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A classical tool for studying Hilbert’s irreducibility theorem is Siegel’s finite-
ness theorem for S-integral points on algebraic curves. We present a different
approach based on s-integral points rather than S-integral points. Given an
integer s > 0, an element ¢ of a field K is said to be s-integral if the set of
places v € Mg for which |t|, > 1 is of cardinality < s (instead of contained in
S for “S-integral”). We prove a general diophantine result for s-integral points
(Th.1.4). This result, unlike Siegel’s theorem, is effective and is valid more gen-
erally for fields with the product formula. The main application to Hilbert’s
irreducibility theorem is a general criterion for a given Hilbert subset to con-
tain values of given rational functions (Th.2.1). This criterion gives rise to very
concrete applications : several examples are given (§2.5). Taking advantage of
the effectiveness of our method, we can also produce elements of a given Hilbert
subset of a number field with explicitely bounded height (Cor.3.7). Other ap-
plications, including the case that K is of characteristic p > 0, will be given 1n
forthcoming papers ((8],[9]).

Hilbert subsets of a field K are classically defined to be the sets of the form
Hp, .p,={t€ K|P(t,Y) is irreducible in K[Y],i =1,...,n},

where P;(T,Y) is an irreducible polynomial in K(T)[Y}, i = 1,...,n.
Hilbert’s irreducibility theorem asserts that Hilbert subsets of Q are infinite
(14 ;Ch.9]. More generally, a field K with the same property is called hilber-
tian. Most of the applications of this paper are explicit forms of Hilbert’s theo-
rem. Furthermore, the base field K" will only be assumed to be a field with the
product formula {14 ;Ch.2]. From results of Weissauer and Uchida, such fields
are known to be hilbertian if they are of characteristic 0 or, of characteristic
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p > 0 and imperfect {12 ;Ch.11,14]. Number fields, regular function fields over
a constant field k are typical examples.

A classical tool for studying the Hilbert property is Siegel’s finiteness the-
orem for S-integral points on algebraic curves {14 ;Ch.8]. We follow a different
approach based on s-integral points rather than S-integral points. Given an
integer s > 0, an element ¢ € K is said to be s-integral if the set of places
v € Mg for which |t|, > 1 is of cardinality < s. That is, the condition “of
cardinality < s” replaces the condition “contained in S” in the usual definition
of “S-integral point”. For example, usual integers are l-integral in Q. In §1
we establish a general diophantine result for s-integral points (Th.1.4 below),
which will play the role of Siegel’s theorem. Th.1.4 uses a basic result due to
Sprindzuk {20]. The main theorems of [5], which are more precise and more
general variants of Sprindzuk’s result, are recalled briefly in §1.1.

Let P = {Py,...,Pn} be a family of m polynomials in K(T)[Y]. For each
t € K, define D,(P) (resp. D; (P)) to be the minimal (resp. maximal) degree
over K of a field generated by m distinct elements y;(t),...,ym(t) € K such
that y;(t) is a root of P;(t,Y), i = 1,..., m. These definitions extend naturally
to the points ¢ = oo and t = gen, i.e., respectively, the point at infinity and
the generic point of P! (see §1.3).

Theorem (Th.1.4) — Assume that the polynomials P, ..., Py, are separable
over K(T) and unramified above T = oo. Then if t is an s-inlegral point of K
of sufficiently large height h(t), we have the inequality

(n s D3, (P) Di(P) 2 Dgen(P)

Geometrically, the condition “Pi(T,Y) unramified above T' = oo” merely
means that the function T has only simple poles on a smooth projective model
of the curve Pi(t,y) = 0. We also use the phrase “co is not a branch point of
Pi(T,Y)”. Equivalently, the polynomial P;(T,Y) is totally split in K((1/T)).
This condition is not really restrictive, at least when ramification above T' = oo
is tame : one can indeed reduce to the unramified situation by some “blowing-
up” T — T (e > 0).

Several papers, in particular of Bombieri [1}, Sprindzuk [20] and the author
(5], were devoted to the case of a single polynomial, i.e., m = 1, in the eighties.
We now explain why passing to the case of several polynomials is the main
point of Th.1.4.

The following example, due to J. Coates [1], is a nice illustration of the
case of a single polynomial P(T,Y). Take K = Q and s = 1. Assume that
P is irreducible in K(T)[Y] (which implies Dgen(P) = degy (P)) and that the
function induced by T on the algebraic curve with affine equation P(t,y) =0
has at least two poles that are not conjugate over Q (which implies DX (P) <
degy (P)). Then it follows from inequality (1) that D,(P) > 1 for all but finitely
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many integers ¢, i.e., there are only finitely many solutions to the equation
P(t,y) = 0 with (t,y) € Z x Q — a classical diophantine result of Runge. This
is not fully satisfactory though. Indeed the situation where all the poles of T
are simple and conjugate over K may happen quite often : this is the spirit of
Hilbert’s irreducibility theorem. In this case, DL (P) = degy (P) = Dgen(P)
and inequality (1) is trivial.

On the contrary, inequality (1) always yields interesting conclusions for large
m in situations where m varies and this holds : Dgea(P) is increasing with m
whereas DZ, (P) is bounded by a constant not depending on m. We will reduce
to such situations in applications. This strategy already appears in some form
in papers of Fried and Weissauer ([11],[21]). These papers appeared approxi-
mately at the same period as those of Bombieri, Sprindzuk and the author.
Although the methods may look somewhat different — for example Weissauer
uses non-standard analysis —, they seem to rest on common basic principles.
They certainly all did influence the author. This paper can be considered as an
attempt to unify and develop these various works.

The main applications of Th.1.4 are concerned with Hilbert’s irreducibility
theorem. In §2 we prove a quite general criterion for a Hilbert subset to con-
tain values of given rational functions. More precisely, given a Hilbert subset
Hp, .p. of K, an infinite set f of non constant polynomials f(T) € K[T] and
an integer s > 0, we define two assumptions on Py,..., P, and f, labeled (A),
(B) and show the following.

Theorem (Th.2.1) — Under assumptions (A), (B), there erists a finite subset
fo C f with this property :

(2) For all s-integral points t € K of sufficiently large height, at least one out
of the values f(t) with f € £, lies in the Hilbert subset Hp, _ p,.

Assumption (A) is that oo is not a branch point of P, t.e., that all polyno-
mials Py,..., P, are unramified over T = o0o. In characteristic 0, assumption
(B) is that no more than one point z € P}(K) has the property that f(z) is in
the branch point set of P for infinitely many f € f. (Thete is an extra “tame-
ness condition” in positive characteristic). §2.5 gives a first series of concrete
applications of this general criterion. For example Cor.2.7 is an effective form
of Weissauer’s result (reproved by Fried with standard methods) that fields
with the product formula are separably hilbertian. Here is another example.
If the polynomials P,,..., P, are unramified above T" = 1 and T = oo and
tamely ramified above T = 0, then there exists an integer M, with the fol-
lowing property : there always is at least one element of Hp, _p, among M,
consecutive powers t,t2,...,tM of suitably large s-integers ¢ (Cor.2.9). Over
the rationals and for usual integers ¢, the same result is shown to hold with
M, = 2 (Prop.2.11). But Prop.2.11 uses Siegel’s theorem. Cor.2.9 and Th.2.1
are more general : the base field K is any field with the product formula, pos-
sibly of characteristic p. This will be developed in [8]. Also “s-integral’ is more
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general than “S-integral” : for example, our method provides results on prime
powers p™ (Cor.2.10).

