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ABSTRACT. We show that a Q-curve of genus g and with stable reduction (in some generalized
sense) at every finite place outside a finite set S can be defined over a finite extension L
of its field of moduli K depending only on g, S and K. Furthermore, there exist L-models
that inherit all places of good and stable reduction of the original curve (except possibly for
finitely many exceptional places depending on g, K and S). This descent result yields this
moduli form of the Shafarevich conjecture: given g, K and S as above, only finitely many K-
points on the moduli space M, correspond to @—curves of genus g and with good reduction
outside S. Other applications to arithmetic geometry, like a modular generalization of the
Mordell conjecture, are given.
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Introduction

This paper has two main themes: descent theory and arithmetic geometry. For both
we are concerned with algebraic curves over Q of genus g > 2.

For investigating fields of definition and the corresponding models of a curve, the field
of moduli, which is the field of definition of the representing point on the moduli space,
is a natural landmark. The field of moduli is not a field of definition in general though it
is in some circumstances (see [De2]). Our main descent result (theorem 1.3) shows that
given an integer g > 2, a number field K and a finite set S of places of K, there exists
a finite extension L/K that is a common field of definition for all Q-curves X of field of
moduli K and with ur-stable reduction at finite places v ¢ S; we refer to §1 for precise
definitions, in particular, for the notion of ur-good and ur-stable reduction. Furthermore,
each of these curves X has a L-model X that has stable reduction [resp. good reduction]
at every finite place where the original Q-curve X does (except for finitely many places
depending only on g, K and 5).

Conjoined with the Shafarevich conjecture proved by Faltings [Fa], our descent result

leads to the following moduli form of the Shafarevich conjecture (theorem 3.1). Denote
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the moduli space of genus g curves by M, (with g > 2). Then, given a number field K
and a finite set S of places of K, the subset of M, (K) corresponding to K-curves of field
of moduli K and with ur-good reduction outside S is finite. Similarly we obtain modular
versions of other classical finiteness results in arithmetic geometry (§3). These variants
have K-curves replaced by K-curves with field of moduli K, which can be regarded as
K-points on moduli spaces, thus giving the results a modular tenor. Such a variant is
given for the Mordell conjecture (theorem 3.4), which involves a new notion of rational
points, on K-curves with field of moduli K (definition 3.3).

The main descent theorem is proved in §2. The proof rests on the theory of stable curves
of Deligne and Mumford [DelMu] and on previous work in descent theory, including the
local-global principle for G-covers [DeDol]| and the descent canonical model construction
[DeEm]. Applications to arithmetic geometry (§3) use as a major extra ingredient Falting’s
finiteness results in arithmetic geometry [Fa].

Our conclusions can be investigated for other categories than curves (covers, G-covers,
(polarized) abelian varieties, etc.) and for more general base fields. Even more general
versions should result from using the language of stacks and gerbes. A subsequent work

will be devoted to these generalizations.

1. The main descent result

1.1. Notation and main data. Fix a base field K. For simplicity assume K is of

characteristic 0; in our applications, K is a number field.

1.1.1. Models, fields of definition and field of moduli. Given a K-integral scheme S
(and an integer g > 0), by S-curve (of genus g) we mean a proper flat morphism C' — S of
finite type whose generic fiber is smooth and whose geometric fibers are connected curves
(of genus g). For K-integral domains A (a morphism K — A is given) we say “A-curve”
instead of “Spec(A)-curve”.

For curves over fields, there are notions of fields of definition, models and field of moduli.
Suppose given an overfield k of K and a field extension F/k; a typical situation is F' = k.
Given a F-curve X, a k-model of X is a k-curve X such that X ®g F and X are isomorphic;
X is then said to be defined over k. If the field extension F'/k is Galois, the field of moduli
of X relative to the extension F'/k is defined to be the fixed field in F' of the subgroup of
Gal(F/k) of all T such that X and X7 are isomorphic over F. In the sequel, when we say
that a k-curve is of field of moduli k, 4.e., when we omit the reference to the extension F/k,
we always mean relative to the extension k/k. In this absolute situation where F = k, the
Galois group Gal(k/k) (the absolute Galois group of k) is denoted by Gy.
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The notion of model extends to that of model over a ring (and in fact over an arbitrary
K-scheme [DeDoMo]). Given a K-integral domain A, with quotient field k, an A-model of
a F-curve X is an A-curve X such that the generic fiber X ® 4 k becomes isomorphic to
X after extending the scalars to F, i.e., (X ®4 k) @ F ~ X.

