Galois extension F/K(B).

Fix a finite K-regular Galois extension F/K(B) with group G and branch locus D. 
We use the cover viewpoint and the notation introduced in Section 3.1.1: f : X → B is 
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the K-cover corresponding to F/K(B) and we set fv = f ×K kv for every local field kv
over K.

Let g ∈ G. The strategy is to construct an M-local field kv over K such that

(i) there exists an unramified Galois extension E/kv with Galois group isomorphic to 
the subgroup 〈g〉 ⊂ G, and

(ii) the extension E/kv is a specialization of the extension F kv/kv(B) at some point 
t0 ∈ B(kv) \D.

We will conclude that the group Gal((F kv)t0/kv), i.e., the Frobenius subgroup of 
F/K(B) at t0 over kv, is cyclic and conjugate to 〈g〉 in G.

To achieve (ii) we use the twisting lemma from [12], which says the following. Let 
ϕ : Gkv

→ 〈g〉 be an epimorphism such that the fixed field (ksep
v )ker(ϕ) is an extension E

of kv as in (i). Then there is a regular kv-cover6 f̃ϕ
v : X̃ϕ

v → Bv (with Bv = B ×K kv) 
such that

(*) condition (ii) holds if and only if there exists a kv-rational point on X̃ϕ
v not lying 

above any point in the branch locus D.

The cover f̃ϕ
v : X̃ϕ

v → Bv is obtained by “twisting” Fkv/kv(B), viewed as a regular 
Galois kv-cover fv : Xv → Bv, by the epimorphism ϕ, whence the terminology and the 
notation.

Proof of (a). This follows at once. Take for v the trivial valuation on K (for which 
Kv = K). From the assumption an extension E/K as in (i) exists, and by definition of 
PAC fields, the set X̃ϕ

v (K) is Zariski-dense, and so (ii) holds as well.7 Furthermore it 
is the strict Tchebotarev existence property (and so Addendum 3.8, case (a)) that has 
been proved.

Remark 3.9. The non-strict Tchebotarev existence property holds under a weaker con-
dition: the argument above shows that it is sufficient that every cyclic subgroup C be 
the Galois group of some finite extension EC/kC with kC a finite extension of K.

Proof of (b). This goes along similar principles but with the Lang–Weil estimates 
replacing the PAC property. More precisely assume that K is the field Fq0 with q0
elements. Pick a suitably large integer m; more specifically q = qm0 should be bigger than 
the constant c from [11, Corollary 3.5], which depends only on G, B and D. Then from 
that result, if d is the order of g, the extension Fqd/Fq is the specialization of F Fq/Fq(B)
at some point t0 ∈ B(Fq) \D. So the extension F Fq/Fq(B) satisfies conditions (i) and (ii) 

6 As defined in [15, §2.2], a cover X → B defined over some field k is said to be a regular k-cover if the 
function field extension k(X)/k(B) is k-regular (in the sense of Definition 3.1).
7 For PAC fields, stronger results can be proved for which 〈g〉 can be replaced by any subgroup of G; see 

[11, Corollary 3.4].
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above for v the trivial place on K = Fq0 and kv = Fq. We note that we have used a scalar 
extension (from Fq0 to Fq) and only proved the (non-strict) Tchebotarev property.

Proof of (c). The proof of this last part relies on Proposition 2.2 from [12], which we 
apply to the kv-cover fv×Kv

kv and to the unramified homomorphism ϕ : Gkv
→ 〈g〉 ⊂ G

defined as follows. If the residue field κv is PAC, take kv = Kv and if it is a finite field Fq0

with q0 elements, take kv equal to the unique unramified extension of Kv with residue 
extension Fqm0 /Fq0 with q = qm0 bigger than the constant c from [12, Lemma 2.4] (which 
is some version of the constant c used above). In both cases, denote the residue field of kv
by κ̃v. From the hypotheses, the field κ̃v has a Galois extension εv/κ̃v of group 〈g〉. Let 
Ev/kv be the unique unramified extension with residue extension εv/κ̃v and ϕ : Gkv

→
〈g〉 be an epimorphism such that the fixed field (ksep

v )ker(ϕ) is Ev.
Proposition 2.2 from [12] has two assumptions which are labeled (good-red) and 

(κ-big-enough). The former is here covered by the assumption that v is good for F/K(B). 
The latter holds as well: this follows from the PAC property if κv is PAC, and from [12, 
Lemma 2.4] if κv is finite of order > c. Conclude then from [12, Proposition 2.2] that 
there exists t0 ∈ B(kv) \D such that the specialization (F kv)t0/kv is conjugate to Ev/kv. 
In particular Gal((F kv)t0/kv) is cyclic and conjugate to 〈g〉 in G. Furthermore we have 
proved the strict Tchebotarev property in the case of a PAC residue field (and so Ad-
dendum 3.8, cases (c2) and (c4)) but only the non-strict Tchebotarev property in the 
case of a finite residue field.