Furthermore, unlike Siegel’s theorem, our results are effective : for number
fields, the constants involved are explicitely computable from the data. In §3
we prove this effective version of Hilbert's irreducibility theorem.

Theorem (Cor.3.7) — Let Pi,..., P, be n irreducible polynomials in
Q[T,Y] \ Q[T). Then there exists in the Hilbert subsel Hp, _p, a rational
number z = ufv € Q of height

(3) h(z) = max(Log |u|, Log [v]) < 1010 D100nD? Leg(D) (g2 1)
where deg(P) < Dand h(P)< H,i=1,...,n.

To our knowledge, no such result was known before. Furthermore, the un-
derlying proof of Hilbert’s theorem avoids several usual reductions, which turn
out to be fairly expensive in terms of constants (Cf. Remark 3 of §2). A more
precise algorithm is also given in §3 which, together with some results on the
factorization of polynomials in one variable ([16], [15]), leads to the following
result.

Theorem (Cor.3.8) — Let Py,..., P, be n irreducible polynomials in Q[T, Y]\
Q[T}, with degree < D and logarithmic height < H. Then one can find a specific
specialization z € Hp,_p, in time H9() exp(nDOV),

Using a different method, Schinzel and Zannier recently improved the bound
in Cor.3.7 [18]. Their method however does not allow to improve Cor.3.8. Get-
ting polynomial time in Cor.3.8, i.e., replacing exp(D°(1)) by D), seems to
be a difficult problem. More general versions of Cor.3.7 (arbitrary number field
as base field, several variables, etc.) are given in §3, which is the “effective” part
of this paper. Some results of the first sections are followed by an “Addition
to Th.” which is concerned with the values of the constants involved in the
number field case. These additions are systematically proved in §3.

We will devote a forthcoming paper [8] to further applications of Th.1.4. In
particular, we will investigate more closely the case of a field R of characteristic
p > 0, which, due to the possibility of unseparability and wild ramification, is
more delicate and requires additional techniques. We only announce here two

results of [8].

Theorem [8;Th.2.2] — Let K be a field with the product formula. Let P(T,Y) €
K(T)[Y] be a polynomial, absolutely irreducible and separable over K(T). As-
sume further that P(T,Y') is tamely ramified above T = co. Let b be an element
of K of height h(b) > 0 such that

(*) b¢ K (ie, b is not a £th power in K ) for all primes £ and —b ¢ K*.
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Then P(b™,Y) is trreducible for infinitely integers m > 0.

Theorem {8 ;Th.3.4] — Let K be a global field. Let v, be a place of K. Then
every Hilbert subset of K is dense in [],,, K, for the “strong approzimation
topology”, i.c., the topology involved in the strong approzimation theorem for
global fields [2].

These results were only known for number fields as a consequence of Siegel’s
theorem ([7] for the first one; [19;Ch.9.7], (17], [5] for the second one). In
characteristic p > 0, the second result answers a question of B. Kunyavsky.

I wish to thank M. Chardin and M. Giusti for useful hints concerning the
use of resultants in the last section and M. Fried for a thorough reading of the
manuscript and many valuable suggestions.

NOTATION

Heights. We adhere to the notation of {14]. Let F be a field with a proper set
M of absolute values satisfying the product formula with multiplicities 1. For
each finite extension K of F, the set of absolute values of K extending those
of Mr is a proper set Mg, satisfying the product formula with multiplicities
[K, : Fy] for v € Mk. For each integer n > 1, the (absolute logarithmic) height
of points (z,,...,z,) € P*(F) is then defined by

1

(4)  h(zo,...,70) = K F Z (K, : F,] Log{max(lz,lv,-.-,|znals))
! vEMg

where K is any field containing z,,..., z,. One defines the height of an element
z € F to be the height in P!(F) of (1, z). By height of a family of polynomials
Py, ..., P, we mean the height of the collection of the coefficients of P, ..., Pn,.

For a rational function f € K(T), “h(f) < A" (respectively “deg(f) < d”)
means that f can be written f = A/B with A, B € K(T) such that h(A,B) < h
(respectively max(deg(A), deg(B)) < d). In the sequel, a field with the product
formula is a finite extension K of a field F with the product formula with
multiplicities 1 and the associated height is the one defined above.

Algebraic curves and function fields. Throughout this paper, by algebraic
curve we mean a smooth projective geometrically irreducible curve defined over
K. There is a classical dictionnary between algebraic curves and irreducible
polynomials in K[T, Y] or, equivalently, function fields in one variable over K :
points on curves correspond to places of fields and nonconstant morphisms
between curves to field homomorphisms. In particular, if C is the algebraic
curve associated to a polynomial P(T,Y) € K(T,Y], then each non constant
rational function ¢ in the function field K (T){Y]/(P) induces a finite morphism
@ : C — P! defined over K. This applies in particular to ¢ = T. Then we have

deg(p) = [K(C) : K(p)] = degy P.
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Unramified fibers. A polynomial P(T,Y) € K(T)[Y] is said to be separable
over K(T) if it has no multiple roots in K (7). In that case, we say that a point
t, € P}(K) is not a branch point of P(T,Y), or that P(T,Y) is unramified
above T =t,, if P(T,Y) is totally split in K((T —t,)) (as a polynomial in Y),
i.e., has d = degy P distinct roots yy,...,ya in K((T —t,)). Then the field
generated by the coefficients of y; will be denoted by K(yi(t,)), i = 1,...,d.
When the polynomial P(t,,Y) has d distinct roots in K, i.e., when t, is not
a root of the discriminant A(T) of P(T,Y) relative to Y, then y; is a power
series in T' — ¢, and the field K'(yi(f,)) is the field generated by the constant
term of y;, 1 = 1,...,d. When t, = oo, T ~ t, should be replaced by 1/T.
For convenience, we note that these definitions can be generalized to include
the case that t, = T is the generic point of P! : only replace in the above
K((T -t,)) by K(t,)((T —t,)). Then the generic point t, = T is not a branch
point of P(T,Y) and each of the Laurent series y solution of P(¢,y) = 0 consists
of a single constant term in K (T). If P(T,Y) is absolutely irreducible (i.e.,
irreducible in K(T)[Y]) and ¢ : C — P! is the finite morphism induced by
T on the algebraic curve associated with P(T,Y), then the points of C in
the fiber p~1!(¢,) correspond to the distinct irreducible factors of P(T,Y) in
K((T —t,))[Y]). Thus, if ¢, is not a branch point of P(T,Y), then the fiber
v~ 1(t,) consists of d = deg, P distinct points Qy,...,Qq4, which correspond
to the distinct Laurent series yy,...,yq in K((T —t,)) solution of P(T,y;) = 0.
The field K(y;(t,)) corresponds to the field of definition K(Q;) of the point Q;
onC,i=1,...,d

1 s-INTEGRAL POINTS

1.1 Sprindzuk’s inequalities

In 1979, Sprindzuk proved a general result on the values of algebraic func-
tions {20]. There were several variants of Sprindzuk’s theorem in the eighties
((1], 3], [11]). To our knowledge, the most precise and most general ones were
given in [5]. Th.1.1 below can be regarded as a slightly weakened but more
practical form of these results. Several proofs of Sprindzuk’s result were given.
The most general one corresponds to an algebraic approach due to Bombieri
[1]- His quite conceptual proof rests on Weil’s decomposition theorem and the
quadraticity of the canonical height on abelian varieties. Although Bombieri
restricts to number fields, his proof is valid for any field K with the product
formula. However there is a slight error in Bombieri’s original paper. Correct
statements and proofs can be found in {4] and [5]. Also, the constants involved
in Bombieri’s method can’t seem to be easily computed. The effective part
of Th.1.1 comes from another proof of Sprindzuk’s result given in {5]. Like
Sprindzuk’s original one, this alternate proof involves analytical methods from
the transcendental number theory.

