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Abstract.

The central topic is this question: is a given k-étale algebra
∏

l El/k
the specialization of a given k-cover f : X → B at some unramified
point t0 ∈ B(k)? Our main tool is a twisting lemma that reduces the
problem to finding k-rational points on a certain k-variety. Previous
forms of this twisting lemma are generalized and unified. New appli-
cations are given: a Grunwald form of Hilbert’s irreducibility theorem
over number fields, a non-Galois variant of the Tchebotarev theorem for
function fields over finite fields, some general specialization properties
of covers over PAC or ample fields.

§1. Presentation

1.1. The central question

If f : X → B is an algebraic cover defined over a field k and t0 a
k-rational point on B, not in the branch locus of f , the specialization of
f at t0 is defined as a finite k-étale algebra of degree n = deg(f). For
example, if B = P1 and f is given by some polynomial P (T, Y ) ∈ k[T, Y ],
it is the product of separable field extensions of k that correspond to the
irreducible factors of P (t0, Y ) (for all but finitely many t0 ∈ k). Our
central question is whether a given degree n k-étale algebra

∏
l El/k

is the specialization of a given degree n k-cover f : X → B at some
unramified point t0 ∈ B(k). The classical Hilbert specialization property
corresponds to the special case for which étale algebras are taken to be
single degree n field extensions and the answer is positive for at least
one of them.
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The question has already been investigated in [DG11a] and [DG11b]
for regular Galois covers and in [DL11] for covers with geometric mon-
odromy group Sn (definitions recalled in §2.2). The aim of this paper
is to handle the situation of arbitrary covers, to provide a unifying ap-
proach and to give further applications.

1.2. The twisting lemma

Our main tool is a twisting lemma that gives a general answer to
the question: under certain hypotheses, the answer is Yes if there exist
unramified k-rational points on the covering space X̃ of certain twisted
covers f̃ : X̃ → B. This lemma has several variants. The first one, for
regular Galois covers, was established in [Dèb99a] for covers of P1 and
in [DG11a] for a general base space. It is used in [DL11] to obtain the
second one, for covers with geometric monodromy group Sn. We will
prove the two variants shown on the top row of the following diagram,
which indicates that they generalize the two previous ones, shown on
the bottom row.

Galois ⇔ general
⇓ ⇓

regular Galois ⇒ monodromy Sn

The Galois variant is for the situation f : X → B is a Galois cover,
regular or not; it is proved in §3.1. The general variant is proved in §3.2
and concerns arbitrary covers, Galois or not, regular or not. Implication
⇒ in the upper row means that the general variant will be obtained
from the Galois variant. We will also be interested in the converse of
the twisting lemma: the answer to the original question is Yes if and
only if there exist unramified k-rational points on the twisted covers.

The twisting lemma is a geometric avatar of an argument of Tcheb-
otarev known as the Field Crossing Argument and which notably appears
in the proof of the Tchebotarev density theorems over global fields and
in the theory of PAC fields (see [FJ04]). The twisting lemma formalizes
the core of the argument and produces a geometric tool: the variety
X̃. This allows a unifying approach over an arbitrary base field: ques-
tions are reduced to finding rational points on X̃. Letting the base field
vary then yields previous results in various contexts and leads to new
applications. The twisted cover f̃ : X̃ → B, which appeared first in
[Dèb99a] and [Dèb99b], could also be defined by using the language of
torsors. Another related approach using an embedding problem presen-
tation has also been recently proposed by Bary-Soroker [BS10].
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1.3. Applications
As in previous papers, they are obtained over fields with good arith-

metic properties: PAC fields, finite fields, number fields, ample fields.
We present them below in connection with those from previous works.

1.3.1. Over a PAC field k (definition recalled in §4.1), the regular
Galois variant was used in [Dèb99a] to prove that, given a group G and
a subgroup H ⊂ G, any Galois extension E/k of group H is a special-
ization of any regular Galois k-cover f : X → P1 of group G (thereby
proving the so-called Beckmann-Black conjecture for PAC fields). A
not necessarily Galois analog with an arbitrary degree n k-étale algebra∏

l El/k replacing E/k is proved in [DL11] under the assumption that f
is a degree n k-cover of geometric monodromy group Sn. Corollary 4.1
is a refinement of the first result (the regularity assumption is relaxed)
while corollary 4.2 is a variant of the second one (allowing more gen-
eral monodromy groups). Similar applications have been obtained by
Bary-Soroker [BS10].

The general spirit of these results is that over a PAC field there is no
diophantine obstruction1 to a given étale algebra being a specialization
of some given cover; obstructions only come from Galois theory. This has
some impact on the arithmetic of PAC fields. For example a by-product
of [DL11] is that if k is a PAC field of characteristic 0 (for simplicity),
every degree n extension E/k can be realized by some trinomial Y n −
Y + b with b ∈ k.

1.3.2. Over a finite field k = Fq, the twisting lemma can be com-
bined with Lang-Weil to obtain an estimate for the number of points
t0 ∈ Fq at which a given degree n étale algebra

∏
l El/Fq is a specializa-

tion of a given degree n Fq-cover f : X → P1 of geometric monodromy
group Sn (corollary 4.3). This type of result is known in the literature as
a Tchebotarev theorem for function fields over finite fields. For example,
if

∏
l El/Fq is the single degree n field extension Fqn/Fq, the estimate

is of the form q/n + O(
√

q). In the specific case where f is given by
the trinomial Y n + Y − T , it yields results of Cohen and Ree proving a
conjecture of Chowla. See §4.2 for details and references.

For finite fields Fq, the same general spirit as for PAC fields can be
retained — no diophantine obstruction to the problem —, but provided
that q be suitably large.

1.3.3. The local-global situation of a number field k given with some
completions kv was central in [DG11a]. The main result was a Hilbert-
Grunwald theorem showing that every regular Galois k-cover f : X → P1

1in the sense that existence of rational points on some variety, which is a
condition of our twisting lemma in general, is automatic over a PAC field k.
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of group G has specializations at points t0 ∈ k that are Galois field
extensions of group G (Hilbert) with the extra property (Grunwald)
that they induce prescribed unramified extensions Ev/kv of Galois group
Hv ⊂ G at each finite place v in a given finite set S, the only condition
on the places being that the residue fields be suitably big and of order
prime to |G|. An analog is given in [DL11] for not necessarily Galois
covers: the Hilbert condition becomes that the specialization at t0 is
a degree n field extension and the Grunwald condition that the local
degrees are imposed at each v ∈ S; this is proved under the assumption
that f is a degree n k-cover of geometric monodromy group Sn.