It remains to show case (c1) of Addendum 3.8. That is, to prove the strict Tchebotarev 
property assuming that K is a number field and the branch locus D is good. Denote 
by B an integral projective model of B over the ring R of integers of K; B is smooth 
over the completion Rv for all finite places of K but in a finite subset S0. Pick a place 
v of K that is good (in particular v /∈ S0) and has a residue field κv of order bigger 
than the constant C(f, B) from [12, Lemma 3.1]. As above, assumptions (good-red) and 
(κ-big-enough) from [12, Proposition 2.2] are guaranteed and it can be concluded that 
there exists t0 ∈ B(kv) \D such that the specialization (F Kv)t0/Kv is conjugate to the 
unique unramified extension Ev/Kv of degree the order of g. �
3.3. A further example

We illustrate our method with a last situation where the residue fields are neither 
PAC nor finite. A typical example we have in mind in the statement below is this: K is 
the field k0((θ))(x) with x and θ two indeterminates and the localization set consists of 
all (x − x0)-adic valuations with x0 ∈ P1(k0((θ))).

Theorem 3.10. Assume K is given with a localization set M that contains a non trivial 
discrete valuation v ∈ M such that

(a) the residue field κv is a complete field for a non trivial discrete valuation w with a 
residue field κv,w that is perfect, PAC and has cyclic extensions of any degree.



358 S. Checcoli, P. Dèbes / Journal of Algebra 446 (2016) 346–372
Then a finite K-regular Galois extension F/K(B) has the strict Tchebotarev existence 
property if G = Gal(F/K(B)) has trivial center and B has an integral smooth projective 
Av-model Bv such that

(b) v is good for this model of F/K(B),
(c) the place w is good for the extension κv(Xv,0)/κv(Bv,0) (i.e., the function field ex-

tension of the special fiber of Fv : Xv → Bv).

For K = k0((θ))(x), condition (a) holds if k0 is a perfect PAC field with cyclic ex-
tensions of any degree. For all but finitely many x0 ∈ P1(k0((θ))), the (x − x0)-adic 
valuation vx0 is good for F/K(B), i.e. condition (b) holds. The special fiber is a 
k0((θ))-cover and condition (c) requires that the θ-adic valuation on k0((θ)) be good 
for it.

Proof. Fix g ∈ G. The proof follows the same strategy as in Section 3.2 and uses again 
[12, Proposition 2.2], applied here to the Kv-cover fv = f ×K Kv and the unramified 
homomorphism ϕ : GKv

→ 〈g〉 ⊂ G defined as follows. From assumption (a), there 
exists a Galois extension of κv,w of group isomorphic to 〈g〉. This extension lifts to an 
unramified (w.r.t. w) extension of κv with the same group, which in turn lifts to an 
unramified (w.r.t. v) extension Ev/Kv with the same group 〈g〉. Let ϕ : GKv

→ 〈g〉 ⊂ G

be an associated representation of GKv
, i.e., the fixed field of ker(ϕ) in Kv is Ev.

The Kv-cover fv satisfies condition (good-red) from [12, Proposition 2.2]; this is guar-
anteed by assumption (b).

To check condition (κ-big-enough) from [12, Proposition 2.2], we give ourselves what 
is called an Av-model of (fv ×Kv

Ksep
v , Fv,0 ×κv

κv) in [12], i.e., a finite and flat mor-
phism F ′ : X ′ → Bv with X ′ normal and such that F ′ ×Av

Kv is a Kv-cover that is 
Ksep

v -isomorphic to fv ×Kv
Ksep

v and the special fiber F ′
0 : X ′

0 → Bv,0 is a κv-cover that 
is κv-isomorphic to Fv,0 ×κv

κv. And we have to find κv-rational points on X ′
0 not lying 

above any point in D0 ×κv
κv.

Denote the valuation ring of w by Av,w. From assumption (c), the κv-variety Bv,0
has an integral smooth projective model B̃0 over Av,w, and w is good for this model of 
κv(Xv,0)/κv(Bv,0). It follows that w is also good for κv(X ′

0)/κv(Bv,0). Indeed conditions 
(a), (b), (c) from Definition 3.5 are equivalently satisfied by the place w for either one 
of the two extensions. As to condition (d), we resort to a result of S. Beckmann [2] that 
says that non-vertical ramification is automatic under (a), (b), (c) if G has trivial center. 
It follows that F̃ ′

0 has good reduction (at w). As κv,w is PAC, there exist κv,w-rational 
points on the reduction (at w) of X̃ ′

0 that are not in the branch locus of the reduction 
(at w) of F̃ ′

0. Using Hensel’s lemma, these points can be lifted to κv-rational points on 
X ′

0 as desired.
Proposition 2.1 from [12] can then be applied to conclude that the unrami-

fied extension Ev/Kv, cyclic of group 〈g〉, is a Kv-specialization of the extension 
F/K(B). �
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Remark 3.11. A non-strict variant of Theorem 3.10 can be proved if the residue field 
κv,w is assumed to be finite instead of PAC. The modifications are similar to those in 
the proof of Theorem 3.2 (for (b) vs. (a)): the Lang–Weil estimates replace the PAC 
property, a finite extension of Kv is needed to insure that the finite residue field κv,w is 
big enough, etc. We leave the reader adjust the proof.

4. Tchebotarev versus Hilbert

We now compare the Tchebotarev existence property and the Hilbert specialization 
property. We have the following definitions:

Definition 4.1. Recall that a finite extension F/K(T ) is said to have the Hilbert special-
ization property if it has infinitely many specializations Ft0/K at points t0 ∈ P1(K) of 
degree equal to [F : K(T )].

A field K is called hilbertian if the Hilbert specialization property holds for every 
finite extension F/K(T ) and RG-hilbertian if it holds for every finite K-regular Galois 
extension F/K(T ).

