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Abstract. We address some questions concerning indecomposable poly-
nomials and their spectrum. How does the spectrum behave via reduc-
tion or specialisation, or via a more general ring morphism? Are the
indecomposability properties equivalent over a field and over its alge-
braic closure? How many polynomials are decomposable over a finite
field?

1. Introduction

Fix an integer n > 2 and a n-tuple of indeterminates x = (x1, . . . , xn).

A non-constant polynomial F (x) ∈ k[x] with coefficients in an algebraically

closed field k is said to be indecomposable in k[x] if it is not of the form

u(H(x)) with H(x) ∈ k[x] and u ∈ k[t] with deg(u) > 2. An element λ∗ ∈ k

is called a spectral value of F (x) if F (x) − λ∗ is reducible in k[x]. It is

well-known that

(1) F (x) ∈ k[x] is indecomposable if and only if F (x) − λ is irreducible in

k(λ)[x] (where λ is an indeterminate),

(2) if F (x) ∈ k[x] is indecomposable, then the subset sp(F ) ⊂ k of all spectral

values of F (x) — the spectrum of F (x) — is finite; and in the opposite case,

sp(F ) = k,

(3) more precisely, if F (x) ∈ k[x] is indecomposable and for every λ∗ ∈ k,

n(λ∗) is the number of irreducible factors of F (x) − λ∗ in k[x], then we

have ρ(F ) :=
∑

λ∗∈k(n(λ∗)− 1) 6 deg(F )− 1. In particular card(sp(F )) 6

deg(F )− 1.

Statement (3), which is known as Stein’s inequality, is due to Stein [13]

in characteristic 0 and Lorenzini [10] in arbitrary characteristic (but for 2

variables); see [11] for the general case.

This paper offers some new results in this context.

In §2, given an indecomposable polynomial F (x) with coefficients in an

integral domain A and a ring morphism σ : A → k with k an algebraically

closed field, we investigate the connection between the spectrum of F (x)
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and that of the polynomial F σ(x) obtained by applying σ to the coefficients

of F (x). Theorem 2.1 provides a conclusion à la Bertini-Noether, which,

despite its basic nature, does not seem to be available in the literature:

under minimal assumptions on A, the connection is the expected one gener-

ically. For example if A = Z, “spectrum” and “reduction modulo a prime

p” commute if p is suitably large (depending on F ). We give other typical

applications, notably for a specialization morphism σ. Related results are

given in [3].

For two variables, we can give in §3 an indecomposability criterion for

a reduced polynomial modulo some prime p (theorem 3.1) that is more

precise than theorem 2.1: the condition “for suitably large p” is replaced by

some explicit condition on F (x, y) and p, possibly satisfied for small primes.

This criterion uses some results on good reduction of curves and covers due

to Grothendieck, Fulton et al; we will follow here Zannier’s version [14].

Another criterion based on the Newton polygon of a polynomial is given in

[4].

§4 is devoted to the connection between the indecomposability proper-

ties over a field K and over its algebraic closure K. While it was known

they are equivalent in many circumstances, for example in characteristic

0, it remained to handle the inseparable case to obtain a definitive conclu-

sion. That is the purpose of proposition 4.1, which, conjoined with previous

works, shows that the only polynomials F (x) indecomposable in K[x] but

decomposable in K[x] are p-th powers in K[x], where p > 0 is the charac-

teristic of K (theorem 4.2).

§5 is aimed at counting the number of indecomposable polynomials of a

given degree d with coefficients in the finite field Fq. We show that most

polynomials are indecomposable: the ratio Id/Nd of indecomposables of

degree d tends to 1 (as d → ∞ or as q → ∞), and we give some estimate

for the error term 1 − Id/Nd. The constants involved in our estimates are

explicit. For simplicity we mostly restrict to polynomials in two variables as

calculations become more intricate when n > 2. We also consider the one

variable situation (for which the definition of indecomposability is slightly

different, see §4.3) with the restriction that q and d are relatively prime.

A unified treatment of the general case n > 2 is offered in a parallel work

of von zur Gathen [8], who also considers the “wild case” (n = 1 with

(q, d) 6= 1) in [9].

Acknowledgments. We wish to thank Joachim von zur Gathen for inter-

esting discussions in Lille and in Bonn.
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2. Spectrum and morphisms

Notation: If σ : A → B is a ring morphism, we denote the image of

elements a ∈ A by aσ. For P (x) ∈ A[x], we denote the polynomial obtained

by applying σ to the coefficients of P by P σ(x). If V ⊂ An
A is the Zariski

closed subset associated with a family of polynomials Pi(x) ∈ A[x], we

denote by V σ the Zariski closed subset of An
B associated with the family of

polynomials P σ
i (x) ∈ B[x].

If S ⊂ A is a multiplicative subset such that all elements from Sσ are

invertible in B, we still denote by σ the natural extension S−1A → B of the

original morphism σ.

Fix an integrally closed ring A, with a perfect fraction field K.

An effective divisor D =
∑r

i=1 niai of K is said to be K-rational if the

coefficients of the polynomial P (T ) =
∏r

i=1(T−ai)
ni are in K1. A morphism

σ : A → k in an algebraically closed field k is then said to be defined at

D if the coefficients of P (T ) have a common denominator d ∈ A such that

dσ is non-zero in k 2. In this case we denote by P σ(T ) ∈ k[T ] the image

polynomial of P (T ) by the morphism σ (extended to the fraction field of A

with denominators a power of d) and by Dσ the effective divisor of k whose

support is the set of roots of P σ(T ) and coefficients are the corresponding

multiplicities.

2.1. Statement. For more precision, we use the spectral divisor rather than

the spectrum: it is the divisor spdiv(F ) =
∑

λ∗∈k(n(λ∗)− 1) λ∗ of the affine

line A1(k). Its support is the spectrum of F and Stein’s inequality rewrites:

deg(spdiv(F )) 6 deg(F )− 1.

Theorem 2.1. Let F (x) ∈ A[x] be indecomposable in K[x]. Then there

exists a non-zero element hF ∈ A such that the following holds. For every

morphism σ : A → k in an algebraically closed field k, if hσ
F 6= 0, then

F σ(x) is indecomposable in k[x], the morphism σ : A → k is defined at

the divisor spdiv(F ) and we have spdiv(F σ) = (spdiv(F ))σ; in particular

ρ(F σ) = ρ(F ) and sp(F σ) = (sp(F ))σ.

The first stage of the proof will produce the spectrum as a Zariski closed

subset of the affine line A1
A over the ring A. Specifically the following can

1which, under our hypothesis “K perfect”, amounts to the invariance of P (T ), or of
D, under Gal(K/K).

2which, under our hypothesis “A integrally closed”, amounts to saying the elements ai

themselves have a common denominator d ∈ A (that is, dai integral over A, i = 1, . . . , r)
such that dσ 6= 0.
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be drawn from the proof: there is a proper3 Zariski closed subset VF ⊂ A1
A

such that for every morphism σ : A → k as above,

(*) the polynomial F σ(x), if it is of degree d, is indecomposable in k[x] if

and only if the Zariski closed subset V σ
F ⊂ A1

k is proper, and in this case,

we have sp(F σ) = V σ
F (k).

