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Abstract

This paper is devoted to some local-global type questions about fields of definition of
algebraic covers. Let f : X — B be a cover a priori defined over Q. Assume that the cover
f can be defined over each completion @@, of Q. Does it follow that the cover can be defined
over Q7 This is the local-to-global principle. It was shown to hold for G-covers [DbDo], i.e.,
for Galois covers given with their automorphisms. Here we prove that, in the situation of
mere covers, the local-to-global principle holds under some additional assumptions on the
group G of the cover and the monodromy representation G — Sy (with d = deg(f)). This
local-to-global problem is closely related to the obstruction to the field of moduli being
a field of definition. This problem was studied in [DbDo], which is the main tool of the
present paper.

1. Presentation

1.1. The local-to-global problem. Let B be an algebraic variety defined over a
number field K and f : X — B be a cover a priori defined over K. Assume that the
cover f can be defined over each completion K, of K. Does it follow that the cover can be
defined over K7 We say that the local-to-global principle holds when the answer is “Yes”.
More generally the same problem can be considered with the base field K a field with
a proper set My of places satisfying the product formula. However the local-to-global
principle obviously fails if the following condition does not hold.

(*) The field K is the only finite extension of K which can be embedded in K, for all
places v € Mk.
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Indeed if k£ is a proper extension of K that can be embedded in all K,s, then a cover
defined over k but not on K yields a counter-example to the local-to-global principle. We
will assume that condition (*) holds. Classically that is the case for number fields and for
rational function fields k(7") in one indeterminate over an algebraically closed field.

Assumption (*) guarantees that if a cover is defined over each K,, then its field of
moduli is contained in K. Indeed, the field of moduli of a cover (§2.5) is the smallest
possible field of definition, so is contained in each field of definition. However the field
of moduli need not be a field of definition. But when that is the case, the local-to-global
principle obviously holds. For example the field of moduli is a field of definition when
the cover has no automorphisms (Fried [Fr]), or, when the cover is a Galois cover of P!
(Coombes-Harbater [CoHa]). The real problem is when the field of moduli is not a priori
a field of definition.

This local-to-global problem was raised by E. Dew [Dew] for G-covers of P! and for
K a number field. A G-cover is the data consisting of a Galois cover given together with
its automorphisms. In the sequel, we use the phrase “mere covers” for non necessarily
Galois covers given without their automorphisms. Dew conjectured in particular that the
local-to-global principle holds for G-covers of P! over number fields. This was proved in
[Db] except for number fields that are exceptions to Grunwald’s theorem (the field Q is not
exceptional). This result was extended to G-covers of a general base space B in [DbDo].

This paper is aimed at extending these results. The main direction is to consider the
local-to-global principle for mere covers. We also systematically consider the situation
where the base space B is an arbitrary algebraic variety B and K is a more general field.
These generalizations give rise to new difficulties that we explain below.

1.2. Main ingredients. The problem is closely related to the obstruction to the
field of moduli being a field of definition. This is a classical problem, which was studied
in quite a general way in [DbDo]: the Main Theorem of [DbDo| is a pure cohomological
characterization of the obstruction. This will be the main tool of the paper.

1.2.1. Condition (Seq/Split).  Essentially the case that the base space B is the
projective line P! is easier because P! has many K-rational points. This implies that
the exact sequence of arithmetic fundamental groups

1— HKS(B*) — HK(B*) — G(K) —1

is split. Here, given a field F' over which B and the branch locus are defined, B* denotes
the space B with the branch locus removed and IIz(B*) the F-arithmetic fundamental
group of B*; also K denotes the separable closure of K and and G(K) = G(K,/K) the
absolute Galois group of K. That splitting condition will be denoted by (Seq/Split) as in
[DbDo]. It is a natural simplifying assumption but may not hold in general. That is the
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main difficulty of the case of an arbitrary base space B. But an important achievement of

[DbDo] is precisely to have dealt with the unsplit case.

1.2.2. Main obstruction to the field of moduli being a field of definition. [DbDo| showed
that the mere cover case is much more difficult than the G-cover case. For a G-cover of
group G, the obstruction to the field of moduli being a field of definition corresponds to the
vanishing of a single 2-cocycle Q in H?(K, Z(G)) with values in the center Z(G) of G and
with trivial action of G(K) on Z(G). While for a mere cover, the obstruction corresponds
to the vanishing of at least one out of several 2-cocycles (2 )aea in H*(K, Z(G), L) (for a
non necessarily trivial action L on Z(G)). Here G is the Galois group of the Galois closure
of the cover f (or, equivalently, the monodromy group of f in characteristic 0).

1.2.8.  First obstruction to the field of moduli being a field of definition (condition
(A/Lift)). Furthermore, in the case of mere covers, the index set A may be empty (in
which case of course the field of moduli is not a field of definition). That is an additional
obstruction, which does not exist for G-covers and which is called the first obstruction in
[DbDo]. It is shown to correspond to the (weak) solvability of an embedding problem for
the absolute Galois group G(K) (see Prop.3.1 (or [DbDo;83.1]) for more details). This
condition is called (A\/Lift) in [DbDo]. The various solutions to this embedding problem
correspond to the elements A of A.

