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Descent Theory for Algebraic Covers
Pierre Debes

ABSTRACT. In the sixties A. Grothendieck developed some conceptual tools
to handle the general question of descent: fibered categories, gerbes, non-
abelian cohomology, etc. In the seventies, M. Fried’s moduli approach to the
arithmetic of covers revealed two significant descent questions: descent to the
field of moduli of a cover and existence of Hurwitz families above a moduli
space of covers. Many works have since been devoted to these two questions.
However it is only recently that Grothendieck’s conceptual framework was (re-
)introduced in this topic. Our goal in the paper is to join these two branches
of the theory: that is, we wish to recast the work done about covers within
Grothendieck’s perspective, use this new light on the subject to measure the
progress achieved and show how new developments already came out of this
unified viewpoint.

1. Introduction

This paper is devoted to descent theory. This primarily refers to descent of
fields of definition of algebraic objects. More generally, in a category where objects
are defined over a certain base, descent is the opposite of base extension: given an
object O over a base S, the question is to investigate models of O, i.e., objects
O’ defined over “smaller” bases S’ (i.e., with a map S — S’) that are isomorphic
to O after base extension from S’ to S. A. Weil was the first one to consider this
question in a systematic manner, in the context of algebraic varieties defined over
fields. Weil’s work was pursued by A. Grothendieck: his faithfully flat descent
theory generalizes Weil’s descent criterion to consider descent of objects that are
defined over general schemes S.

We are interested in descent theory for algebraic covers. Our original motiva-
tion lies in the regular inverse Galois problem, which is, generally speaking, the
construction of algebraic covers with small fields of definition. Furthermore, the
case of covers is central in the theory as for many types (or categories) of objects
X, descent questions reduce to that case through the consideration of the cover
X — X/Aut(X) (see [DeEm]).

We distinguish two main descent problems for covers. The first one is concerned
with fields of definition and the associated models of a given cover. The second one
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deals with Hurwitz families, i.e., families of covers of P! with some invariants fixed
(the group, the number of branch points, etc.): here the base S is the parameter
space of the family. Some background is recalled in §2. For both problems, there is
a best possible candidate to descend to: the field of moduli is the smallest possible
field of definition, if it is a field a definition; and the best possible parameter space
for a Hurwitz family is the associated moduli space — a Hurwitz space —; here
“best” means that, given any Hurwitz family, its parameter space maps to the
Hurwitz space. In general there is an obstruction to existence of a model defined
over the field of moduli and of a family parametrized by the Hurwitz space. However
this obstruction is thought as small in that in many circumstances it does not exist
and in general it vanishes through a controlled base extension. We aim at results
that make that precise.

There has been some progress in the recent years. This progress shows some
analogy between the two problems, which, from now on, we refer to as the cover
problem and the Hurwitz family problem. One goal of the paper is to revisit these
problems with a tentatively unifying point of view. There is more than an analogy:
through the moduli theory, a given cover (of P!) can be viewed as a point on a
Hurwitz space and the cover problem then corresponds to some “specialization”
to that point of the Hurwitz family problem. The theory of gerbes makes the
relationship concrete.

For descent problems in general, Weil’s and Grothendieck’s criteria provide
some theoretic description of the obstruction (§2.5). It is cohomological by nature.
However, they do not provide any concrete measure of the obstruction. Based on
[DeDo3] and [DeDoEm)], §3.1 explains that Weil’s and Grothendieck’s conclusions
essentially amount to saying that the obstruction can be viewed as a gerbe (under
some suitable assumptions). The main achievement of [DeDo3] and [DeDoEm)]
was to show that, in the specific context of covers and Hurwitz families, it is possible
to “compute” the gerbe and express it in terms of abelian cohomological classes.

Both the problems we have in mind can be handled simultaneously. The base
category of the obstruction gerbe is the moduli site S,,: the field of moduli in
the cover problem and the moduli space in the Hurwitz family problem. Due to
the moduli property, the gerbe comes equipped with patching data. The gerbe
induces a class in H%(Sy,, £) with values in some band £. This band is a priori
locally representable by a non-abelian group. However this obstruction class can be
reduced in H?(m1(Sm), Z(G)) with values in the center of the group of the cover.
This is more detailed in §3.2.

An alternate description of the obstruction was recently given [DeDoMo],
which we refer to as the diophantine description in that it amounts to solving poly-
nomial equations over certain fields. In terms of gerbes, this essentially corresponds
to the obstruction gerbe being an algebraic stack. With this description, which we
explain in §3.3, we could answer some open questions; this new viewpoint is still at
a developing stage and we expect it will reveal to be even more fruitful.

Applications are collected in §4. This last section can thus serve as a survey
of recent results on these topics. We also endeavour to parallel both problems
there. A first series of basic applications include concrete vanishing criteria for
the obstruction, bounds for the smallest extension of the moduli site over which
the obstruction vanishes. A certain minimality property of the moduli site is also
shown: in the cover problem (over Q), it is that the field of moduli is the intersection
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of all fields of definition, a property originally established by Coombes and Harbater
for G-covers of P!,

§4.2 is then devoted to “local-global” results. The following statement, which
conjoins several techniques from works of Douai, Emsalem, Harbater, Moret-Bailly
and the author, may illustrate well the progress achieved. Assume for simplicity
that f is a Q-cover of curves with field of moduli Q. Call a prime p good if p does
not divide the order of the group G of the cover and if the branch points remain
distinct modulo p. For each prime p denote the subfield of Q of all totally p-adic
numbers by Q" (the biggest Galois extension of Q contained in Q).

THEOREM. If the field of moduli is Q, then the cover f is defined over QP
(hence over Q) for all good primes p. Furthermore, if f is a G-cover, local ob-
structions at bad primes are the only possible obstructions; that is, f is defined over
Q if and only if f is defined over each Q.

In §4.3 we address another question, still rather mysterious though basic, which
is whether covers are “often” defined over their field of moduli. Some first answers
have recently been given [DeDoMo]: the subset of a Hurwitz space where the field
of moduli is a field of definition is Zariski-dense; more precise conclusions can be
drawn over “large” fields.

The theory of stacks and gerbes, which was developed by Grothendieck and
Giraud [Gi] and which we use in this paper, seems to be the right set-up for the
problems we consider. Their relevance for these questions had also been noted by
M. Fried [Fr;p.58]. We will provide some background (§3.1) and introduce these
tools gradually so that we hope that the reader who is not familiar with them can
still follow the paper.

Moduli data appeared in the context of elliptic curves with the j-modular in-
variant. In [Sh], G. Shimura more generally “deals with certain systems of polar-
ized abelian varieties parametrized by holomorphic functions and shows there exist
meromorphic functions whose values are considered as “moduli” of the members of
the system”; he also introduces a related notion of “field of moduli”. For elliptic
curves, the moduli space is the j-line and the field of moduli is Q(j); it is also a field
of definition. Moduli problems are subtler for higher genus curves, for abelian vari-
eties, for covers, and have been much studied, notably by Deligne-Mumford, Fried,
Fulton, Shimura et al. Moduli spaces of covers go back to Hurwitz and Klein; the
first general construction was given by M. Fried [Fr] (see [De2] for more references).
Hurwitz spaces contain much information, including arithmetic information, about
the covers they parametrize. Studying Hurwitz spaces has been a major program
in the last 25 years. Questions discussed here are part of this moduli approach to
the arithmetic of covers.
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2. Covers and Hurwitz families: descent problems

In this section we provide a parallel introduction to the two descent problems
discussed in §1: main data, questions, the moduli property, Grothendieck’s and
Weil’s results, etc. Notation, assumptions will be fixed for the rest of the paper.