When applied to the inclusion morphism A → K, theorem 2.1 yields that

the spectrum of F (x) is equal to the Zariski closed subset VF (K). In par-

ticular, it is K-rational. The same is true for the spectral divisor of F (x)

as n(λτ ) = n(λ) for each λ ∈ K and each τ ∈ Gal(K/K).

Making the constant hF from theorem 2.1 explicit is an interesting next

goal. This requires to have good bounds for the “Noether forms” associated

with the polynomial F (x) − λ ∈ K(λ)[x] in §2.3.1. Some work of Busé,

Chèze and Najib in this direction is in progress [3].

2.2. Typical applications.

2.2.1. Situation 1. For A = Z, then hF ∈ Z, hF 6= 0. Theorem 2.1, applied

with σ : Z → Fp the reduction morphism modulo a prime number p yields:

for all suitably large p, the reduced polynomial F (x) modulo p is indecom-

posable in Fp[x] and its spectral divisor is obtained by reducing that of F (x),

that is: spdiv(F ) = spdiv(F ).

2.2.2. Situation 2. Take A = k[t] with k an algebraically closed field and

t = (t1, . . . , tr) some indeterminates. Denote in this situation by F (t, x) the

polynomial F (x) of the general statement. Theorem 2.1, applied with σ the

specialisation morphism k[t] → k that maps t = (t1, . . . , tr) on an r-tuple

t∗ = (t∗1, . . . , t
∗
r) ∈ kr yields:

for all t∗ off a proper Zariski closed subset of kr, the specialized polynomial

F (t∗, x) is indecomposable in k[x] and its spectral divisor is obtained by

specializing that of F (t, x).

2.2.3. Situation 3. F (x) is the generic polynomial in n variables and of

degree d. Take for A the ring Z[ai] generated by the indeterminates ai

corresponding to the coefficients of F (x); the multi-index i = (i1, . . . , in)

ranges over the set In,d of all n-tuples of integers > 0 such that i1+· · ·+in 6

d.

Classically the polynomial F (x) is irreducible in Q(ai)[x], hence it is

indecomposable. Theorem 2.1, applied with σ : A → k a specialization

morphism of the ai, yields that all polynomials f(x) ∈ k[x] of degree d are

3that is, distinct from the whole surrounding space (here the affine line A1
A over the

ring A); equivalently, there exists a non-zero polynomial in the associated ideal.
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indecomposable but possibly those from the proper Zariski closed subset

corresponding to the equation hF = 0 (with hF viewed in k[ai]).

For polynomials f(x) outside the closed subset hF = 0, the spectrum of

f is obtained by specializing the generic spectrum. However we have:

Proposition 2.2. For d > 2 or n > 2, the generic spectrum is empty. For

d = 2, it contains a single element, given by

a00 −
a02a

2
10 + a20a

2
01 − a01a10a11

4a02a20 − a2
11

For d > 2 or n > 2, polynomials with a non-empty spectrum lie in the

Zariski closed subset hF = 0.

Proof. Assume that the generic spectrum is not empty. If k is an alge-

braically closed field and Rn,d (resp. Pn,d|a0=0) denotes the set of polyno-

mials P (x) ∈ k[x] of degree 6 d that are reducible in k[x] (resp. whose

constant term is zero), the correspondence P (x) → P (x)−P (0) induces an

algebraic morphism Rn,d → Pn,d|a0=0 which is generically surjective (that

is, surjective above a non-empty Zariski open subset of Pn,d|a0=0). It follows

that Rn,d is of codimension 6 1 in the space Pn,d of all polynomials in k[x]

of degree 6 d. This observation provides the desired conclusion in the case

n = 2 and d > 2: indeed we have codimP2,d
(R2,d) = d− 1 [7, theorem 2].

For d = 2, the equation “(ux + ay + b)(vx + cy + d) = F (x) modulo the

constant term” with unknowns u, a, b, v, c, d is readily solved: reduce to the

case a20 = u = v = 1, find the unique solution for the 4-tuple (a, b, c, d) and

compute bd; the generic spectral value is then a00 − bd.

Finally assume that for d > 2 and n > 2, there exists a generic spectral

value λ ∈ K (with K = Q(ai)). Let F (x) − λ = Q(x)R(x) be a non

trivial factorization in K[x]. Specializing x3, . . . , xn to 0 gives a non trivial

factorization in K[x1, x2] of the generic polynomial of degree d in 2 variables.

From the first part of the proof, we have d = 2. Furthermore, the above

case provides the necessary value of λ. Now specializing x2 and x4, . . . , xn

to 0 leads to a different value. Whence a contradiction. �

2.3. Proof of theorem 2.1.

2.3.1. 1st stage: elimination theory. This stage is aimed at showing proposi-

tion 2.3 below, which generalizes the Bertini-Noether theorem [6, prop.9.4.3].

It is proved in the general situation

(Hyp) a polynomial F(λ, x) ∈ A[λ, x] is irreducible in K(λ)[x], where λ =

(λ1, . . . , λs) is an s-tuple of indeterminates (s > 0).
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We will use it in the special case F(λ, x) = F (x) − λ. The hypotheses “A

integrally closed” and “K perfect” are not necessary for this stage.

As in situation 3, consider some indeterminates (ai)i∈In,d
corresponding to

the coefficients of a polynomial of degree d in n variables. A polynomial with

coefficients in a ring R corresponds to a morphism φ : Z[ai] → R; denote

by F (aφ
i )(x) ∈ A[x] the corresponding polynomial. Let ϕλ : Z[ai] → A[λ]

be the morphism corresponding to the polynomial from statement (Hyp):

F(λ, x) = F (a
ϕλ

i )(x).

From Noether’s theorem [12, §3.1 theorem 32], there exist finitely many

universal homogeneous forms Nh(ai) (1 6 h 6 D = D(n, d)) in the ai and

with coefficients in Z such that:

(4) for every morphism φ : Z[ai] → k in an algebraically closed field k, the

polynomial F (aφ
i )(x), if it is of degree d, is reducible in k[x] if and only if

Nh(a
φ
i ) = 0 for h = 1, . . . , D.

For φ taken to be the morphism ϕλ : Z[ai] → A[λ] ⊂ K(λ), the elements

Nh(a
ϕλ

i ) ∈ A[λ] are polynomials Nh(λ). Let VF ⊂ As
A be the Zariski closed

subset corresponding to the ideal they generate; it is a proper closed subset.

Indeed, as F(λ, x) is irreducible in K(λ)[x], from (4), at least one of the

polynomials Nh(λ), say Nh0(λ), is non-zero. Denote by aF ∈ A the prod-

uct of a non-zero coefficient of Nh0(λ) and the non-zero coefficient of some

monomial of F(λ, x) of degree d in x.