Concretely, elements A of A can be interpreted as follows. A quite significant invariant
of the K-models of a cover is the extension K /K of constants in the Galois closure f of the
cover f (§2.4). By definition, this invariant is the trivial one for G-covers: all K-models
of a G-cover are regular and Galois over K. Unlikewise mere covers may have several
models with essentially distinct extensions of constants in Galois closure. These several
extensions of constants correspond to the several elements A € A, which parametrize the
several obstructions 2,.

1.3. Sketch of the method. This two-level obstruction led us to share the local-to-
global problem in several sub-questions, also of local-global type. The first one considers
the local-to-global principle with fixed extension of constants in Galois closure, i.e., with
fixed A € A. More precisely, an extension K /K is given and for all v € M, the cover is
assumed to be defined over K, with KK »/ K, as extension of constants in Galois closure.
This question is the topic of §3.2. The main conclusion (Prop.3.3) is that the obstruction
to K being a field of definition lies in the kernel of the map

(LocGlob) H*(K,Z(G),L)— ][] H*(K., Z(G),L)

vEMx
Injectivity of this map only depends on the field K, the group Z(G) and the action L
(which is explicitely described in [DbDo]). For example, this map is injective if K = Q

and L is the trivial action. Other examples are given in §3 (Prop.3.4).
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In §3.3 we let A vary in A, only assuming that A # (), i.e., that condition (\/Lift)
holds. We first explain that the possibility that card(A) > 1 makes the local-to-global
principle very unlikely in general. We however do not have any counter-example yet.
In [DbDo| a quite precise description of the set A is given in terms of the monodromy
representation G — Sy (with d = deg(f)). Some additional assumptions then insure that
all the obstructions Q4 (A € A) are the same, in which case the same techniques as in §3.2
where A is fixed can be used.

§4 is concerned with the remaining condition (A/Lift). If a cover is defined over each K,
then condition (\/Lift) automatically holds over each K, (v € Mk) (Prop.3.1). The main
conclusion of §4 (Th.4.2) is that, under some assumptions on the representation G — Sy,
the obstruction to condition (\/Lift) to hold globally, (i.e., over K), lies in the kernel of a
map similar to the map (LocGlob) above but with Z(G) replaced by Z(C/Z(G)), where
C = Ceng, (G is the centralizer of the group G in the representation G' — S,;. Here again,
some concrete situations for which the obstruction completely vanishes will be given.

1.4. Main results. The following result recapitulates §3—§5. Assumptions on K and
B and notation are as above. In particular, condition (*) is assumed. Condition (\/Lift)

involved was introduced in §1.2.3 and is developed in §3.1.

THEOREM — Suppose given a mere cover f : X — B defined over each completion K, of K
(v € Mg ). Let G be the group of the cover and G — Sy be the monodromy representation.
Assume in addition that the center Z(QG) is a direct summand of C = Ceng,G.

Then the field K 1is the field of moduli of the mere cover f and the obstruction to K
being a field of definition is the following two-level obstruction:

(1st) The first obstruction is the obstruction for condition (X /Lift), which holds over each
K, (v € Mk ), to hold over K.

(Main) If condition (\/Lift) holds over K, then the main obstruction to K being a field of
definition corresponds to the vanishing of a 2-cocycle Q2 € H?(K,Z(G), L), which lies in
the kernel of the map (LocGlob) above.

The 1st part corresponds to Prop.3.1 (b) and the Main part to Th.3.7 (a). Injectivity
of the map (LocGlob) is investigated in Prop.3.4: it is injective in particular when K = Q
and Z(G) C Z(N) with N = Norg,G. Finally we show (Th.4.2) that the Ist obstruction
above vanishes (and so condition (A/Lift) holds over K) if the three conditions (iii/1-3)
below hold. From Prop.3.1 (b) of [DbDo], condition (A/Lift) can also be guaranteed by
condition (iii)’ below. Thus we obtain this concrete application.
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THEOREM — Assume that K = Q, or more generally, that K is a number field for which
the special case of Grunwald’s theorem cannot occur. Then the local-to-global principle
holds for mere covers satisfying simultaneously these five conditions:

(i) Z(G) C Z(N) where N = Norg,G,

(ii) Z(G) is a direct summand of C = Ceng,G

(iii/1) Z(C/Z(G)) is a direct summand of C/Z(QG).

(iii/2) Z(CG/G) C Z(N/G).

(iii/3) Inn(C/Z(G)) has a complement in Aut(C/Z(G)).
These five conditions hold for example if Z(G) = C C Z(N).

The local-to-global principle also holds for mere covers satisfying simultaneously conditions
(i), (ii) above and the following condition

(i1i)’ CG/G has a complement in N/G.

A final section ends the paper, which is concerned with the following global-to-local
principle (Th.5.1). A mere cover (or a G-cover) f : X — B defined over Q with a number
field K as field of moduli is necessarily defined over all but finitely many completions K,
of K.