2.1. General data. Let B be a regular geometrically integral variety defined
over a field K; B = P! over K = Q is the common situation. Fix a cover f : X — B
defined over the separable closure K* of K. Let d = deg(f) be the degree and
G C Sy be the (monodromy) group of f. We will work with algebraic branched
covers F: X — S x B such that the given cover f : X — B is a fiber of F for some
closed point s € S. Bases S are schemes and the general problem we consider is to
find objects F: X — S x B, which we sometimes call solutions, and to study possible
further descent of such objects along maps S — S’. The two concrete problems
we have in mind, which we more precisely present below, are special cases. In the
sequel, we will discuss the problem in its general form first and then consider in a
more concrete way each of the two special cases.

2.1.1. The cover problem. Here bases S are spectra Spec(k) of fields k£ with
K C x C K® and the associated objects/solutions above are k-models fy : X,; —
Spec(k) x B of the cover f.

A more general relative situation is sometime considered in our papers where
the given cover is a priori defined over a Galois extension F' of K. To fix ideas
we prefer to stick to the absolute situation where F' = K*® is separably closed.
Slight adjustments should be made to treat the more general case (replace Gx =
Gal(K*®/K) by Gal(F/K), etc.).

2.1.2 The Hurwitz family problem. Here fields are of characteristic 0! and B =
P!. Bases S are quasi-projective varieties H defined over fields k and the associated
objects/solutions above are families parametrized by H of covers with the same
degree, the same number of branch points and having f as a fiber. Formally, a
Hurwitz family of covers (relative to integers r and d) is a map F: 7T — H x P!
where

- T et 'H are quasi-projective varieties over k and the parameter space H is
regular and geometrically irreducible,

- F:T— H x P! is a flat finite k-morphism such that, for all h € H, the fiber
cover F, : T, — P! is a degree d cover with r branch points.

- the map pry o F : 7— H is a smooth projective morphism with an irreducible
generic fiber (where pr; is the first projection H x Pt — H).

It classically follows [DeFrl;Lemma 1.5] from the conditions above that

- the (monodromy) group G C Sg, the genus of the covering space and some
inertia invariant known as the Nielsen class are constant in the family,

- the map H — U, (called the branch point reference map) which sends each
h € H to the branch point set of the fiber cover Fj, is a morphism; here U, is the
variety of subsets of P! of cardinality r (define " to be the subset of all r-tuples
with r distinct entries in P! and mod out by the action of S, to get U,.).

The variety U, should be regarded as the ground space as the field K is the
ground field in the cover problem.

1Using Wewers’ work [Wew]|, Hurwitz families could also be developed in characteristic p for
covers of groups of prime-to-p order.
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2.1.3 Variants. There are two classical situations in the above problems:

G-cover situation: covers should be understood as G-covers, i.e., Galois covers
given with an isomorphism between the Galois group and a fixed group G. That
is, automorphisms of the cover are part of the data. These are a priori the relevant
objects to work with in the context of the regular inverse Galois problem.

Mere cover situation: covers should be understood as mere covers, i.e., not nec-
essarily Galois covers given without their automorphisms. There are many problems
for which the covers involved are mere covers (see [De2]). Even for the regular in-
verse Galois problem, it might be more appropriate to work with mere covers first
and to address the automorphism issue afterwards. As we will see, for descent
issues, the mere cover situation is more complicated than the G-cover situation.

A more general notion is defined in [De3|: a SG-cover is a non necessarily Galois
cover given with a “specified” subgroup S of the automorphism group. SG-covers
generalizes both mere covers (take S trivial) and G-covers (take S = G).

Fixing an ordering on the branch points leads to other variants of the problems.
A Hurwitz family with ordered branch points is given with a map H — (P!)” sending
each point h € H to the branch points, in some order, of the fiber cover F;,. The
branch point reference map is then a map H — U".

We will implicitly consider the mere cover situation with unordered branch
points. Up to slight adjustments, the other situations can be handled similarly.

2.2 Local study. Locally for the etale topology, both problems have solutions.
That is, given any etale cover S of the ground space, one can find models of f (in
the cover problem) and Hurwitz families (in the family problem) over a certain
finite etale cover of S. Furthermore two such local solutions are locally isomorphic.

2.2.1. Cover problem. Local solutions are models over finite extensions of K.
Local solvability merely means that f has a model over a suitably large finite
extension of K and that two models of f are isomorphic on a suitably large finite
extension of K.

2.2.2. Hurwitz family problem. Local solvability means that above a suitable
finite etale cover H of U,, there exists a Hurwitz family (with the cover H —
U, as branch point reference map). This essentially follows from the fact that
such Hurwitz families F : 7 — H x P! correspond to finite representations m; —
S4. Namely, define U, to be the quotient of U by S, acting on the first d
entries; then 7 should be understood as an open subgroup of the fundamental
group (U, 1), which contains the K-fundamental group 7 (P!-t)z of P! with
the branch point set t, as a closed normal subgroup. To prove local solvability, the
main point is then that the representation m (P!-t)z — Sq corresponding to the
given cover f extends to some open normal subgroup of 71 (U, ), thus yielding a
Hurwitz family parametrized by an etale cover ‘H of U,., and with the cover f as
a fiber (see [DeDoEm;prop.3.10]). Similar considerations show that two Hurwitz
families with f as a fiber become isomorphic over a suitable common etale cover
of their parameter spaces: two representations m; — Sy are equal on some normal
open subgroup [DeDoEm;prop.3.11].

REMARK 2.1. Local solvability is also true with the etale topology replaced
by the complex topology [Fr]. The reason is similar: there is a canonical notion
of local deformation of covers. On the other hand this is not true for the Zariski
topology; see however [DeDoEm;§4.4] and theorem 4.12 below for partial answers.
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2.3. Moduli property. We consider now the global problems. That is, we
wish to investigate and classify all solutions, and possibly find the best ones. There
is a best candidate which we introduce now.

A base S (spectrum of field Spec(k) or parameter space H) is said to have
the moduli property if all solutions over bases S’ lying above S (via a finite etale
morphism S” — ) can be equipped with patching data (relative to the map S’ —
S). This roughly means that the action of 71(S) maps local solutions (models or
Hurwitz families) to local solutions. We give specific definitions below for each
problem; the general notion of patching data will be precisely given in §2.5. The
moduli property of S is obviously a necessary condition for existence of a global
solution over S. There is a best base Sy, that can be equipped with patching data:
it is the field of moduli in the cover problem and the moduli space in the family
problem.

2.3.1. Field of moduli. Given a cover f: X — B over K®, the field of moduli
K of f is the fixed field in K® of the subgroup

M(f)y={reGk| [ = f (as covers)}

That is, Ky, is the smallest subfield of K® such that Gal(K®/Ky,) maps f to an
isomorphic copy of itself, or in other words, maps every model of f to a model of
f- As a consequence of the definition, the field of moduli is contained in every field
of definition of f.

2.3.2. Moduli spaces. There exists a coarse moduli space, called Hurwitz space
and denoted by H, g, for the category of covers with r branch points and mon-
odromy group G < Sy (in characteristic 0). The Hurwitz space H, g is a quasi-
projective variety defined over Q (as a reducible variety). The gist of the moduli
properties of H, ¢ is the following:

Given any algebraically closed field K of characteristic 0, K-rational points
on H,q are in one-one correspondence with the isomorphism classes of covers
of P with r branch points and monodromy group G — Sy. Furthermore this
correspondence is G g -equivariant.