In these definitions, curves can be replaced by objects from other categories. In partic-
ular we will use the following categories of covers. A subgroup G C Sy (with d > 1) and a
smooth projective K-curve B being fixed, we will work with the (fibered) category of covers
f : X — B over K-schemes whose geometric fibers are degree d covers of monodromy group
G C S4, and with the category of G-covers of B of group G, i.e., the (fibered) category of
Galois covers f : X — B (over K-schemes) given with an isomorphism Aut(f) — G. We
refer to [DeDol| for definitions relative to covers. Recall however that to distinguish them
from G-covers, objects from the former category are sometimes called mere covers: they
are non necessarily Galois and they are given without their automorphisms.

The field of moduli need not be a field of definition. Investigating the obstruction is
part of descent theory for fields of definition, which many works have been devoted to,
notably by Weil, Shimura and Grothendieck (see [De2] for a survey and references).

In this paper we restrict our attention to curves of genus g > 2: curves of genus 0 and

genus 1 are known to be defined over their field of moduli.

1.1.2. Good and stable reduction. Assume A is a discrete valuation ring with fraction
field k£ and residue field k. Recall an A-curve X is said to be stable if the special fiber
is geometrically connected and reduced, with only ordinary double points and if every
smooth rational component meets the other components in more than 2 points [DelMu].
A k-curve X is said to have good reduction [resp. stable reduction] if X has a geometrically
integral smooth A-model (a good model for short) X [resp. if X has a stable A-model X].

Given a field extension k/K and a valuation v on k, denote the completion of k at v by
k,, the valuation ring of k, by Ay, and the residue field by ki, . We still denote by v the
unique extension of the valuation to some fixed algebraic closure k, of k,. Also denote the
maximal unramified extension of k, by k,". Since k)" has cohomological dimension < 1,
any k,-curve (or k,-object from one of the categories above) with field of moduli k, has a
(and possibly several) kj"-model(s) ([DeDol] corollary 3.3 and [DeEm]| corollary 4.3).

A k,-curve X is said to have kU -good reduction [resp. kUT-stable reduction] with respect
to ky if k, is the field of moduli of X and if X has a good Agw-model X" [resp. if X
has a stable Apu-model X"]. In that case the generic fiber X" of A} is a ky*-model of
X. From [DelMu] theorem 1.11, such a k;"-model of X with a stable Agur-model X" is

unique, up to k;'-isomorphism. We call it the k;"-model of X with stable reduction.
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Remark 1.1. Let F,/k, be an unramified field extension.

(a) A k,-curve X, has good reduction [resp. stable reduction] if and only if the F,-curve
X, ®, F, has good reduction [resp. stable reduction]. The direct part is obvious (and
does not need the hypothesis “F,/k, unramified”). The converse follows from the two
following points. First, existence of a model with good reduction [resp. stable reduction]
is a geometric property of the special fiber of the minimal model (e.g [Li] proposition 3).

The second point is that the minimal model commutes with every unramified base change.

(b) If a k,-curve X, has good reduction [resp. stable reduction], then the k,-curve X =
X, @4, k., has k' -good reduction [resp. kU*-stable reduction] with respect to k,. But here
the converse does not hold in general since the k,-curve X may have several k''-models

and that the k,-curve X, may not induce the k3 *-model of X with stable reduction.

Finally recall that a k-curve X is said to have good reduction [resp. stable reduction]
at some valuation v of k if the k,-curve X @ k, does. Similarly we say a k-curve X of
field of moduli k£ has ur-good reduction [resp. ur-stable reduction| at some valuation v of k
if the k,-curve X ®§k_v has k2*-good reduction [resp. kl'-stable reduction] with respect to
k, for every k-embedding k — k,. Classically if k is a number field, then “bad reduction”

may occur only at finitely many places of k.

Remark 1.2. (a) In definition above, given a place v of k, it suffices to check the reduction
condition for only one k-embedding k — k,: indeed, as k is the field of moduli of the k-
curve X, two k,-curves X ®Ek_v corresponding to two k-embeddings k — k,, are isomorphic.
Note also that the k}"-model of X with stable reduction, when it exists, does not depend
either on the k-embedding k — k.

(b) If £/ is a finite sub-extension of k and X is a k-curve of field of moduli & with ur-good
reduction [resp. ur-stable reduction]| at some place v of k, then the field of moduli of X
relative to the extension k// is £ and X has ur-good reduction [resp. ur-stable reduction]

at every place of £ above v.
1.2. Statement of the main result.