Let K be a field with the product formula. Let P(7,Y) be a polynomial,
irreducible in K(T)[Y], separable over K(T) and unramified above T = oo.
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Denote the d = degy(P) roots in K((1/T)) of the polynomial P(T,Y) by
Yy, Yd-

Theorem 1.1 — There exist two constants A and B with the following
property. Lett € K and v € M. Then for any non constant divisor D(Y) €
K[Y] of P(1,Y), we have :

1) (Ko : F] Loglt], _ deg(D)
Joax, [I\ yi(00)) : F] ~ degy P

h(t)+ A+ B\A(D)

Addition to Th.1.1. Assume further that K is a number field and that the
polynomial P(T,Y) is irreducible in K[T,Y] and totally split in K([1/T)]. Then
the constanis A and B can be taken to be

9 A = 15deg(P)2h(P) + 136 deg( P)® + 3 deg(P) Log(E)
(2) B = 3deg(P)Ph(P) + 25 deg(P)* + deg(P)? Log(E)

where E is the Eisenstein conslant of the polynomial P, i.e., the L.c.m. of the
Eisenstein constants of the Laurent series yy,...,ya € K((1/T)) satisfying
P(T,y:)=0,i=1,...,d

Proof. We give two proofs corresponding to the two approaches of Sprindzuk’s
theorem. We refer to (5] for more details.

Geometrical viewpoint. Thanks to the assumption “P(T,Y) separable over
K(T)”, one may restrict to the case where P is absolutely irreducible. In fact,
the separability over K of the constant field of P is sufficient (see [3;Ch.5 §2]).
Then the data can be viewed geometrically as follows : an algebraic curve C and
a finite separable morphism ¢ : C — P!, both defined over K ; furthermore,
the map ¢ is assumed to have only simple poles. By taking A sufficiently large
one may assume that ¢ is not a root of the discriminant A(T) of P(T,Y). Then
the roots of P(t,Y) correspond to the points in the fiber ™ !(t). Let M be a
point in this fiber that corresponds to a root of the divisor D(Y') of P(t,Y)
and let ¥ be an extension to K of the given place v € M.

If M is v-adically suitably close to some pole @ of ¢(*), one may apply Th.3
of [5] to obtain

[1{(Q11\'f)‘7 . Fv]

RGO IhF Lo el <

(3) T He(M)) + O(Vh(p(M)))

"d()

The exact condition on M is that, for some pole Q of ¢, we have Aq(M,v) > 5,, where
/\Q is the Weil function associated to the divisor (Q) and (6V)VEM)‘ is a certain Mp-constant
depending on the zeroes and poles of @ (here k is a field of rationality for C, 0 and the zeroes
and poles of (). The Mp-constant (6,, )06 M, is the one that appears in Th.3 of (5]
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Then use the inequalities

@ [K(Q.M): F] < [K(Q): F] [K(M): K]
(K(Q,M)s : K] 2 [K, : F]
to obtain
[K, : Fy] Logle(M)], _ [K(M):K]
O T @A det 0 (VA((31)

which is the geometrical form of (1).

If M is v-adically “far from” all the poles of p(**) , then Weil’s decomposition
theorem [14 ;Ch.10] readily shows that the lefthand term in (3) can be bounded
even more sharply by a term O(1). O

Arithmelical viewpoint (in characteristic 0 only). We can restrict to the case

[Ky : Fy] Logltls

2K, (K (yi(c0)) : F]

> A

Indeed (1) is trivial in the opposite case. Then taking A suitably large insures
that the power series y;(t) are convergent in K,,7 = 1,...,d. The corresponding
sums, ¥ v(t), i = 1,...,d, are the d roots of P(t,Y). At least one of them is a
root of D(Y). Then Th.2 of [5] (with X = 1/T') yields the required inequality.
O

Remark 1. There is no preliminary reduction to the “absolutely irreducible”
case in the arithmetical proof : Th.2 of [5] was proved directly under the more
general hypothesis “P(T,Y) irreducible in K{T,Y}". This “irreducible vs abso-
lutely irreducible” question is not a totally minor point. In the sequel, we will
apply Th.1.1 to a composite field extension K(T,y1,...,Ym). This extension
may have a non trivial constant field even though the function fields K(T', %),

i=1,...,r do not (take y; = V1+ 7T and y» = /2(1+T)).

According to the previous footnote, the precise condition is that /\Q(M, 17) S 6‘-, for all poles
Q of ¢. That the left-hand side term of (3) can be bounded by a term 0(1) immediately follows
from Th.3.7 p.263 of [14]
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1.2 s-integral points

Definition 1.2 — Given an inleger s > 0, an element t € K s said to be
s-integral in K if the number of places v € My such that |t|, > | is less than
or equal 1o s.

Classically, if S is a finite subset of Mg containing the archimedean places
in Mg, S-integral points are defined to be the points t € K such that all the
places v € Mg for which |t|, > 1 are contained in S. If |§| < s, S-integral
points are s-integral. The point of the notion of “s-integral point” is this. If
s > 0 then s-integral points ¢ € K satisfy this condition :

[Ky @ Fy) h(t)
————Log|t|ly > —=

(6)  For at least one place v € Mg we have (K F| g |t > s

Th.1.1 has this consequence.

Corollary 1.3 — Under the assumplions of Th.1.1, there ezisis a constant

ho = ho(P) with the following property. Lel t be s-integral in K and of height
h(t) > h,s®. Then for each root y(t) € K of P(t,Y), we have

degy P

Q) [K(y(): K] >
s max (K (yi(o0)) : K]

Addition to Cor.1.3. Assume further that K is a number field and that the
polynomial P(T,Y) is irreducible in K[T,Y] and totally split in K{[1/T}]]. Then
the constant h, = ho(P) can be taken to be

(8)  h, =2700deg(P)'? + 48 deg(P)°h(P)* + 12 deg(P)®(Log(E))*

Proof. Let D(Y) € K[Y] be the irreducible polynomial of y(t) over K. Apply
Th.1.1 to this divisor D(Y) of P(t,Y) and to a place v for which the inequality
of (6) holds. Conclude that

ht) e
Y (K (yi(c0)) : I\] = deg h(t)+A+B\/—

This leads to the announced inequality (7) provided that ¢ is of suitably large
height (the precise condition is easily seen to be of the form &(t) > h,5%). 0O

As already mentioned in the introduction, Coates noticed that Cor.1.3 con-
tains the following classical diophantine result due to Runge : take K = @, if
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the function T on the curve P(¢,y) = 0 has at least two poles that are not con-
jugate over Q, then the equation P(t,y) = 0 has only finitely many solutions
(t,y) € Z?. Unfortunately the situation where all the poles of ¢ are simple
and conjugate over Q, in which case inequality (7) is trivial, may happen quite
often. Indeed this is the spirit of Hilbert’s irreducibility theorem. In the next
paragraph, we show that this difficulty disappears when one works with several
curves.