The Hurwitz space can be more formally defined by this property, which is
analogous to the minimality property of the field of moduli:

Given any Hurwitz family F : T — H x P! defined over some field k, there
exists a unique morphism yr : H — H,.q, called structural morphism, such that,
for each h € H(k), the point yz(h) is the isomorphism class of the fiber cover Fi,.

The morphisms v satisfy some further universal properties (functoriality, etc.),
which are explicitly stated for example in [DeDoEm].

The moduli space H, ¢ is not irreducible in general. In the sequel we work
with the irreducible component of H,. ¢ containing the representative point [f] of
the given K-cover f; we will denote it by H,,. We let &k be a field of definition of
Hum; k can be taken to be a number field. We will abuse terminology to still call
Hm a moduli space or a Hurwitz space.

We explain now that there is an action of 71 (H,,) that leaves invariant the set
of local solutions, here Hurwitz families, above H,,. Consider a Hurwitz family
F;1 defined over some etale Galois cover vz, : Hi1 — Hp. Each given element
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y € m1(Hm) can be viewed as an automorphism of the cover vz . Pull back the
family F7 along the automorphism y to get a family y*F;. This family y* 77 is in
fact another local solution; more precisely, the families y*F; and J7 are isomorphic
over a suitable etale cover of H;. For that one should check the associated structural
morphisms are equal: we have indeed Ve Fr = VR OY = VS the first equality,
which comes from the functoriality of the v, should be understood as the analog
of the field of moduli condition f7 = f. See [DeDoEm;§3] for more details.

2.3.3. Connection. Let [f] be the representative point of the cover f on Hy,
and K = k([f]). Then each 7 € Gg maps [f] on [f]” = [f7]. Therefore M(f) is
the subgroup of all 7 € G that fix the point [f] € Hy,. Hence the field of moduli
of f is the field of definition of the point [f] € Hy,.

2.4. Main questions. From now on, S, denotes the moduli base, that is,
Sm = Spec(Ky) in the cover problem and Sy = (Hm)r in the Hurwitz family
problem. Action of 71 (Sy,) leaves invariant the set of local solutions above Sy,. A
natural question is whether it follows that there exists a global solution over Sy,
i.e., whether descent to Sy, is possible. If so, descent to Sy, is the best possible.
Otherwise the problem becomes to find out on what etale covers of Sy, one can
descend.

2.4.1. Field of moduli versus field of definition. The question here is whether
the field of moduli K, is a field of definition, and more generally, it is to investigate
on what extensions of K, the cover can be defined. There is an obstruction in
general: a cover need not be defined over its field of moduli; counter-examples are
given in [CoHa] for G-covers and [CouGr], [Cou] for mere covers.

2.4.2. Hurwitz family above the Hurwitz space. The question here is that of
existence of a Hurwitz family above the Hurwitz space H,,, or above controlled
etale covers of Hy,. There is an obstruction in general: examples (which use the
counter-examples above) are given in [DeDoEm] where there is no Hurwitz family
above a certain Hurwitz space.

2.4.8. Connection. If there is a Hurwitz family F: T— Hy, x P! defined over
k, then f has a model defined over its field of moduli k([f]), namely the fiber cover
Fig: Tip — B

2.5. Theoretic descent criteria. Descent should be understood as some
general local-to-global patching problem. A covering (S;); of a global base S is
given with a corresponding collection (§;); of local data. The question is about the
existence of a global object & over S whose restriction to each \S; is isomorphic to &;.
There are necessary conditions. First, for each pair (4, j), the restrictions of &; and
& to §;NS; should be isomorphic, say via an isomorphism x;;. Such isomorphisms
Xij are called patching data. When they exist, there is a next obvious necessary
condition: for each triple (4, j, k), we should have x;r = X,k © xs; over S; N.S; NSk
for some choice of the isomorphisms x;;s. When this holds, patching data are called
descent data. Descent data are called effective when these necessary conditions are
the only obstructions to descent.

However these simple ideas look a little different in our context. The topology
on the base S is the etale topology. Thus the maps S; — S are finite etale mor-
phisms; furthermore a single S” may be sufficient to cover all of S (think of Spec(K)
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which consists of a single point). Then the intersections S; NS [resp. S; N.S; N Sk]
should be understood as the fiber products S’ xg S’ [resp. S’ xg 5" xg 5]

This viewpoint on descent goes back to Grothendieck [Gr]. More specifically,
he fixes a base category S where fiber products exist (an etale site for example);
descent problems are considered along maps S’ — S from the category S. He then
gives himself a fibered category C of base S. That is, for each object S € S, a
category C(S) is given; and for each map ¢ : S’ — S, there is a “base extension”
functor t* : C(S) — C(9”); these data are required to satisfy some natural conditions
(see [Gr]). A descent problem is the following: given a map ¢ : S — S and an
object & € C(S"), to find an object £ € Cg such that t*(&) = &'.

As above there are natural obstructions. The first one is about existence of
patching data. If p; and py are the two projections S’ x g S” — S’, a patching data
(for & € C(9”) relative to the map S’ — S) is an isomorphism x between p;(¢’) and
3 (&) (see [Gr], [Gi] and also [DeDo3] and [DeDoEm]). Condition p;(¢’) ~ p5(¢’)
is a generalization of f™ ~ f and y*F; ~ Fj in the above contexts of covers
and Hurwitz families respectively. Considering the 3 projections p;; (4,7 = 1,2,3)
from S’ xg S8’ xg S’ to partial products of 2 copies of S’, one obtains the second
obstruction: some patching datas should be descent datas, that is

P31(x) = P32(X)P31(x)  (compatiblity condition)

2.5.1. Grothendieck’s faithfully flat descent theorem. Grothendieck’s result es-
sentially asserts that, in certain circumstances, the necessary conditions from the
previous paragraph are the only obstructions to descent. His result also addresses
the descent of morphisms issue. A morphism S’ — S is said to be a C-descent
morphism if given any two objects 7, ¢ € C(S), then Hom(n, {) is a sheaf (relative
to the map S’ — S). It is said to be a strict C-descent morphism if in addition
every descent data on an object & € C(S’) is effective.

THEOREM (Grothendieck [Gr]). Let S be the category of pre-schemes and t :
S’ — S be a finite etale morphism (or more generally a faithfully flat and quasi-
compact morphism) of the category S. Then t : 8" — S is a strict C-descent
morphism in the following cases:

- C is the fibered category of coherent sheaves,

- C is the fibered category of affine schemes,

- C is the fibered category of quasi-projective schemes.

In particular, descent datas are effective in both our problems. Indeed S can be
taken to be the category of spectra of fields in the cover problem and the category of
quasi-projective varieties in the Hurwitz family problem. And the fibered category
C of covers of fixed base space B falls into the first case and in the last case of
Grothendieck’s theorem (for the latter, view covers as graphs).

2.5.2. Weil’s descent criterion. It is the special case of Grothendieck’s theorem
for which § is the category of spectra of fields. We state it below in the specific
context of covers. By definition of field of moduli, for each 7 € Gal(K*/Ky,), we

havefl%sz.

THEOREM (Weil [We]). The field of moduli Ky, is a field of definition of f if

and only if isomorphisms x. between f and f7 can be found such that

Xuv = XpXu (4,0 € Gipy)  (cocycle condition)
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The cocycle condition is a special case of the general compatibility condition on the
Dyj (x)s. Appearance of action of Gg,, in the formula comes from the special form
of the fiber products S' xgS’, S' xgS' xgS’. Here S = Spec(Kn), S’ = Spec(K”)
with K’/Kp, a finite Galois extension; then S’ x g S” = Spec(K’ ®k,, K') where

K/ ®Km K/ ~ H (K/)T
T€Gal(K’/Km)

2.5.3. Classical consequences. Consider a local solution £ over a suitable etale
cover S’ of the moduli base Sy,. From the moduli property of Sy, £ can be equipped
with patching data. From Grothendieck’s theorem, descent to Sy, is then possible if
such patching datas can be found satisfying the compatibility condition above. That
is the case if objects in the category C have no non-trivial automorphism, which
here amounts to assuming that the initial cover f has no non-trivial automorphism.