If R is an integral domain and Σ : A[λ] → R a morphism, then (4), with

φ taken to be Σ ◦ ϕλ : Z[ai] → R ↪→ κ and κ = Frac(R), yields that the

polynomial FΣ ∈ R[x], if of degree d, is irreducible in κ[x] if and only if at

least one of the elements NΣ
h ∈ R is non-zero (note that FΣ = F (a

Σϕλ

i )(x)

and Nh(a
Σϕλ

i ) = Nh(a
ϕλ

i )Σ), or, equivalently, if the corresponding Zariski

closed subset of Spec(R) is proper.

Let σ : A → k be a morphism with k algebraically closed. Apply the

above first to the morphism σ ◦ ϕλ : Z[ai] → k[λ] and then, for λ∗ ∈ ks, to

the morphism sλ∗ ◦ σ ◦ ϕλ : Z[ai] → k obtained by composing σ ◦ ϕλ with

the specialization morphism sλ∗ : k[λ] → k to λ∗. Conclude:

Proposition 2.3 (Bertini-Noether generalized).

(a) The polynomial Fσ(λ, x), if it is of degree d in x, is irreducible in

k(λ)[x] if and only if the Zariski closed subset V σ
F ⊂ As

k is proper. All these

conditions are satisfied if aσ
F in non-zero in k.

(b) If the polynomial Fσ(λ∗, x) is of degree d, then it is reducible in k[x]

if and only if λ∗ is in the set V σ
F (k).

2.3.2. 2nd stage: implications for the spectrum of F (x). We return to the

situation where F(λ, x) = F (x) − λ. Denote the Zariski closed subset
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VF from §2.3.1 by VF ; it is a Zariski closed subset of the affine line A1
A.

The preceding conclusions, conjoined with the connection, recalled in §1,

between indecomposability of F (x) and irreducibility of F (x) − λ, yield

statement (*) from §2.1.

Denote by sF (λ) the g.c.d. of the polynomials Nh(λ) in the ring K[λ].

Write it as sF (λ) = SF (λ)/c1 with SF (λ) ∈ A[λ] and c1 ∈ A non-zero. The

polynomial SF (λ) is non-zero and its distinct roots in K, say λ1, . . . , λs,

which are the common roots in K of the polynomials Nh(λ), are the spectral

values of F (x) (note that F (x) − λ∗ is of degree d for all λ∗ ∈ K). Thus

we have SF (λ) = c2

∏s
i=1(λ − λi)

ni ∈ A[λ] for some exponents ni > 0 and

c2 ∈ A, c2 6= 0. It follows that the set sp(F ) = {λ1, . . . , λs} is K-rational.

As already noted, the same is then true for the spectral divisor spdiv(F ).

2.3.3. 3rd stage: invariance of the spectrum of F via morphisms. Fix a

morphism σ : A → k with k algebraically closed. Denote by aF the element

aF from §2.3.1 for F = F (x) − λ. If aσ
F 6= 0, F σ(x) is of degree d and

indecomposable in k[x]. Furthermore, its spectral values are the roots in k

of the g.c.d. of the polynomials Nσ
h (λ).

Note that the element c2 above is a common denominator of λ1, . . . , λs;

if cσ
2 6= 0, the morphism σ : A → k is defined at spdiv(F ).

Lemma 2.4. There exists c3 ∈ A, c3 6= 0 such that, if aσ
F cσ

1c
σ
2c

σ
3 6= 0, the

polynomial Sσ
F (λ) ∈ k[λ] equals (up to some non-zero multiplicative constant

in k) the g.c.d. in k[λ] of polynomials Nσ
h (λ) (1 6 h 6 D). In particular

sp(F σ) = (sp(F ))σ.

Proof. The problem is whether the g.c.d. commutes with σ. The Euclidean

algorithm provides the g.c.d. as the last non-zero remainder. To reach

our goal, it suffices to guarantee that for each division a = bq + r in K[λ]

involved in the algorithm, the identity aσ = bσqσ + rσ, with σ suitably

extended, be the division of aσ by bσ in k[λ]. For this, write a, b, q as r

in the form n(λ)/m with n(λ) ∈ A[λ] and m ∈ A, consider the product β

of denominators m of a, b, q and r with the coefficients of highest degree

monomials in the numerators n(λ) of b and r and request that βσ 6= 0.

Multiplying all elements β for all divisions leading to the g.c.d. of two, then

of all polynomials in question, leads to a non-zero element c3 ∈ A which

satisfies the desired statement. �

Remark 2.5. Morphisms and g.c.d. do not commute in general: for example

gcd(λ, λ + a) is 1 generically, but equals λ if a = 0.

2.3.4. 4th stage: invariance of spdiv(F ) via morphisms. It remains to ex-

tend the conclusion “sp(F σ) = (sp(F ))σ” to the spectral divisor spdiv(F ).
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We will show how to guarantee that, via the morphism σ, the spectral val-

ues remain distinct and the associated decompositions of F (x)−λ have the

same numbers of distinct irreducible factors4.

Consider the discriminant of the polynomial
∏s

i=1(λ − λi); it is a non-

zero element of K. Write it as c4/c5 with c4, c5 ∈ A, non-zero. If cσ
4c

σ
5 6= 0,

the polynomials SF (λ) and Sσ
F (λ) have the same number of distinct roots,

whence card(sp(F σ)) = card((sp(F ))σ) = card(sp(F )).

For i = 1, . . . , s, let F (x) − λi =
∏n(λi)

j=1 Qij(x)kij be a factorization (into

distinct irreducible polynomials) in K[x]. Let E/K be a finite Galois ex-

tension that contains the finite set C of all coefficients involved in all above

factorizations, c6 be a non-zero element of A such that c6c is integral over

A for all c ∈ C and c7 be the discriminant of a basis of E over K the el-

ements of which are integral over A. Denote by B the fraction ring of A

with denominator a power of c6c7 and by B′
E the integral closure of B in

E. The ring B′
E is a free B-module of rank [E : K]. Assume that cσ

6c
σ
7 6= 0.

The morphism σ : A → k extends to a morphism B → k, and, as k is

algebraically closed, this morphism σ : B → k can in turn be extended to a

morphism σ̃ : B′
E → k.

The polynomials Qij(x) are in the ring B′
E[x] and are absolutely ir-

reducible. The (classical) Bertini-Noether theorem provides a non-zero

element β ∈ B′
E such that, if βeσ 6= 0, then each of the polynomials

Qeσ
ij(x) is absolutely irreducible. Therefore the decomposition F σ(x)−λeσ

i =∏n(λi)
j=1 Qeσ

ij(x) obtained from the preceding one by applying σ̃, is the factor-

ization of F σ(x)− λeσ
i into irreducible polynomials in k[x].

It remains to assure that for i fixed, the polynomials Qeσ
ij(x) are different,

even up to non-zero multiplicative constants. For any two (distinct) polyno-

mials Qij(x), Qij′(x), the matrix with rows the tuples of coefficients of the

two polynomials has a 2×2-block with a non-zero determinant. Denote the

product of all such determinants for all possible couples (Qij(x), Qij′(x)) by

δ; it is a non-zero element of B′
E. Denote then by ν the norm of βδ relative

to the extension E/K. As A is integrally closed, so is B and ν ∈ B. Write

it as ν = c8/(c6c7)
γ with c8 ∈ A and γ ∈ N. Condition cσ

6c
σ
7c

σ
8 6= 0 implies

βeσ
F δeσ

F 6= 0. Theorem 2.1 is finally established for hF = aF

∏8
i=1 ci.