1.3 Main result

From now on, fix an algebraic closure K of K and an algebraic closute K (T)
of K(T). Let P = {P(T,Y),...,Pa(T,Y)} be a family of (not necessarily
distinct) polynomials in K(T){Y]. For i = 1,...,n, denote the branch point
set of Pi(T,Y) by Br(F;) and set Br(P) = U,«;cn Br(F). For each point
t € P!\ Br(P), define the parameters D(P) and D}(P) by the following
formulas

Dy(P)= min [K(t, (). ..,ym(t)) : K()]
(9) N (Y1, ¥m) )
Df (P) = max ) K@, un(t),...,yum(t)) : K(1)]
| NERET) ™m
where in the “min” and in the “max”, {yi,...,¥m) ranges over all m-tuples

with ith entry a root y; € K((T'—1t)) of Py(T,Y ) and with no two equal entries.
The field A(t,y1{),...,ym(t)) should be understood as the compositum of the
fields K(t), K(1(t)), ..., K(ym(t)) (which are precisely defined in Notation).
When t = T is the generic point of P!, we use the subscript “gen” instead of
“t” _ Recall that in this case, K((T —t)) should be replaced by K(T).

Remark 2. In the special case where the polynomial P;(t,Y) has degy. P; sim-
ple roots in K, i=1,...,m, D;(P) (resp. D} (P)) is the minimal (resp. maxi-
mal) degree over K of a field generated by m distinct elements y,(t),...,ym(t) €
K such that y;(t) is a root of Pi(t,Y),i=1,...,m. This holds if ¢ is not a root
of the discriminant A;(T) € K(T) of P(T,Y), i = 1,...,m, (so in particular
for all t € K of sufficiently large height). Similar statements are obtained for
t = oo by changing T to 1/T'.

Theorem 1.4 — Assume that the polynomials Pi(T,Y),..., Pn(T,Y) are
separable over K(T) and unramified above T = co. Let s > 0 be an integer.
There ezists a constant hy = h)(P) depending on P = {P\,..., Pn} with the
following property. If t is s-integral in K and if h(t) > hys?, then t ¢ Br(P)
and

(10) s DEL(P) Di(P) 2 Dgen(P)
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Addition to Th.1.4. Assume further that K is a number field and that the
polynomials Py,..., Py are in K[T,Y] and satisfy this condition

(11) 0 is not a root of the discriminant of the polynomials P;(1/T,Y), i =
1,...,m,

then the constant hy can be taken o be

(12) hy = 2™+ pMm 2 4 800)
where h(P,) < H and deg(P)}< D,i=1,...,m.

Cor.1.3 corresponds to the special case m = 1 of Th.1.4. But in general m
has to be taken > 1 so that (10) is not trivial. Indeed for m = 1, the ratio
Dgen(P)/ DL (P) may be equal to 1, in which case inequality (10) reduces to
sD¢(P) > 1. On the contrary, inequality (10) always yields interesting conclu-
sions for large m if one can arrange for this to hold : Dge,(P) is increasing with
m whereas DX (P) is bounded by a constant not depending on m. That will
be the case in our applications. This idea already appears implicitly as a basic
principle of the proofs of Fried and Weissauer that a field with the product
formula of characteristic 0 is hilbertian ([12;Ch.14}).

Proof of Th.1.4. Let t be s-integral in K and y,(),...,ym(t) be m distinct ele-
ments of K such that P;(¢,%:(t)) = 0,i = 1,..., m. One may assume that A(t) is
large enough to guarantee that the polynomial P;(t,Y) has only simple roots in
K,i=1,...,m. Consequently, there exists a unique power series y; € K [[T —1]]
with constant term equal to yi(t) such that P;(T,y) =0,i=1,...,m. These
power series yi,...,Ym are necessarily distinct for their constant terms are.
Consider the function field K(T,yy,...,Ym). From the separability assump-
tion, the extension K(T,y1,...,ym)/K(T) has a primitive element z. A field
with the product formula is necessarily infinite ; it is classical then that z can
be taken of the form

(13) z=ciyi+ -+ Cm¥Ym, Withc; € K,i=1,...,m

Let P(T,Y) be irreducible in K[T,Y] and such that P(T,z)} = 0. From the
assumptions, all the conjugates of y; over K (T') are in K((1/T)),i=1,...,m.
Therefore the polynomial P(T,Y) is totally split in K((1/T)). More precisely,
each root zo, € K((1/T)) of P(T,Y) can be written out

Zoo = €110 t -t Cm¥Ymeo

with yi00 € K((1/T)) a root of P,(T,Y). This shows that

[K(200(00)) : K] < D (P)
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Now by construction the element ¢;y;(¢) + - - - + cmym(t) is a root in K of
the polynomial P(¢,Y). Apply Cor.1.3 to get

degy P

(14) (K{eiy1(t) + - + cmym(t)) : K] > S DL(P)

provided h(t) > h;s? where hy = ho(P) is the constant of Cor.1.3 associated
with the polynomial P. Inequality (10) easily follows from these inequalities

{ degy P = [K(T.y1,---,¥m) : K(T)] > Dgen(P)
(15)

(Kleipi(t) + - + emym(8)) : K] S [K(w1(D),-- . ym(t) : K] O

Remark 3. (a) The proof actually shows this more precise inequality : if ¢ is
s-integral in K and if h(t) > h,s?, then

(16) s DL(P) [K(wi(t), .-, ym(t) : K] 2 [K(T,y1,-- -1 ym) : K(T)]

where y; € K[[T — t]] is the unique power series with constant term equal to
yi(t) such that P(T,y:)=0,i=1,...,m.

(b) The proof of Th.1.4 can be presented in a more geometrical way by using
fiber products of curves. Indeed, regard the polynomial P;(T,Y) as an algebraic
curve C; and the T variable as a morphism ¢; : C; — P!, i = 1,..., m. Denote
the fiber product of Cy, ..., C,, over the maps @1, ..., ¥m by &, and the map
¢ — P! extending the ;s by ®,,. For each point t for suitably large height,
the r-tuple (y:1(2),...,ym(t)) correspond to some point M = (M,..., Mn) on
€. The argument of the proof of Th.1.4 essentially consists in applying Th.1.1
in its geometrical form (5) (or its corollary 1.3) to the irreducible component
of &, that contains M = (My,...,Mu).