Theorem 1.3 — Let g > 2 be an integer, let K be a number field and let S be a finite
set of places of K.

There ezists a finite extension L/K and a finite set S, = S,(L) of places of K such
that if X is any K-curve of genus g, of field of moduli K and with ur-stable reduction at
all finite places v ¢ S, then X has a L-model )Z', which has these additional properties:
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Given a finite place v of K with v & S,, if the K-curve X has ur-good reduction [resp.
ur-stable reduction] at v, then the L-model X has good reduction [resp. stable reduction]
at every extension w of v to L.

Furthermore, Aut()?) ~ Aut(X), that is, the automorphisms of X are defined over L.

Remarks 1.4. (a) Conclusion of theorem 1.3 fails if the reduction condition is removed.
More specifically, there exist families of curves of genus g > 2 and field of moduli K such
that no finite extension L/K is a field of definition for all curves of the family. Examples
with K = Q and g = 2 can be obtained from a paper of J-F. Mestre [Me]. On the other
hand, if K is a local field (finite extension of Q,), then it is true that all K-curves of genus
g with field of moduli K can be defined over a common finite field extension of K (without

any reduction assumption).

(b) An explicit description of the extension L/K (which is not unique) can be obtained
from the proof. Set ¢1(g) = 84(¢9 — 1). The extension L/K can be taken to be any finite
extension L?/K of some extension L!/K such that the following holds:

- L'/K is the compositum of all extensions of K((Cy)n<e,(q)) of degree < ¢1(g)! and
unramified above every place v ¢ S 1,

- for each place w of Ly above some v € S, the degree [L2, : Ll] is a multiple of all

exponents of abelian groups of order < ¢;(g).

(¢) The exceptional set S, = S,(L) can also be precisely described. It consists of places v
of K of three types: those which are ramified in the extension L/K, those whose residue
characteristic p is < 84(g — 1) and those from the finite list obtained in the following
manner. Fix a full set of representatives Q,..., O of the ideal class group of L and let
P1,..., Py be all those prime ideals which appear (with a non-zero exponent) in the ideal
decompositions of Qq,...,9,. The extra finite list is the set of all restrictions to K of

valuations associated to Pi,...,P,.

2. Proof of the main descent theorem

Fix an integer g > 2, a number field K and a finite set S of places of K. Let then X
be a K-curve of genus g, of field of moduli K and assume that for each finite place v ¢ S,

X has ur-stable reduction at v.

This compositum is a finite extension of K. Indeed it follows from Hermite’s theorem that there are only finitely
many finite extensions of a number field, unramified outside a finite set of places and with bounded degree. This
classical result will be of frequent use in the paper.
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2.1. 1st step: reduction to covers. Consider the K-curve B = X/Aut(X) and
the associated K-cover f : X — B. From [DeEm], there exists a K-model B of the curve
B, called the K-descent canonical model of X/Aut(X) over the field of moduli of X and

satisfying the following properties.

The field of moduli of the cover f : X — B (with K-base E) is equal to K. Furthermore,
a field k such that K C k C K is a field of definition of the K-cover f : X — B with
K -base B if and only if it is a field of definition of the K-curve X.

More precisely, each k-model X of X induces a k-model X - B®kk of the K -cover
f: X — B (with fized K -base B), and vice-versa.

(The first part is stated in [DeEm]| theorem 3.1; the second part is what is more precisely

proven in [DeEm]| p.47).

This reduces the problem to investigating fields of definition and models of the K-cover
X — B, which is a K-Galois cover with field of moduli K.

2.2. 2nd step: reducing to K,"-G-covers for v ¢ S. For each v ¢ S, denote by
X2 the K"-model of X ®% K, with stable reduction. It follows from the construction in
[DeEm| that the K,-descent canonical model of the K,-curve (X @7 K, )/Aut(X @=K,) is
isomorphic to B®x K,: the main point is that descent data on (X @7 Ky)/Aut(X @7 K,)
are obtained from those on X/Aut(X) by extension of scalars (see [DeEm)]). Denote then
by for: XU — B®g K" the K™-model of f ®7 K, associated with the K}"-curve X"

Using [DelMu] theorem 1.3 we obtain next Aut(X}" @guw K,) ~ Aut(X}"). Therefore,
the cover fi'" : X' — B ®xk KU is a K -model of the Galois cover f ®% K, as G-cover
(for every K-embedding K — K,).