Remark 2.6. The same proof, with the polynomial F(λ, x) from §2.3.1 of

the form F (x) − λG(x) with F (x), G(x) ∈ A[x] and deg G 6 deg F , leads

to the more general form of theorem 2.1 for which indecomposable poly-

nomials are replaced by indecomposable rational functions (in this case,

4The argument will also show the degrees of these irreducible factors, say Qλ,j , remain
the same and thus so does the quantity minλ∈sp(F )(

∑
j deg(Qλ,j) − 1 which replaces

deg(F )− 1 in Lorenzini’s refined version [10] of Stein’s inequality.
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“indecomposable” means not of the form u(H(x)) with H(x) and u(t) ra-

tional functions and deg(u) > 2 5). A spectral value of a rational function

F (x)/G(x) is an element λ such that the polynomial F (x) − λG(x) is re-

ducible. Statements (1), (2) and (3) from §1 remain true, except that the

bound in Stein’s inequality should be replaced by (deg(F ))2−1 [2] [10]. More

generally one can take F(λ, x) of the form F (x)− λ1G1(x)− · · · − λsGs(x)

with F (x), G1(x), . . . , Gs(x) ∈ A[x] and handle other situations studied in

the literature.

3. An indecomposability criterion modulo p

In this section n = 2, A is a Dedekind domain and its fraction field K

is assumed to be of characteristic 0. Fix also a non-zero prime ideal p of

A and assume its residue field k = A/p is of characteristic p > 0. Denote

by x̃ the image of an element x by the reduction morphism A → k. The

situation “A = Z and p = pZ” is typical.

Let F (x, y) ∈ A[x, y] be an indecomposable polynomial in K[x, y] of

degree d > 1, monic in y.

Here is our strategy to guarantee indecomposablity of F (x, y) modulo

p. Pick λ∗ ∈ A \ sp(F ) (using Stein’s theorem, this can be done with

λ∗ not too big). Thus F (x, y) − λ∗ is irreducible in K[x, y]. It follows

from the classical Bertini-Noether theorem that if “p is big enough”, then

the reduced polynomial F (x, y) − λ∗ modulo p is absolutely irreducible.

Therefore F (x, y) is indecomposable modulo p (as there is at least one non

spectral value). However the constants involved in the condition “p big

enough” are too big for a practical algorithmic use. We will follow an

alternate approach, based on good reduction criteria for covers, and more

precisely Zannier’s criterion [14].

Consider the discriminant with respect to y of F (x, y)− λ:

∆F (x, λ) = discy(F (x, y)− λ)

Denote then the product of all distinct irreducible factors of ∆F (x, λ) in

K(λ)[x] by ∆red
F (x, λ); more precisely, ∆red

F (x, λ) is defined by the following

formula, which is also algorithmically more practical:

∆red
F (x, λ) = c(λ)

∆F (x, λ)

gcd(∆F (x, λ), (∆F )′x(x, λ))

where the g.c.d. is calculated in the ring K(λ)[x] (using the Euclidean algo-

rithm for example) and c(λ) ∈ K(λ) is the rational function, defined up to

5the degree of a rational function is the maximum of the degrees of its numerator and
denominator.
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some invertible element in A, that makes ∆red
F (x, λ) a primitive polynomial

in A[λ][x]. Consider next the polynomial:

∆F (λ) = discx(∆
red
F (x, λ)).

We have ∆F (λ) ∈ A[λ] and ∆F (λ) 6= 0. Finally let ∆0(λ) ∈ A[λ] be the

coefficient of the highest monomial in ∆F (x, λ) (viewed in A[λ][x]).

Theorem 3.1. Assume, in addition to F (x, y) being indecomposable in

K[x, y], that the reduced polynomial ∆̃0(λ)∆̃F (λ) is non-zero in k[λ] and

that p > degy(F ). Then F̃ (x, y) is indecomposable in k[x, y].

The assumption p > degy(F ) can be replaced by the weaker condition

that p does not divide the order of the Galois group of F (x, y)− λ, viewed

as a polynomial in K(λ)(x) (see footnote 8).

The assumptions of theorem 3.1 may not be sufficient to guarantee the

extra conclusions sp(F̃ ) = s̃p(F ) and spdiv(F̃ ) = ˜spdiv(F ) from theorem

2.1 (which may not even be well-defined). It is still true however that if

VF ⊂ A1
A is the Zariski closed subset from §2.1, then the reduced Zariski

closed subset ṼF ⊂ A1
k

is proper and its points are the spectral values of F̃ :

sp(F̃ ) = ṼF (k).

Remark 3.2 (an indecomposability test). Theorem 3.1 provides the following

procedure to decide whether a non-constant polynomial F (x, y) ∈ Q[x, y] is

indecomposable.

One may assume that F (x, y) ∈ Z[x, y] and degy(F ) > 0. Up to chang-

ing y to ay for some a ∈ Z, one may also reduce to the case F (x, y) is

monic with respect to the reverse lexicographic order (for which y > x).

Observe that the polynomial ∆F (x, λ) = discy(F (x, y) − λ) is non-zero in

general (whether F is indecomposable or not): indeed none of the roots y

of (∂F/∂y)(x, y), which are in Q(x), can also be a root of F (x, y)−λ. Con-

sequently the polynomial ∆0(λ)∆F (λ) is non-zero in general. Pick a prime

p satisfying the assumptions of theorem 3.1: p > degy(F ) and ∆̃0(λ)∆̃F (λ)

is non-zero in Fp[λ]. Test for decomposability of F̃ (x, y) (from §4, it is suffi-

cient to only consider decompositions over Fp (instead of Fp)). If F̃ (x, y) is

decomposable, then F (x, y) is decomposable by theorem 3.1. As we explain

below the converse also holds: if F̃ (x, y) is indecomposable, then F (x, y) is

indecomposable.

Namely if F (x, y) is decomposable then F (x, y) has a non-trivial decom-

position F (x, y) = u(H(x, y)) with u and H with coefficients in Q and even

in Q (see §4). Furthermore F (x, y) ∈ Z[x, y] being monic forces these coef-

ficients to be in Z. For one variable, this is explained in [5], and in general

one can reduce to this case thanks to a Kronecker substitution. Specifically



INDECOMPOSABLE POLYNOMIALS AND THEIR SPECTRUM 11

one may assume that H(x, y) is monic (w.r.t. the same order), and then

so is u, and that H(0, 0) = 0. Write F (x, xm) = u(H(x, xm)) with m large

enough to have F (x, xm) and H(x, xm) monic. From [5, theorem 2], u(t) and

H(x, xm) must have integral coefficients, and consequently so does H(x, y)

(for m � 1). Finally reduction modulo p of F (x, y) = u(H(x, y)) provides

a non-trivial decomposition of F̃ (x, y).