2 HILBERT SUBSETS

2.1 Statement of the result

Let P = {P\(T,Y),..., P.(T,Y)} be a family of n polynomials absolutely
irreducible and separable over K(T') and such that degy,, P, > 2,i=1,...,n.
Under suitable assumptions, Th.2.1 below produces explicit elements of the
Hilbert subset Hp,, _ p,.. As before Br(P) is the union of the branch point sets
of the polynomials P\(T,Y),...,Pa(T,Y). A point a € P! is called a tamely
ramified branch point of P if the polynomials P;(T,Y), i =1,...,n are tamely
ramified above T = a, that is, if K is of characteristic 0 or of characteristic
p > 0 with p dividing none of the degrees of the irreducible factors of P;(T,Y)
in K((T—a)),i=1,...,n.
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Let f be an infinite set of non constant rational functions f(T) € K(T)\K. A
point z € P}(K) is called exceptional for f if there exists an element t € P*(K)
such that f(z) = t for infinitely many f € f. A point z € PY(K) is called
exceptional for f relative to P if

(1) There is some t € Br(P) such that f(z) =t for infinitely many f € f.

An exceptional point z for f relative to P is called regular if the t in the
definition (1) can be taken to be a tamely ramified branch point of P.

Let f be an infinite set of non constant polynomials f(T) € A[T]\ K. Th.2.1
has these two basic assumptions.

(A) oo & Br(P), i.e., the polynomials Py, ..., P, are unramified over T = oo.

(B) Either there is no exceptional point for f relative to P, or, there is a
unique one, which, in addition, should be regular.

Theorem 2.1 — Assume that conditions (A) and (B) hold. Let s > 0 be an
integer. Then there ezist a constant ha > 0 and a finite subset £, of f with the
following property. Ift is any s-integral point in K of height h(t) > hys?, there
ezists a polynomial f € £, such that f(t) lies in the Hilbert subset Hp, _ p_.

Addition to Th.2.1. Let m, > 0 be an integer suck that

(2) 2Me > s(degy P)!---(degy Pn)!

Under conditions (A), (B), the finite subset f, can be taken to be the sef con-
sisting of the m, first terms of a sequence (fm)m>o satisfying condition (4) of
Lemma 2.4. Assume further thal K is a number field and that the polynomi-
als P(f;(T),Y), i=1,...,n, j=1,...,m,, satisfy condition (11) of Th.1.4.
Then the constant hy can be taken to be

(3) hy = 215me*+4 (DD(£,))14 ™42 (3H? + 3H(£,)? + 812)

where as usualdegy P; < D, h(FR) < H,i=1,...,n and D(f,) and H(f,) are
integers such that deg f; < D(fy) and A(f;) < H(f,), j=1,...,m,.

Remark 1. In Th.2.1, f is a set of non-constant polynomials. More generally,
f can be taken to be an infinite set of non-constant rational functions f(T) €
K(T)\ K. Condition (A) should be then replaced by the more general condition

(A) The set f(co) = {f(00) | f € £} consists of a single point w € P}(K), not a
branch point of P. Furthermore the point w is a totally ramified point of each
of the covers f: P! — P! induced by the rational functions f € f.
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QOur proof of Th.2.1 can be used without any change in this more general
context. This remark is used in Example 3 of §2.5.

2.2 General results
The proof of Th.2.1 is given in §2.3 and §2.4. We start with some general
results involved in this proof and in other places of the paper.

Proposition 2.2 — Let P(T\Y) € K(T)[Y] be a polynomial, irreducible and
separable over K(T) and f(T) € K(T) be a rational function. Let a € P'(K)
and set b = f(a). Assume that P(T,Y) is unramified over T = b. Then

(a) The polynomial P(f(T),Y) is unremified over T = a.

Let P(d) be the family of polynomials consisting of P repeated d = degy P
times.

(b) The field generated by the coefficients of the Laurent series y € K((T — a))
solution of P(f(T),y) =0 is an extension of K of degree < D (P(d)).

(c) The term D} (P(d)) can be bounded from above independently on b by
degy (P)!

Proof. The rational function f(T) — b can be expanded as a power series in
T — a with coefficients in K and with constant term equal to 0. It follows that,
if y(T — b) € K((T — b)) is any root of P(T,Y), then f(T) can be substituted
for T in y(T — b) to give a root y(f(T) ~ b) € K((T — a)) of P(f(T),Y). This
proves (a). Furthermore the coefficients of y(f(T) —b) € K((T — a)) lie in the
field K(y(b)) of the coefficients ot the initial Laurent series y(T — b). Thus (b)
follows from the definition of D} (P(d)). It remains to prove (c). Let y1,...,ya
be the d roots in K ((T — b)) of the polynomial P(T,Y) and let ¢;,...,(s be r
K-linearly independent elements of K(y(b),...,yqa(b)). We wish to show that
r < d! . Observe that there exist

2y, s 20 € K(Toyy, -, va) NK[[T - b))

such that Z;{(b) = (;, i = 1,...,r. Now Z),...,Z, are automatically linearly
independent over K(T'). Conclude that r < [K(T,y1,-..,y4) : K(T)]. This last
dimension is clearly < d!'. 0O

Proposition 2.3 — Let P(T,Y) € K[T,Y] be an absolutely irreducible
polynomial and f(T') € K(T)\K be a nonconstant rational function. If f(oo) =
w is a tolally ramified point of the cover f : P! — P! but is not a branch point
of P, then the polynomial P(f(T),Y) is absolutely irreducible.

In particular, under condition (A) of Th.2.1, the polynomials P;(f(T),Y)
are absolutely irreducible, forall fef,i=1,...,n.
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Proof. Recall from the introduction that if f(T) = A(T)/B(T) with A and
B relatively prime in K[T), then f(oo) = w is a totally ramified point of the
cover f : P! — P! if and only if the polynomial A(Y)—TB(Y) is irreducible in
K((T — w)). Now, if w ¢ Br(P), the splitting field N of P(T,Y) over K(T) is
contained in K((T —w)). Conclude then that the polynomial A(Y)-TB(Y) is
irreducible over N. Now if y(T),U € K(T') respectively denote a root in Y of
the polynomials P(T,Y) and f(Y) — T, this implies that the field extensions
R(T,y(T))/K(T) and K(U)/K(T) are linearly disjoint over K(T). Conclude
that

(KU, y(T) : K(U)] = [K(T,y(T)) : K(T)] = degy(P)
and so that P(f(U),Y) is irreducible over K(U). O

2.3 Proof of Th.2.1 : a preliminary lemma

Assume conditions (A), (B) hold. Under condition (B),

- either there exists a unique exceptional point « for f relative to P, that is,
is the only point in P!(K) such that f(a) € Br(P) for infinitely many f € f.
Furthermore, the exceptional point « is regular, that is, there exists a tamely
ramified branch point a of P with f(e) = a for infinitely many f € f.

- ot, there is no exceptional point for f relative to P. In that case, set o = o0
and a = oo (or @ = w in the more general context of Remark 1).

Lemma 2.4 — (a) There ezists a sequence ( fm)m>o of elements of f such
that
(4) o) =

fRNBr(P) 0/ (Br(P)) C {a}

for all distinct integers m,m’' > 0.