§4.3 has a similar local-global flavor. The outcome is a generaliza-
tion to general regular covers f : X → P1 of the non-Galois analog
above (corollary 4.5). On the way the following typical result of Fried is
reproved (and generalized): if the Galois group G ⊂ Sn over Q(T ) of a
degree n polynomial P (T, Y ) ∈ Q(T )[Y ] contains a n-cycle, then the as-
sociated Hilbert subset contains infinitely many arithmetic progressions
with ratio a prime number. See §4.3 for details and references.

Here it is the relative flexibility of the local extensions obtained from
global specializations that is the striking phenomenon. In the Galois sit-
uation, the very existence of global extensions with such local properties
may sometimes even be questioned. Recall for example that results from
[DG11a] lead to some obstruction to the Regular Inverse Galois Prob-
lem (yet unproved to be not vacuous) related to some analytic questions
around the Tchebotarev density theorem.

Other local-global situations can be considered, for example that of
a base field that is a function field κ(x) with κ either a suitably large
finite field or a PAC field with enough cyclic extensions. We refer to
[DG11b] where these situations have been considered.

1.3.4. Over ample fields (definition recalled in §4.4), the twisting
lemma leads to this general property of ample fields (corollary 4.6): if a
k-cover f : X → B of curves specializes to some k-étale algebra

∏
l El/k

at some unramified point t0 ∈ B(k), then it specializes to the same
k-étale algebra

∏
l El/k at infinitely many unramified points t ∈ B(k).

§2. Basics

In this section we set up the terminology and notation for the basic
notions we will use. The reader who is familiar with étale algebras,
covers and their specializations, Galois groups, fundamental groups and
their representations can skip this section to get to the core of the paper
and come back to it when needed.
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Given a field k, we fix an algebraic closure k and denote the separable
closure of k in k by ksep and its absolute Galois group by Gk. If k′ is an
overfield of k, we use the notation ⊗kk′ for the scalar extension from k
to k′: for example, if X is a k-curve, X ⊗k k′ is the k′-curve obtained
by scalar extension. For more on this section, we refer to [DD97, §2] or
[Dèb09, chapitre 3].

2.1. Etale algebras and their Galois representations

Given a field k, a k-étale algebra is a product
∏s

l=1 El/k of finite
sub-field extensions E1/k, . . . , Es/k of ksep/k. Set ml = [El : k], l =
1, . . . , s and m =

∑s
l=1 ml. If N/k is a Galois extension containing the

Galois closures of E1/k, . . . , Es/k, the Galois group Gal(N/k) acts by
left multiplication on the left cosets of Gal(N/k) modulo Gal(N/El) for
each l = 1, . . . , s. The resulting action Gal(N/k) → Sm on the set of
these m left cosets, which is well-defined up to equivalence (i.e. up to
conjugation by an element of Sm), is called the Galois representation of∏s

l=1 El/k relative to N . Equivalently it can be defined as the action of
Gal(N/k) on the set of all k-embeddings El ↪→ N , l = 1, . . . , s.

Conversely, an action µ : Gal(N/k) → Sm determines a k-étale
algebra in the following way. For i = 1, . . . ,m, denote the fixed field in
N of the subgroup of Gal(N/k) consisting of all τ such that µ(τ)(i) = i
by Ei. The product

∏
l El/k for l ranging over a set of representatives of

the orbits of the action µ is a k-étale algebra with
∑

l[El : k] = m. If two
k-étale algebras

∏s
l=1 El/k and

∏s′

l=1 E′
l/k are obtained in this manner

from two different choices of the set of representatives of the orbits of
µ, then they are equivalent in the sense that s = s′ and there exist
σ1, . . . , σs ∈ Gal(N/k) such that σl(El) = E′

l , l = 1, . . . , s. Equivalently
an equivalence class of k-étale algebras can be viewed as a product of
k-isomorphism classes of finite sub-field extensions of ksep/k.

G-Galois variant: if
∏s

l=1 El/k is a single Galois extension E/k, the
restriction Gal(N/k) → Gal(E/k) is called the G-Galois representation
of E/k (relative to N). Any map ϕ : Gal(N/k) → G obtained by com-
posing Gal(N/k) → Gal(E/k) with a monomorphism Gal(E/k) → G is
called a G-Galois representation of E/k (relative to N). The extension
E/k can be recovered from ϕ : Gal(N/k) → G by taking the fixed field in
N of ker(ϕ). One obtains the Galois representation Gal(N/k) → Sn of
E/k (relative to N) from a G-Galois representation ϕ : Gal(N/k) → G
(relative to N) by composing it with the left-regular representation of
the image group ϕ(Gal(N/k)); here n = |ϕ(Gal(N/k))|.
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2.2. Covers and function field extensions

Given a regular projective geometrically irreducible k-variety B, a
k-cover of B is a finite and generically unramified morphism f : X → B
defined over k with X a normal and irreducible variety. Through the
function field functor k-covers f : X → B correspond to finite separable
field extensions k(X)/k(B). The k-cover f : X → B is said to be Galois
if the field extension k(X)/k(B) is; if in addition f : X → B is given
together with an isomorphism G → Gal(k(X)/k(B)), it is called a k-G-
Galois cover of group G.

A k-cover f : X → B is said to be regular if k(X) is a regular
extension of k, i.e. if k(X)∩k = k, or equivalently, if X is geometrically
irreducible. In general, there is some constant extension in f : X → B,
which we denote by k̂f/k and is defined by k̂f = k(X)∩ksep (the special
case k̂f = k corresponds to the situation f : X → B is regular).

If f : X → B is a k-cover, its Galois closure over k is a Galois k-cover
g : Z → B, which via the cover-field extension dictionary, corresponds to
the Galois closure of k(X)/k(B). The Galois group Gal(k(Z)/k(B)) is
called the monodromy group of f . Denote next by ksep(Z) the composi-
tum of k(Z) and ksep (in a fixed separable closure of k(B))2. The Galois
group Gal(ksep(Z)/ksep(B)) is called the geometric monodromy group of
f ; it is a normal subgroup of the monodromy group Gal(k(Z)/k(B)).
The branch divisor of the k-cover f is the formal sum of all hypersurfaces
of B ⊗k ksep such that the associated discrete valuations are ramified in
the field extension ksep(Z)/ksep(B).

If f : X → B is regular, f ⊗k ksep is a ksep-cover, the Galois closure
of its function field extension is ksep(Z)/ksep(B) and its branch divisor
is the same as the branch divisor of f , and it is the formal sum of all
hypersurfaces of B ⊗k ksep such that the associated discrete valuations
are ramified in the field extension ksep(X)/ksep(B). From Purity of the
Branch Locus, f is étale above B \D.