COROLLARY. The field of moduli is a field of definition of f, and there is a
Hurwitz family Fo : T — Hm x P! above the Hurwitz space Hy,, in each of the
following situations:

ZOT’ mere _covers:
o Ceng,(G) = {1}  (Fried [Fr])

for G-covers:
e 7(G)={1} (Belyi [Bel]; [Del])

Furthermore, in that case H,, is a fine moduli space, that is,

if F: T— H x P! is any given Hurwitz family, then it is isomorphic to the
Hurwitz family vi-(Fm) obtained by pulling-back the Hurwitz family Fn, along the
structural morphism vr : H — Hm. Furthermore the isomorphism between F and
Y (Fm) is unique.

2.6. Towards concrete measures of the obstruction.

2.6.1. Cohomological nature of the obstruction. From Grothendieck’s theorem,
existence of local solutions ¢ € C(S’) (above Sy,) equipped with patching datas
that satisfy the compatibility condition is the only obstruction to descent to the
moduli base Sy,. Our next task will be to explain how to get a concrete measure of
that obstruction. The isomorphism y involved in the compatibility condition is well-
defined up to automorphisms of the object & (possibly after a base extension). Thus
the question is whether x can be modified by composing with automorphisms in
such a way that the compatibility condition holds. This is typically a cohomological
obstruction and the relevant cohomological set appears to be H?(Sy,, Aut(f)). We
will explain in the next section how to treat this cohomological problem in general.
We start with some classical situations where the obstruction can be easily handled.

2.6.2. The G-cover situation. Consider the 2-cochain ¢y, = (Xuw)  'XYXu €
Aut(f) involved in Weil’s criterion. For G-covers Aut(f) ~ Z(G) is abelian;
it can then be straightforwardly checked that (cy )y, induces a 2-cocycle Q €
H?(Ku, Z(Q)), which represents the obstruction, that is:

Q=11in H*(Ky, Z(Q)) iff the field of moduli is a field of definition.
This however does not carry over to the mere cover situation, which involves non-
abelian cohomology (as Aut(f) ~ Ceng,(G) is not abelian in general). For mere
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covers, the expression (Yu») 'x“Xu does not induce a 2-cocycle (not even in the
sense of non-abelian H?(Kp,, Aut(f))). A complication in non-abelian cohomology
is that H2(Kpm, Aut(f)) no longer has a single trivial class: there may be several or
there may be none.

REMARK 2.3. The form of the cocycle ¢, = (Yuw) X% Xu (for G-covers) sug-
gests that it might be in the image of the connecting morphism H*(K,,, G/Z(G)) —
H?(Kn, Z(Q)) associated with the exact sequence Z(G) — G — G/Z(G). As a
consequence the obstruction would vanish if the exact sequence splits. This is false:
there are abelian G-covers that are not defined over their field of moduli [DeEm;§5).
The subtelty here is that identifying elements x,, € Aut(f) with elements of G re-
quires to fix a K-rational point on the base space B; such points might not exist.

2.6.3. The Coombes-Harbater theorem. Assume here f is a mere cover of P!
that is Galois. The group Aut(f) acts freely and transitively on any unramified fiber
f(t,). Fix t, € P}(Ky) not a branch point. One can then “rigidify” the choice
of the x, in such a way that for each 7 € Gg,,, X~ maps a fixed point y € f~1(¢,)
to y”. This forces the cocycle condition to hold. We obtain this conclusion [CoHa]

a mere cover of P! that is Galois is defined over its field of moduli.

An explicit form of this result was given in [Sa]. Due to the same difficulty as in
remark 2.3 above, the Coombes-Harbater theorem does not extend to covers of a
more general base space B: there exist Galois mere covers f : X — B that are not
defined over their field of moduli [DeEm;§5].

3. Descriptions of the obstruction

Conclusions from §2 can be pleasantly summarized by using the language of
stacks and gerbes: we explain in §3.1 that the studied obstructions can be viewed
as gerbes. These gerbes are then “computed” in §3.2: the main result is theorem
3.1 which gives a description in terms of abelian H2(—, —). Another description is
offered in §3.3, which we call diophantine. Notation from §2 is retained.

3.1. The obstruction as a gerbe. We recall some general definitions and
then introduce the gerbe of models of f and the Hurwitz gerbe.

3.1.1. General definitions. Assume here that the base category S is an etale
site: morphisms are finite etale covers of Zariski open subsets and there is a final
object S in the category S. Let G be a fibered category of base S.

(i) G is called a prestack if the following local-to-global condition on morphisms
holds: every morphism S’ — S of the base category is a G-descent morphism (as
defined in §2.5.1).

(ii) G is called a stack if every morphism S’ — S of the base category is a strict
G-descent morphism (as defined in §2.5.1).

If in addition the two following conditions hold, G is called a gerbe:

(iii) For each S € S, the category G(S) is locally non-empty, that is, there exists
an open covering (S;);cr of S such G(S;) # 0 for all i € I.

(iv) For each S € S, any two objects in G(S) are locally isomorphic, that is, on
some suitable open covering (S;);er of S.

We have two more definitions:
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(v) Patching data on a gerbe G consist of patching data for an object & € G(S)
above some S € C (relative to a given map S — Su).
(vi) The gerbe G is neutral if global sections exist, i.e., if G(Sx) # 0.

3.1.2. The gerbe Gy of models of f [DeDo3]. Here C is the etale site of finite
separable algebra extensions of the field of moduli K,. Basic objects S of C are the
finite Galois extensions S = Spec(E) — Spec(Km). Above each such S € C, G¢(S)
is defined to be the category of E-models of f (with E-isomorphisms).

3.1.3. The Hurwitz gerbe Gy, [DeDoEm]. Here C is the etale site of finite
etale covers S = H — H,y, of the moduli space Hy,. Above each such S € C, Gy, (S)
is defined to be the category of Hurwitz families above H.

3.1.4. Checks. From Grothendieck’s faithfully flat descent theorem (§2.5.1),
the fibered categories Gy and Gy, are stacks (conditions (i) and (ii)); for Gy it is
sufficient to invoke Weil’s descent criterion. Conditions (iii) and (iv) are satisfied:
indeed they correspond to the local solvability properties discussed in §2.2; further-
more, the open covering (S;);cr of S involved in (iii) and (iv) can be taken to be
a single finite etale cover S’ of S. Thus Gy and Gy, are gerbes. Patching data
(condition (v)) come from the moduli property satisfied by the field of moduli K,
and the moduli space Hm (see §2.3).

3.1.5. Main questions. The main questions from §2.4, that is, whether the field
of moduli K, is a field of definition and whether there exists a family above the
moduli space H,, exactly correspond to whether the gerbes Gy and Gy, are neutral
(condition (vi)).

3.1.6. Connection. The gerbe language makes the connection between our two
problems more concrete. Denote as above the representing point on Hy, of the cover
f by [f]; its field of definition is k([f]) = K. Pull back the Hurwitz gerbe Gy,
along the map [f] : Spec(k([f])) — Hm to get a gerbe [f]*(Gny, )- The “specialized”
gerbe [f]*(Gny) can be shown to be equivalent to the gerbe Gy of models of f
([DeDoEm;§4.5], [Wew]). We have this immediate consequence which rephrases
§2.4.3: if Gy, is neutral then so is Gy.