2.3. 3rd step: reduction to G-covers. The goal of this step is to show that the
field of moduli of f : X — B as G-cover is a finite extension of K depending only on K,
S and g. Denote this field of moduli by K&. From 2nd step, we know that K& C K
for all v ¢ S (for every K-embedding K — K,). We will now show that [K$ : K] can be
uniformly bounded.

Set G = Aut(X), d = |G| and let G C Sy be the regular representation of G. As in
[DeDol], we view the mere cover X — B as a representation ¢ : m(B*) — G C Norg, (G)
of the K-fundamental group of the variety B with the branch locus removed. Consider
then the constant extension map \ : Gxg — Norg,(G)/(GCeng,(G)) modulo Ceng,(G)
given by the field of moduli condition [DeDol;§3.1].

Let v ¢ S and oy, : K — K, be a K-embedding. As f ®?E is defined over K" as

G-cover, the map A becomes trivial after extending the scalars to K,*: indeed, for these
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places, there is no extension of constants in the Galois closure (as X" — B ®k K} s
Galois and regular). Equivalently the fixed field err(x) of ker(\) is contained in K}'".
This containment holds for all places v ¢ S and all K-embeddings K — K,. Since

—ki
we have [K e K] < |Norg,(G)|/(|G||Ceng, (G)]), conclude from Hermite’s theorem

that err(,\) is contained in a finite extension L!/K depending only on K, S and G.
Further this extension L'/K can be required to depend only on K, S and g, as, in view
of Hurwitz’ theorem, |G| = |Aut(X)| can be bounded by 84(¢g — 1). The next argument
shows that K& C L. With no loss of generality we may assume that L' = K, and so,
A : Gg — Norg, (G)/(GCeng, (G)) is trivial.

Recall the map A is induced by the representation @ : m (B*) — Norg,(G)/Ceng, (G)
of w1 (B*) given by the field of moduli condition (of the mere cover X — B) [DeDo1:§2.7].
Triviality of A translates to this: for each element U of the K-fundamental group m (E*),

there exists ¢y € G (whereas a priori ¢y € Norg,(G) ) such that

o(zV) = ()% (for all z € m1(B"))

That indeed means K is the field of moduli of the Galois cover X — B as G-cover.

2.4. 4th step: descending to K, for v ¢ S. From the field of moduli condition
(relative to the extension K/K), for each 7 € Gal(K™/K,), there exists a K, -isomorphism
Xr : [3 Qe Ky — ()T @ ke K, of G-covers (with fixed base B®k K,). From [DelMu]
theorem 1.3, since both the K;"-curves X" and (X,")" have stable Agu:--models, we have
Isom(X " @ gue Ky, (XIT)™ @ e Kyp) = Isom (X2, (XJ)7). Conclude that the isomorphisms
X can be defined over K} (with 7 € Gal(K}*/K,)) and so K, is the field of moduli of
the K"-G-cover f2* relative to the extension K*/K,. As Gal(K!"/K,) ~ Z and hence
is projective, we obtain that the mere cover f'" has a K,-model f, : X, — B Rr K,
([DeDol] corollary 3.3). Furthermore, the K,-curve X,, which is obviously a K,-model of
XU has stable reduction (Remark 1.1 (a)).

Note for later use that the content of this 4th step actually holds for all finite places
v of K where the K-curve X has ur-stable reduction (and not only for places v ¢ 5).
Furthermore, if the K-curve X has ur-good reduction at v, then the K,-curve X, has good

reduction at v.

Remark 2.1. Arguments above apply to mere covers as well to yield the following:

Let (Ay,v) be a complete (or more generally, henselian) discrete valuation ring, let k,
be its fraction field and let X be a k,-curve of genus g > 2 and of field of moduli k,. If X

has k" -stable reduction with respect to k,, then X has a k,-model with stable reduction.
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In this direction the following can be obtained from [DeHa] and [Em]: the same holds if
the residue characteristic does not divide the order of Aut(X) and if the branch locus of
the cover X — X /Aut(X) is smooth at v. From results of Fulton [Fu], these assumptions

ensure that X has kl)'-good reduction (a fortiori k.*-stable reduction) with respect to k.