2.3. π1-representations

Given a reduced effective divisor D ⊂ B, denote the k-fundamental
group of B \ D by π1(B \ D, t)k where t ∈ B(k) \ D is a base point
(which corresponds to the choice of an algebraic closure of k(B)). Con-
joining the two dictionaries covers-function field extensions and field
extensions-Galois representations, we obtain the following correspon-
dences: k-covers of B of degree n (resp. k-G-Galois covers of B of

2Note that as g : Z → B is Galois, k(Z) only depends on the k(B)-
isomorphism class of k(X)/k(B) (but not on k(X)/k(B) itself).
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group G) with branch divisor contained in D correspond to transi-
tive morphisms3 φ : π1(B \ D, t)k → Sn (resp. to epimorphisms φ :
π1(B \ D, t)k → G). The regularity property corresponds to the extra
condition that the restriction of φ to π1(B \D, t)ksep remains transitive
(resp. remains onto). These morphisms are called fundamental group
representations (π1-representations for short) of the corresponding k-
covers and k-G-Galois covers.

2.4. Specializations

Each k-rational point t0 ∈ B(k) \ D provides a section st0 : Gk →
π1(B \D, t)k to the exact sequence

1 → π1(B \D, t)ksep → π1(B \D, t)k → Gk → 1

which is uniquely defined up to conjugation by an element in the funda-
mental group π1(B \D, t)ksep .

If φ : π1(B \D, t)k → G represents a k-G-Galois cover f : X → B,
the morphism φ ◦ st0 : Gk → G is a G-Galois representation. The fixed
field in ksep of ker(φ◦st0) is the residue field at some point above t0 in the
extension k(X)/k(B) (in fact at any point above t0 since the extension
k(X)/k(B) is Galois). We denote it by k(X)t0 and call k(X)t0/k the
specialization of the k-G-cover f at t0.

If φ : π1(B \ D, t)k → Sn represents a k-cover f : X → B, the
morphism φ ◦ st0 : Gk → Sn is the specialization representation of f at
t0. The corresponding k-étale algebra is denoted by

∏s
l=1 k(X)t0,l/k and

called the specialization algebra of f at t0. Each field k(X)t0,l is a residue
extension at some prime above t0 in the extension k(X)/k(B) and vice-
versa; k(X)t0,l is called a specialization of f at t0. The compositum in
ksep of the Galois closures of all specializations at t0 is the specialization
at t0 of the Galois closure of f (viewed as a k-G-Galois cover). If the
k-cover f is regular, the fields k(X)t0,l correspond to the definition fields
of the points in the fiber f−1(t0) and φ ◦ st0 : Gk → Sn to the action of
Gk on them.

§3. The twisting lemma

Given a field k, the question we address is whether a given k-cover
specializes to a given k-étale algebra at some unramified k-rational point.
We first consider the situation of Galois covers in §3.1 and then handle
the non-Galois situation in §3.2 by “going to the Galois closure”. The

3i.e. such that the image group is a transitive subgroup of Sn.



8 Pierre Dèbes and François Legrand

Galois situation was considered in [DG11a] in the special case of regular
Galois covers. But the Galois closure of a k-cover is not regular in
general, even if f : X → B is regular, and this special case needs to be
extended. §3.1 is a generalization of the twisting lemma from [DG11a]
to not necessarily regular Galois covers.

3.1. The twisting lemma for Galois covers

Fix the field k and a Galois k-cover g : Z → B. Denote its
branch divisor by D, the Galois group Gal(k(Z)/k(B)) by G, the π1-
representation of the k-G-Galois cover g : Z → B by φ : π1(B \D, t)k →
G, the geometric monodromy group Gal(ksep(Z)/ksep(B)) by G and the
constant extension in g : Z → B by k̂g/k.

3.1.1. Twisting Galois covers Let N/k be some Galois extension
with Galois group H isomorphic to a subgroup of G. With no loss we
may and will view H itself as a subgroup of G. The constant exten-
sion k̂g/k is characterized by this condition: k̂g(B) is the fixed field in
k(Z) of geometric monodromy group G ⊂ G. We assume the following
compatibility condition of N/k with the constant extension k̂g/k:

(const/comp) the fixed field NH∩G of H ∩G in N is the field k̂g.

This condition is trivially satisfied in the regular case as both fields
NH∩G and k̂g equal k.

Consider the homomorphism Λ : Gk → G/G induced by φ on the
quotient Gk = π1(B \D, t)k/π1(B \D, t)ksep . The map Λ is a G-Galois
representation of the constant extension k̂g/k (relative to ksep); it is
called the constant extension map [DD97, §2.8]. As it is surjective,
we have Gal(k̂g/k) ' G/G and so condition (const/comp) implies that
HG = G.

Let ϕ : Gk → H be the G-Galois representation of the Galois exten-
sion N/k (relative to ksep) and ϕ : Gk → G/G be the composed map of
ϕ with the canonical surjection . : G → G/G. Hypothesis (const/comp)
rewrites as follows:

(const/comp)There exists χ ∈ Aut(G/G) such that Λ = χ ◦ ϕ.

(The equivalence follows from k̂g = (ksep)ker(Λ) and

(ksep)ker(ϕ) = ((ksep)ker(ϕ))ker(ϕ)/ker(ϕ) = Nϕ(ker(ϕ)) = NH∩G .
Also note that as Λ : Gk → G/G is onto, an automorphism χ satisfying
(const/comp) is unique).
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Assume there exists an isomorphism χ : H → H ′ onto a subgroup
H ′ ⊂ G that induces χ modulo G. With Per(G) the permutation group
of G, consider then the map

φ̃χϕ : π1(B \D, t)k → Per(G)

defined by this formula, where r is the restriction π1(B \D, t)k → Gk:
for θ ∈ π1(B \D, t)k and x ∈ G,

φ̃χϕ(θ)(x) = φ(θ) x (χ ◦ ϕ ◦ r)(θ)−1

It is easily checked that φ̃χϕ is a group homomorphism. However the
corresponding action of π1(B \D, t)k on G is not transitive in general.
More precisely we have the following.

Lemma 3.1. Under hypothesis (const/comp), we have φ̃χϕ(θ)(G) ⊂
G for every θ ∈ π1(B \D, t)k.

Proof. For all θ ∈ π1(B \D, t)k and x ∈ G, we have:

φ̃χϕ(θ)(x) = φ(θ) . x.(χ ◦ ϕ ◦ r)(θ)
−1

= Λ(r(θ)) .χ(ϕ(r(θ)))−1 = 1
Q.E.D.