3.1.7. Gerbes and cohomology. We will associate obstruction classes in some
H?(Sm, L) to the gerbes Gy and Gy,,,. We first briefly review the cohomological
theory of gerbes. We refer to [DeDo3;§1.2] and [Gi;Chs.3&4] for more details.

Let G be a gerbe over an etale site S. Given S € S and any two objects
&, & € G(S), isomorphisms v between & and &', which exist locally, induce specific
local isomorphisms ¢, : Aut(¢) — Aut(¢’) (mapping each g € Aut(¢) to ygy ).
There is a certain stack — the stack of bands — where Aut(§) and Aut(¢’) become
equal, that is, they induce a single object over some suitable etale cover of S..
Furthermore, these “local” objects can be patched to provide an object over Su.
This “global section” is called the band of the gerbe. Roughly speaking, it is
the collection of all automorphisms groups Aut(§) of objects £ in categories G(S)
(S € S), given with all isomorphisms ¢, and identified accordingly.

The bands L and Ly, of the gerbes G; and Gy, respectively are both locally
representable by the constant group sheaf C' where C' = Ceng, (G) for mere covers
and C' = Z(G) for G-covers. Here this comes down to the fact that for all S € S and
all objects & over S, Aut(§) becomes isomorphic to C after a suitable etale cover of
S. The gerbes Gy and Gy, are also said to be locally bound by the constant group
sheaf C.
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Two gerbes G and G of base S and band £ are said to be equivalent if there is
an isomorphism of gerbes G — G that induce the identity on the band £. The set
of all equivalence classes [G] is denoted by H?(S, L) or H?(Sx, £).

A main difference with abelian cohomology is that there may be several neutral
classes, i.e., several non-isomorphic neutral gerbes, and there may be none. An iff
condition for existence of neutral classes is that the band £ is globally representable
by a group sheaf H over S: given S € S, we should have H(S) = Aut(§) (as
bands) over S itself (and not only over an etale cover). This is a first obstruction to
neutrality of a gerbe G which generalizes the classical first obstruction to splitting
of an exact sequence: the outer action on the kernel of the exact sequence should
lift to an actual action. The set H?(Sx, L)’ of all neutral classes can be shown to
be a surjective image of H'(Se,Inn(H)).

3.2 Abelian cohomological description. From above, obstructions in both
our problems can be regarded as two classes [Gf] € H?(Km,Ly) and [Gu,,] €
H?(Hum, L14,,). For simplicity, denote them both by [G] € H?(Sw, L). Based on
[DeDo1l], [DeDo3] and [DeDoEm)], we now explain how to compute these classes
in terms of more classical and manageable data in some abelian H?(—,—). There
are two methods. The first one uses the theory of gerbes; it is more conceptual.
The second one, which chronologically came first, rephrases the problem in terms
of representations of w1 to turn it into a pure group-theoretic problem, which can
be tackled by means of classical abelian cohomology. The second method, which
involves explicit cocycle calculations, is more elementary, and is self-contained: it
implicitly reproves Weil’s and Grothendieck’s theorems.

3.2.1. First obstruction ([DeDo1;§3.1] and [DeDoEm;§3.3.1]). The obstruc-
tion is a two-step obstruction: as mentioned above, existence of neutral classes
in H%(Sm, L) (or, equivalently, representability of the band L) is a first necessary
condition for the obstruction to vanish. In our context, this first obstruction corre-
sponds to existence of weak solutions to a certain embedding problem for 71 (Sp).
This condition is usually denoted by (A/Lift): A is the name of the map to be lifted
in the embedding problem. Practical criteria for (A/Lift) to hold can be given (see
theorem 3.1 below) and also an iff criterion in terms of the vanishing of certain
cohomological data [DeDo1;Th.4.7]. Furthermore when condition (A/Lift) holds,
the set H?(Sy, L)' of all neutral classes, i.e., of all liftings A of A, is shown to corre-
spond to the set H(m1(Sm), C/Z(G)) (for some action). As before C'is Ceng, (G)
for mere covers and Z(G) for G-covers; for G-covers, there is a single neutral class.

This first obstruction can be interpreted in terms of extension of constants
in the Galois closure. By definition, all K-models of a G-cover are regular and
Galois over K: extension of constants is trivial. Unlikewise, a mere cover may
have several models over K with different non trivial extensions of constants in the
Galois closure over K. The first obstruction corresponds to existence of at least
one “possible” extension of constants; and then neutral classes correspond to all
possible extensions of constants.

3.2.2. Computation of the main obstruction.

1st method ([DeDo3] and [DeDoEm]). Assume that condition (A/Lift) holds,
i.e., there is no first obstruction. Fix then a neutral class, i.e., a lifting A of
A. Consider then the gerbe Gy whose objects are those from the gerbe G which
induce A and whose morphisms are those which respect A. For example, in the
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cover problem, objects of Gy over an etale cover Spec(E) — Spec(K,) are those
E-models of f with a certain extension of constants in Galois closure (given by A).

It turns out that the gerbe Gu is locally bound by C NG = Z(G). This
group is abelian. It follows that the bound is globally representable, by the con-
stant group sheaf Z(G) and that the set H?(Sp, Z(G)) has a single neutral class
[DeDo2;§1.2.7].

Furthermore the gerbe G, is equipped with patching data (as the gerbe G is).
This gives that the class [Ga] comes from an element Qp € H2((Hm)et, Z(G)) via
the embedding

H?(Sin, Z(G)) < H?(Sm, Z(G))
where H?(Sm, Z(Q)) is the 2nd Céch cohomology group.
In turn Q, corresponds to a cocycle Qy € H?(m1(Sw), Z(G)) via the natural
map

H?(my(Sm), Z(G)) — H*(Sm, Z(G))
The reason is that there exist global etale coverings of Sy, (and not just a covering
family) that neutralize the gerbe G.

2nd method ([DeDol] and [DeDoEm)]). As above assume condition (\/Lift)
and fix a lifting A of \. The problem can be then stated as follows. Suppose first
we are in the mere cover situation. Then f corresponds to some representation
¢ : m((P-t)xs) — G C S4. Solutions to our problem are branched covers of
P! x Sy (see §2.2.2 for notation). Denote the unbranched locus by (P! x Sp,)*;
this is (P!'-t),, in the context of covers and it is Huy Xy, U, in the context of
Hurwitz families. We have an exact sequence

1 — m(P-t)gs) — w1 ((P' x Sm)*) — m1(Sm) — 1

with 71 (Sm) = m1(Spec(Km)) = Gk, in the cover problem and 71 (Sm) = 71 (Hm)k
in the Hurwitz family problem. The question is to extend the representation ¢ :
71 ((P-t)gs) — G to a representation ® : w1 ((P! x Sm)*) — Norg,(G), that
induces A on 71(Sm). There is an additional data, a morphism @ : m((P! x
Sm)*) — Norg, (G)/Ceng, (G), which comes from the moduli condition: values of
© essentially correspond to the patching data, i.e., the isomorphisms between the
objects and their conjugates under m(Sy,); these isomorphisms, modulo Aut(f) ~
Ceng, (G), are well-defined and satisfy the compatibility condition (from §2.5). A
solution ® should also induce the map @ modulo the centralizer Ceng,(G). Groups
G and Z(G) replace Norg,(G) and Ceng,(G) in the G-cover situation.