We say that a field K, given with a localization set M, is Tchebotarev (resp. strict 
Tchebotarev) if every finite K-regular Galois extension F/K(T ) has the Tchebotarev 
(resp. the strict Tchebotarev) existence property.

Example 4.2. From Section 3, PAC fields and number fields are strict Tchebotarev, finite 
fields are Tchebotarev, but not strict Tchebotarev.

4.1. The PAC situation and the proof of Corollary 1.2

The case where K is a PAC field gives a first idea of these notions hierarchy. Recall 
the following definition from [19, §27.1] that is used in statement (a) below:

Definition 4.3. A field K is ω-free if every embedding problem for GK is solvable.

From a theorem of Iwasawa, if GK is of at most countable rank, K is ω-free if and 
only if GK is isomorphic to the free profinite group F̂ω with countably many generators 
[19, Theorem 24.8.1].

The following result shows that, for a field K, the properties of being Tchebotarev and 
its strict variant are equivalent to well-identified properties of the group GK , proving 
in particular Corollary 1.2 from the Introduction. Notice that, as already remarked, 
conclusions (a) and (b) below are classical; see [19, Corollary 27.3.3] for the if part 
in (a), [22, Theorem A] for the only if part, and [22, Theorem B] for (b).8 We have 
included them in the statement to put the new conclusions (c) and (d) in perspective.

8 [22] assumes K of characteristic 0 and countable, but these hypotheses have been removed in subsequent 
works; see [28] for (a) and [9, §3.3] for (b).
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Proposition 4.4. Let K be a PAC field given with the trivial localization set M = {0}.

(a) K is hilbertian iff K is ω-free.
(b) K is RG-hilbertian iff every finite group is a quotient of GK.
(c) K is strict Tchebotarev iff every cyclic group is a quotient of GK.
(d) K is Tchebotarev iff every cyclic group C is a quotient of some open subgroup UC

of GK .

In particular we have this chain of implications:

hilbertian ⇒ RG-hilbertian ⇒ strict Tchebotarev ⇒ Tchebotarev

Furthermore none of the reverse implications holds.

Proof. The if part in (c) is Theorem 3.2 (a). For the only if part, let G be a cyclic 
group. Classically every cyclic group G is the group of some K-regular Galois extension 
F/K(T ). If K is strict Tchebotarev, then a specialization Ft0/K of group G does exist. 
Similar arguments lead to the non-strict variant (d) of (c) (use Remark 3.9 for the if
part).

Using the classical result [19, Corollary 23.1.3] recalled in Section 3.1.2, the search of 
counter-examples to the reverse implications can be reduced to that of projective profi-
nite groups G with appropriate properties. For a counter-example to “strict Tchebotarev 
⇒ RG-hilbertian”, take G = Ẑ and a PAC field K such that GK � G. From statements 
(b) and (c), K is strict Tchebotarev but is not RG-hilbertian. For a counter-example 
to “RG-hilbertian ⇒ hilbertian”, see [22, §2]. Finally for the implication “Tchebotarev 
⇒ strict Tchebotarev”, we have the following counter-example, provided to us by Bary-
Soroker.

Take for G the universal Frattini cover [19, §22.6] of the group 
∏

n≥5 An and a PAC 
field K such that GK � G. From [19, Lemma 22.6.3], if a cyclic subgroup C is a quo-
tient of G, then C is a Frattini cover of a quotient D of 

∏
n≥5 An. But then from [19, 

Lemma 25.5.3], D is a direct product of alternating groups An: a contradiction if C is 
non-trivial. Conclude via statement (d) that K is not strict Tchebotarev. Now as we 
explain below, K is Tchebotarev. For every integer m ≥ 1, the alternating group A2m is 
a quotient of G. Denote by K2m/K the corresponding Galois extension, of group A2m. If 
σm ∈ A2m is the product of two m-cycles and k the fixed field of σm in K2m, then k/K
is finite and K2m/k is Galois of group 〈σm〉. As m is arbitrary, this indeed shows that 
every cyclic subgroup is a quotient of some open subgroup of GK and so via (d) that K
is Tchebotarev. �
4.2. The general situation

Over non PAC fields K and for not necessarily trivial localization sets M the picture 
is more complex. We explain in this subsection what remains in general of the first four 
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equivalences of Proposition 4.4 and in the next one how some implications between the 
various properties can still be obtained.

Assume K is an arbitrary field. Then:

• Implication (⇒) in Proposition 4.4 (a) does not hold: for example, Q is hilbertian but 
not ω-free.9 Implication (⇒) in Proposition 4.4 (c) and (d) still holds: the argument 
is the same as for PAC fields (and this argument also shows that implication (⇒) 
in Proposition 4.4 (b) also holds if every finite group is the Galois group of some 
K-regular Galois extension; see also [9, §3.3.2]).

• None of the converses hold in general. For (a), see [3, Remark 2.14]. For (b) and (c), 
take a prime p and consider the field Qtp of all totally p-adic algebraic numbers. 
It is known that every finite group is a quotient of GQtp [16]. But if F/Qtp(T ) is 
the extension given by the polynomial P (T, Y ) = Y 2 − Y − (pT/T 2 − p), then for 
every t0 ∈ P1(Qtp), the polynomial P (t0, Y ) is split in Qtp[Y ] [14, Example 5.2]. 
Therefore F/Qtp(T ) has no Qtp-specialization with Galois group Z/2Z and so Qtp

is not strict Tchebotarev. This example also shows that Qp is not strict Tcheb-
otarev and so yields another counter-example to the converse in (c). One may think 
that Qp is not even Tchebotarev; it would then also be a counter-example to (⇐) 
in (d).