2.5. 5th step: controlling the obstruction for v € S. With no loss of generality
we may and will assume that K contains all n-th roots of unity with n < 84(g — 1). Fix a
finite place v € S and a K-embedding K — K,. Consider the G-cover f ®?E obtained
from f by extension of scalars. The field of moduli of f ®?E (relative to the extension
K,/K,) is K, and the obstruction to K, being a field of definition corresponds to the
vanishing of a 2-cocycle Q € H?*(K,, Z(G)) (with trivial action) [DeDol]. We explain

below how to construct a finite extension L?/K such that

(*) for all places v € S and all K-embeddings K — K, all 2-cocycles in H*(K,, Z(QG))
become trivial in H*(L?, Z(QG)), where L? = K, L*;

in particular, L2 will be a field of definition of f ®% K, (as G-cover).

Let m be the h.c.m. of all exponents of Z(G) where G runs through all groups of
order < 84(g — 1). For every v € S, pick a finite extension LV of K, such that m divides
[LY : K,]. Using Krasner’s lemma and the weak approximation theorem, one can find
a Galois extension L?/K such that L® C L2 for every v € S and every K-embedding
K — K,. In order to establish the claim (*), restrict to the case Z(G) = Z/{Z with £|m;
note that K contains ¢-roots of unity. Let then w € H?(K,,,Z/{7Z); its image & in

H?*(K,,7./7) = H*(K,, us) C Br(K,)

is a (-torsion element. Conclude from [CaFr] ch.VI §1 corollary 1 that & gives 0 in Br(L2)
and so induces a trivial 2-cocycle in H?(L2, uy) = H?(L?,7/¢Z), for all places v € S and
all K-embeddings K — K,,.

2.6. 6th step: applying the local-global principle. Let L/K be the extension
L?/K constructed in 5th step from the extension L'/K of 3rd step. We have reached a
situation where we have a K-G-cover f : X — B which is defined over all completions L,
of L, i.e., such that f ®fK—w has a L,-model, say f,,, for every place w of L (including
the archimedean places). It follows then from theorem 3.8 of [DeDol] that the G-cover f
has a model over L (note that as \/—1 was adjoined to L?, the “Grunwald-Wang” special

case of theorem 3.8 of [DeDol] cannot occur).
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Remark 2.2. The full strength of the local-global principle for G-covers (as in [DeDol])
is not used here: as m-roots of unity have been adjoined to K, this reduces to injectivity
of the local-global map Br(L) — @,,Br(L,,) (see [DeDo2] proposition 3.4).

2.7. Tth step: twisting the global model. From the preceding step, the K-G-cover
f has L-models. In this final step, we show that any such L-model can be twisted so as to
provide another L-model satisfying the additional reduction properties of theorem 1.3.

Let f: X — B ®g L be a L-model of the G-cover f+ X — B. Consider the set of
places v of K, unramified in the extension L/K, with residue characteristic p not dividing
|Z(G)| and such that the K-curve X has ur-stable reduction at v. Denote the complement
of this set by Si; it is a finite set.

For each v ¢ S fix a full system ¥, of non K,-conjugate K-embeddings o% : L — K,

L
v

o, K — K, of JUL to K. Consider the two following K Jr-models of the G-cover f ®?E
(via the constant extension o, ):
- on one hand, the K"-G-cover f'": X' — B®k K" where X} is the K}}*-model of

X ®?E with stable reduction at v and where the constant extension is via o,,; recall fi'*

(corresponding to all extensions of v to L); and for each o, € 3, pick an extension

was proved to be a K*-model of the G-cover f ®?E in 2nd step,

- on the other hand, the K "-G-cover for Ky X ®r K} — B ®x K" where the

L
v

Classically, the set of all models over a field k of a k-G-cover of group G is “parametrized”

constant extension is via o

by H'(k,Z(G)) (with trivial action), or is empty (see [Del] proposition 2.5 for a precise
statement). Thus, for v ¢ S, the two K}*-G-covers above differ by an element 7, ,z €
HY(K}*, Z(G)). Note that v, ,z is the trivial 1-cocycle in H'(K}*, Z(G)) for all but
finitely many places v ¢ S1. We are done if can show that the family (v, ,z), oz is in the

image of the morphism

H'(L,2(G) — ]] H'(K), 2(@)

vgSy
o',ll]’EEv

To show this we may reduce to the case Z(G) = Z/¢Z with ¢ dividing the exponent of
Z(@G). The above map then identifies with the map

L)) = T (K /(K
vg Sy

For each place v ¢ Sp, the group (K)*/((KY)*)* is the cyclic group of order £
generated by the class of a uniformizing parameter of K, (as p /|Z(G)|). This leaves us
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with showing that one can find elements of L with prescribed order at valuations from a
finite set and that are units at all other finite places of L. This may not be true in general
but it becomes true if some finitely many places of L are excluded. More precisely, let
Q1,..., 9 be a full set of representatives of the ideal class group of L and let Pq,..., P,
be all those prime ideals which appear (with a non-zero exponent) in the decomposition
of some of the Q;s; denote the associated valuations of L by wp,,...,wp,. If P is the
valuation ideal of some finite place, say wp, of L, then P = (7)Q; for some i € {1,...,h}
and m € L. From the uniqueness of the ideal decomposition, if P # Py,...,P,, we have
wp(m) =1 and w(w) = 0 for all places w of L such that w # wp, wp,,...,wp,.