Consider the morphism, denoted by φ̃χϕ

G
: π1(B \D, t)k → Per(G),

that sends θ ∈ π1(B \ D, t)k to the restriction of φ̃χϕ(θ) on G. Its
restriction π1(B \D, t)ksep → Per(G) is given by

φ̃χϕ

G
(θ)(x) = φ(θ) x (θ ∈ π1(B \D, t)ksep , x ∈ G)

Thus this restriction is obtained by composing the original π1-represen-
tation φ restricted to π1(B\D, t)ksep with the left-regular representation
G → Per(G) of G. This shows that φ̃χϕ

G
: π1(B \ D, t)k → Per(G)

is the π1-representation of some regular k-cover, which we denote by
g̃χϕ : Z̃χϕ → B and call the twisted cover of g by χϕ.

3.1.2. Statement of the twisting lemma for Galois covers The fol-
lowing statement gives the main property of the twisted cover.

Some notation is needed. Conjugation automorphisms in some group
G are denoted by conj(ω) for ω ∈ G: conj(ω)(x) = ω x ω−1 (x ∈ G). The
set of all isomorphisms χ : H → H ′ onto a subgroup H ′ ⊂ G that induce
χ modulo G is denoted by Isomχ(H,H ′).

Fix then a set {χγ : H → Hγ | γ ∈ Γ} of representatives of all iso-
morphims χ ∈ Isomχ(H,H ′) with H ′ ranging over all subgroups of G iso-
morphic to H, modulo the equivalence that identifies χ1 ∈ Isomχ(H,H ′

1)
and χ2 ∈ Isomχ(H,H ′

2) if H ′
2 = ωH ′

1ω−1 and χ2χ
−1
1 = conj(ω) for some

ω ∈ G.
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Twisting lemma 3.2 (Galois form). Under condition (const/comp),
we have the following conclusions (a) and (b).

(a) For each subgroup H ′ ⊂ G isomorphic to H, each χ ∈ Isomχ(H,H ′)
and each t0 ∈ B(k) \D, these conditions are equivalent:
(i) there exists a point x0 ∈ Z̃χϕ(k) such that g̃χϕ(x0) = t0,
(ii) there is ω ∈ G such that (φ ◦ st0)(τ) = ω (χ ◦ ϕ)(τ) ω−1, τ ∈ Gk,
(where st0 : Gk → π1(B \D, t)k is the section associated with t0).

(b) For each t0 ∈ B(k) \D, the following are equivalent:
(iii) the specialization k(Z)t0/k of the k-G-Galois cover g : Z → B is
the extension N/k,
(iv) there exists an isomorphism χ ∈ Isomχ(H,φ ◦ st0(Gk)) such that
conditions (i)-(ii) hold for this χ,
(v) there exists γ ∈ Γ such that conditions (i)-(ii) hold for χ = χγ .
Furthermore an element γ ∈ Γ as in (v) is necessarily unique.

A single twisted cover is involved in (a) while there are several in (b).
In this respect the representation viewpoint used in (a) may look more
natural than the field extension one in (b). The latter however is more
useful in practice. Also note that conditions (iv)-(v), being equivalent to
(iii), do not depend on the chosen π1-representation φ : π1(B \D, t)k →
G of g : Z → B modulo conjugation by elements of G.

Remark 3.3. (a) Existence of some subgroup H ′ ⊂ G such that the
set Isomχ(H,H ′) is non-empty, which amounts to Γ 6= ∅, is not guar-
anteed; if Γ = ∅, conditions (iii)-(iv)-(v) fail. It is however guaranteed
under each of the assumptions χ = IdG/G or Out(G/G) = {1}. Indeed
if χ = IdG/G, then IdH ∈ Isomχ(H,H), and if Out(G/G) = {1}, the au-
tomorphism χ ∈ Aut(G/G) is inner, of the form conj(ω) with ω ∈ G/G,
and, as HG = G, lifts to some isomorphism conj(ω) : H → H with
ω ∈ H. Both assumptions include the regular case as then G/G = {1}.
(b) Some uniqueness property can be added to (iv), as in (v). Indeed an
isomorphism χ ∈ Isomχ(H,φ ◦ st0(Gk)) satisfying conditions (i)-(ii), as
the one in (iv), is necessarily unique up to left composition by conj(ω)
with ω ∈ NorG(φ ◦ st0(Gk)). The advantage of condition (v) is that the
set

⋃
γ∈Γ Z̃χγϕ(k) where unramified k-rational points should be found

to conclude that (iii) holds does not depend on t0 (although the element
γ ∈ Γ in (v) does). Moreover the uniqueness property in (v) makes it
easier to count the points t0 ∈ B(k) for which (iii) holds.
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(c) The proof of (i) ⇔ (ii) below shows further that the number of k-
rational points on Z̃χϕ above some given unramified point t0 ∈ B(k), if
positive, is equal to the order of the group CenG(χ(H)).

3.1.3. Proof of the twisting lemma 3.2 (a) Fix a subgroup H ′ ⊂ G
isomorphic to H, an isomorphism χ ∈ Isomχ(H,H ′) and a point t0 ∈
B(k) \D. The map φ̃χϕ

G
◦ st0 : Gk → Per(G) is the action of Gk on the

fiber (g̃χϕ)−1(t0); it is given by

φ̃χϕ

G
(st0(τ))(x) = φ(st0(τ)) x (χ ◦ ϕ)(τ)−1 (τ ∈ Gk, x ∈ G)

The elements φ̃χϕ

G
(st0(τ)) have a common fixed point ω ∈ G if and

only if φ(st0(τ)) = ω (χ ◦ ϕ)(τ) ω−1 (τ ∈ Gk). This yields (i) ⇔ (ii).
Furthermore, the set of all ω ∈ G satisfying the preceding condition, if
non empty, is a left coset ω0 CenG(χ(H)); this proves remark 3.3 (c).

(b) Fix t0 ∈ B(k) \ D and a representative of the section st0 : Gk →
π1(B\D, t)k (defined up to conjugation by an element in π1(B\D, t)ksep).

Implication (iv)⇒ (iii) follows from the fact that if χ ∈ Isomχ(H,φ◦
st0(Gk)) satisfies (i)-(ii), then ker(φ ◦ st0) and ker(ϕ) are equal, hence
so are their fixed fields in ksep. Conversely assume that the extensions
k(Z)t0/k and N/k are equal, i.e. ker(φ◦st0) and ker(ϕ) are the same sub-
group, say K, of Gk. The two morphisms φ ◦ st0 : Gk → φ ◦ st0(Gk) ⊂ G
and ϕ : Gk → H ⊂ G then differ from Gk → Gk/K by some iso-
morphisms φ ◦ st0(Gk) → Gk/K and H → Gk/K, respectively. Thus
they differ from one another by an isomorphism χ : H → φ ◦ st0(Gk):
φ ◦ st0 = χ ◦ ϕ. It follows from this and from uniqueness of χ satisfying
(const/comp) that χ automatically induces χ modulo G. Conclude that
χ ∈ Isomχ(H,φ ◦ st0(Gk)) and conditions (i)-(ii) hold for this χ.

