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Regular Realization of Abelian Groups
with Controlled Ramification

Pierre Debes

ABSTRACT. We prove that given an arbitrary field K, a finite subset D C
P1(K) and a finite abelian group A, there exists an extension F/K(T) that is
regular over K, Galois of group A and such that the extension K F/K(T) is
unramified over each element of D.

1. Result and motivation

THEOREM. Let K be an arbitrary field and D C PY(K) be a finite set. For
each finite abelian group A, there exists an extension F/K(T) that is reqular over
K, Galois of group A and such that the extension KF/K(T) is unramified over
each element of D.

The above result is the goal of this Note. Our motivation initially lay in an-
other problem of realization of groups as Galois groups called the Beckmann-Black
problem. E. Black conjectures [B12] that, given an arbitrary field K, every Galois
extension E/K is the specialization of a Galois branched cover of P! defined over
K and with the same Galois group G. In [De| we give a proof of the conjecture
in the case the group G is abelian and K is an arbitrary field, which improves on
previous results of Beckmann [Be] and Black [Bl1] where K was assumed to be
a number field. Our construction starts with a Galois cover f : X — P! of group
G defined over K as G-cover (i.e., along with its automorphisms). Existence of
such a cover is classical. However we require further in our proof that the cover
has at least one unramified point ¢, € P!(K). While this extra condition does not
raise any difficulty when K is infinite, it appears that, to my knowledge, no such
result on the regular realization of abelian groups with some prescription on the
ramification was available in the literature for finite fields.
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2. Proof of the Theorem

2.1. A preliminary lemma. The following result will be used in the two
cases of the proof of the Theorem.

LEMMA. Let E/K be a finite Galois extension, D C P*(K) be a finite set and
n > 1 be an integer. There exist two polynomials «(T) € E(T) and 3(T) € K(T)
satisfying the following conditions:

(i) deg(a) =r > 1 and o(0) =1,

(i) « is irreducible and separable over E,

(11) The coefficient of T in o(T') is a primitive element of the extension E/K,

(iv) a(d?) # 0 for each d € D\ {oc0} and each v € G(K/K)

(u) deg(8) = 7,

(vi) a(T) and B(T) are relatively prime in E(T), and

(vit) B(T) has a nth root in K((T)).

Proor. If K is infinite, take a(T") = b1T 4+ 1 with by a primitive element of
E/K such that —1/b; is different from all the elements d” with d € D\ {oo} and
v € G(K/K). The polynomial (7" fulfills conditions (i)-(iv). As to conditions (v)-
(vii), they are satisfied for any polynomial (3 of the form b7+ 1 with b € K\ {0, b1 }.

Assume now that K is finite. Let r, be an integer bigger than the degrees over
E of all elements of D \ {co}. Then pick a polynomial a,(T) € E(T) of degree
r = nr,, irreducible and separable; this is clearly possible: each finite field has a
(unique) extension of any given degree. Furthermore, one may take «,(7") monic
and, up to changing 7" by 7' — a for some a € E, assume that the coefficient of 7" ~!
in a,(T') is a primitive element by of E/K. Then the polynomial a(T") = T"a,(1/T)
satisfies conditions (i)-(iii). Condition (iv) holds as well since the roots of a(T’) are
of degree r over E. Finally take 3(T) = T™°; conditions (v)-(vii) are readily
checked. O

2.2. Proof of the Theorem. One easily reduces to the case A is a cyclic
group of prime power order. Indeed write A as the direct product of cyclic groups
of prime power order. Assuming the result is true for cyclic groups of prime power
order, realize a first cyclic factor over K(T') with branch point set A; disjoint
from D. Then realize a second cyclic factor over K(T') with branch point set Ay
disjoint from D U A; and proceed inductively. By construction, the obtained field
extensions are linearly disjoint (since their branch point sets are pairwise disjoint).
The compositum of these extensions is an extension F/K(T) that is regular over
K, Galois of group A and such that the extension KF/K(T) is unramified over
each element of D.

From now on, assume A is a cyclic group of order a prime power £™. Denote
the characteristic of K by p. We distinguish two cases.

1st case: £ # p (including p = 0). Apart from condition “F/K (T) unramified
over each element of D”, the result is then proved in Lemma 11.27 of [Vo] (which
itself relies on some work of D. Saltman [Sa]). We will modify the proof to in-
clude the ramification condition. We explain below what changes should be made.
Notation is that of [Vo;Lemma 11.27]; in particular n = ¢™.

The construction starts with an extension of K (¢, )(T) associated with a poly-
nomial of the form Y™ — g(T') (where (, is a primitive n-root of unity and ¢(T") €
K ((,)[T] is a certain polynomial (see below)) and consists in showing that the
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associated cyclic cover of the T-line has a model over K (as G-cover). Only the
polynomial g(7°) has to be changed in the proof in order to obtain the full conclusion
of the Theorem in the considered case.