This problem was studied in [DeDo1;§4] in general, that is, with a general
exact sequence of groups replacing the exact sequence of s above. Existence of
solutions inducing the fixed map A is shown to correspond to the vanishing of some
2-cocycle Qp € H?(m1(Sm), Z(G)), which is explicitly given in terms of the data.

Conclusion (of the two methods). The gerbe G is neutral if and only if the
cocycle Qy is trivial in H?(m(Sm), Z(G)). The original gerbe G is trivial, i.e., the
original problem has solutions, if and only if there exists a lifting A of A such that
the gerbe G, is neutral.

The last step consists in comparing the cocycles Q4 for different liftings of A.

For two such liftings A and A’, we have
QA’ — QA == 51(0)
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where § = A'/A™1 € H(71(Sm), C/Z(G)) and §' is the connecting morphism:

8t HY(m1(Swm), C/Z(G)) — H*(m1(Sw), Z(G))
This formula can be proved either from the gerbe viewpoint [DeDo3;§4.3] or by
a direct calculation from the explicit form of 5 given by the second method
[DeDo1l;prop.4.5].

Final comment: what made the computation possible. Gerbes are conceptual
objects that account for general situations. Here we were able to go further and
actually compute the obstruction gerbes because we are in the more specific situ-
ation of covers. Covers correspond to representations of w1 in finite groups. As a
consequence the gerbes involved in our problems are locally bound by a constant
finite group sheaf. Another particular feature is the following: the obstruction to
the gerbe G being equivalent to a specific neutral class in H2(S,,, £) happens to be
a gerbe locally bound by an abelian group, namely Z(G).

3.2.3. Statement of the main result. The following result, which is the main
result of [DeDol] (cover problem) and of [DeDoEm] (Hurwitz family problem),
is the conclusion of the previous paragraph. Recall we are given a degree d cover
f with monodromy group G C Sy. The result provides a practical cohomological
description of obstruction to existence of “global solutions to our problems”. Recall
that what we call global solutions are

o models of f defined over its field of moduli K, (cover problem), or

o Hurwitz families parametrized by the irreducible component (H,,) w2 of the
representing point [f] of f on the Hurwitz space H,.¢ (Hurwitz family problem).

The result can be stated for both problems together. As above Sy, denotes
Spec(K ) in the cover problem and H,, in the Hurwitz family problem; the group
m1(Sm) is then Gg,, and 71 (Hm)r respectively. The result essentially says that
there is an abelian characteristic class Q € H?(71(Sm), Z(G)) that measures the
obstruction. The obstruction however does not correspond to the vanishing of Q
but to the fact that Q lies in a certain "small” subset A C H?(71(Sw), Z(G)). This
subset is trivial for G-covers: in that situation the obstruction is measured by the
vanishing of 2.

THEOREM 3.1. There is a two-step obstruction to existence of global solutions.

First obstruction. A first necessary condition for existence of global solutions, called
(M\/Lift) should be checked. This condition holds in particular in each of the follow-
g situations.

e (for mere covers):
(a) The fundamental group w1(Sm) s a projective profinite group, or
(b) The group Ceng,(G)G/G has a complement in the group Norg,(G)/G. This
holds in particular for mere covers that are Galois of group G such that Inn(G) has
a complement in Aut(G), or
(¢) The group Ceng,(G)/Z(G) has no center and the group Inn(Ceng,(G)/Z(G))
has a complement in Aut(Ceng,(G)/Z(G)) (e.g. Ceng,(G) = Z(G)).

e (for G-covers): always.

Main obstruction. Assume condition (\/Lift) holds. Then there exists a 2-cocycle
Q€ H*(m1(Sm), Z(G))? with the following property.

2Recall k is a field of definition of Hu.
3The 2-cocycle Q and the action of 71 (Sm) on Z(G) are explicitely given in [DeDo1l].
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e (for mere covers): there exists a global solution to the problem if and only if

Q' e d' (H'(m1(Sm), Cens, (G)/Z(G)))
where 8 : H'(m1(Sm), Ceng,(GQ)/Z(G)) — H?*(m1(Sm), Z(G)) is the connecting
morphism associated to the exact sequence Z(G) — Ceng,(G) — Ceng,(G)/Z(G)

e (for G-covers): the same holds with Ceng,(G) replaced by Z(G). In particular
the iff condition on Q for existence of solutions is that Q =1 in H?(71(Sm), Z(G)).

3.2.4. The (Seq/Split) condition. Theorem 3.1 can be simplified if the following
exact sequence splits

1 — m(Plt)gs) — m (P x Siw)*) — 71(Sw) — 1,

a condition denoted by (Seq/Split). Let % : 1 ((P! x Si)*) — Norg, (G)/Ceng, (G)
be the map given by the moduli condition (see §3.2.2 (second method) above).

THEOREM 3.2. Assume condition (Seq/Split) and fix a section s : m1(Sm) —
71 ((PYx Si)*). Then the problem has a solution iff the map pos : (P x Sp)*) —
Norg, (G)/Ceng, (G) can be lifted to map ¢ : w1 ((P* x Sm)*) — Norg, (G).

We stated the result for mere covers. As usual the result for G-covers is obtained
by replacing Norg,(G) by G and Ceng,(G) by Z(G).

In the cover context, i.e., for Sy, = Spec(Ky,), condition (Seq/Split) classically
holds if the base space B has K-rational points off the branch point set. On
the other hand, condition (Seq/Split) does not always hold: counter-examples are
given in [DeEm;§5]. In the Hurwitz family context, i.e., for Sy, = (Hm )k, condition
(Seq/Split) holds in the situation of covers with ordered branch points and for k
algebraically closed [DeDoEm;Lemme 3.9].

3.2.5. Structure on the set of solutions [De3;§2]. Assume there is at least one
solution to the problem. Let © be the 2-cocycle from theorem 3.1.

THEOREM 3.3. The set of solutions ¥ can be partitioned in a collection (Xg)pco

of subsets ¥g such that:

- the index set © is the subset of all € H*(m1(Sm), Ceng,(Q)/Z(G)) such that
§L(0) = Q,

- for each 6 € O, the subset ¥y is in one-one correspondence with the 1-cochain
set Z1(m1(Sm), Z(G)) (for some action given in [De3]).
Furthermore, if condition (Seq/Split) holds, the set ¥ can also be viewed as the
1-cochain set Z*(m1(Sw), Ceng, (Q)) (for some action given in [De3]).

The statement is for mere covers. For G-covers, the set Y is in one-one cor-
respondence with the 1-cochain set Z!(71(Sm), Z(G)). In the cover problem, the
index set © consists of all actual extensions of constants in Galois closure of models
of f over the field of moduli.

3.3. Diophantine description. Another description of the obstruction was
recently given [DeDoMo]. We see it as diophantine as it amounts to solving
polynomial equations.

3.3.1. Cover problem. The main result of [DeDoMo] is the construction of
descent varieties for algebraic covers. For our given cover f : X — B, these are
parameter spaces of families of models of f satisfying the versal property: that is,
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each model of f is a fiber of the family, and so corresponds to points of V. Further-
more fields of definition of models and of their representative points correspond to
one another. More specifically we have the following statement; the word “cover”
can be understood as mere cover or G-cover.

THEOREM 3.4. There exists an affine variety V with the following properties:

(1) V is smooth, geometrically irreducible and defined over the field of moduli Ky,.
(2) There exists a Ky, -family F : X — V X B of covers of B parametrized by V ,
such that

(i) For each = € V, the fiber cover F : Xo — By (z) 95 a Km(z)-model of f.

(i) If k is an extension of Ky and f: X — By, ak-model of f, there exists
x € V (k) such that f is isomorphic to the fiber cover Fy : Xy — By,.
(3) For every extension k of Ky, for which V (k) # 0, V is unirational over k.