4.3. Strong Tchebotarev versus Hilbert

Proposition 4.6 below shows that the Hilbert property is squeezed between a strong 
and a weak variant of the Tchebotarev property.

Definition 4.5. If K is given with a localization set M, a finite Galois extension 
F/K(B) is said to have the strong Tchebotarev existence property with respect to M
if for every element g ∈ G, there exist infinitely many places v ∈ M with cor-
responding points tv ∈ B(Kv) \ D kv-unramified for F/K(B) and such that the 
Frobenius subgroup of F/K(B) at t0 over Kv is cyclic and conjugate to the subgroup 
〈g〉 ⊂ G.

We also say that K is strong Tchebotarev if every finite K-regular Galois extension 
F/K(T ) has the strong Tchebotarev existence property.

Proposition 4.6. Let F/K(T ) be a finite K-regular Galois extension.

(a) If F/K(T ) has the strong Tchebotarev existence property w.r.t. a localization set M
of K, then it has the Hilbert specialization property. In particular, if K is strong 
Tchebotarev, then it is RG-hilbertian.

9 However it is conjectured that “K hilbertian” implies that every split finite embedding problem over K
has a solution [7] (which itself implies K ω-free if in addition GK is projective and countable).
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(b) If K is a countable hilbertian field then F/K(T ) has the Tchebotarev existence prop-
erty w.r.t. the trivial localization set M = {0}. In particular, K is Tchebotarev w.r.t. 
M = {0}.

Proof. (a) Definition 4.5 makes it possible to construct a family of places (vg)g∈G, pair-
wise distinct and with the property that for each g ∈ G, there exists tvg ∈ P1(Kvg ) \D
kv-unramified for F/K(T ) and such Gal((FKvg )tvg /Kvg ) is conjugate to 〈g〉. For each 
g ∈ G, the set of such points tvg is a vg-adic subset of P1(Kvg ) \D; this follows from the 
twisting lemma recalled in Section 3.2. Using the approximation Artin–Whaples theo-
rem, the collection of points (tvg)g∈G can be approximated by some point t0 ∈ P1(K) \D
such that Gal(Ft0Kvg/Kvg ) is conjugate to 〈g〉 for each g ∈ G. As Gal(Ft0Kvg/Kvg ) is a 
subgroup of Gal(Ft0/K), we conclude that Gal(Ft0/K) meets each conjugacy class of G. 
By a classical lemma of Jordan [26], Gal(Ft0/K) is all of G.

(b) The following proof is due to L. Bary-Soroker. From [19, Theorem 18.10.2], the 
countable hilbertian field K can be embedded in some field E, Galois over K, PAC and 
ω-free. From Proposition 4.4, E is hilbertian, and consequently is strict Tchebotarev 
w.r.t. M = {0}. It readily follows that F/K(T ) has the Tchebotarev existence property 
(and that K is Tchebotarev w.r.t. M = {0}). Indeed given any g ∈ Gal(F/K(T )) =
Gal(FE/E(T )), there exists t0 ∈ P1(E) such that 〈g〉 = Gal((FE)t0/E) and a stan-
dard argument shows that the same is true with E replaced by some finite extension k
of K. �

The proof shows that Proposition 4.6 (a) still holds if F/K(T ) is replaced by an 
extension F/K(B) with B satisfying the weak approximation property (and even the 
weak weak approximation property [32, Définition 3.5.6]).

5. Some questions on infinite extensions

In this section we study some local–global implications of the Tchebotarev existence 
property for infinite extensions and some related questions, originally investigated in the 
number field setting in [6]. Our main results are Theorem 5.14 and Theorem 5.17 and they 
base on some group-theoretic constructions, in particular with families of extraspecial 
and dihedral groups.

5.1. A local–global conclusion for infinite extensions

An interesting feature of extensions with the Tchebotarev existence property is that 
certain local behaviors actually detect informations on the Galois group of the extension 
and vice-versa. For instance, an immediate remark is the following:

Remark 5.1. For a finite Galois extension F/K(B) of Galois group G with the Tcheb-
otarev existence property, the orders of the elements of G are exactly the unramified 
M-local specialization degrees of F/K(B) corresponding to cyclic Frobenius subgroups.
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In particular the exponent of G is the l.c.m. of these local specialization degrees. 
Proposition 5.5 below shows that the above conclusion extends in some form to infinite 
extensions. The following definitions will be used.

Definition 5.2. A localization set M of a field K is said to be standard if the local fields kv
are perfect and the absolute Galois groups Gkv

are of uniformly bounded rank (v ∈ M).

Example 5.3. This holds in particular in the following situations: K is a number field, 
a p-adic field, a perfect field with absolute Galois group of finite rank (e.g. a finite field), 
a field K = κ(x) or K = κ((x)) with κ of characteristic 0 and with absolute Galois group 
Gκ of finite rank, etc.

Definition 5.4. We say that a family (dv)v of positive integers indexed by v is uniformly 
bounded if there is a constant δ depending on F/K(B) but not on v such that all integers 
dv are ≤ δ.