Assume (v) holds, i.e., for some γ ∈ Γ, condition (i)-(ii) are satisfied
for the isomorphism χγ : H → Hγ and some ω ∈ G. It readily fol-
lows that χ = conj(ω) ◦ χγ also satisfies (ii) and is in Isomχ(H,φ ◦
st0(Gk)). This establishes (iv). Conversely assume (iv) holds. Let
χ ∈ Isomχ(H,φ ◦ st0(Gk)) be an isomorphism such that conditions (i)-
(ii) hold, for some ω ∈ G. There exist γ ∈ Γ and ω′ ∈ G such that
χ = conj(ω′)◦χγ . It follows that condition (ii) holds for χγ as well (with
conjugation factor ωω′). Uniqueness of γ ∈ Γ in condition (v) readily
follows from condition (ii) and the definition of the set {χγ | γ ∈ Γ}.
Q.E.D.
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3.2. The general form of the twisting lemma
We fix a degree n k-cover f : X → B and a degree n k-étale algebra∏s

l=1 El/k and the question we address is whether
∏s

l=1 El/k is (equiva-
lent to) the specialization algebra

∏
l k(X)t0,l/k of f at some unramified

point t0 ∈ B(k).
3.2.1. Statement of the result Denote the branch divisor of f : X →

B by D, its Galois closure by g : Z → B, the Galois group Gal(k(Z)/k(B))
by G, the π1-representation of the k-G-Galois cover g : Z → B by
φ : π1(B \ D, t)k → G, the Galois representation of the field exten-
sion k(X)/k(B) relative to k(Z) by ν : G → Sn, the geometric mon-
odromy group Gal(ksep(Z)/ksep(B)) by G and the constant extension in
g : Z → B by k̂g/k.

Let N/k be the compositum inside ksep of the Galois closures of the
extensions El/k, l = 1, . . . , s, and H = Gal(N/k). A necessary condition
for a positive answer to the question is that N be the compositum inside
ksep of the Galois closures of the extensions k(X)t0,l/k. In particular,
H should be isomorphic to some subgroup of G. From now on we will
assume it. With no loss we may then and will view H as a subgroup of G.
Finally let ϕ : Gk → H be the G-Galois representation of N/k relative to
ksep and µ : H → Sn be the Galois representation of

∏s
l=1 El/k relative

to N .
Some further notation from §3.1 is retained. The constant exten-

sion compatibility condition (const/comp) determines a unique automor-
phism χ of G/G (§3.1.1). The twisted cover g̃χϕ : Z̃χϕ → B is defined
for every isomorphism χ : H → H ′ onto a subgroup H ′ ⊂ G inducing
χ modulo G (§3.1.1). The set of all such isomorphisms χ : H → H ′ is
denoted by Isomχ(H,H ′). The isomorphisms χγ : H → Hγ (γ ∈ Γ) are
defined in §3.1.2.

Twisting lemma 3.4 (general form). Let f : X → B be a k-
cover and

∏s
l=1 El/k be a k-étale algebra as above. Assume further that

condition (const/comp) from §3.1.1 holds for the Galois closure g : Z →
B of f . Then for each t0 ∈ B(k) \ D, the following conditions are
equivalent:

(i)
∏

l El/k is the specialization algebra
∏

l k(X)t0,l/k of f at t0.
(ii) there is a subgroup H ′ ⊂ G isomorphic to H and an isomorphism
χ ∈ Isomχ(H,H ′) such that

1. there exists x0 ∈ Z̃χϕ(k) with g̃χϕ(x0) = t0, and
2. there exists σ ∈ Sn that ν ◦ χ(h) = σ µ(h) σ−1 for every h ∈ H.

Furthermore if (ii) holds, it holds for some isomorphism χγ : H → Hγ

for some γ ∈ Γ and the element γ is then necessarily unique.
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3.2.2. About condition (ii-2) We focus on condition (ii-2) which is
the group-theoretical part of condition (ii) (while condition (ii-1) is the
diophantine part).

We first note for later use that if condition (ii-2) holds for χ = χγ0

with γ0 ∈ Γ, the number of γ ∈ Γ for which condition (ii-2) holds for
χ = χγ is equal to the number of isomorphisms χγ (γ ∈ Γ) such that
the actions ν ◦ χγ : H → Sn and ν ◦ χγ0 : H → Sn are conjugate in Sn.

Below we give three standard situations where condition (ii-2) holds.
(a) geometric monodromy group Sn: G = G = Sn as in [DL11]. Con-
dition (const/comp) holds and ν : Sn → Sn is the natural action:
ν = IdSn

. Condition ν ◦χγ(h) = σ µ(h) σ−1 (h ∈ H) is satisfied with χγ

the representative of the isomorphism µ : H → µ(H) ⊂ Sn (and some
σ ∈ Sn).

(b) Galois situation: f : X → B is a Galois k-cover,
∏

l El/k is a Galois
field extension E/k of group H ⊂ G and Γ 6= ∅. Then ν is the left-regular
representation G → Per(G) and µ its restriction H → Per(G). Note next
that if γ ∈ Γ, the restriction ν|H : H → Per(G) and ν ◦χγ : H → Per(G)
are conjugate actions. Condition (ii-2) follows.

In (c) below, the type of a permutation σ ∈ Sn is the (multiplicative)
divisor of all lengths of disjoint cycles involved in the cycle decomposition
of σ (for example, an n-cycle is of type n1).
(c) cyclic specializations: condition (const/comp) holds, H is a cyclic
subgroup of G generated by an element ω such that ν(ω) is of type
equal to the divisor of all degrees [El : k] of field extensions in the étale
algebra

∏
l El/k.

Indeed for every integer a ≥ 1 such that (a, |H|) = 1, let χa : H → H
be the morphism that maps ω to ωa. As HG = G, each map χa induces
an automorphism of the cyclic group G/G. Then there is necessarily an
integer a ≥ 1 such that χa induces χ modulo G and (a, |H|) = 1 4. From
the hypothesis, the types of ν(ω) and µ(ω) are the same. But so are the
types of ν(ω) and ν ◦χa(ω). Conclude that the actions ν ◦χa and µ are
conjugate.

3.2.3. Comparizon with previous forms We compare the general form
(lemma 3.4) with the Galois form (lemma 3.2) and the geometric mon-
odromy group Sn form [DL11, lemma 2.1] of the twisting lemmas.