(8) If (fm)m>o is any sequence of f salisfying (4), then we have the following
conclusion.

(5) Denote the splitting field over K (T') of the polynomial Pi(fm(T),Y) by Eim,
i=1,...,n,m>0. Foralm>0andi=1,...,n, if Yimep1 EA_’(T) is en
arbitrary root of Pi(fm41(T), i ms1) = 0, then the eztension K(T,yims1) is
linearly disjoint from the eztension Eyy--- Eqy -+ E\pp -+ Eqm over K(T)

Proof. (a) The sequence (fm)m>o is defined inductively. Let f, o be the subset
of f of all f € f such that f(a) = a. Pick f in f5 4. Then, given fi,..., fu
satisfying (4) for all distinct integers m,m’ = 1,..., M, consider the set
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s= {J £YBr@)
1< <M
We need to prove that there exists an element faryy € f, 4 distinct from
fis.o.., far such that f;,:_l(Br(P)) NS C {a}. Assume the contrary holds.
Then, since Br(P) and S are finite and f, 4 is infinite, there exists r € Br(P)
and s € S, s # a such that f(s) = r for infinitely many f € f. This contradicts
assumption (B).

(b) Suppose given in general a sequence (fm)m>o of elements of f satisfying (4).
Fix an integer m > 0. From Prop.2.2, if y;; is an arbitrary root of P;(f;(T),Y),
then the branch point set of the extension K(T,yi;)/K(T) is contained in
f;‘(i_?_r(P)), it=1,...,n and j > 0. Classically, extensions that are conjugate
over A (T) have the same branch points; also the branch point set of a com-
positum of function fields is the union of the branch point sets of the function
fields ; in addition, ramification remains tame in the compositum extension if
it is in the original function fields. Thus it follows from (4) that the extension

——

(6) T‘;(Tvyim+l)nEll"'Enl"'Elm"'Enm

of K can have only one branch point, namely «, i = 1,...,n. The “hat”
indicates that we took the Galois closure over K(T). In addition, ramification
above « in this extension is tame. It is a classical consequence of Hurwitz’s
formula {13 ;Ch.4] that this forces the extension (6) to be trivial. And that
implies the linearly disjointness statement of Lemma 2.4.

Remark 2. Denote the set of exceptional points for f, 1.e., such that there exists
an element ¢ € P'(K) such that f(z) =t for infinitely many f € f, by Exzc(f).
Given the set f, a natural assumption that insures that condition (B) (and so
conclusion (a) of Lemma 2.4) holds is that the values { = f(z) that correspond
to exceptional points z € Ezc¢(f) do not meet the branch point set Br(P), or
at most in one point (which should in addition be a tamely ramified branch
point).

Consider the special case f = {T™|m > 0}. Then both the set Fzc(f) and
the set of corresponding values t consist of 0, 1, oo and all roots of unity in
K. The natural assumption above that insures condition (B) is that none of
these elements (except possibly one) lie in the branch point set Br(P). In that
special case however, the weaker condition

(7) 00,1 ¢ Br(P) and 0 is a tamely ramified branch point set of P

guarantees conclusion (a) of Lemma 2.4. In other words, roots of 1 other than
1 can be disregarded.
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Indeed take a = a = 0. The proof of conclusion (a) of Lemma 2.4 is the
same as above except that the end of the argument should be replaced by this :

“Since Br(P) and S are finite, there exists » € Br(P) and s € S, s # 0 such
that f(s) = r for infinitely many f € f of the form f(T) = T* with k a
suitably large multiple of all the orders of roots of unity in S. Since s # 0 and
oo & Br(P), the only possibility is that s is a root of 1. But then r = f(s) =1,
which contradicts “1 ¢ Br(P)".”

This remark will be used in Example 4 of §2.5.

2.4 End of proof of Th.2.1

Part 1 : The basic inequality. Let (fm)m>o be a sequence of elements of f.
Let s > 0 be an integer. Fix an integer m > 0 such that

(8) 2™ > s(degy P1)!---(degy Pu)!

With no loss we may assume that the polynomials P;(f;(T),Y),i=1,...,m,
j=1,...,mareirreducible in K'[T,Y] : if necessary, multiply these polynomials
by suitable elements in K[T). Let hy be the largest one of the constants h; of
Th.1.4 associated with the families

Pi(fn) = {Pi, (fU(T).Y),..., P, (fm(T), )}

where 1 = (41, ....1m) ranges over all families of indices ¢; € {1,...,n} indexed
by {l,...,m}. Let t be an s-integral point of K of height h(t) > has?. Let
81,...,6, be n positive real numbers.

Assume that for each j = 1,...,m there exists {; € {1,...,n} such that the
polynomial P;,(fj(t),Y) has a root y;(t) € K of degree [K(y;(t) : K] < 6.
Consider the family of polynomials Pi(f) = { P, (fi(T),Y),..., Pi..(fm(T),Y)}.
They are separable over K(T') since the polynomials Py,..., P, are. From as-
sumption (A) and Prop.2.2 (a), they are unramified above T' = co. Applying
Th.1.4 to the family P;(f) gives

Dyen(Pi(£
9) G bi > (K@i (D)s- .. ym(D)) : K] > H)%TEPTE%

Now it follows from Prop.2.2 (b) that

(10) pLPif) < [ DIPi(di))
l<l<n

where P;(d;) is the family of polynomials consisting of P; repeated d; = degy P,
times, i =1,...,n. Use Prop.2.2 (c) and substitute (10) back in (9) to obtain
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(11) Dgen(Pi(f)) < s(degy P1)!---(degy Pa)! b, -+ &

m

Part 2 : Conclusion of the proof. In this part, the sequence (fm)mso Is
selected to be a sequence of elements of f satisfying condition (5) of Lemma 2.4
(e.g. the sequence (fm)m>o constructed in Lemma 2.4 (a)). If y; is an arbitrary
root in K(7) of Pi,(fj(T),Y),j=1,...,m, then

R(T, (T, ym(D) : K(T)] =[] K(T5(T)) : K(T)]

1<j<m

= degy B, ---degy £,

The second equality comes from the absolute irreducibility of the polynomials
P(f;(T),Y) (Cf. Prop.2.3). A fortiori we have

(K(T, y1(T), ..., ym(T)) : K(T)] = Dgen(Pi(f)) = degy P;, ---degy P

For 6; = degy P;/2,i=1,...,n, (11) then gives

(12) 2™ < s(degy P1)!---(degy Pn)!

which contradicts (8). Conclude that there exists an integer j € {I,...,m}
with the property that the polynomial P;(f;(t),Y) has all of its roots of degree
over K larger than degy Pi/2, i = 1,...,n. Then necessarily the polynomial
Pi(fi(t),Y) is irreducible in K[Y], i=1,...,n. That is, f;(t) is in the Hilbert
subset Hp, . p.. a

Remark 8. There usually is a preliminary step in proofs of Hilbert’s irreducibil-
ity theorem, which reduces the problem to studying sets of the form

(13) Vou...an = {t € K|Qi(t,Y) has no root in K,i=1,...,N}

rather than Hilbert subsets Hp, _p, themselves (e.g. [14;Ch.9,Prop.1.1]). Here
we do not use this reduction : our proof directly provides elements of Hp, _ p, .
This remark is important for effectiveness. Indeed, this reduction step turns out
to be quite expensive in terms of constants : degrees and heights of the polyno-
mials Q,...,Qn that replace the polynomials Py,..., P, are respectively of
order DP and DP H (where degy P; < D, h(P;) < H,i=1,...,n) in general.
Only because our proof avoids this usual reduction step could we obtain the
bound of Cor.3.7.
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2.5 Examples

We give a series of special cases of Th.2.1. In these examples, the n polynomi-
als P(T\Y),...,P,(T,Y) € K[T,Y] are absolutely irreducible and separable
over K(T) and s > 0 is an integer. Denote the set of exceptional points for
f, i.e., such that there exists an element t € P!(K) such that f(z) = ¢t for
infinitely many f € f, by Ezc(f).