Thus we obtain this new approach to our cover problem:
the field of moduli Ky, is a field of definition if and only if V(Kwy) # 0.

For example, if K, is Pseudo Algebraically Closed then “V(Kp) # @7 holds
by definition; the field of moduli is a field of definition.

This approach led to new results, which had not been obtained through the
cohomological approach. In particular, it made it possible to answer questions
raised in [DeHa] about existence of totally p-adic models of covers at good primes
of their field of moduli. More details are given in §4.2.2.

There might be other applications if one could describe more precisely these
descent varieties. The descent varieties V' we construct are unirational. A natural
question is whether these varieties are rational and also whether the Hasse principle
holds for these varieties. Answers to this question would yield some information
about the Hasse principle for covers (see §4.2.3).

Two constructions of these descent varieties are offered in [DeDoMo]. The
first one, which works for covers of P!, is quite explicit: basically, it is proven that
affine equations P(¢,y) = 0 for covers of P! can be normalized in such a way that
for models of a same cover they form a family of affine curves; for some “good”
normalization, the parameter space can also be shown to be defined over the field
of moduli. The second method, which is more general, uses the stack and gerbe
approach. The gerbe Gy is noted to be an algebraic stack as it can be covered by
affine schemes. General results about algebraic stacks are then used and refined to
show that G¢ can be in fact covered by an algebraic K-variety V' as in theorem 3.4.

3.3.2. Global version. There is a version of theorem 3.4 above the Hurwitz
space Hp.

THEOREM 3.5. There ezists a family V — Hpy parametrized by Hm of smooth
algebraic varieties such that for all h € Huy,, Vi s a descent variety for the k(h)-
cover fp : X — PllcT corresponding to h. That is, we require that the fiber-variety

Vi satisfies conditions (1)—(3) of theorem 3.4 with Ky = k(h) and f = f.

Applications of this result are given in §4.3.1.
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4. Applications

4.1. Basic applications.

4.1.1. Concrete criteria. The following criteria are straightforward consequen-
ces of theorems 3.1 and 3.2. The first one concerns the cover problem and the
second one the Hurwitz family problem.

COROLLARY 4.1 [DeDo1;§3.4]. The field of moduli is a field of definition in
each of the following situations.
(a) The absolute Galois group G, is a projective profinite gp (e.g. cd(Ky) < 1).
(b) Z(G) = {1} and condition (\/Lift) holds (see theorem 3.1 for practical cases
of (A\/Lift)). This holds in particular if f is a mere cover that is Galois of group G
with trivial center and with a complement in Aut(G).

(¢) Condition (Seq/Split) holds (e.g. there are unramified Kpy-points on B) and
e (for mere covers): Ceng,(G) has a complement in Norg,(G). This holds in
particular if f is Galois.

e (for G-covers): Z(G) has a complement in G (e.g. G is abelian).

In the following statement, H is a geometrically irreducible variety with a mor-
phism x : H — Hy, for example a subvariety of the Hurwitz space Hy,.

COROLLARY 4.2 [DeDoEm;§4]. There exists a Hurwitz family F: T — H x P!
in each of the following situations.
(a) The fundamental group m (H) is a projective profinite group. This holds in
particular if H is an affine curve in Hy, over an algebraically closed field.
(b) H = Hm is the Hurwitz space, Z(G) = {1} and condition (\/Lift) holds. This
holds in particular if f is a mere cover that is Galois of group G with trivial center
and with a complement in Aut(G).

(¢) H = Hm parametrizes covers with ordered branch points, the field k is alge-
braically closed and
e (for mere covers): Ceng,(G) has a complement in Norg,(G). This holds in

particular for Galois covers.
o (for G-covers): Z(G) has a complement in G (e.g. G is abelian).

Statement (b) in corollaries 4.1 and 4.2 improve on corollary 2.2: Ceng,(G) =
{1} is a special case of (b). Corollary 4.1 (c) for mere covers generalizes the
Coombes-Harbater theorem. Condition (Seq/Split) cannot be dropped in Corol-
lary 4.1 (c) (and probably not either in Corollary 4.2 (c)): there exists mere Galois
covers and abelian G-covers that are not defined over their field of moduli [DeEm)].
Statements (a) and (c) from corollary 4.2 generalize statements (c) and (b) respec-
tively of proposition 1.4 from [CoHa] where only the G-cover situation is consid-
ered. Corollary 1.4 (¢) should also be compared to proposition 3 from [Fr] where
G is supposed to be a centerless group.

4.1.2. Bounds for existence of solutions. The following result is proved in
[DeDo1;§3.4] (for (a)) and in [DeDoEm;§4] (for (b)). Denote by D the integer

|Nors, G|
|Ceng, G|
Gl
1Z(G)]

in the mere cover situation
D —_—
in the G-cover situation
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COROLLARY 4.3. (a) Assume there exists some unramified Ky -rational point
on the base space B (or more generally that condition (Seq/Split) holds). Then the
cover f has a field of definition of degree < D over Ky,.

(b) If B =P and if covers are given with an ordering of their branch points, then
there exists a family above an étale cover of ('Hm)@ of degree < D.

4.1.3. A minimality property of the moduli. The next statement extends some
results originally proved in the G-cover situation by Coombes and Harbater [CoHa].

THEOREM 4.4. (a) The field of moduli of a Q-cover is the intersection of all
its fields of definition.
(b) The function field Q(Hw) of the Hurwitz space Hm is the intersection of all
function fields @('H) of irreducible Q-algebraic varieties H that parametrize Hurwitz
families and are such that the associated structural morphism vy is dominant.

(a) is proved in [DeDo1;§3.4] and (b) in [DeDoEm;§4]. In (a) the field of
moduli K, is a number field. The idea is then to write this number field as an
intersection of fields k with G, pro-cyclic (which implies projective) and to use
corollary 4.1 (a). The principle of the proof is similar in (b): to write Q(Hm) as
an intersection of function fields Q(H) of varieties H that one can view as (families

of) curves so as to apply corollary 4.2 (a).

4.2. Local-global results for fields of definition of covers. The theorem
stated in the introduction is a combination of several results. A first one roughly
says that, over complete (or more generally henselian) valued fields, the field of
moduli of a curve cover is a field of definition, unless the residue characteristic p
is a “bad” prime (§4.2.1). This result extends to fields that are existentially closed
in complete valued fields, like the fields of totally p-adic numbers (§4.2.2). Over
a global field, there can only be finitely many bad primes. Furthermore, in some
circumstances, there is a Hasse principle (§4.2.3): if there is some global obstruction,
it shows locally (at one of the bad primes).

4.2.1. Local result. In the next statement, we assume that the ground field K
is the fraction field of a henselian discrete valuation ring (O, P) whose residue field
O/P is perfect, and that the base space B of the cover f is a geometrically irre-
ducible smooth projective K-curve with a model over Spec(O) with good reduction
at the prime P.

THEOREM 4.5. Assume further that the order of the group G of the cover f is
not divisible by the residue characteristic p = char(O/P), and that no two branch
points coalesce at any prime over P of the integral closure of O in K*.

(a) The cover f has a model f~ over the unramified closure K3 of Kn that is
stable, that is, Ky, is still the field of moduli of this model (relative to the extension
KY/K ). Furthermore K = K (t)" where t is the branch point set of f.

(b) If the residue field O/P is of cohomological dimension < 1, then the field of
moduli is a field of definition of the cover f (and also of the KX -model f).