We can now state our result, which is an extension to function fields of the result 
proved in [6] and [5] for number field extensions.

Proposition 5.5. Let F/K(B) be a Galois extension (possibly infinite) with Galois group 
G and with the Tchebotarev existence property. Suppose that the M-local specialization 
degrees of F/K(B) are uniformly bounded. Then the exponent of G, exp(G), is finite.

Furthermore the converse holds too if the localization set M is standard (independently 
of the Tchebotarev property).

Proof. Write F/K(B) as an increasing union of finite Galois extensions Fn/K(B)
(n ≥ 1). Let g ∈ G. For each n ≥ 1, let gn be the projection of g onto Gal(Fn/K(B)). 
From Remark 5.1, for each n ≥ 1, the order of gn is the unramified local specialization 
degree [(Fnkv)t0 : kv] for some place v ∈ M and some point t0 ∈ B(kv) \D. In particular 
this order divides the local specialization degree [(Fkv)t0 : kv].

This yields to the fact, (which compares to Remark 5.1 above) that the set of orders 
of elements of G is a subset of the set of all M-local specialization degrees of F/K(B), 
proving the first part of Proposition 5.5.

For the converse, we borrow an argument from [5]. Let kv be an M-local field over 
K and t0 ∈ B(kv). Fix n ≥ 1. Assume kv is perfect. Then (Fnkv)t0/kv is a finite Galois 
extension and the local specialization degree [(Fnkv)t0 : kv] is the order of the group 
Gal((Fnkv)t0/kv). Assume further that there is a constant N depending only of F/K(B)
such that Gkv

is of rank ≤ N . Then the finite group Gal((Fnkv)t0/kv), a quotient of Gkv
, 

has a generating set with at most N elements. The group Gal((Fnkv)t0/kv) is also of 
exponent ≤ exp(G) (as a subgroup of Gal(Fn/K(B)) which itself is a quotient of G). If 
exp(G) is finite, it follows from the Restricted Burnside’s Problem solved by Zelmanov 
(see e.g. [33]) that the order of the group Gal((Fnkv)t0/kv) can be bounded by a constant 
only depending on exp(G) and N . �
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Remark 5.6. If F/K(B) has the strict Tchebotarev property, a strict variant of the above 
result holds too: namely, if G has finite exponent, then the M-local specialization degrees 
corresponding to completions of K are uniformly bounded. The proof above can easily 
be adjusted.

5.1.1. Some concrete examples
From Proposition 5.5, the uniform boundedness of the M-local specialization degrees 

is equivalent the finiteness of exp(G) if the extension F/K(B) has the Tchebotarev 
property and the localization set M is standard.

The aim of this subsection is to provide some examples in which these two last con-
ditions hold. We shall need the following definition:

Definition 5.7. For an extension (possibly infinite) F/K(B) we say that the branch 
locus D (an inductive limit of effective divisors) is good if every effective divisor with 
support in D is good.

We have the following result:

Corollary 5.8. Fix a K-regular Galois extension F/K(B) with dim(B) > 0. Let G =
Gal(F/K(B)). Then the uniform boundedness of the M-local specialization degrees of 
F/K(B) is equivalent the finiteness of exp(G) in each of the following situations:

(1) K is a PAC perfect field such that GK is of finite rank and has every cyclic group 
as a quotient,

(2) K is a finite field,
(3) K is a number field and the branch locus D is good,
(4) K = κ(x) with κ a PAC field of characteristic 0 such that Gκ is of finite rank and 

has every cyclic group as a quotient, and the branch locus D is good,
(5) K = Kv is the completion of a number field at some finite place v that is good for 

F/K(B),
(6) K = κ((x)) if the x-adic valuation is good for F/K(B) and for κ a PAC field 

of characteristic 0 such that Gκ is of finite rank and has every cyclic group as a 
quotient.

Proof. In all the above situations, the Tchebotarev property holds and the localization 
set M is standard: the latter claim is classical and the former holds from Theorem 3.2
and Corollary 3.7. �
Remark 5.9. It is well-known that for κ of characteristic p > 0, Gκ((x)) is not of finite 
type: for example, if κ is algebraically closed, the Galois group of Xpn − X − (1/x)
over κ((x)) is (Z/pZ)n (n ≥ 1). That is why situations (c2) and (c4) with κ finite from 
Corollary 3.7 do not appear here and κ is of characteristic 0 in cases (4) and (6) of 
Corollary 5.8.
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Remark 5.10. Let K be a finite field. Corollary 5.8 ensures that the uniform boundedness 
of the local specialization degrees of F/K(B) is equivalent to the finiteness of exp(G). 
But is this equivalence true if, instead of the local specialization degrees, we consider the 
local degrees of F/K(B) i.e. the degrees of the field extensions obtained by taking the 
completions of F and K(B) w.r.t. some valuations?

This closer function field analog of the question raised in [6] and [5] was recently 
negatively answered by H. Bauchère in his PhD thesis [1] when B = P1

K . As in the 
number field case, the uniform boundedness of the local degrees of F/K(B) clearly 
implies the finiteness of exp(G). Bauchère proves that, however, the converse is not true 
in general if p = char(K) divides exp(G), providing a family of counterexamples given 
by infinite abelian extensions of exponent p.