Proof of theorem 3.1. The prime ideal p ⊂ A determines a discrete valua-

tion v of K whose valuation ring is the localized ring Ap; the fraction field of

Ap and its residue field remain equal to K and k respectively. Hypotheses

and conclusions from theorem 3.1 are unchanged if A is replaced by Ap.

The valued field (K, v) can then also be replaced by any finite extension of

the completion Kv and A by the new valuation ring; the discrete valuation

v uniquely extends, the residue field is replaced by some (finite) extension

of k, the indecomposability properties of F (x, y) over K or over Kv are

equivalent.

Thus we may and will assume that (K, v) is a complete discretely valued

field, that A is its valuation ring (which is integrally closed) and that the

field K and the residue field k contain as many (finitely many) algebraic

elements over the original fields as necessary.

The polynomial ∆F (x, λ) is in A[x, λ] and its factorization into irreducible

polynomials in K(λ)[x] can be written

∆F (x, λ) = δ0(λ)
s∏

i=1

∆i(x, λ)αi

where the polynomials ∆i(x, λ) are in A[x, λ], irreducible in K(λ)[x], pair-

wise distinct (even up to some constant in K) and are primitive in A[λ][x],

where δ0(λ) ∈ A[λ] and where the αi are positive integers. Then, up to

some invertible element in A, we have

∆red
F (x, λ) =

s∏
i=1

∆i(x, λ)

Also note that the polynomial ∆0(λ) is a multiple in A[λ] of the product of

δ0(λ) with the highest monomial coefficients δ1(λ), . . . , δs(λ) of the polyno-

mials ∆1(x, λ), . . . , ∆s(x, λ) (viewed in A(λ)[x]).

Pick next λ̃∗ ∈ k such that ∆̃0(λ̃
∗)∆̃F (λ̃∗) 6= 0 in k, then lift it to some

element λ∗ ∈ A such that λ∗ /∈ sp(F ). This is possible in view of the

preliminary remark.
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The set of roots of ∆F (x, λ∗) contains the set of finite6 branch points

of the cover of P1
x

7 determined by the (absolutely irreducible) polynomial

F (x, y) − λ∗. The preliminary remark makes it possible to assume that

these roots are in K. Furthermore as δ̃i(λ̃
∗) 6= 0, we have δi(λ

∗) ∈ A \ p,

i = 1, . . . , s; therefore these roots are integral over A and so are in A.

As ∆F (λ∗) 6= 0, the roots of ∆red
F (x, λ∗) in K are distinct and as δ0(λ

∗) 6=
0, they are the roots of ∆F (x, λ∗). As ∆̃0(λ̃

∗) 6= 0, ∆̃F (x, λ̃∗) is not the zero

polynomial. As ∆̃F (λ̃∗) 6= 0, the roots of ∆̃red
F (x, λ̃∗), which are those of the

polynomial ∆̃F (x, λ̃∗), are distinct. Thus we obtain that the distinct roots

of the polynomial ∆F (x, λ∗), and a fortiori the branch points of the cover

considered above, have distinct reductions modulo the ideal p.

It follows from standard results on good reduction of covers, and more

precisely here, from the main theorem of [14] that, under the assumption

p > degy(F ) 8, F̃ (x, y) − λ̃∗ is absolutely irreducible. Hence F̃ (x, y) is

indecomposable in k[x, y]. �

4. Indecomposability over K versus K

4.1. Statements (for n > 2 variables). The indecomposability property which

we recalled the definition of in §1 over an algebraically closed field can in

fact be defined over an arbitrary field: just require that the polynomials

u(t) and H(x) involved have their coefficients in the field in question. The

results below identify the only cases where the property is not the same over

some field K and over some extension E. The following result handles the

case that E/K is purely inseparable, which was missing in the literature.

Proposition 4.1. Let E/K be a purely inseparable algebraic field extension

of characteristic p > 0 and F (x) ∈ K[x]. Assume F (x) is not of the form

b G(x)p + c with G(x) ∈ E[x] and b, c ∈ K. Then F (x) is indecomposable

in K[x] if and only if it is indecomposable in E[x].

If E = K, the assumption on F (x) rewrites to merely say that F (x) is not

a p-th power in K[x], which in turn is equivalent to at least one exponent in

F (x) not being a multiple of p. Clearly this assumption cannot be removed:

for example, if α ∈ K \K but αp = a ∈ K then xp + ayp is indecomposable

in K[x] but decomposable in K[x].

6i.e., distinct from the point at infinity.
7The subscript “x” indicates that the cover is induced by the correspondence (x, y) →

x. In fact the problem is symmetric in the variables x and y which can be switched in
our statement.

8It suffices to assume that p does not divide the order of the Galois group of F (x, y)−
λ∗, which divides the order of the Galois group of F (x, y) − λ, which itself divides
(degy(F ))! .
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In [1, proposition 1], Arzhantsev and Petravchuk show the equivalence

from proposition 4.1 without any assumption on F (x), but in the case of

a separable extension E/K (possibly of positive transcendence degree). As

any extension is a purely inseparable algebraic extension of some separable

extension, conjoining their result with ours yields that, under the assump-

tion on F (x) from proposition 4.1, the equivalence holds for an arbitrary

extension E/K. We can be more precise.

Theorem 4.2. Let E/K be a field extension and F (x) ∈ K[x] be a non-

constant polynomial. Then the following are equivalent:

(i) F (x) is indecomposable in K[x] but decomposable in E[x].

(ii) (a) K is of characteristic p > 0 and E/K is inseparable,

(b) F (x) = b G(x)p + c for some G(x) ∈ E[x] and b, c ∈ K, and

(c) G(x)p is indecomposable in K[x].

Condition (ii) (c) implies that G(x) is not of the form u(H(x)) with

u ∈ E[t], H(x) ∈ E[x], deg(u) > 2 and both u(t)p ∈ K[t] and H(x)p ∈ K[x].

But there are other possible polynomials that should be excluded whose

description is more intricate.

4.2. Proofs.

Proof of proposition 4.1. The converse part is obvious. For the direct part,

assume F (x) is decomposable in E[x]. Then it is decomposable over some

finite extension of K contained in E, which admits a finite system of gener-

ators α1, . . . , αs with irreducible polynomial over K of the form xpn−a with

a ∈ K. The multiplicativity of the degree and of the separable degree imply

that the extensions K(α1, . . . , αj+1)/K(α1, . . . , αj) are purely inseparable,

j = 1, . . . , s − 1. By induction one reduces to the case s = 1, and then a

new induction reduces to the case E = K(α) with αp = a ∈ K \Kp.