1.5. Open questions. There remain many interesting open questions. For example,
we do not have any counter-example to the local-to-global principle for G-covers over a
number field in the special case of Grunwald’s theorem. Also although we suspect that
the local-to-global principle does not hold for mere covers in general, we do not have any
counter-example. Finally, for most of our applications, we make the action L on the center
Z(@) equal to the trivial action. That is the main situation where we can prove that the
local-global map (LocGlob) is injective. Investigating injectivity of the map (LocGlob)
when the action is not the trivial one would be worthwhile.

We are very grateful to H. Lenstra for his interest in our papers and many valuable
suggestions. Paragraph §3.4 was directly inspired by an idea of him. He also explained
to us a general argument that made it possible to remove some unnecessary hypotheses in
the final section.

2. Preliminaries

From now on, fix a field K and a regular projective geometrically irreducible variety
B defined over K. We recall below some basics relative to covers, G-covers, arithmetic
fundamental spaces and the dictionary between covers and representations of fundamental
groups. For more details we refer for example to [DbDo;§2].
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2.1. Notation. Given a Galois extension F/k, its Galois group is denoted by G(E/k).
Given a field k, we denote by ks a separable closure of k& and by G(k) the absolute

Galois group G(ks/k) of k. As usual in Galois cohomology, we write H"(k,—, —) for
H"(G(k),—, —).

2.2. Mere covers and G-covers. A mere cover of B over K is a finite and generically
unramified morphism f : X — B defined over K with X a normal and geometrically
irreducible variety. A G-cover of B of group G over K is a Galois cover f : X — B
over K given together with an isomorphism h : G — G(K(X)/K(B)). An isomorphism
between two mere covers f: X — B and f: X’ — B over K is an algebraic isomorphism
x : X — X', defined over K and such that y o f/ = f. An isomorphism of G-covers of
group G over K is an isomorphism of mere covers that commutes with the given actions
of G.

A mere cover f : X — B over a separably closed field k£ has two basic geometric
invariants, which only depend on the isomorphism class of the cover. First the group G
of the cover, i.e., the automorphism group of the Galois closure f : X — B of f, or,
equivalently, the Galois group G(k()/(: )/k(B)). In characteristic 0, the group G is also the
monodromy group of the cover. Second, the branch locus D of the cover; from the Purity of
Branch Locus (e.g. [Mi]), it is a divisor of B with only simple components. By invariants
of a cover over a non algebraically closed field K, we always mean the invariants of the
cover over K obtained by extension of scalars. The branch locus D of a cover over K is
invariant under the action of G(K).

The affine variety B—D is denoted by B*. If F' is any field containing K, the F-
arithmetic fundamendal group of B* is denoted by IIz(B*) or simply by IIp when the
context is clear. Degree d mere covers of B over F' with branch locus in D correspond to

transitive representations
U:Ip(B*) — Sy

such that the restriction to Il (B*) is transitive. G-covers of B of group G over F

correspond to surjective homomorphisms

such that ®(IIx, (B*)) = G.

2.3. Descent of the field of definition. As in [DbDo|, we frequently use the
word “(G-)cover” for the phrase “mere cover (resp. G-cover)”. Suppose given a (G-)cover
f X — B a priori defined over Ky such that the branch locus D is G(K)-invariant.
Descent of the field of definition of the (G-)cover f can be handled simultaneously for both
the mere cover and G-cover situations.
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In both cases let G denote the group of the cover. Then set

G in the G-cover case
| Norg .G in the mere cover case
Z(G) in the G-cover case
C =CennyG = _
Ceng,G in the mere cover case

where Z(G) is the center of G and Norg,G and Ceng,G are respectively the normalizer
and the centralizer of G in S,;. Finally regard N as a subgroup of S; where d is the degree
of f: in the mere cover case, an embedding N — S, is given by definition; in the G-cover
case, embed N = G in Sy by the regular representation of G.

Then, in both the mere cover and G-cover situations, we have the following:

(1) (a) the (G-)cover f : X — B corresponds to an homomorphism (or representation)
¢:1x (B*) — G C N

(b) the (G-)cover f can be defined over the field K if and only if the homomorphism
¢ g (B*) — G C N can be extended to an homomorphism Iy (B*) — N,

(¢) Two (G-)covers over K are isomorphic if and only if the corresponding represen-
tations ¢ and ¢’ are conjugate by an element ¢ in the group N, that is,

¢ () = pop(x)p~?t for all = € g, (B*)

2.4. Extension of constants in the Galois closure. Assume that the (G-)cover f
can be defined over K, i.e., has a model fx over K. Let ¢ : Il — IN be the associated
extension of ¢ to IIx(B*). Consider the function field extension K (X )/K(B) associated
to fix. Denote the Galois closure of the extension K(Xg)/K(B) by K(/)?K)/K(B).

Consider then the field K = K (/)?K) N K,. The extension K /K is called the extension
of constants in the Galois closure of the model fx of f.