4An exercise: this amounts to showing that if b is an integer prime to
ν = |G/G| and |G| = µν, then there exists an integer a = b + kν that is prime
to µν. Take for k the product of the prime divisors of µ that do not divide b.
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Lemma 3.4 (general form) ⇒ lemma 3.2 (Galois form): Both forms have
the assumption (const/comp). In the Galois situation from §3.1, the k-
cover is Galois (and so f = g) and the k-étale algebra is a Galois field
extension E/k with group Gal(E/k) = H (so

∏s
l=1 El/k = E/k and

N = E). Then statement (i) ⇔ (ii) in lemma 3.4 exactly corresponds
to statement (iii) ⇔ (v) in lemma 3.2.

Indeed condition (ii) from lemma 3.4 reduces to its first part (ii-1)
(see §3.2.2 (b)) and then coincides with condition (v) from lemma 3.2,
and condition (i) from lemma 3.4 corresponds to condition (iii) from
lemma 3.2 (note that the étale algebra

∏
l El/k (resp.

∏
l k(X)t0,l/k)

from condition (i) is a product of |G|/|H| copies of the Galois field
extension E/k (resp. k(X)t0/k)).

Lemma 3.4 (general form) ⇒ lemma 2.1 from [DL11]: In [DL11], the
k-cover f : X → B is of degree n and geometric monodromy group Sn.
Then G = G = Sn, that is, we are in the standard situation (a) from
§3.2.2. Thus condition (ii-2) holds. The twisted cover g̃N : Z̃N → B in
[DL11, lemma 2.1] is the twisted cover g̃µϕ : Z̃µϕ → B in this paper.
Conclude that (i) ⇒ (ii) in [DL11, lemma 2.1] exactly corresponds to
(ii) ⇒ (i) in lemma 3.4.

3.2.4. Proof of the twisting lemma 3.4 We will use the Galois form
of the twisting lemma to establish the general form.
(i) ⇒ (ii): Assume (i) holds. Necessarily N is the compositum of the
Galois closures of the extensions k(X)t0,l/k. From the twisting lemma
3.2 for Galois covers, there is a unique γ ∈ Γ satisfying condition (ii-
1) from lemma 3.4. And from lemma 3.2 (a), this last condition is
equivalent to existence of some ω ∈ G such that (φ ◦ st0)(τ) = ω (χγ ◦
ϕ)(τ) ω−1 for all τ ∈ Gk. Thus we obtain:

(ν ◦ φ ◦ st0)(τ) = ν(ω) (ν ◦ χγ ◦ ϕ)(τ) ν(ω)−1 (τ ∈ Gk)

But condition (i) gives ν ◦φ ◦ st0(τ) = β µ ◦ϕ(τ) β−1 (τ ∈ Gk), for some
β ∈ Sn. Conjoining these equalities yields condition (ii-2).

(ii) ⇒ (i): Assume (ii) holds. From lemma 3.2, existence of x0 ∈ Z̃χϕ(k)
such that g̃χϕ(x0) = t0 implies that N is the compositum of the Galois
closures of the k(X)t0,l, and so we have (φ ◦ st0)(τ) = ω (χ ◦ ϕ)(τ) ω−1

for some ω ∈ G and all τ ∈ Gk.
Denote the orbits of µ : H → Sn, which correspond to the extensions

E1, . . . Es, by O1, . . . ,Os. Fix one of them, i.e. l ∈ {1, . . . , s}, and let
i ∈ {1, . . . , n} be some index such that El is the fixed field in ksep of the
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subgroup of Gk fixing i via the action µ ◦ϕ. For j = ν(ω)(σ(i)) (with σ
given by condition (ii-2)), we have

(ν ◦ φ ◦ st0)(τ)(j) = ν(ω) (ν ◦ χ ◦ ϕ)(τ) (σ(i))
= ν(ω) (conj(σ) ◦ µ ◦ ϕ)(τ) (σ(i))
= ν(ω) σ (µ ◦ ϕ)(τ)(i)

and so j is fixed by (ν ◦ φ ◦ st0)(τ) if and only if i is fixed by (µ ◦ ϕ)(τ).
Conclude that the specialization k(X)t0,j is the field El. Q.E.D.

§4. Applications

4.1. PAC fields
Recall that a field k is said to be PAC if every non-empty geomet-

rically irreducible k-variety has a Zariski-dense set of k-rational points.
If k is PAC, the twisting lemma leads to the following statements in the
two standard situations (b) and (c) from §3.2.2 (the standard situation
(a) corresponds to corollary 3.1 from [DL11]). Similar applications over
PAC fields can also be found in Bary-Soroker’s works [BS10] [BS09].

Corollary 4.1. Let k be a PAC field, f : X → B be a k-G-Galois
cover of group G and geometric monodromy group G, and let E/k be a
Galois extension of group H ⊂ G. Assume that condition (const/comp)
from §3.1 holds and Out(G/G) = {1}. Then E/k is the specialization
k(X)t0/k of f at each point t0 in a Zariski-dense5 subset of B(k) \D.

The special case G = G corresponds to theorem 3.2 of [Dèb99a]
(which proved the Beckmann-Black conjecture over PAC fields).

Proof. Assumption Out(G/G) = {1} assures that Γ 6= ∅ (remark
3.3 (a)). Pick γ ∈ Γ. Since k is PAC, the variety Z̃χγϕ has a Zariski-
dense set Z of k-rational points. From lemma 3.2, the Zariski-dense sub-
set g̃χγϕ(Z)\D ⊂ B(k)\D satisfies the announced conclusion. Q.E.D.

Corollary 4.2. Let k be a PAC field, f : X → B be a degree n k-
cover and let 1β1 · · ·nβn be the type of some element of the monodromy
group G in the Galois representation ν : G → Sn of k(X)/k(B). Let∏

l El/k be an étale algebra such that
- the divisor of all degrees [El : k] is 1β1 · · ·nβn ,
- condition (const/comp) holds,
- the compositum N/k of the Galois closures of the extensions El/k is a
cyclic extension of order lcm{ i | βi 6= 0}.

5but not necessarily Zariski open.
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Then
∏

l El/k is the specialization algebra
∏

l k(X)t0,l/k of f at each
point t0 in a Zariski-dense subset of B(k) \D.

A useful special case is for 1β1 · · ·nβn = n1: it can then be concluded
that f : X → B specializes to some degree n field extension at each t0
in a Zariski-dense subset of B(k) \ D (i.e. the Hilbert irreducibility
conclusion) under the assumptions that there is a n-cycle in ν(G) and
k has a degree n cyclic extension satisfying condition (const/comp).
This can be compared to [BS09, corollary 1.4] (and [DL11, corollary
3.1]) which has the same Hilbert conclusion under the assumptions that
G = G = Sn and k has a degree n separable extension.