Denote by S, the set consisting of the restrictions to K of the exceptional places
wp,,...,wp, and of the places of K that are ramified in L or have residue character-
istic p < 84(g — 1). Construction of elements of L with prescribed order at finitely many
places w of L (above some v ¢ S7) and that are units at all other finite places except
possibly those lying above places in S, readily follows from the above argument. Conclude
that one can find a 1-cocycle v € H'(L, Z(G)) such that the L-G-cover obtained from f
by twisting by ~ satisfies the reduction properties stated in theorem 1.3. Here we also use
remark 1.1(a): to obtain the good [resp. stable] reduction of a L-model X at some place w
of L above some v ¢ S, it suffices to check the good [resp. stable] reduction of X®LK o
O

Remark 2.3. Given a number field L and a prime ideal P € Spec(Qy,), one can show that
there exists f € O, satisfying f ¢ P and such that the localization (Opr)¢ is a principal
integral domain. This yields the following refinement in theorem 1.3: if w, is a place of L
unramified in the extension L/K and with residue characteristic p > 84(g — 1), then for
any K-curve as in theorem 1.3 and with ur-good reduction [resp. ur-stable reduction] at

Wo |k, & L-model of X can be found with good reduction [resp. stable reduction] at w,.

3. Modular arithmetic geometry

In this section we combine our main descent theorem to classical finiteness results in

arithmetic geometry to get some modular versions of these results.

3.1. The Shafarevich conjecture. A consequence of our main descent result (the-

orem 1.3) is the following moduli form of the Shafarevich conjecture.
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Theorem 3.1 — Let g > 2 be an integer, let K be a number field and let S be a finite set
of places v of K. Denote the moduli space of genus g curves by M. The subset of M 4(K)
consisting of K -curves of field of moduli K and with ur-good reduction at all places v & S

18 finite.

The classical form of the Shafarevich conjecture proved by Faltings [Fa] provides the
same finiteness conclusion but for the set of K-curves with good reduction at places v ¢ S.
That is, the curves in question are supposed to be defined over K, while here the hypothesis
concerns the field of definition of the corresponding points on M, i.e., the field of moduli of
the curves. Theorem 3.1 readily follows from our theorem 1.3 conjoined with the classical

Shafarevich conjecture.

Remark 3.2. The classical Shafarevich conjecture also straightforwardly follows from
theorem 3.1, if one knows that given a K-curve X of genus g > 2 and with good reduction
outside S, its K-isomorphism class only contains finitely many other K-curves X' with
good reduction outside S. This is of course a consequence of the Shafarevich conjecture
but a weak one for which independent arguments can be given. For the convenience of the
reader, we recall one.

Let (Jac(X), \(X)) [resp. (Jac(X’),AM(X"))] be the polarized jacobian variety of X
[resp. X']. Pick a K-isomorphism between X = X ®x K and X’ = X’ @, K and
denote by 1 the K-isomorphism induced between (Jac(X), A\(X)) and (Jac(X'), \(X")).
Fix a prime number ¢ > 3, denote the set of places of K above ¢ by S, and set L, =
K (Jac(X)[0)(K), Jac(X")[()(K)). Then, on one hand, the isomorphism t is defined over
Lz, (see [Mil] proposition 17.5 and [Si]), and, on the other hand, by the Neron-Ogg-
Shafarevich theorem, the field L
unramified outside S U Sy (the jacobians Jac(X) and Jac(X’) have good reduction outside

. is an extension of K of degree bounded by ¢49 and is
S as the curves X and X’ do). So, by Hermite’s theorem, the compositum L of all possible
L, is a finite extension of K depending only on K, S and g. Taking the Galois closure,
one can further assume that L/K is Galois. Using Torelli’s theorem, and more precisely
corollary 12.2 of [Mi2], one obtains that X ®x L and X’ @ L are L-isomorphic. Now
the set of K-curves X’ which become L-isomorphic to X @k L after extending the scalars
is parametrized by H'(Gal(L/K), Aut(X ®x L)), which is a finite set (as Gal(L/K) and
Aut(X @k L) are).