Ezample 1. Let (am)mso be a sequence of distinct elements of the field A, Set
f={T +am|m > 0}. Then Ezc(f) = {c0}. We obtain

Corollary 2.5 — Assume P|(T,Y),..., P(T\Y) € K[T,Y] are unramified
above T = co. Then there exist an integer M, > 0 and a constant hy with this
property. For all s-integral point t € K such that h(t) > hys?®, at least one out
of the M, elements t +ay,...,t +ap, belongs to the Hilbert subset Hp, _ p,.

Erample 2. Let (am)m>o be a sequence of distinct non-zero elements of K and
f = {anT|m > 0}. Then Ezc(f) = {0, c0}. We obtain

Corollary 2.6 — Assume P (T\Y),...,P.(T\Y) € K[T,Y] are unramified
above T = oo and tamely ramified above T = 0. Then there ezist an inleger
M, > 0 and a constant hy with this property. For all s-integral pointt € K
such that h(t) > has?, at least one out of the M, elements ayt,..., ax,t belongs
to the Hilbert subset Hp, . p,.

Ezample 3. This example uses the slightly more general form of Th.2.1 given
in Remark 1. Let b, € P*(K)\ Br(P) not a branch point of Py,..., P,. Let
(am)m>0 be a sequence of distinct elements of K. Set

fm(T)zbo+ (m>0)

1
T+ap,
and f = {fn(T)|m > 0}. Then f(oo) = {b,} and Ezc(f) = {b,}. Thus condi-
tions (A) (of Remark 1) and (B) hold. We obtain

Corollary 2.7 (Fried, Weissauer) — There ezist an integer M, > 0 and a
constant hy with this property. For all s-integral point t € K such that h(t) >
hos?, at least one out of the M, elements

1 1
bp + ——,...,b
o+t+a11 10+t+a“l¢

belongs to the Hilbert subset Hp, . p,.

Both Weissauer [21] and Fried [11] use in the special case of Example 3 ar-
guments that are similar to ours. But Weissauer’s approach uses non standard
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analysis while Fried’s one assumes the existence of non principal ultrafilters
on N. Our method is completely explicit. We will compute in §3 all the con-
stants involved and will obtain a new effective version of Hilbert’s irreducibility
theorem over a number field (Cor.3.7). In Cor.2.7, the polynomials P, ..., P,
are assumed to be absolutely irreducible. We will use the following lemma to
teduce to this case.

Lemma 2.8 -— (a) Let L/K be a field eziension with K # L and P(T) be
a polynomial in L[T]\ K[T]. Then the number of elemenis t € K such that
P(t) € K is less than or equal to deg(P).

(b) Let P(T,Y) be an irreducible polynomial in K[T,Y]. Let

P(T,Y) = an(T) I4(T,Y) - - II(T, Y)

be a factorization of P(T,Y) in K[T,Y), with a,(T) € K[T) and 1,,... I,
monic polynomials (in Y ). Let L be an eztension of K containing the coeffi-
cients of Iy, ..., II.. Then, for all but finilely many elementst € K, if 1;(t,Y)
is trreducible in L[Y], i =1,...,r, then P(1,Y) is irreducible in K(Y].

Proof. (a) Use for example the Lagrange interpolation formulas.

(b) Let t € K such that II;(¢,Y) is irreducible in L[Y], i = 1,...,r and a,(¢) #
0. Assume P(t,Y) = a,.(t)Q(Y)R(Y) with Q(Y), R(Y) € K[Y] monic. Then
necessarily there exists a subset I C {1,...,r} such that Q(Y) = [[;¢, (¢, Y)
and R(Y) = H.‘u I;(t,Y). From (a), except for finitely many ¢ € K, one
can infer that both polynomials [];e, Ii(T,Y) and [[;, I(T,Y) must be
in K[T,Y]. Conclude then from the irreducibility of P(T,Y) in A[T,Y] that
necessarily [ = @ or I = {1,...,n}. (It is readily checked that the number of
exceptional ¢ is < deg(P)2¢8(P)). O

Ezample 4. Let f = {T™|m > 0}. Then Ezc(f) = {0,1,00} U ptoo where pe is
the set of all the roots of unity in K. Taking Remark 2 into account we obtain

Corollary 2.9 — Assume P(T,Y),..., P.(T,Y) € K[T, Y] are unramified
above T = oo and above T = 1 and are tamely ramified above T = 0. Then
there exist an integer M, > 0 and a constant hy with this property. For all s-
integral point t € K such that h(1) > hos?, af least one out of the M, elements
t,t2...,tMe belongs to the Hilbert subset Hp,

Ezample 5. This is a special case of Example 4. Take K =Q,n =1, A (T.Y) =
T(aY?+Y 4 1) —1 where a € Z,a # 0. The assumptions of Cor.2.9 hold. Take
s = 1. Inverses of prime powers 1/p™ are l-integral points of Q. Cor.2.9 yields
that there exists an integer M, > 0 and a constant h; with this property. For
all prime powers p™ such that p™ > hj, at least one out of the M, elements



HILBERT SUBSETS AND S-INTEGRAL POINTS 127

p™,...,p™Me is not of the form ay® + y + 1 with y € Q. Furthermore, the
integer M, can be explicitely determined by using the “Addition to Th.2.1”.
Fix an integer m, such that 2™> > (degy P;)! . Then M, can be taken to be
the moth term k.., of a sequence of integers (km)m>o such that the sequence
(T*™)m>o satisfies condition (4) of Lemma 2.4. It is easily checked that one
can take m, = 2, k; = 1 and k, = k any integer k£ > 1. Finally we obtain the
following result.

Corollary 2.10 — Leta > 1 and k > 2 be two integers. Then there exist
only finitely many prime powers p™ (p prime, m > 0) such that p™ and p*™
are of the formay® + y+ 1 with y € Q.

This example can be easily generalized to the situation P(T,Y) of the form
TM(Y) -1 with M(Y) € Q[Y] to give results about the diophantine equation

M(y) =p™.

2.6 Th.2.1 versus Siegel’s theorem

In the introduction, we mentioned some advantages of our results over
Siegel’s theorem. Th.1.4 and Th.2.1 lead to
e more general results : here the field K is a field with the product formula, pos-
sibly of characteristic p > 0 whereas Siegel’s theorem is valid for number fields
(or, more generally for extensions of finite type of Q [14]). Also “s-integral” is
more general than “S-integral”.

 effective results : unlike Siegel’s theorem, the constants involved in the state-
ments can be explicitely computed from the data.