Proof. Let ω ∈ G with ν(ω) of type 1β1 · · ·nβn . Identify the Galois
group H = Gal(N/k) with the subgroup 〈ω〉 ⊂ G. We are in the stan-
dard situation (c) from §3.2.2 and so condition (ii-2) from lemma 3.4
holds for some isomorphism χγ (γ ∈ Γ). Since k is PAC, condition (ii-1)
holds for all t0 in a Zariski-dense subset of B(k)\D. Therefore condition
(i) from lemma 3.4 holds as well, thus ending the proof. Q.E.D.

4.2. Finite fields
If k is a suitably large finite field Fq, the Lang-Weil estimates can

be used to guarantee that the twisted covers have Fq-rational points.
More specifically we have the following result, where we take B = P1 for
simplicity.

Corollary 4.3. Let f : X → P1 be a regular Fq-cover of degree
n ≥ 2, with r branch points and with geometric monodromy group Sn.
Let m1, . . . ,ms be some positive integers (possibly repeated) such that∑s

l=1 ml = n. Then the number N (f,m1, . . . ,ms) of unramified points
t0 ∈ Fq such that

∏s
l=1 Fqml /Fq is the specialization algebra of f at t0

can be evaluated as follows:∣∣∣∣N (f,m1, . . . ,ms)−
(q + 1) |m1

1 · · ·m1
s|

n!

∣∣∣∣ ≤ rn!
√

q

where |m1
1 · · ·m1

s| is the number of elements in the conjugacy class in Sn

corresponding to the type m1
1 · · ·m1

s.

This extends similar estimates that have appeared in the literature
for Galois covers under the name of Tchebotarev theorems for function
fields over finite fields. See [Wei48], [Fri74] [Eke90], [FJ04, §6], and also
[DG11b, cor.3.5] where the Galois analog of corollary 4.3 is obtained as
the outcome of our approach in standard situation §3.2.2 (b).

For the type m1
1 · · ·m1

s = n1 of n-cycles, we obtain that the number
N (f, n) is asymptotic to q/n when q → +∞. For example if f : X →
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P1 over Fp is given by the trinomial Y n + Y − T (which satisfies the
assumptions of corollary 4.3 if p 6 |n(n− 1) [Ser92, §4.4]), the number of
irreducible trinomials Y n +Y +a ∈ Fp[Y ] realizing the extension Fpn/Fp

is asymptotic to p/n as p →∞, a result due to Cohen [Coh70] and Ree
[Ree71] proving a conjecture of Chowla [Cho66].

Proof. We are in the standard situation G = G = Sn. Condition
(const/comp) trivially holds. Furthermore, it follows from the beginning
note of §3.2.2 that the number of γ ∈ Γ for which condition (ii-2) holds
is 1; denote by χ0 the corresponding isomorphism. From lemma 3.4, the
set of unramified Fq-rational points on the twisted variety Z̃χ0ϕ maps
via the cover g̃χ0ϕ : Z̃χ0ϕ → P1 to the set of points t0 ∈ P1(Fq) satisfying
the desired conclusion. Using remark 3.3 (c), we obtain

0 ≤ |Z̃χ0ϕ(Fq)|
|CenSn(χ0(H))|

− N (f,m1, . . . ,ms) ≤
rn!/2

|CenSn(χ0(H))|

where H = Gal(FqM /Fq) with M = lcm(m1, . . . ,ms) and the term rn!/2
is an upper bound for the number of ramified points on Z̃χ0ϕ. Also note
that g̃χ0ϕ and g being isomorphic over ksep, they have the same branch
point number, which is the branch point number r of f , and that the
curves Z̃χ0ϕ and Z have the same genus, say g.

The cyclic subgroup χ0(H) ⊂ Sn is generated by a permutation
of type m1

1 · · ·m1
s (condition (ii-2) from lemma 3.4). Hence we have

|CenSn
(χ0(H))| = n!/|m1

1 · · ·m1
s|. The Lang-Weil estimates give:

| |Z̃χ0ϕ(Fq)| − (q + 1)| ≤ 2g
√

q

The Riemann-Hurwitz formula yields g ≤ (r − 2)(n! − 1)/2. The an-
nounced estimate easily follows. (We use that the largest cardinality
of a conjugacy class in Sn is n(n − 2)!, i.e., that of the class of n − 1-
cycles). Q.E.D.

4.3. Number fields
Over number fields, we will follow a local-global approach as in

[DL11] and [DG11a]. We start with a local result at one prime. We
give two versions: a mere version for a cover f : X → P1 and a G-
version for a G-Galois cover g : Z → P1.

For the next two statements, let k be a number field, f : X → P1

be a degree n regular k-cover, r be the branch point number, G (resp.
G) be the monodromy group (resp. the geometric monodromy group),
g : Z → P1 be the Galois closure of f , ν : G → Sn be the Galois
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representation of k(X)/k(T ) (relative to k(Z)) and k̂g/k be the constant
extension in g. A prime number p is said to be bad if it is one from the
finite list of primes for which the branch divisor is not étale or there is
vertical ramification at p [DG11a], it is said to be good otherwise.

Corollary 4.4. Suppose given
(in the mere version): the type 1β1 · · ·nβn of an element of ν(G) ⊂ Sn,
(in the G-version): an element ω ∈ G.

Then for each prime p ≥ r2|G|2, good and totally split in k̂g/Q, there
exists an integer bp ∈ Z such that for each integer t0 ≡ bp mod p,
(mere version) the specialization algebra of f ⊗k Qp at t0 is an étale
algebra

∏
l El/Qp with degree divisor

∏
l[El : Qp]1 = 1β1 · · ·nβn ,

(G-version) the specialization of the Qp-G-Galois cover g ⊗k Qp at t0 is
the unramified extension Np/Qp of degree |〈ω〉|.

The mere version generalizes theorem 4 from [Fri74]: if ν(G) con-
tains an n-cycle, then, for 1β1 · · ·nβn = n1, the conclusion, stated as
in [Fri74] in the situation f is given by a polynomial P (T, Y ), is that
P (t0, Y ) is irreducible in Qp[Y ], and so in k[Y ] too.