3.2. The Mordell conjecture. One of Faltings’ goals in proving the Shafarevich

conjecture was to apply Parshin’s construction to then deduce the Mordell conjecture.
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In this paragraph we explain how our modular variant of the Shafarevich conjecture also
implies a modular version of the Mordell conjecture.

We first define a modular notion of rational points.

Definition 3.3 — Let X be a K-curve of genus g > 2 and of field of moduli K. Let
S be a finite set of places of K and d > 1 be an integer. A point x € X (K) is said to be
(S, d)-rational on X if the following conditions are satisfied:

(1) There ezists a family (fU)GEGK of K-isomorphisms f, € Isom(X?, X) such that the
set {f,(z7) |0 € Gk} has at most d elements.

(2) For every place v ¢ S where X has ur-stable reduction, if Xo* is the K2"-model of
X ®?E with stable reduction (for some K-embedding K — K, 2), then there exists a
K, -isomorphism v, : X @7 K, — X" Qgu K, such that i, (z) € X} (K2).

The set of all points x € X (K) that are (S, d)-rational on X will be denoted by X (S, d).

Note that every K-isomorphism y : X — X’ between two K-curves of genus g > 2
induces a one-one correspondence between X (S, d) and X'(S,d).

Also, if X is a K-curve of genus g > 2, if X = X ®x K and F/K is a finite extension,
then we have X (F') C X(5,d) where d = [F': K] and S is the set of places of K that are
ramified in F or where the K-curve X does not have stable reduction.

The following statement is the announced modular version of the Mordell conjecture.

Theorem 3.4 — Let g > 2 be an integer, let K be a number field, let S and S’
be two finite sets of places of K and let d > 1 be an integer. There exists a constant
c=c(g,K,SUS’ d) such that for every K-curve X of genus g > 2 of field of moduli K
and with ur-good reduction for all v ¢ S’, we have card(X (S,d)) < c.

Proof. As in the statement fix an integer g > 2, a number field K, two finite sets S and

S’ of places of K and an integer d > 1. We divide the proof into two stages.

1st stage: fixing the field of definition. Let L/K be a finite extension and let X be a
L-curve of genus g > 2. Set X = X ®1, K and assume that X is of field of moduli K. Let
x € X(S,d).

Let (fo),c@, Pea family as in condition (1) of definition 3.3; for each o € G, we have
fo € Aut(X) (as X = X) and 2° = f;1(f,(z%)). It follows then from card(Aut(X)) <

(o2

It is easily checked that the condition does not depend on the K-embedding K—K,.
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84(g—1) and condition (1) that the set {z?|o € G} is finite and of cardinality < 84(g—1)d.
Hence the extension L(x)/L is of degree < 84(g — 1)d.

Let v be a finite place of K, not in S and unramified in L. Assume further the L-curve
X has stable reduction at every place w of L above v. Thus the corresponding K*-curve
Xo K uris the KJ*-model X" of X @K, with stable reduction (for every K-embedding
K — K,). From condition (2) of “z € X(S,d)”, we have 9, (z) € X' (K%¥). Using again
[DelMu]| theorem 1.3, we obtain that the automorphism 1, of X ®4 K, comes from an
automorphism of X, i.e., is defined over K. Conclude then that 2 € X(KM), or,

v )

equivalently, that L(z) C KU (for every K-embedding K «— K,).

2nd stage: using theorem 3.1 and Faltings’ theorems. By theorem 3.1, there exists a finite
extension L/K (depending only on g, K and S’) and a finite set of L-curves, say X1, X,
of genus ¢ such that any K-curve X as in theorem 3.4 is K-isomorphic to X; = )Z'z oL K
for some index ¢ € {1,...,s}. Furthermore, if S/ is the union of the exceptional set S,
from theorem 1.3 and of the finite set of places of K which are ramified in L, then the
L-curves )?1, . .,)?s have good reduction outside the set of all places of L lying above
places in S, U S".

Let M /L be the compositum of all extensions F'/ L of degree < 84(g—1)d and unramified
at every finite place of L not above a place v € SU S’ U S/. By Hermite’s theorem the
extension M /L is finite. By 1st stage, we have X;(S,d) C )A(:Z(M), i=1,...,s. From the
Mordell’s conjecture proved by Faltings, the set )Z'Z(M ) is finite, ¢ = 1,...,s. Thus for

c(g,K,SUS’ d) = maxj<;<scard(X;(M)), the proof is complete. O

3.3. Further finiteness results. The following statement is another consequence of

our theorem 1.3. The special case Kg = K corresponds to Faltings’ finiteness theorem 1.