Denote by A the unique homomorphism G(K) — N/G that makes the following
diagram commute. Existence of A follows from ¢ (Ilx,) = ¢(Ilk,) C G and uniqueness

from the surjectivity of Il — G(K).

g (B*)

G(K)

| |

N —— N/G



8 P. DEBES/J-C. DOUAI

The homomorphism A : G(K) — N/G corresponds to the extension of constants
K/K in the Galois closure of the model fx of fp. That is, G(F/K) = Ker(A) (e.g.
[DbDo;Prop.2.2]). The homomorphism A : G(K) — N/G is called the constant extension
map (in Galois closure) of the K-model fx of f. For G-covers, N/G = {1}, the map A is
trivial and K = K: by definition, G-covers over K are required to be Galois over K with
the same Galois group as over K; thus they do not have any extension of constants in
their Galois closure.

2.5. Field of moduli. As above, let f: X — B be a mere cover (resp. G-cover) a
priori defined over K. For each 7 € G(K), we let f7 : X™ — BT denote the corresponding
conjugate (G-)cover. Consider the subgroup M(f) (resp. Ma(f)) of G(K) consisting of all
the elements 7 € G(K) such that the covers (resp., the G-covers) f and f7 are isomorphic
over K. Then the field of moduli of the cover f (resp., the G-cover f) is defined to be the
fixed field

Kéw(f) (resp. K;WG(f))

of M(f) (resp. Mg(f)) in Ks. The field of moduli of a (G-)cover is easily seen to be a
finite extension of K contained in each field of definition containing K. So it is the smallest
field of definition containing K provided that it is a field of definition. The branch locus
D of f is automatically invariant under M (f) (resp. Ma(f)).

3. The local-to-global principle

In this section, we assume that the field K is a field with the product formula satisfying
condition (*) of §1. Fix a G-cover or a mere cover, i.e., according to the terminology of
§2.3, a (G-)cover f : X — B a priori defined over K and let ¢ : Il (B*) — G C N be
the corresponding representation.

3.1. Position of the problem. We assume that

(Loc) The (G-)cover f can be defined over each completion K, of K, i.e., has a model f,
over K, (v € Mg).

The problem is whether this local hypothesis implies this global one
(Glob) The (G-)cover f can be defined over K.

For each place v € Mg, denote by ¢, : IIx (B*) — G C N the representation
corresponding to the model f, over K,. That f, is a model of f over K, means that
restrictions of ¢ and ¢, to Ik, (B*) are conjugate by an element ¢, € N (*) (in the

(*) This does not depend on the embeddings Ks C (Kv)s and KU C (Kv)s
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sense of (1)(c) of §2). For each place v € M, we have a diagram like below. The problem
consists in studying whether the map ¢ can be extended to a map ¢ : Ix(B*) — N.

Mk, (B*)

HKS (B*) ¢v l G(Kv)
G Ik (B*) ’"vl
N G(K)
p
N/G

Each such extension ¢r : IIx(B*) — N of ¢ should induce over G(K) a map
A : G(K) — N/G — the constant extension map (in Galois closure) of the K-model
corresponding to ¢ . Existence of such maps A should be questioned first. Indeed, [DbDo]
revealed some constraint. As we already noted (§1.1), hypothesis (Loc) implies that K is
the field of moduli of the (G-)cover f. Under the latter condition, to the (G-)cover f is
attached an homomorphism A : G(K) — N/CG with the following property [DbDo;§3.1].

PROPOSITION 3.1 — (a) The constant extension map A : G(K) — N/G of each K-model
of the (G-)cover f is a lifting of \. In particular, condition

(A\/Lift) There exists at least one lifting A : G(K) — N/G of A\ : G(K) — N/CG.
is a necessary condition for the field of moduli K to be a field of definition of the (G-)cover.

(b) Under hypothesis (Loc), condition (\/Lift) necessarily holds over K, for eachv € My,
that is, there exists a group homomorphism A, : G(K,) — N/G that lifts the map
X 1 G(K,) — N/CG obtained by composing A with the natural map r, : G(K,) — G(K).

The homomorphism A : G(K) — N/CG is precisely defined in [DbDo] where it is called
the constant extension map (in Galois closure) modulo C given by the field of moduli
condition. It is uniquely determined by the representation ¢ : Ilx (B*) — G C N.
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Condition (A/Lift) is presented in [DbDo] as the first obstruction to the field of moduli
being a field of definition. In the case of G-covers, we have N/CG = N/G = {1}. Thus
condition (A/Lift) holds trivially. The case of mere covers is different. The map A\ may
have no liftings A, (i.e., condition (A/Lift) may not hold), and may have several ones.

Proof of Prop.3.1. (a) corresponds to Main Theorem (I) of [DbDo]. It follows from
the definition of A [DbDo;Main Theorem (1) (a)] that it behaves well with extensions of
scalars: in particular, for each v € M, the constant extension map modulo C' of the cover
fo over K, is A, = Ary; hence, from (a), the constant extension map A, of f, is indeed a
lifting of A,. O

Prop.3.1 (b) asserts that, under hypothesis (Loc), condition (A/Lift) holds locally. Does
it follow that there exists a global lifting A : G(K) — N/G? This first obstruction is studied
in §4. In the positive case, i.e., when the map A does have some lifting A over K, the next
question is: does there exist a K-model with this map A as constant extension map (in
Galois closure)? That question is the topic of §3.2. Finally there may be several liftings
A of A and none is fixed a priori. The original question is: does there exist a K-model
(with some map A as constant extension map)? That question is considered in §3.3, which

concludes our study of the local-to-global principle.