5.2. A refined question

Let again F/K(B) be a Galois extension of group G. A special situation where the 
exponent of G is finite is when, for some integer d ≥ 1, F is contained in the compositum 
K(B)(d) of all extensions of K(B) of degree at most d. Indeed in this case Gal(F/K(B))
is a quotient of the group Gal(K(B)(d)/K(B)), which is of exponent ≤ d!.

The following question arises:

Question 5.11. Let F/K(B) be a Galois extension with the Tchebotarev existence prop-
erty. Suppose the local specialization degrees of F/K(B) to be uniformly bounded. Is it 
true that F ⊂ K(B)(d) for some d?

If the group G is abelian, the answer is affirmative as shown in Corollary 5.12 below. 
For number field extensions this was first proved in [6].

In general however, Question 5.11 has a negative answer. Counter-examples were 
given in [6,5] in the number field context. Constructing other counter-examples with 
dim(B) > 0 was among the motivations for this work.

Corollary 5.12. Let F/K(B) be an abelian Galois extension with the Tchebotarev exis-
tence property. Assume that the M-local specialization degrees of F/K(B) are uniformly 
bounded. Then F ⊂ K(B)(d) for some d.

Proof. From Proposition 5.5, exp(G) is finite. As noted in [6, Proposition 2.1], this 
implies F ⊂ K(B)(d) for some d if G is abelian. �
Remark 5.13. Notice that the assumption that F/K(B) has the Tchebotarev property 
cannot be removed neither in Corollary 5.12 nor in the first part of Proposition 5.5. 
Indeed, let F = Q(T 1/∞) be the field generated over Q(T ) by all d-th roots of T , with 
d ∈ N∗, the extension F/Q(T ) is abelian of group G � Ẑ, it has uniformly bounded local 
specialization degrees (as Q is algebraically closed) but F �⊂ K(B)(d) for any d (as Ẑ is 
of infinite exponent).
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We now produce several examples showing that in general Question 5.11 has a negative 
answer.

Our examples will even satisfy a stronger local property: namely they will have the 
M-local decomposition degrees of F/K(B) uniformly bounded, where by local decompo-
sition degree at some M-local point t0 ∈ B(kv), we mean the order of the decomposition 
group of Fkv/kv(B) at t0 (while the local specialization degree is the degree of the 
residue extension).

More specifically we will prove the following.

Theorem 5.14. In the following situations, there exists an infinite Galois extension 
F/K(T ) having uniformly bounded M-local decomposition degrees, but such that F �⊂
K(B)(d) for any integer d:

(a) The Regular Inverse Galois Problem (RIGP) holds over K and the localization set 
M is standard. Furthermore the constructed extension F/K(T ) is K-regular.

(b) K is a finite field and B = P1.

Recall that the RIGP is the condition that every finite group is the Galois group of 
some K-regular Galois extension F/K(T ). The RIGP is known to hold over PAC fields 
and complete valued fields. So such fields with a standard localization set are examples 
of fields as in (a). Conjecturally the RIGP holds over every field and so all fields K with 
a standard localization set, e.g. number fields, are other examples.

To prove Theorem 5.14 we will adjust to our function field context a construction 
given in [6, §3] in the context of number fields which we re-sketch here.

5.2.1. Strategy
The construction uses extra-special groups. We recall their definition and refer to [13, 

§A.20] for more details.

Definition 5.15. Given a prime number 
, a finite 
-group E is said to be extra-special if its 
center Z(E) and its commutator subgroup E′ have both order 
 (and then Z(E) = E′).

Fix two odd primes 
 and q such that 
 | q− 1. Then for every positive integer m ≥ 1, 
is known to exist an extra-special group of order 
2m+1, of exponent 
 and of rank 2m. 
Fix one such group Em (m ≥ 1). Moreover there exists an irreducible Em-module of 
dimension 
m over the finite field Fq. Fix such an Em-module Wm, and finally denote by 
Gm the semi-direct product Wm � Em (m ≥ 1).

The following statement summarizes the strategy from [6, §3].

Lemma 5.16. Assume that B is a curve and that, for each m ≥ 1, Gm is the Galois group 
of a Galois extension Fm/K(B). Let F/K(B) be the compositum of all the extensions 
Fm/K(B). Then F is not contained in K(B)(d) for any d, but the local decomposition 



S. Checcoli, P. Dèbes / Journal of Algebra 446 (2016) 346–372 367
degrees of F/K(B) are uniformly bounded at all M-local points t0 ∈ B(kv) that are 
tamely branched in Fkv/kv(B).

Proof. The proof is given in [6] in the case dim(B) = 0 and it can be used in the more 
general case dim(B) ≥ 0 with almost no changes. Proposition 3.1 and Proposition 3.3 
of [6] show that F is not contained in K(B)(d) for any integer d ≥ 1 and that G =
Gal(F/K(B)) is of finite exponent. From Proposition 5.5, this implies that the local 
specialization degrees of F/K(B) are uniformly bounded. For each t0 ∈ B(kv) the local 
specialization degree of F/K(B) at t0 is the degree of the residue field extension above 
the point t0. Thus it remains to prove that the inertia subgroups at all M-local points 
t0 ∈ B(kv) that are tamely branched in the extension Fkv/kv(B) are of uniformly 
bounded orders. By definition of “tame branching”, these inertia subgroups are pro-cyclic 
subgroups of G, and so are of order ≤ exp(G). �
Proof of Theorem 5.14. We use the construction and the notation from Section 5.2.1
with the primes 
, q distinct from p. Under the hypotheses of Theorem 5.14, for each 
m ≥ 1, we have a Galois extension Fm/K(T ) of group Gm = Wm �Em. This is clear in 
case (a) of Theorem 5.14; the extension Fm/K(T ) can further be taken to be K-regular. 
In case (b) for which K is finite, we resort to Shafarevich’s theorem [27]: the group Gm

is solvable, having odd order, and therefore it is the Galois group of some extension 
Fm of the global field K(T ). Note next that the groups Gm are of prime-to-p order. In 
particular branching is automatically tame and Lemma 5.16 concludes the proof. �
5.3. A second question: bounding the branch point set