Set I' = G(K((,)/K) and for each v € T', select an integer x(7) such that
v(Cn) = %(7); take x(1) = 1. From the Lemma applied with E = K((,), there
exists polynomials a(T") € E(T) and B(T') € K(T) satistying conditions (i)-(vii) of
the Lemma. Then set

- [Tyer Y(a(@)XC) ifoo ¢ D
Q(T = H‘yEI‘ ,y(a(T))x(v’l)
A7)

where each v € T' acts coefficientwise on polynomials in K(¢,)[T]. The polynomial
g(T) generalizes the polynomial

if o € D

[T +A@)ryxe
yel
which is used in the proof of [Vo;Lemma 11.27]: «(T) replaces 1 + b1 7.
It follows from conditions (ii) and (vi) of the Lemma that «(T") and «(T)/6(T)
are not (-powers in K[T]. From condition (iii), the polynomials v(a (7)) (v € T)
are pairwise distinct. It follows that g(T) is not a ¢-power in K[T]. Conclude that
the polynomial Y™ —g(T') is irreducible in K (7')[Y]. The rest of the argument more
or less follows [Vo] to conclude that the associated cover of the T-line is cyclic of
order n and has a model over K as G-cover. For the convenience of the reader, we
reproduce some details from [Vo).
Let v € K((,)((T)) such that v™ = «(T') (such a v exists since «(0) = 1) and
w € K((T)) such that w™ = f(T) (w exists from the Lemma (condition (vii)).
Then

{ HWEF 'y('u)X('fl) ifoo ¢ D
u =

—1
H’yEF ,Y(,U)x('v )
wlTT

if coe D

lies in K((,)((T)) and satisfies u™ = g(T'). The extension K ((,)(T,u)/K((,)(T) is
Galois of degree n and is regular over K((,). Its Galois group is the cyclic group
<w> generated by the K((,)(T)-automorphism w determined by w(u) = ¢, u.

Each v € T acts on K(¢,)(T,u) via its action on K((,)((T')). For this action,
we have

7(u) = XD F(T) with f(T) € K (G)(T)

This is a straightforward computation using x(7172) = x(71)x(72) [mod n] and
V"™ € K(¢,)(T); in particular x(7)x(y~1) = 1 [mod n]. Hence T leaves K ((,)(T, u)
invariant. Furthermore we have (yw)(u) = (wv)(u). Indeed, with m = x(v) we
obtain

(yw)(u) = "u™ f(T) = w(w)™ f(T) = wu™ f(T)) = (wy)(u)
Let T, be the group of K(T)-automorphisms of K ((,)(T,u) induced by ele-
ments of I and let A be the group generated by I', and w. We have the diagram
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K(G)(Tu)te Lo K(Gu)(T,u)

<w>

K(T) L K(G)(T)

Clearly (K (¢,)(T,u))* = K(T) whence |A| = |Ty| - | <w>|. Tt follows that A
is the direct product of T', and <w>. Conclude that the field (K ((,)(T,u))Fe is
Galois over K (T') with Galois group isomorphic to <w>.

Consider the cover of P! associated with the extension (K (¢,)(T,u))te /K (T).
Its branch points are contained in the set

{ {t e K|g(t) =0} U{o0} ifoo¢ D
{t e K|g(t) =0} ifooe D

From condition (iv) of the Lemma, no point d € D is a branch point of the cover.

2nd case: ¢ = p. Here again, apart from the ramification condition, the result
is fairly classical. We will modify the proof of Lemma 24.42 in [FrJa] to include
the ramification condition.

From the Lemma applied to E = K and n = 1, there exists a polynomial
a € K(T) satisfying conditions (i)-(iv) of this lemma. Then set O = K[T,1/c(T)]
and U = Spec(Q). From condition (iv) of the Lemma, U is an open subset of P}
such that D c U(K).

The proof goes by induction on m. Take for F; the splitting field over K(T')
of the polynomial Y? —Y — 1/a(T). This polynomial has no root in K (7). Indeed
assume on the contrary that u/v is a root of Y? — Y — 1/a(T) with u,v € K[T)
relatively prime. We obtain

vP = a(uP — uwP )

From condition (ii), « is irreducible and separable over K. Therefore o necessarily
divides v in K[T]. Simplifying by « in the equality above leads to vP~! divides u? in
KT, a contradiction since p > 2. Therefore, from additive Kummer’s theory (e.g.
[La;Ch.8 §6]), the polynomial Y? — Y — 1/a(T) is irreducible over K(T) and the
extension F1/K(T) is a cyclic extension of degree p, regular over K. Furthermore,
the extension KF;/K(T) is unramified above each element ¢ € K which is not
a pole of 1/a(T). In particular, no element of D can be a branch point of the
extension K Fy /K (T).