3.2. The local-to-global principle with A fixed. We assume in this paragraph
that condition (A/Lift) holds over K and we fix a specific lifting A : G(K) — N/G of
A : G(K) — N/CG. For each place v € Mg, let A, : G(K,) — N/G obtained by
composing A with the natural map r, : G(K,) — G(K). The map A, is a lifting of
Ay = Ar,. In this paragraph, we assume that,

(Loc+) for each place v € Mk, f has a model f, with A, as constant extension map.

In other words, a “possible” extension of constants K /K (in Galois closure) is fixed and
for each v € Mg, the cover is assumed to be defined over K, with K K, /K, as extension
of constants (in Galois closure).

[DbDo] provides the following characterization of the obstruction to the field of moduli
K being a field of definition when the constant extension map A is fixed. To the
homomorphism A : G(K) — N/G can be associated a 2-cocycle Qy € H*(K, Z(G), L) for
a certain action L of G(K) on Z(G) (explicitely described in [DbDo]), with the following

property.
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PROPOSITION 3.2 — The element Q0 is trivial in H*(K, Z(G), L) if and only if there
exists a K-model of the (G-)cover f with constant extension map (in Galois closure) equal
to the map A.

This result corresponds to conclusion (d) of Main Theorem (IT) of [DbDo| (with 6 = 1).
Furthermore, it is clear from the definition of the 2-cocycle Q25 , which is explicit in [DbDo]
(see Main Theorem (IT) (b)), that it behaves well with extension of scalars. More precisely,
let L, be the action obtained from L by composing with r, : G(K,) — G(K). Then Qy
regarded as an element of H?(K,, Z(G), L,) by extending the scalars coincides with the
2-cocycle Q25 ,. Thus we have

PROPOSITION 3.3 — Under hypothesis (Loc+) the 2-cocycle Qp lies in the kernel of the

natural map

(LocGlob) H*(K,Z(G),L) - [] H*(K., Z(G), L)

vEMEK

This reduces the problem to studying the injectivity of this local-global map. This is
a difficult problem. There are few positive general results but also few counter-examples
(see [Se;Ch.III]). There are however two situations where some results are available.

PROPOSITION 3.4 — Consider the case that the abelian group Z(G) is cyclic of order
n (which one may always reduce to). Then the local-global map (Loc/Glob) is injective in
each of the two following situations:

(a) The action L is the cyclotomic action of G(K) on u, and K is a number field.

(b) The field K is a number field for which the special case of Grunwald’s theorem below
cannot occur (e.g. K = Q) and the action L is the trivial action. The latter is true if
elements of Z(G) commute with those of N, i.e., if Z(G) C Z(N).

Special Case of Grunwald’s theorem. For each integer » > 0, (, is a primitive 2"th root of 1
and 7, = (, + (. Then denote by s the smallest integer such that n, € K and 7,1 ¢ K.
The special case is defined by these three simultaneous conditions:

1. =1, 2+ ns, —(2+ ns) are non-squares in K.

2. For each place v € Mg of K dividing 2, at least one out of the elements —1, 2 + 7,
—(2+ 1) is a square in K,,.

3. The abelian group Z(G) contains an element of order a multiple of 2 with ¢ > s.
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If K =Q, then s =2 and ns; = 0. Since —1, 2 and —2 are non-squares in 2, condition
2. is not satisfied. Therefore the special case cannot occur if K = Q. Similarly the special
case cannot occur if K contains /—1 or /—2 or if Z(G) is of odd order.

Proof. (a) The group H?(K, u,) identifies with the subgroup of elements of order n of
the Brauer group Br(K). The result then follows from the injectivity of the local-global
map on Brauer groups
Br(K)— ][] Br(X.)
vE Mg

(b) follows from Grunwald-Wang’s theorem [ArTa;p.96] conjoined with Tate-Poitou’s
theorem [Se;I1-§6.3] (see [DbDo;Proof of Th.3.8] for more details). It remains to show
that L is the trivial action if Z(G) C Z(N). This follows from this explicit description
of the action L [DbDo;§3.2]: action by conjugation of N over Z(G) factors through N/G,
compose the induced action of N/G with the map A to get the action L. ]

We will focus on the situation L is the trivial action. The G-cover situation is a special
case of it (since N = ). Furthermore, in the case of G-covers, A is by definition the trivial
map; that is in this case the only lifting of A. As a consequence of Prop.3.3 and Prop.3.4,

we obtain

COROLLARY 3.5 [DbDo;Th.3.8] — A G-cover f : X — B over Q is defined over Q if
and only if it is defined over Q, for each prime p (including the prime at infinity). More
generally, the same conclusion holds over a number field K for which the special case of

Grunwald’s theorem cannot occur.