Here we show that the uniform boundedness of the local decomposition degrees does 
not imply that F ⊂ K(B)(d) for some d, even if we assume further that the branch point 
set is finite. However the base field will be algebraically closed in our counter-examples 
(and so the Tchebotarev property will not hold).

Theorem 5.17. In situation (a) or (b) below, there is an infinite Galois extension F/K(B)
with uniformly bounded local decomposition degrees, branched at only finitely many points, 
but such that F �⊂ K(B)(d) for any d:

(a) K is an algebraically closed field of characteristic p > 0 and B is a curve of 
genus ≥ 1.

(b) K is an algebraically closed field of characteristic 0 and B = P1.

Proof. Case (a). Assume that K is an algebraically closed field of characteristic p > 0
and B is a curve of genus g. We use again the construction from Section 5.2.1; we retain 
the notation from there. From Lemma 5.16, we are left with realizing all groups Gm as 
groups of Galois extensions Fm/K(B) (m ≥ 1) with controlled branching. We will use 
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Abhyankar’s Conjecture on Galois groups of function field extensions of characteristic p, 
which was proved by the work of M. Raynaud [29] and D. Harbater [23]:

The Raynaud–Harbater theorem. A finite group G can be realized as the group of a 
Galois extension F/K(B) unbranched outside a finite set S if and only if the minimal 
number of generators of the quotient G/p(G) of G by the subgroup of G generated by all 
p-Sylow subgroups of G is at most |S| + 2g − 1.

Take 
 = p. For each m ≥ 1, we have the following. The group p(Gm) = 
(Gm) is 
a normal subgroup of Gm which properly contains the p-group Em (since Em is not 
normal in Gm). Consequently the group p(Gm) ∩Wm is a non trivial normal subgroup 
of Gm. But as part of the theory of extraspecial groups, Wm is a minimal non trivial 
normal subgroup of Gm. Therefore Wm ⊂ p(Gm) so finally p(Gm) = Gm. From the 
Raynaud–Harbater theorem, if g ≥ 1, then Gm is the group of some Galois extension 
Fm/K(B) unbranched everywhere.

Case (b). Assume that K is an algebraically closed field of characteristic 0 and B = P1. 
Fix an odd prime p. For each m ≥ 1, take for Gm the dihedral group Z/pmZ � Z/2Z of 
order 2pm. The projective limit G = lim←−m≥1

Gm is the pro-dihedral group Zp � Z/2Z. 
Denote by Cm (resp. C) the conjugacy class of Gm (resp. of G) of all elements (x, 1)
with x ∈ Z/pmZ (resp. with x ∈ Zp). These are conjugacy classes of elements of order 2.

Pick two elements σ, τ ∈ C and denote by σm and τm their images in Cm via the 
projection map G → Gm. We have σmσmτmτm = 1 and Gm = 〈σm, τm〉 (m ≥ 1). By 
the Riemann existence theorem, if we choose four distinct points t1, t2, t3, t4 ∈ P1(K), 
there is a Galois extension Fm/K(T ), with group Gm, branch points t1, t2, t3, t4 and 
corresponding inertia groups 〈σn〉 and its conjugates for t1, t2 and 〈τn〉 and its conjugates 
for t3, t4 (m ≥ 1). Furthermore, by a classical compactness argument based on the fact 
that for each m ≥ 1 and each 4-tuple (t1, t2, t3, t4) as above, there are only finitely many 
choices of the extension Fm/K(T ), one can perform the construction compatibly, i.e., so 
that Fm/K(T ) is obtained from Fm+1/K(T ) via the epimorphism Gm+1 → Gm (m ≥ 1).

Set F = lim−→m≥1
Fm. The extension F/K(T ) is Galois of group G. For each m ≥ 1, 

the exponent of Gm is ≥ pm and so G is not of finite exponent. As already noticed 
(Section 5.2), this implies that F cannot be a subfield of K(B)(d) for any d. As K is 
algebraically closed, for each t0 ∈ P1(kv), the local decomposition degree at t0 is the 
branching index. By construction, it is 1 or 2. So the local decomposition degrees are 
uniformly bounded. �
Remark 5.18. The following refer to the proof of case (a) of Theorem 5.17.

• For g = 0, the construction leads to an extension F/K(T ) that is only branched at 
one point, say the point ∞. There is necessarily wild branching and Lemma 5.16
guarantees that the decomposition degrees at all t0 ∈ P1(K) \ {∞} are uniformly 
bounded.
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• We took 
 = p. If 
 �= p, then if q �= p, p(Gm) is trivial and Gm/p(Gm) = Gm and, if 
q = p, p(Gm) = q(Gm) = Wm. So Gm/p(Gm) cannot be generated by less than 2m
generators (Em is of rank 2m) and Gm cannot be realized with branch points in a 
fixed finite set S.