Suppose next given a cyclic extension F,,,/K(T) of degree p™, regular over
K and such that the extension K F,,/K(T) is unramified over each element of D.
Denote by O the integral closure of O in F},,. Also denote the trace function relative
to the extension F, /K (T) by Tr. For each b € O, Tr(b) € O.

We claim that there exists an element b, € O such that Tr(b,)(d) # 0 for each
d € D. Indeed, by induction hypothesis, the field extension F,,/K(T) and so the
ring extension (7)/ O are unramified at each element d € D. Since the ring O is a
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p.i.d., the discriminant ideal of (7)/ O is a principal ideal and O is a free O-module

of rank p™. More specifically, if {z1,... ,z,m} C O is a basis of the O-module (7),
then the discriminant ideal is generated by

A(T) = det ((Tr(wiz;))i;)
From above, A(d) # 0 for each d € D. It follows then that for each d € D at least

one of the elements Tr(z;z;) does not vanish at d. This shows that for each d € D,
the O-module

Vi = {x € O[Te(z)(d) = 0}

is properly contained in O. The claim follows from the fact that, since O is infinite,
O cannot be the union of the finitely many proper sub-modules V; with d € D.

Set b = b,/ Tr(by) and P(b) = P — b; P(x) = zP — x is the Artin-Schreier
operator. Then Tr(b) = 1 and Tr(P(b)) = Tr(b)? — Tr(b) = 0. Let o be a generator
of the cyclic group G(F,,/K(T)); from the regularity of the extension F,,/K, o
extends to a generator of the Galois group G(K Fy,/K(T)). From the additive form
of Hilbert’s Theorem 90 [La;Ch.8 §6], there exists a € F}, such that a” —a = bP —b.
Furthermore, a can be taken to be

a = _P(b)ba _ P(b + ba‘)bgz L ,P(b + Be I bgpmfz)bapmil

Since b, is integral over O = K[T,1/a(T)], the possible poles of b, (viewed
as a function on the smooth projective model C,, of KF,,) lie above roots of
« (via the restriction map T). The same is true for each conjugate bJ of b,
(i =0,...,p™ —1). In particular, no pole of any of the b (i =0,... ,p™ — 1) lies
above some element of D. Since Tr(b,)(d) # 0 for each d € D, the same is true for
all the b (i =0,...,p™ —1). Conclude from the form of a that no pole of a lies
above some element of D.

Define F), 11 to be F,,(z) where z is a zero of the polynomial Y? — Y —a. It
follows from a® — a = bP — b that the extension F),11 is a proper extension (of
degree p) of F,, and that the extension F, /K (T) is cyclic of order p™*! and
regular over K. This is proved for example [FrJa;Ch.24 §8]. For the convenience
of the reader, we reproduce the argument.

The first point is that the polynomial Y? —Y — @ has no zero in K F},. Indeed
otherwise, Y? =V —a = [[?2) (Y — & — i) is totally split in Fy,[Y]. Then we have

0=((z")P —27—a”)— (2P —x —a)
=2 —2)’ = (27 —z) — (a° — a)
— (@7 — 2 — (a7 — ) — (" — b)
Since b is a root of Y? —Y — (bP —b) there exists an integer ¢ such that 2% —z = b+1.
Applying the trace function Tr to both sides yields 0 = 1, a contradiction. This
proves the claim. It follows then from [La;Ch.8 §6] that the polynomial Y? —Y —a
is irreducible in K F,,.
The second point consists in extending o to a K (T)-automophism of F, 1.

It follows from a” —a = b” — b that  + b is a zero of Y? — Y — . Thus there
exists a K (T)-automorphism o’ of F,1; that extends o and maps z to x + b.
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We are left with proving that o’ has order p™*!. An easy induction shows that
(0 (z) =2+ 070+ 07"2b+---+b (j > 1). Therefore

(VP (z)=x+Tr(b) =x+1
Conclude that ¢’ is indeed an automorphism of order p™+1.
To finish the second case of the proof, it remains to show that the extension
K Fpy1/K(T) is unramified over each element d € D. The branch points of the ex-
tension K F},, 1/ KF,, are necessarily poles of a (viewed as a function on the smooth
projective model Cy, of KF,,). Thus by construction, the extension K Fy,.1/KFy,
is unramified above each point of C), lying above some element d € D. Conclude
from the induction hypothesis that the extension KF,,1/K(T) is unramified over
each element d € D.
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