3.3. The local-to-global principle for varying A. In this paragraph the (G-)cover
f still satisfies the local hypothesis (Loc). In particular K is the field of moduli of f. As
in §3.2 we assume that condition (A/Lift) hold over K but we no longer fix a lifting of
A :G(K) — N/CG. For mere covers there may indeed be several liftings A of A\. We first
explain why that makes the local-to-global principle unlikely in general.

If the mere cover f has a model fx over K, the mere covers f x @k K, have the property
that the associated constant extension maps G(K,) — N/G all come from a same global
lifting A : G(K) — N/G of A\. Now if we only assume that f has a local model f, over
K, for each place v € Mg, one can hardly expect a priori that the associated constant
extension maps A, all come from the same global A. Possibly can we hope that local
existence of liftings A, for each place v € Mk implies the existence of a global lifting A.
But this A may then not induce each of the A,s. In other words even if there is a global A,
the models f, over K, of f may not be models over K, for this specific A. Equivalently,

the local extensions of constants I/(\v /K, in the Galois closure of f, (v € Mg) may not
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come by extension of scalars from a same global extension K /K. However we do not have
any counter-example yet (see also [Db;Remark 5.4] for some “possible” counter-examples).

Denote by A the set of all possible liftings of A. It seems that only with a better
control on the set of all obstructions Q5 (A € A) will we be able to prove some local-to-
global principle for mere covers. Our previous paper [DbDo| provides the following extra
information.

Fix a lifting A : G(K) — N/G of X\ and let Lp be the action of G(K) on C/Z(Q)
obtained by composing A : G(K) — N/G with the conjugation of N/G on CG/G =~
C/Z(@G). Denote by §' the coboundary operator

Hl(Ka C/Z(G)vLA) - HQ(Kv Z(G)vL)
given by the exact sequence (the kernel Z(G) of which is abelian and central).
1-Z(G)—-C—-C/Z(G)—1

PROPOSITION 3.6 — Assume that K is the field of moduli of the (G-)cover f and that
condition (\/Lift) holds.

(a) For each N € A, we have
Qa - Q' €6 (HY(K,C/Z(G), L))
(b) In particular, the field of moduli K is a field of definition of the (G-)cover f if and

only if the 2-cocycle Q5 satisfies this condition

05! e s (H'(K,C/Z(G), Ly))

Proof. Prop.3.6 (a) readily follows from Main Theorem (II) (c¢) and Prop.4.5 of [DbDo].
For the (b) part, observe that the field of moduli K is a field of definition if and only
if it is a field of definition for some constant extension map A’ € A. The desired result
follows then straightforwardly from the first Prop.3.6 (a) and Prop.3.2. Prop.3.6 (b) also

corresponds to conclusion (e) of Main Theorem of [DbDo|. [

Under condition (A/Lift), conditions (Loc) and (Glob) rewrite:
(Loc) For each place v € Mg, Q! € 6' (H*(K,,C/Z(G),Ly,)) C H*(K,, Z(G), Ly)
(Glob) Q' € 6 (HY(K,C/Z(G),Ly)) C H* (K, Z(G),L)

Assume for a moment that the centralizer C' is an abelian group. Then sets H?(k, C, —)
are groups and the coboundary operator is a group homomorphism. Furthermore we have

a commutative diagram
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H*(K,Z(Q)) 11 H*(K,,Z(G))
M (HYK,C/Z(G))) veit, O H (K, C/2(G)))
) l J
H2(K,C) — Il 7., 0)

where vertical arrows are injective. If the lower map is injective, then so is the upper one.
In that case then, we do have (Loc)=-(Glob). This shows that the local-to-global principle
holds if the centralizer C' is an abelian group, contained in the center Z(N) of N (so to
make the actions L and L, trivial) and if K is a number field for which the special case
of Grunwald’s theorem cannot occur.

Return to general case, i.e., “C' not abelian”, which is more difficult for it involves
non abelian cohomology for which there are no such nice properties as the coboundary
operator being an homomorphism, etc. However, H2(k,C, —) are defined as sets (with a
free transitive action of H?(k, Z(C), —) if they are nonempty). It would be interesting to
translate the problem in cohomological terms as in the abelian case. There is a special
case where this is possible, which contains the preceding case “C' abelian”. The following
result is our more general answer to the local-to-global problem.

THEOREM 3.7 — Let f be a (G-)cover defined over K, for each place v € My . Assume
that condition (\/Lift) holds over K and that the center Z(QG) is a direct summand of the
centralizer C.

(a) Then all 2-cocycles Q5 where A : G(K) — N/G ranges over the set A of all lifts of
A: G(K) — N/CG are equal to the same 2-cocycle Q). This 2-cocycle Q) lies in the kernel
of the local-global map

(LocGlob) H*(K,Z(G),L)— |] H*(K, Z(G), L)

vEMK

and has the following property: the (G-)cover f is defined over K if and only if the 2-cocycle
Q is trivial in H*(K, Z(G), L).
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(b) In particular, the local-to-global principle holds if in addition, Z(G) C Z(N) and if K
s a number field for which the special case of Grunwald’s theorem cannot occur.