This result is proved in [DeHa] for G-covers of P'. The second sentence of (a)
is known as Beckmann’s theorem [Bel]. The general case of theorem 4.5 is proved
in [Em].

Existence of a K¥-model of f follows from “cd(K) < 1”7 and corollary 4.1
(a). The point in (a) is to find a stable model over K. In [DeHa], a good models
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result of Beckmann is used which shows that, under the assumptions, a K -model
can be twisted in another K!¥-model without vertical ramification [Be2]. As a
consequence, this model has fibers consisting of K\-rational points. This ensures
that the model is stable (stability criterion from [Del]). The method is different
in [Em]. There the cover is first reduced modulo P; from Fulton’s theorem, there
is good reduction under the assumptions. Grothendieck’s specialization theorem is
then used to lift the reduced cover to a Ky-model of f. This model is stable, as
automorphisms of the reduced cover also lift. If in addition c¢d(O/P) < 1 (and so
cd(G(KY/K)) < 1), descent to K, itself is possible, from corollary 4.1 (a) (or
more exactly from a relative analog).

COROLLARY 4.6. A Q-curve cover f : X — B is defined over all but finitely
many completions (Km)y of its field of moduli. More precisely f is defined over
(K)o for every place v such that the residue characteristic is a good prime p, i.e.,
such that p does not divide |G|, the branch points do not coalesce modulo p and B
has good reduction modulo p.

In this result the places v are implicitly finite. The question of when an
archimedean completion (K,), is a field of definition can be considered. This
is trivial if (K ), = C but interesting if (Km), = R. In this case the question can
be decided by topological methods [DeFr2;§3.5].

4.2.2. Local-global result. The following result is a straightforward consequence
of theorem 3.4 from §3.3 (the diophantine approach). Recall that a field & is said
to be existentially closed in a regular extension €2 if for each smooth geometrically
irreducible s-variety V, V() # 0 = V (k) # 0.

COROLLARY 4.7. Assume that the field of moduli K, is existentially closed in
some field of definition k, of the cover f. Then f is defined over Ky,.

The next corollary answers a question raised in [DeHa] (Question 5.3) about
totally p-adic models of covers. Suppose K, is a global field (i.e., either a number
field or a one-variable function field over a finite field). Given a nonempty finite
set X of places of K, denote the maximal extension of K, in a fixed separable
closure K® which is totally split at each v € 3, by K=. For example, if K, = Q
and v = p, K2 is the field Q' of totally p-adic numbers.

THEOREM 4.8. Assume f : X — B is a curve cover. Let Y. be a finite set of
good places of Ky,. Then f is defined over KZ.

Let V be a descent variety associated with the cover f as in theorem 3.4. From
theorem 4.5, the cover f is defined over (Kp), for all v € ¥. Thus there are
(K1,)o-rational points on V for all v € ¥. From a local-global principle for smooth
algebraic varieties due to Moret-Bailly [Mo1] (see also [Pop]), it follows then that
there are K>-points on V. These KZ-points correspond to K>-models of f.

4.2.8. Hasse principle. The following local-to-global question was originally
raised by E. Dew in his thesis [Dew]: if a cover f : X — B is defined over each
completion of a number field K, then does it follow that it is defined over K7 This
was proved in [Del] and [DeDol] for G-covers.

THEOREM 4.9. A G-cover f : X — B over Q is defined over Q if and only
if it is defined over each completion Q, of Q (including p = oc). More generally,
the same conclusion holds with Q replaced by any number field K that is not an
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exception in the Grunwald- Wang theorem (see [DeDo1:§3.5] for a precise definition
of the exceptional case).

The proof uses the cohomological description of the obstruction (theorem 3.1).
If f is defined over all Q,, then the field of moduli has to be Q (as it is contained
in each @Qp). Thus the obstruction to f being defined over Q is measured by a
2-cocycle Q € H*(Q, Z(G)). This 2-cocycle vanishes in each H%(Q,, Z(G)). Now,
using the Tate-Poitou duality theorem conjoined with the Grunwald-Wang theorem,
the natural map H?(Q, Z(Q)) — 1L, H?(Qp, Z(G)) can be shown to be injective.

The local-to-global principle has also been studied for mere covers. Some partial
answers are known (c¢f. [DeDo2| and [De3]). For example, the local-to-global
principle holds if Z(G) = Ceng, (G) C Z(Norg,(G)). We conjecture however it does
not hold in general (see [DeDo02;§3.3]. But we do not have any counter-example
yet (see [Del;Remark 5.4]).

4.3. Specialization results on Hurwitz spaces.

4.8.1. Specialization results on Hurwitz spaces. The cover problem is a special-
ization of the Hurwitz family problem. More precisely, for each point h = [f] € Hup,
there is a specialization morphism Sp,;,, which maps the Hurwitz gerbe Gy, to the
gerbe Gy of models of f. A natural question is whether the Hurwitz gerbe Gy, is
neutral if all gerbes G, (h € Hy,) are neutral. Neither counter-examples nor results
in this direction are known.

In the same vein, one may ask whether a cover is “often” defined over its field
of moduli. To make the question precise, define the subset H*°°® € H,, to be the
set of closed points h € Hy, such that the corresponding cover fp, : Xp — [Pllc(—h) is
defined over its field of moduli k(h) (i.e., for which there is no ob(struction)). The
next result, which follows from theorem 3.5, provides a description of ’H“mOOb. Let
YV — Hp, be a family of descent varieties over the Hurwitz space as in theorem 3.5.

THEOREM 4.10 [DeDoMo]. The closed points h € Hy, such that the corre-
sponding cover fp : X, — ]P)Ilc(—h) is defined over its field of moduli k(h) are exactly

those points for which Vi, (k(h)) # 0.

Combined with a result of Poonen [Po] this shows that the set H2°°" is Zariski-
dense. Furthermore, if k is large, the set H20"(k) = H™°" N Hyp (k) is empty or
Zariski-dense. Recall a field k is large if every smooth k-curve has infinitely many
k-points provided it has at least one. In the last 10 years, many significant conjec-
tures from geometric inverse Galois theory have been shown to hold when the base
field is large. Essentially the reason is that one could reduce these conjectures to
finding rational points on varieties. Theorem 4.10 is a new illustration of that. We
have an exact description of the subset H"°P(k), which yields precise information
if the base field is large; however, in general and in particular over Q, giving a pre-
cise description of H*°°"(Q) remains a difficult problem (as other problems from
geometric inverse Galois theory).

The next result also uses theorem 3.5 but combines it with a stack-theoretic
version of the Moret-Bailly local-global principle used in the proof of theorem 4.8
[Mo2]. Suppose K, is a number field and fix a non-empty finite set ¥ of places
of K. Recall k is a field of definition of the Hurwitz space H,,; the field K>
appearing below was defined in §4.2.2.
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THEOREM 4.11 [DeDoMo|. Assume that k C KZ. Assume further that for
each v € X, there exists a (Km)y-cover f, + X, — P! corresponding to a point
hy € Hm((Kw)y) (for each embedding K= — (Kw)y). Then there exists a point
[f] € Hm(KZ) such that the corresponding cover f : X — PY is defined over KZ=.

4.3.2. Generic specialization. We end this paper with a specialization result at
the generic point of H,,, proved in [DeDoEm)].

THEOREM 4.12. If Br(Hm)n = 0 for each divisor n of |C| (with C = Ceng, (G)
or C = Z(G) as usual), then there exists a Hurwitz family above a non-empty
Zariski open subset of ('Hm)@, or, equivalently, the cover corresponding to the
generic point of Hy is defined over its field of moduli (relative to the extension

Q(Hw)/Q(Hum))-
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