Theorem 3.5 — Let g > 2 be an integer, let K be a number field and let S be a finite
set of finite places of K. Let Kg be an algebraic extension of K unramified outside S.
Then there exist only finitely many Kg-isomorphisms classes of Kg-curves Xg of genus g,
of field of moduli K relative to the extension Ks/K and such that the jacobians Jac(Xg)

belong to a given Kg-isogeny class.

Proof. Fix a Kg-curve Yg of genus g > 2 and of field of moduli K relative to the
extension Kg/K. Let Sy, be a finite set of finite places of K containing S such that for
every v ¢ Sy,, the K}'-curve Ys Qg K has good reduction for every K-embedding
Kg — K. Fix v ¢ Sy,. The K -jacobian Jac(Ys @k, K') = Jac(Ys) @k K has

good reduction for every K-embedding Kg — K.". Denote the set of Kg-curves Xg of
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genus g, of field of moduli K relative to Kg/K and such that Jac(Xg) and Jac(Ys) are
Kg-isogenous by E,(Ys). Pick Xg € E4(Ys). From the Koizumi-Shimura theorem, the
jacobian Jac(Xs @k, Kp') = Jac(Xs) ks Kot has good reduction for every K-embedding
Kg — K}*. From [DelMu] theorem 2.4, Xg ®k, K" has stable reduction for every K-
embedding Kg — K*. It follows that the K-curve X = Xg® KSF has ur-stable reduction
at v; note that K is the field of moduli of X relative to the extension K /K (as Kg is the
field of moduli of Xg relative to Kg/K)).

Apply then theorem 1.3 to conclude that there exists a finite extension L/K depending
only on K, g and Sy, and an exceptional set S, = S,(L) of finite places of K such that X
has a L-model X with stable reduction at every extension of a place v ¢ Sy, U S,. Let S’
be the finite set of extensions to L of places v of K ramified in L or in Sy, US,. Let w € S’
and v its restriction to K. The K} "-curve X Q5 K™ is the K'-model of Xg ®x. K, with
stable reduction. Hence X ®j, K o and Xg ®g K" are isomorphic. So are the jacobians
Jac(X @p K) and Jac(Xg @, KU7). As the latter has good reduction at w, so does the
former. Conclude that Jac(X) has good reduction at w (as in remark 1.1 (a)).

Fix a prime number ¢ > 3. By the Neron-Ogg-Shafarevich theorem, L(Jac(X)[¢](K))
is a finite extension of L of degree < ¢?9 and is unramified outside S’ U Sy, where S; is the
set of finite places of L lying above ¢. Therefore, from Hermite’s theorem, there exists a
finite extension M /L such that L(Jac(X)[f](K)) C M for every Xg € E,(Ys). Let ® be a
K-isogeny between J ac()? Y®r K and J ac(?) ®r K. From a result already used in remark
3.2, ® is in fact defined over L(Jac(X)[(](K),Jac(Y)[(](K)), and so over M. Hence for
every Xg € F4(Ys), the M-jacobians Jac(X) ®L M and Jac(Y) @1 M are M-isogenous.

Use next Faltings’ finiteness theorem 1 to obtain that the set of M-isomorphism classes
of Jac(Xys), where X3y = X ®1 M and Xg runs through E,(Ys), is finite. Now a given
M-abelian variety A can be equipped with a M-polarization of degree bounded by a fixed
constant, in only finitely many ways (up to M-isomorphism of polarized abelian varieties)
([NaNo], [Mil] theorem 18.1). Conclude that, for the principal polarization A(X ;) induced
by Xu on Jac(Xy), the set of M-isomorphism classes of (Jac(Xar), M( X)), where Xg
ranges over E,(Ys), is finite. Next use Torelli’s theorem (again the form given in [Mi2])
to conclude that the corresponding set of M-isomorphism classes of X, is finite. Hence
the same is true for the set of M Kg-isomorphism classes of Xg ®x, M Kg, and so also for
the set of Kg-isomorphism classes of Xg, where Xg ranges over F,(Ys). O

There are other classical finiteness results in arithmetic geometry, concerning (polar-
ized) abelian varieties in particular. Similar variants of these results can be given if the

analog of theorem 1.3 is proved in the context of (polarized) abelian varieties.
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