Proof. For each § € HY(K,C/Z(G),Ly), 61(0) is the obstruction to the possibility of
lifting 6 up to a 1-cocycle § € H? (K,C, Lp). If Z(G) is a direct summand of the centralizer
C, this obstruction always vanishes. Conclude that sets ' (H'(K,C/Z(G), La)) consists
of the single trivial element 1. It follows from Prop.3.6 (a) that all 2-cocycles Q5 (A € A)
are the same 2-cocycle ). From Prop.3.6 (b), the field of moduli K is a field of definition
of the (G-)cover f if and only if Q is trivial in H?(K, Z(G), L). Finally from Prop.3.3, Q
lies in the kernel of the map (LocGlob). The (b) part of Th.3.7 then readily follows from
Prop.3.4 (b). O

REMARK 3.8. We explained that what causes the problem in general is the possibility
that there are several liftings A of A\. What the assumption “Z(G) is a direct summand
of C” did was to insure that all the corresponding 2-cocycles Qp (A € A) are equal in
H?*(K,Z(G), L).

3.4. A variant of the local-to-global problem (after an idea of Lenstra). Consider
this slight change of the local-to-global problem: replace in the hypothesis the phrase “for
all places v € Mg” by “for all places v € Mk but one”. Does Th.3.7 (b) still hold with
that change? The answer is “Yes”. There is only one argument to add to the proof. One
should show that an element Q € H?(K,Z(G)) (for the trivial action) that vanishes in
H?*(K,, Z(G)) for all places v € Mg but one, necessarily also vanishes for the missing
place, and so lies indeed in the kernel of the map (LocGlob). One may reduce to the case
Z(G) =7Z/nZ.

The result is then classical in the case that K contains nth roots of 1. Indeed,
H?(K,,7Z/nZ) can be viewed as the subgroup Br, (K) of elements of order n in the Brauer
group Br(K) of K. Now each Brauer group Br(K,) can be identified to Q/Z with this
property: the sum of all local terms induced in each Br(K,) = Q/Z by a given element of
Br(K) is 0. Consequently all but exactly one of these local terms cannot be 0.

The proof is a little more complicated when K does not contain the nth roots of 1.
From [Se;Th.2 p.108], for each place v € M, each group H?(K,,7/nZ) can be identified
to the dual H°(K,, u,)" of H°(K,,u,). Given a field F, denote the group of all nth
roots in F by pu,(F). Also set u,(K) = p,. Then we have, for each place v € My,
HO(Ky, pin) = pn(Ky) = pé» for some divisor e, of n and

HO (Ko, pn) = (pn(K0)) = (u5) = euZ/nZ C Z/nZ

This identification of H?(K,,7Z/nZ) with the subgroup e,Z/nZ of Z/nZ has the same
property has above. Namely the sum of all the local terms induced in each H?(K,,,Z/nZ) C
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Z/nZ by a given element of H?(K,Z/nZ) is 0. Consequently all but exactly one of these
local terms cannot be 0.

4. Condition (\/Lift)

Keep the notation of §2 and §3. From Prop.3.1, under the hypothesis (Loc), i.e., “the
(G-)cover f is defined over K, for each v € Mg”, condition (A/Lift) necessarily holds
locally, i.e., over each K, (v € Mg). The question of concern in this section is whether
it can be inferred that condition (A/Lift) holds globally, i.e., that there is a global lifting
A:G(K) - N/Gof A : G(K) — N/CG? This is a local-to-global problem similar to
the one studied in §3. [DbDo| gives the following cohomological criterion for condition
(A\/Lift). There is a minimal necessary assumption in this criterion, called (Band/Rep)
and which we will explain right after Prop.4.1.

PROPOSITION 4.1 — Assume that K is the field of moduli of the (G-)cover f and that
condition (Band/Rep) holds. Then there exists an action x of G(K) on Z(C/Z(QG)) and
a 2-cocycle w € H*(K,Z(C/Z(Q)),x) such that condition (\/Lift) is equivalent to the
condition

wlest <H1(K, Inn(C/Z(G)),£)> c HX(K, Z(C/Z(G)), x)

where Inn(C/Z(QR))) denotes the inner automorphism group of C'/Z(G), 0 is a certain
action of G(K) on Inn(C/Z(G)) (described below) and 5" is the coboundary operator

HY(K,Inn(C/Z(G)),l) — H*(K, Z(C/Z(®)), X)

This result corresponds to Th.4.7 of [DbDo| where the action x and the 2-cocycle w are
explicitly described.

For example, condition (A/Lift) holds if condition (Band/Rep) holds and C/Z(G) is a
centerless group. We explain now condition (Band/Rep). Consider the exact sequence

1—>CG/G—>N/G—>N/CG—>1

There is no natural action of N/CG on the kernel CG/G ~ C/Z(G), but only an outer
action, i.e., an homomorphism & : N/CG — Out(CG/G) from N/CG to the outer
automorphism group

Out(CG/G) = Aut(CG/G)/Inn(CG/G)

Following Giraud’s terminology [Gi], the map B\ : G(K) — Out(CG/Q) is called the
band of the problem. A necessary condition for condition (A/Lift) is that the band is
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representable, i.e., that the outer action X : G(K) — Out(CG/G) can be lifted to a real
action £ : G(K) — Aut(CG/G). That condition is condition (Band/Rep). It holds for
example if Inn(CG/G) has a complement in Aut(CG/G).