Assume F (x) = h(G(x)) with h(t) ∈ K(α)[t] such that deg(h) > 2 and

G(x) ∈ K(α)[x]. We deduce

F (x)p = ph(G(x)p)

where, if h(t) =
∑deg(h)

i=0 hit
i, we set ph(t) =

∑deg(h)
i=0 hp

i t
i. As ph(t) ∈ K[t]

and G(x)p ∈ K[x] (since yp ∈ K for all y ∈ K(α)), this shows that the

field K(F (x), G(x)p) is of transcendence degree 1 over K. From Gordan’s

theorem [12, §1.2, th.3], there exists θ(x) ∈ K(x) such that

K(F (x), G(x)p) = K(θ(x))
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Furthermore from [12, §1.2, th.4], one may assume that θ(x) ∈ K[x]. Thus

we have {
F (x) = u(θ(x)) with u(t) ∈ K(t)
G(x)p = v(θ(x)) with v(t) ∈ K(t)

As F (x) and G(x)p are polynomials, u(t), v(t) are necessarily in K[t]. It

follows from the indecomposability of F (x) over K that deg(u) = 1, which

gives G(x)p = w(F (x)) for some polynomial w ∈ K[t]. But then we obtain

G(x)p = w ◦ h(G(x)), which, since G(x) is non constant, amounts to T p =

w ◦ h(T ) where T is an indeterminate. As deg(h) > 2 and p is a prime, we

have deg(w) = 1 and deg(h) = p, which gives F (x) = b G(x)p + c for some

b, c ∈ K.

Note that because of the inductive process, conclusion “b, c ∈ K” should

really be that b, c are in the first subfield of the initial reduction. But F (x)

being in K[x] then implies that bγp ∈ K for some non-zero γ ∈ E and

b G(0)p + c ∈ K. Up to changing G(x) to γ−1G(x) − γ−1G(0), one can

indeed conclude that b, c ∈ K in the general situation. �

Proof of theorem 4.2. (i) ⇒ (ii): If Ks/K is the maximal separable exten-

sion contained in E, then, from the Arzhantsev-Petravchuk result, F (x) is

indecomposable in Ks[x]. In particular E 6= Ks, which gives (ii) (a). Propo-

sition 4.1 then provides condition (ii) (b) except that b and c are a priori in

Ks, but using again the final note of the proof of Proposition 4.1, one can

indeed choose b, c ∈ K. Condition (ii) (c) then readily follows from (ii) (b)

and the indecomposability of F (x) in K[x]. The other implication (ii) ⇒
(i) is clear. �

4.3. One variable. In proposition 4.1, F (x) is a polynomial in two vari-

ables or more. In one variable, the indecomposability definition should be

modified (for otherwise it is trivial): a polynomial F (x) ∈ k[x] is said to be

indecomposable in k[x] if it is not of the form u(H(x)) with H(x) ∈ k[x]

and u ∈ k[t] with deg(u) > 2 and deg(H) > 2.

Proposition 4.3. Proposition 4.1 holds for one variable polynomials.

Proof. The same proof can be used as for proposition 4.1. It leads to{
F (x) = u(θ(x)) with u(t) ∈ K[t]
G(x)p = v(θ(x)) with v(t) ∈ K[t]

But from the indecomposability of F (x) over K, we now deduce that deg(u) =

1 or deg(θ) = 1.

The case deg(u) = 1 is handled as before. In the other case, we de-

duce from deg(θ) = 1 that K(F (x), G(x)p) = K(x), which implies that

K(α)(h(G(x)), G(x)p) = K(α)(x) and so that



INDECOMPOSABLE POLYNOMIALS AND THEIR SPECTRUM 15

K(α)(x) ⊂ K(α)(G(x))

which forces deg(G) = 1 and contradicts the decomposability assumption

in one variable made at the beginning of the proof. �

5. Counting indecomposable polynomials over finite fields

For each integer d > 1, denote the number of polynomials in Fq[x] (x =

(x1, . . . , xn)) of degree d by Nd. We have
Nd =

(
q(

n+d−1
n−1 ) − 1

)
· q(

n+d−1
n ) (for general n)

Nd = q
1
2
(d+1)(d+2)(1− q−d−1) (for n = 2)

Nd = (q − 1)qd (for n = 1)

Denote the number of those polynomials which are indecomposable (resp. de-

composable) by Id (resp. Dd). We have Nd = Id + Dd.

We will study separately the case of n > 2 variables (§5.1 - §5.4) and the

case n = 1 (§5.5).

5.1. Main result. From §5.1 to §5.4, we assume n > 2.

Theorem 5.1. (a) Id/Nd tends to 1 in the two situations where d → ∞
with q fixed, and where q →∞ with d fixed.

(b) If d is a product of at most 2 prime numbers p 6 p′, then

• d = p and Dd = qd(qn − 1), or

• d = p2 and Dd = qp−1Np + (qd − q2p−1)(qn − 1), or

• d = pp′ with p < p′ and

Dd = qp−1Np′ + qp′−1Np + (qd − 2qp+p′−1)(qn − 1).

(c) Assume n = 2. If d is the product of at least 3 prime numbers, then

∣∣∣∣Dd

Nd

− αd

∣∣∣∣ 6 αd βd where


αd =

q`−1+ 1
2
( d

`
+1)( d

`
+2)

q
1
2
(d+1)(d+2)

βd =
d

q
d
`

and ` > 1 is the first (hence prime) divisor of d.

A version of statement (c) in the general case of n variables is given in

[8]. For n = 2, his first order estimate for Dd/Nd is the same as ours, that

is αd; his error term is improved by a factor O(q).
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5.2. An induction formula. Let K be an arbitrary field. Let F = u◦H be

a decomposition of F ∈ K[x] with u ∈ K[t], deg u > 2, and H ∈ K[x]. We

say that F = u ◦H is a normalized decomposition if H is indecomposable,

monic (i.e. the coefficient of the leading term of a chosen order is 1) and its

constant term equals zero. Given a decomposition F = u ◦H, there exists

an associated normalized decomposition F = u′ ◦H ′. The following lemma

shows it is unique.

Lemma 5.2. Let F = u ◦H = u′ ◦H ′ be two normalized decompositions of

F ∈ K[x]. Then u = u′ and H = H ′.

Proof. It follows from u(H) − u′(H ′) = 0 that H and H ′ are algebraically

dependent over K. By Gordan’s theorem [12, §1.2, theorems 3 and 4]

(already used in §4.2), there exists a polynomial θ(x) ∈ K[x] such that

K[θ] = K[H, H ′]. That is, there exist v, v′ ∈ K[t] such that H = v(θ) and

H ′ = v′(θ). As the two decompositions of F are normalized, H and H ′ are

indecomposable, so deg v = deg v′ = 1, and so using the other normalization

conditions, we obtain H = H ′. Finally it follows from u(H) = u′(H) that

u = u′. �

Corollary 5.3 (induction formula). With notation as in §5.1, we have

Id = Nd −
∑

d′|d , d′<d

q
d
d′−1 × Id′

Proof. Let d′ > 1 be a divisor or d. There are (q − 1)qd/d′ polynomials u ∈
Fq[t] of degree d/d′ and Id′/q(q−1) normalized indecomposable polynomials

H ∈ Fq[x] of degree d′. The formula follows as from lemma 5.2, every

polynomial F counted by Dd can be uniquely written F = u◦H with u and

H as above for some integer d′ such that d′|d , d′ < d. �

Conjoined with I1 = N1 = q(qn − 1) this formula provides an algorithm

to compute Id and Dd, which is convenient for small d.