Proof. Consider first the mere version. Let p be a totally split
prime in the extension k̂g/Q (infinitely many such primes exist from
the Tchebotarev density theorem). In particular Qpk̂g = Qp. For each
i = 1, . . . , n with βi > 0, let Ep,i/Qp be the unique unramified ex-
tension of Qp of degree i. Here we use the twisting lemma 3.4 in the
“cyclic specializations” standard situation (c) from §3.2.2; we apply it
to the cover f ⊗k Qp and the Qp-étale algebra

∏
i(E

p,i/Qp)βi , where
the exponent βi indicates that the extension Ep,i/Qp appears βi times.
Condition (const/comp) holds by definition of k̂g and condition (ii-2)
from lemma 3.4 holds for some isomorphism χγ , γ ∈ Γ (§3.2.2 (c)). If p

is a good prime, the twisted curve Z̃χγϕ ⊗k Qp has good reduction, and
the Lang-Weil estimates then show that if p ≥ r2|G|2, the special fiber
has at least one unramified Fp-rational point; see [DL11, corollary 3.2]
for more details. From Hensel’s lemma, such a Fp-rational point lifts to
a Qp-rational point on Z̃χγϕ. Conclude with lemma 3.4 that the étale
algebra

∏
i(E

p,i/Qp)βi is the specialization algebra of f ⊗k Qp at each
point t0 in a coset of Zp modulo pZp.

The G-version is very similar, but it is the Galois form of the twist-
ing lemma (lemma 3.2) that should be applied, to the regular Qp-G-
Galois cover g ⊗k Qp and the unramified extension of Qp of degree
|〈ω〉|. Q.E.D.
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Corollary 4.4 can be used simultaneously for several types of el-
ements in ν(G) ⊂ Sn and for several elements of G. The weak ap-
proximation property of P1 (the Artin-Whaples theorem) then provides
arithmetic progressions (am + b)m∈Z ⊂ Z with ratio a the product of
several corresponding primes. In particular by using all non-trivial ele-
ments of G, it can be guaranteed that the specialization at am + b (for
every m ∈ Z) of the k̂g-G-Galois cover g ⊗k k̂g be a Galois extension of
group G; this uses a standard argument (recalled in [DG11a, §3.4]) based
on a lemma of Jordan. This implies that the specialization at am + b of
the k-G-Galois cover g is a Galois extension of group a subgroup of G
containing G. As the k-cover f : X → P1 is assumed to be regular (and
so ν(G) is a transitive subgroup of Sn), it follows that the specialization
algebra at am+ b of the k-cover f is a single field extension of degree n,
i.e. Hilbert’s conclusion holds at am + b (for every m ∈ Z).

We obtain the following statement, which generalizes [DL11, corol-
lary 4.1] to arbitrary regular covers.

The constants however are not as good as in the “G = G = Sn”
situation of [DL11] because of the preliminary condition on the primes
p that uses the Tchebotarev theorem.

Corollary 4.5. There exist integers m0, β > 0 depending on f such
that the following holds. Let S be a finite set of primes p > m0, good
and totally split in k̂g/Q, each given with positive integers dp,1 . . . , dp,sp

(possibly repeated) such that d1
p,1 · · · d1

p,sp
is the type of some element in

ν(G). Then there exists an integer b ∈ Z such that

(*) for each integer t0 ≡ b mod (β
∏

p∈S p) , t0 is not a branch point
of f and the specialization algebra of f at t0 is a single degree n field
extension with residue degrees dp,1 . . . , dp,sp at p for each p ∈ S.

Addendum 4.5 (on the constants) Denote the number of non-trivial con-
jugacy classes of G by cc(G). One can take m0 such that the interval
[r2|G|2,m0] contains at least cc(G) primes, good and totally split in
k̂g/Q, and β to be the product of cc(G) such primes.

Proof. We use corollary 4.4 simultaneaously for several primes: a
first set of primes associated to all non-trivial elements of G as explained
above, and the set of primes given in the statement with the associated
types. We apply the G-version of corollary 4.4 to the former data and
the mere version to the latter. This provides an arithmetic progression
(am + b)m∈Z ⊂ Z with ratio a = β

∏
p∈S p where β > 0 is the product

of the primes in the first set. The primes dividing β guarantee that the
specialization algebra at am+b of the k-cover f is a single field extension
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E/k of degree n. And each of the primes p ∈ S gives that the Qp-étale
algebra E ⊗k Qp has degree divisor d1

p,1 · · · d1
p,sp

. Q.E.D.

4.4. Ample fields

Recall that a field k is said to be ample if every smooth k-curve
with a k-rational point has infinitely many k-rational points. Over an
ample field, the twisting lemma 3.4 yields the following statement which
generalizes §3.3.2 (***) from [Dèb99a].

Corollary 4.6. Let k be an ample field and f : X → B be a degree n
k-cover of curves. Let t0 ∈ B(k) not in the branch point set t. There
exist infinitely many t ∈ B(k) \ t such that the specialization algebras∏

l k(X)t,l/k and
∏

l k(X)t0,l/k at t and t0 respectively are equal.

Proof. Take the k-étale algebra
∏s

l=1 El/k from lemma 3.4 to be
the specialization algebra

∏s
l=1 k(X)t0,l/k at t0. With the notation from

§3.1, we have ϕ = φ ◦ st0 and ϕ = Λ. Hence condition (const/comp)
holds with χ = IdG/G, and Γ 6= ∅ (remark 3.3 (a)). From implication
(i) ⇒ (ii) in lemma 3.4, there exists γ ∈ Γ such that conditions (ii-1)
and (ii-2) are satisfied for t0 with χ = χγ . Condition (ii-1) is that there
exists x0 ∈ Z̃χϕ(k) with g̃χϕ(x0) = t0. As k is ample and Z̃χϕ is a
smooth k-curve, there are infinitely many k-rational points x on Z̃χϕ.
The corresponding points t = g̃χϕ(x) ∈ B(k), excluding the branch
points, satisfy conditions (ii-1) and (ii-2) from lemma 3.4. Implication
(ii) ⇒ (i) of this lemma finishes the proof. Q.E.D.

Remark 4.7. The proof and the result generalize to higher dimen-
sional covers f : X → B. It should be assumed however that the covering
space Zsep of the cover Zsep → B ⊗k ksep corresponding to the field ex-
tension ksep(Z)/ksep(B) is smooth (Zsep is the normalization of B in
the field ksep(Z) (defined in §2.2) and so is a priori only normal). The
ampleness of k then provides a Zariski-dense subset of k-rational points
on Z̃χϕ and the conclusion becomes that there exists a Zariski-dense
subset B ⊂ B(k) \D such that the specialization algebra

∏
l k(X)t,l/k

at each t ∈ B equals
∏

l k(X)t0,l/k.
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[Dèb09] Pierre Dèbes. Arithmétique des revêtements de la droite. 2009. at
http://math.univ-lille1.fr/˜pde/ens.html.
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