The action ¢ of G(K) on Inn(C/Z(G)) involved in the statement of Prop.4.1 is
obtained by composing ¢ : G(K) — Aut(CG/G) with the conjugation of Aut(CG/G)
on Inn(CG/@G)). The condition “w™ ! € 4! (Hl(K, Inn(C/Z(G)),g))” of Prop.4.1 does
not depend on the choice of the action ¢ lifting the the outer action .

Under condition (Band/Rep), the cohomological formulation of the problem of this
section is very similar to that of §3. The same arguments apply to prove this result.

THEOREM 4.2 — Let f be a (G-)cover satisfying condition (\/Lift) over K, for each
v € Mgk (e.g. [ is defined over K, for each place v € My ). Assume that condition
(Band/Rep) holds over K (e.g. Inn(CG/G) has a complement in Aut(CG/G)) and that
Z(C/Z(@)) is a direct summand of the group C/Z(G).

(a) Then there ezists a 2-cocycle w lying in the kernel of the local-global map

H*(K,2(C/2(@),x) = [] H*K,2(C/2(G)), x»)

vEMEK

with the following property. Condition (\/Lift) holds over K if and only if the 2-cocycle w

1s trivial.

(b) In particular, condition (\/Lift) holds if in addition, Z(CG/G) C Z(N/G) and if K

1s a number field for which the special case of Grunwald’s theorem cannot occur.

Proof. Similarly to the proof of Th.3.7, the assumption “Z(C/Z(G)) is a direct summand
of the group C/Z(G)” guarantees that the set §! <H1(K, Inn(C/Z(G)),Z)) involved in
Prop.4.1 consists of the single trivial element 1. Consequently, the vanishing of the 2-
cocycle w of Prop.4.1 is an if and only if condition for (\/Lift) to hold. Next it follows
from the definition of w (given in [DbDo]) that it behaves well with extensions of scalars.
In particular, regarded as an element of H?(K,, Z(C/Z(QG)), x») by extending the scalars,
the 2-cocycle w coincides with the 2-cocycle w, associated to the (G-)cover f,. Conclude
from the assumption “(\/Lift) holds over K, for each v € Mg” that w lies in the kernel of
the natural local-global map of Th.4.2 (a). This proves Th.4.2 (a). The (b) part of Th.4.2

then readily follows from Prop.3.4 (b). O
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5. A global-to-local principle

In this section, we assume that K is a global field (i.e., a number field or a function
field of a curve over a finite field), or, more generally, a field with the product formula
satisfying condition (**) below (condition (*) is not necessary here).

(**) for all but finitely many finite places v € M, the Galois group G(K}"/K,) of the
unramified maximal extension of K, is a projective profinite group; in particular, groups
H?*(G(K*"/K,),—,—) are trivial.

Condition (**) is also satisfied by function fields k(C) of a curve or a surface over an
algebraically closed field. This section is devoted to the following global-to-local principle.

THEOREM 5.1 — Let f: X — B be a (G-)cover a priori defined over K. Suppose that
K is the field of moduli of the (G-)cover f. Then the cover can be defined over all but
finitely many completions K, of K.

This result was proved in [Db;Th.8.1] in the case of G-covers and mere covers of P! over
Q. The proof was effective in the sense an explicit bound for the exceptional places can be
derived from it [Sa]. Extending this proof to the situation of covers of more general spaces
than P! presents some difficulties. But at some place of the proof, a more general argument
can be used that avoids these difficulties. This more general argument was explained to
us by H. Lenstra. It is this proof with Lenstra’s argument that we give here. The proof
however is no longer effective. The main idea is the same for all these proofs: for all but
finitely many places, find a model over the unramified closure K" of K, and then take
advantage of the projectivity of the Galois group G(K!"/K,) to descend to K,. A version

of this strategy was first considered in Dew’s thesis [Dew].

Proof. There exists a finite Galois extension F'/K satisfying these two conditions
(i) the (G-)cover f has a F-model fr over F,
(ii) for each 7 € G(F/K), the covers fr and ff are isomorphic over F.

(For example pick a finite Galois extension F, of K over which the cover f is defined and
take for F' the Galois closure over K of the field generated by F, and the coefficients of
isomorphisms between the cover f and its distinct conjugates under G(F,/K)). Condition
(ii) insures that the field of moduli of the (G-)cover fr relative to the extension F/K is
equal to K (see [DbDo;§2.7] for a precise definition of relative field of moduli).

The extension F/K is unramified at all but finitely many places v € M. For such
places v, set f, = fr ®p KU": this is a (G-)cover over K*" with field of moduli relative to
the extension K" /K, equal to K,. From Cor.3.3 of [DbDo], the field of moduli relative
to an extension F//K is a field of definition if the Galois group G(F/K) is projective. Thus
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conclude from hypothesis (**) that f, is defined over K, for all but finitely many places
v € M. This completes the proof since clearly the obtained K ,-covers are also K,-models
of the original (G-)cover f. [
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