5.3. Proof of theorem 5.1 (a) and (b). The formulas in (b) straight-

forwardly follow from corollary 5.3. If d = p is a prime number, we have

Dp = qp−1I1 = qp−1N1 = qp(qn − 1). If d = p2 then

Dd = qp−1Ip + qp2−1I1

= qp−1(Np − qp(qn − 1)) + qp2

(qn − 1).

Computations are similar for d = pp′. To prove (a) we write

Nd − Id = Dd =
∑

d′|d , d′<d

qd/d′Id′ 6
∑

d′|d , d′<d

qd/d′Nd′

The sum has at most d terms and each is 6 qdNd/2, whence
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1− Id

Nd

6 d qd Nd/2

Nd

and the announced result as the right-hand side term tends to 0 in the two

situations considered in the statement of theorem 5.1 (a). �

5.4. Proof of theorem 5.1 (c). In this subsection we assume that n = 2

and that d has at least three prime divisors.

5.4.1. A technical lemma.

Lemma 5.4. Let b(d) = 1
2
(d + 1)(d + 2). Let ` > 1 be the first divisor of d

and `′ > ` be the second divisor of d. Let λ > `′ be a divisor of d and `′′ > 1

be the first divisor of d/`. Then we have

(1) b(d/`′) + `′ > b(d/λ) + λ.

(2) b(d/`) + `− d/` > b(d/`′) + `′.

(3) b(d/`) + 1− d/` > b(d/``′′) + `′′.

Proof. (1) We have

b(d/`′) + `′ − b(d/λ)− λ =
1

2

(
d

`′
− d

λ

)(
d

`′
+

d

λ
+ 3− 2

`′λ

d

)
> 0

because d/`′ − d/λ > 0 and
d

`′
+

d

λ
+ 3 − 2

`′λ

d
>

d

`′
+ 4 − 2`′ > 0 as d has

at least 3 prime divisors.

(2) We have ``′ 6 d so `′ − ` 6
d

`
. Moreover we have

d

`′
6

d

`
− 2 and for

all d > 6 we have b(d/`′) 6 b(d/`− 2). Hence

b(d/`)− b(d/`′) + `− `′ − d

`
> b(d/`)− b(d/`− 2)− 2d/` = 1

(3) If we set δ = d/` then

b(δ)+1−δ−b(δ/`′′)−`′′ =
1

2

(
δ − δ

`′′

)(
δ +

δ

`′′
− 2

)
+

1

2

(
3δ − 5

δ

`′′
− 2`′′ + 2

)
Now δ − δ

`′′
> 0, δ + δ

`′′
− 2 > 0 and as δ has at least 2 prime divisors, then

u(`′′) = 3δ − 5 δ
`′′
− 2`′′ + 2 > u(2) = δ

2
− 2 > 0. �



18 ARNAUD BODIN, PIERRE DÈBES, AND SALAH NAJIB

5.4.2. An upper bound for Dd. Using the notation of lemma 5.4, we have

Dd = q`−1Id/` +
∑

λ|d,λ>`

qλ−1Id/λ (corollary 5.3)

6 q`−1Nd/` +
∑

λ|d,λ>`

qλ−1Nd/λ

6 qb(d/`)+`−1

(
1− 1

q
d
`
+1

)
+
∑

λ|d,λ>`

qλ−1qb(d/λ) (explicit formula for Nd/λ)

6 qb(d/`)+`−1

(
1− 1

q
d
`
+1

)
+ (d− 1)qb(d/`′)+`′−1 (lemma 5.4 (1))

6 qb(d/`)+`−1

(
1− 1

q
d
`
+1

)(
1 +

d

qb(d/`)−b(d/`′)+`−`′

)
(because

d− 1

1− q−
d
`
−1

6 d)

6 qb(d/`)+`−1

(
1− 1

q
d
`
+1

)(
1 +

d

q
d
`

)
(lemma 5.4 (2))

5.4.3. A lower bound for Dd. Start from Dd > q`−1Id/`. Then use §5.4.2

right above (or the formulas already proved from theorem 5.1 (b)) to bound

Id/` = Nd/` −Dd/` from below. We obtain

Dd > q`−1 ×

(
qb( d

`
)

(
1− 1

q
d
`
+1

)
− qb( d

``′′ )+`′′−1

(
1− 1

q
d

``′′ +1

)(
1 +

d/`

q
d

``′′

))

> q`−1

(
1− 1

q
d
`
+1

)(
qb( d

`
) − 2qb( d

``′′ )+`′′−1
)

(because
d/`

q
d

``′′
6 1)

= q`−1

(
1− 1

q
d
`
+1

)
qb(d/`)

(
1− 2

qb(d/`)−b(d/``′′)+1−`′′

)
> q

b d
`
+`−1

(
1− 1

q
d
`
+1

)(
1− 2

q
d
`

)
(lemma 5.4 (3))

5.4.4. Final estimate for Dd/Nd. The upper and lower bounds for Dd yield

the following inequalities

qb( d
`
)+`−1

qb(d)
×1− q−

d
`
−1

1− q−d−1
×
(

1− 2

q
d
`

)
6

Dd

Nd

6
qb( d

`
)+`−1

qb(d)
×1− q−

d
`
−1

1− q−d−1
×
(

1 +
d

q
d
`

)
which are a little more precise than the announced statement. �

5.5. One variable. Here we assume n = 1. For polynomials in one vari-

able, we use the definition of indecomposability given in §4.3.

5.5.1. Main result.

Theorem 5.5. Assume q and d are relatively prime.

(a) If d is a product of at most 2 prime numbers p 6 p′, then
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• d = p and Dd = 0, or

• d = p2 and Dd = q−1
q

q2p, or

• d = pp′ with p < p′ and

2
q − 1

q
qp+p′ − q5 6 Dd 6 2

q − 1

q
qp+p′

(b) Assume d is the product of at least 3 prime numbers. Let ` > 1 be the

first divisor of d and `′ > ` be its second divisor. Then we have

d

2`

1

q
d
`
− d

`2
−`+1

6
Dd

Nd

− αd 6
d− 2

2q`+ d
`
−`′− d

`′
where αd =

2

qd−`− d
`
+1

As a consequence we have that Id/Nd tends to 1 in the two situations

where d →∞ with q fixed, and q →∞ with d fixed.

Theorem 5.5 fails if the assumption (q, d) = 1 is removed. For example for

q = 2 and d even one can compute that Dd/Nd ∼ 3.2−d/2 while αd = 4.2−d/2

in this case.

From now on we assume q and d are relatively prime. The rest of the

paper is devoted to the proof of theorem 5.5. Our strategy is similar to the

one used for n > 2. We view the set Dd of all decomposable polynomials

f(x) ∈ Fq[x] of degree d as the union of smaller sets which we will estimate.

More specifically we write

Dd =
⋃

λ|d , `6λ6d/`

Dλ,d/λ

where Dλ,d/λ ⊂ Dd is the subset of all f(x) which admit a decomposition

f = u ◦ v with u, v ∈ Fq[x], deg u = λ > 2, deg v = d/λ > 2, v monic and

of constant term equal to 0. A difference with the case n > 2 is that we do

not have a partition.