5.4. Three final remarks

The following three remarks relate to case (b) of Theorem 5.17. As in this statement 
assume that K is an algebraically closed field of characteristic 0.

5.4.1. On the geometric Bogomolov property
In [18], J. Ellenberg says that an infinite algebraic extension F/K(T ) has the geometric 

Bogomolov property (GB) if there exists some c > 0 such that for every non constant 
function x in F , h(x) ≥ c, where h is the absolute logarithmic height. Recall that, given 
a non constant function x ∈ K(T ), if L/K(T ) is any finite extension such that x ∈ L, 
h(x) is the ratio [L : K(x)]/[L : K(T )]. Note that if C is a curve corresponding to the 
function field L, then [L : K(x)] is the degree of x on C (equivalently, the number of 
zeroes – or poles – on C).

This is a geometric analog of the Bogomolov property of an algebraic extension F/Q
introduced by Bombieri and Zannier in [4], which requests that there exists some c > 0
such that if x ∈ F is neither zero nor a root of unity, then h(x) ≥ c, where h(x) is the 
classical absolute logarithmic Weil height on Q.

For the Bogomolov property of algebraic extensions F/Q, we have the following cri-
terion proved in [4, Theorem 2].

Bombieri–Zannier criterion. If F/Q is an algebraic extension with finite local degrees at 
some prime p, then F has the Bogomolov property.

This result has several interesting consequences: it implies, for example, that the field 
Qtp of totally p-adic numbers has the Bogomolov property, just as the field Qtr of totally 
reals does (a result of Schinzel [30]).

We now provide an example showing that the geometric analog of the Bombieri–
Zannier criterion does not hold, even if all decomposition degrees are assumed to be 
bounded (and not just the local specialization degrees above one prime).

Consider the (smooth projective) curves Cm corresponding to the function fields Fm

(m ≥ 1) from the proof of Theorem 5.17 (b). The degrees [Fm : K(T )] go to infinity and 
the Riemann–Hurwitz formula shows that the curves Cm are all of genus 1.

Recall that the gonality of some K-curve C is the least degree of a non constant 
function x ∈ K(C) and that the gonality of a curve is bounded above in terms of its 
genus. Consequently in our example above, we have that there is no real constant c > 0
such that the gonality of Cm is ≥ c [Fm : K(T )] (m ≥ 1).
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This implies that the compositum of all Fm’s is an infinite extension of K(T ) without 
property (GB), even if it has uniformly bounded local decomposition degrees (here they 
are just the ramification indices).

5.4.2. A generalization using universal p-Frattini covers
The construction from the proof of Theorem 5.17 (b) extends to the following more 

general context; we refer to [21], [19, §22], [10], for details.
A group G1 is given with a prime p such that p| |G1| and G1 is p-perfect, i.e. G1 is 

generated by its elements of prime-to-p order. Take for G the p-universal Frattini cover 
of G1 (which generalizes the pro-dihedral group Zp�Z/2Z) and for (Gm)m≥1 the natural 
collection of finite characteristic quotients of G (which generalize the dihedral groups 
Z/pmZ �Z/2Z, m ≥ 1). Select r elements of G1 of prime-to-p order generating G1. The 
conjugacy class of each of these elements can be lifted to a conjugacy class Ci of G with 
the same order, i = 1, . . . , r (the lifting lemma). Pick an element σi ∈ Ci, i = 1, . . . r and 
consider the 2r-tuple (σ1, σ

−1
1 . . . , σr, σ−1

r ); its entries generate G (the Frattini property) 
and are of product one.

Extensions Fm/K(T ) can then be constructed as in the proof of Theorem 5.17 (b)
with the 2r-tuple above replacing the 4-tuple (σ, σ, τ, τ) and 2r distinct points of P1(K)
replacing the 4 chosen points t1, . . . , t4 ∈ P1(K) in the proof of Theorem 5.17 (b). Set 
F = lim−→m≥1

Fm. The extension F/K(T ) is Galois of group G, it has uniformly bounded 

local decomposition degrees, but is not contained in K(B)(d) for any d. The main point 
is that G is still of infinite exponent in this more general context. Indeed the p-Sylow 
subgroups of G are known to be free pro-p groups and so cannot have non trivial elements 
of finite order.

5.4.3. One more remark on the abelian case
In the abelian situation the following can be added:

Proposition 5.19. Let F/K(T ) be an abelian extension, with finitely many branch points 
and uniformly bounded local decomposition degrees. Then not only F ⊂ K(T )(d) but 
F/K(T ) is finite.

Proof. Denote the branch points of F/K(T ) by t1, . . . , tr. Let F0/K(T ) be a finite Galois 
sub-extension of F/K(T ) of group G0. From the Riemann existence theorem, G0 is 
generated by r elements σ1, . . . , σr such that σ1 · · ·σr = 1; moreover σi is a generator of 
some inertia group above ti. From the uniform boundedness of the local decomposition 
degrees, the order of σi is bounded by some constant δ, independent of i. Since G0 is 
abelian we have |G0| ≤ δr−1. As all finite sub-extensions of F/K(T ) are abelian and the 
argument holds for any of them, conclude that F/K(T ) is finite and that [F : K(T )] ≤
δr−1. �
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