5.5.2. 1st stage: upper bounds. (Assumption (q, d) = 1 is not used in this

paragraph). For every divisor λ > 1 of d, denote the cardinality of Dλ, d
λ

by

Dλ, d
λ
. We have

Dλ, d
λ

6 Nλ

Nd/λ

q(q − 1)
=

q − 1

q
qλ+ d

λ

If ` > 1 is the first divisor of d and `′ > ` the second divisor, we have

Dd 6
∑

λ|d , `6λ6d/`

Dλ, d
`

6
q − 1

q

∑
λ|d , `6λ6d/`

qλ+ d
λ

The idea is that the main contribution comes from D`, d
`

and D d
`
,`.

If d is the product of exactly 2 prime numbers ` and d/`, then these are

the only contributions and we have the desired upper bound. Otherwise we
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write λ + d
λ

6 `′ + d
`′

to bound the extra terms and obtain

Dd 6
q − 1

q
q`+ d

`

(
2 +

d− 2

q`+ d
`
−`′− d

`′

)
which yields all announced upper bounds in theorem 5.5. We also deduce

this practical bound: Dd 6 d
q − 1

q
q`+ d

` (as ` +
d

`
− `′ − d

`′
> 1).

5.5.3. 2nd stage: uniqueness results. We will use Ritt’s theorems to control

the number of possible decompositions of a given polynomial.

Proposition 5.6. Let K be a field and f ∈ K[x] be a polynomial of degree

d > 0. Assume the characteristic p of K does not divide d. Suppose we

have two decompositions f = u ◦ v = u′ ◦ v′ of f with

• u, v, u′, v′ indecomposable,

• deg u = deg u′ > 2, deg v = deg v′ > 2,

• with v, v′ monic with a zero constant term.

Then u = u′ and v = v′.

Proof. This follows from the first Ritt theorem [12, §1.3 theorem 7] which

more generally describes in which cases an equality G1◦· · ·◦Gr = H1◦· · ·◦Hs

with Gi, Hj indecomposable of degree > 1 may hold. �

As an immediate consequence, we obtain the case d = p2 of theorem 5.5

(a): namely we have Dp2 = Dp,p =
q − 1

q
q2p.

5.5.4. 3rd stage: lower bounds for D d
`
,` and D`, d

`
.

Lemma 5.7. Assume d is not a prime number. Then we have

D`, d
`

>
q − 1

q
q`+ d

`

(
1− d/`

q
d
`
− d

`2
−`+1

)
.

And the same inequality holds for D`, d
`

replaced by D d
`
,`.

Proof. We only give the proof for D d
`
,` as computations for D d

`
,` are the

same. In D`, d
`

we will only count those polynomials f which decompose as

f = u ◦ v with u and v as in proposition 5.6. Then we obtain

D`, d
`

>
1

q(q − 1)
I` · I d

`

>
1

q(q − 1)
N` (N d

`
−D d

`
) (D` = 0 as ` is prime)

=
1

q(q − 1)
(q − 1)q`

(
(q − 1)q

d
` −D d

`

)
=

q − 1

q
q`+ d

`

(
1−

D d
`

(q − 1)q
d
`

)
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If d is the product of exactly 2 primes then D d
`

= 0 and

(*) D`, d
`

>
q − 1

q
q`+ d

`

which in this case is better than the announced result.

If d is the product of at least 3 primes, use the practical upper bound for

Dd obtained in §5.5.2 to write D d
`

6 d
`

q−1
q

q`+ d
`2 and deduce

D`, d
`

>
q − 1

q
q`+ d

`

1−
(d/`) q−1

q
q`+ d

`2

(q − 1)q
d
`

 =
q − 1

q
q`+ d

`

(
1− d/`

q
d
`
− d

`2
−`+1

)
�

5.5.5. Estimating the multiple decompositions. Next we write

Dd > card(D`, d
`
∪ D d

`
,`) = D`, d

`
+ D d

`
,` − card(D`, d

`
∩ D d

`
,`)

In order to estimate Dd we need to estimate the intersection.

Lemma 5.8. We have
card(D`, d

`
∩ D d

`
,`) 6

d

`
q

d
`2

+2`−1

Dd > 2
q − 1

q
q`+ d

`

(
1− 2d

`

1

q
d
`
− d

`2
−`+1

)
The lower bound for Dd is the remaining inequality to be proved in the-

orem 5.5 (b). The more precise inequality (**) in the proof below will

complete the proof of theorem 5.5 (a) in the special case d = pp′.

Proof of lemma 5.8. (a) If gcd(`, d/`) = 1 then card(D`, d
`
∩ D d

`
,`) 6 q5.

Indeed let f ∈ D`, d
`
∩ D d

`
,` and let f = u ◦ v be a decomposition with

deg u = ` and deg v = d/`. We follow Ritt’s second theorem (see [12,

§1.4, theorem 8] and the notation there). The hypotheses of that result

are satisfied because the derivative u′ of u is non zero; otherwise f ′ = 0,

and so f ∈ Fq[x
p] and the characteristic p of Fq divides d = deg f . In first

case of Ritt’s second theorem we have L1 ◦ u = xrP (x)n and v ◦ L2 = xn

(where r > 0, P ∈ Fq[x] and L1, L2 are linear functions). In our situation

we get n = d
`

and ` = r + d
`
deg P . Then deg P = `2−`r

d
6 `2

d
< 1 so

deg P = 0, L1 ◦ u = x` and v ◦ L2 = x
d
` . Considering all possible linear

functions yield at most (q − 1)2q2 such decompositions. In second case of

Ritt’s second theorem we have L1 ◦ u = Dm(x, an) and v ◦ L2 = Dn(x, a),

a ∈ Fq (where Dn(x, a) denote Dickson’s polynomials). We here obtain

m = ` and n = d
`
. Considering all possible linear functions and all a ∈ Fq

yield at most (q − 1)2q3 such decompositions. Finally we obtain
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(*) card(D`, d
`
∩ D d

`
,`) 6 (q − 1)2q2 + (q − 1)2q3 6 q5

(b) If gcd(`, d/`) 6= 1 then we have card(D`, d
`
∩ D d

`
,`) 6 d

`
q

d
`2

+2`−1.

Indeed let f ∈ D`, d
`
∩ D d

`
,` and let f = u ◦ v be a decomposition with

deg u = ` and deg v = d/`. By Ritt’s first theorem and because gcd(`, d/`) 6=
1 either u or v is decomposable. But as ` is a prime D` is empty and so

v ∈ D d
`
. Thus we obtain

card(D`, d
`
∩ D d

`
,`) 6 N`

1

q(q − 1)
D d

`

6
1

q(q − 1)
(q − 1) q` d

`
q`+ d

`2 (end of §5.5.2)

6
d

`
q

d
`2

+2`−1

The proof follows as for all d > 6 we have
d

`2
+ 2`− 1 > 5. �
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Villeneuve d’Ascq Cedex, France