Now of course, when Siegel’s theorem is valid and if one is not interested with
effectiveness, then Siegel’s conclusions are better than ours for S-integral points.
For example, thanks to Siegel’s theorem, one can prove the following result,
which should be compared to Th.2.1. Keep the notation of Th.2.1. Assume
that K is a number field. Let S be a finite set of places of K containing the
archimedean ones.

Proposition 2.11 — Assume conditions (A), (B) hold. Then there ezists a
constant hy > 0 and two polynomials fy, f; € £ with the following property. Ift
is any S-integral point of K of height h(t) > hy, then either fi(1) or fa(t) lies
in the Hilbert subset Hp, . .p..

That is, for S-integral points, conclusion of Th.2.1 holds with {f5f = 2.
Proof. Classically, it is sufficient to prove the weaker conclusion where H =

Hp, . p, is replaced by V' = V,’,‘ _____ P. (defined in Remark 3). Let fi, fo be
two a priori arbitrary polynomials in f. For each bi-index 1 = (7),i2) with
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entries iy, iz in {1,...,n}, denote the function field over K of the affine curve
P,A,.(fj(t),y) =0 by £;;, j = 1,2 and the compositum field E;, E;, by Ej. From
Lemma 2.4, f; and f> can be selected such that

[B: - K(T)) = [Ei, : K(T)|[E:, : K(T)] 2 4

From assumption (B), co is not a branch point of the extension E;/K(T).
Consequently if C; denotes a smooth projective model of the function field Ej,
then the function T has 4 distinct poles on C;. From Siegel’s theorem, the set
of points M € C(K) such that T(M) is S-integral is a finite set F;.

Now if ¢ is an S-integral point of K such that both f,(t) and fa(t) are not
in Vg p., then either t € Br(P) or there exists a bi-index i = (#},1,) and a
point M € Cisuch that t =T(M). O

3 EFFECTIVE RESULTS

In this section the field K is assumed to be a number field.

3.1 The constants A, B and A, of Th.1.1 and Cor.1.3

For a number field K, the constants A and B are explicitely given p. 20 of
{3] (or, in a more general context, p. 379 of [5]). They are expressed in terms of
the partial degrees, the height and the Eisenstein constant of the polynomial
P. Recall the definition of the latter. Denote the roots of P(T,Y) in K[[1/7]]

by v1,...,ya. Set

(1) yi=ZyimT1"—l, i=1,...,d

m>0

Then the Eisenstein constant of P is the smallest integer £ € Z such that
E™yim is an algebraic integer for all m > 0, i = 1,...,d. In [10], Dwork and
Van der Porten give a general bound for the Eisenstein constant of a polynomial.
But this bound is not fully satisfactory for our purposes for it makes A and B
depend on the field K. We prefer to postpone the evaluation of the Eisenstein
constant to next paragraph where the situation is more specific and where more
elementary results can be used. The constant k, of Cor.1.3 is easily obtained
from the constants A and B.

3.2 The constant &, of Th.1.4

Asin §1.3,let P = {P(T,Y),..., Pn(T,Y)} be a family of polynomials in
K(T)[Y] unramified above T = co. Let H,D > 0 be two real numbers such
that

h(P,) S H, deg(P.-)S D, i= 1,...,m
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From the proof of Th.1.4, the constant Ay = A (P) can be obtained in the
following way. Let y; € K(T') be a root of the polynomial P,(T,Y),i=1,...,m
and

(2) z=cy1+ -+ Cmym, Withe; €Z,i=1,...,m

be a primitive element of the extension K(T,y,,...,ym)/K(T). Let P(T,Y) €
K[T, Y] be an irreducible polynomial such that P(T, z) = 0. Then the constant
hy is the constant h,(P) of Cor.1.3. The problem consists in evaluating the
degree and the height of the polynomial P(T,Y). Since we just need upper
bounds, we can work with a multiple in K[T,Y] of the polynomial P(T,Y)
and then use the following result (e.g. [14 ;Prop.2.12 p.61]).

Proposition 3.1 — If fi, fa € Q[Y1,...,Y,], then

h(f1) £ h(f1) + h(f2) < h(f1f2) + ndeg(f1f2)

In §3.3 we show that such a multiple can be obtained by iteration of resul-
tants and we give estimates for the degree and the height of this polynomial
in terms of Py,..., Py and ¢;,...,¢m. Then we bound ¢y,...,cm (Prop.3.6).
Finally we will obtain the following result.

Proposition 3.2 — Assume that the polynomials Py, ..., Py satisfy condilion
(11) of §1. Then we have

deg(P) < (2D)™
®) { h(P) < 2" D™~ B + 8m(2D)?

Furthermore the polynomial is unramified above T = oo and the Eisenstein
constant E of P can be bounded as follows

(4) Log(E) < 4mDH + 9mD?

Consequently we oblain

(5) hy < 2Bm+4plam( g2 4 800)

3.3 Preliminary results
The resultant of two polynomials
f¥)=a,YP+---+a, (with a, # 0)
gY)=b YT+ ---+b, (with by # 0)
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with coefficients in a ring R is denoted by Resy(f, g). We also define the reduced
resultant Resy(f,g) by the formula
Resy(f,g) = a}¥? Resy(f.9)
Let F(T\Y1,...,Yn, Z) € K[T\Yi,...,Yn, Z]. We inductively define poly-

~

nomials R;, i = 1,...,m by the formulas :
©) [B=Fen(fRy)
Ri = Resy,(Ri-,P)for2<i<m

From standard properties of resultants, we have

Proposition 3.3 — Fori=1,...,m, 1}‘ is a polynomial in the variables
T,Z and Y; with j > i and with coefficients in K. In particular, Rm € K[T, Z).
Ifz € _I-\’—(—j“_)_ s a rool ofﬁ,,,, ie., I—i;m(T, z) = 0, then there exist yy,...,ym in
K(T) such that

Pl(Txyl) = 0

(7) P (T, ;/m) =0

F(Tvylv"'lymvz) =0

Let P(T, Z) be an irreducible polynomial in K(T, Z] such that P(T,z) = 0.
Thus the polynomial Ry is a multiple in K[T, Z] of the polynomial P(T, 2).

Proposition 3.4 — [fh(F) < H,deg(P)< D,i=1,...,m, and deg(F) <
6, then

(8)

deg(P) < §(2D)™
h(P) < 2™6D™=1H + D™h(F) + Tmé*(2D)*™

We first establish some general estimates of the size of a resultant.
Proposition 3.5 — Let A, B € K[Yi,...,Ya] be two polynomials such that
degy, (A), degy,(B) > 0. Set R = Resy, (A, B). Then

h(R) < deg(A)h(B) + deg(B)h(A)
+n deg(AB) Log(deg(AB))

deg(R) < 2deg(A) deg(B)
9
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Proof. Given a place v € Mg and a polynomial P with coefficients in K, define
the v-adic height h,(P) of P to be the Log of the maximum of the v-adic
absolute values of the coefficients of P. Note that

1 > Ky : Q] ho(P)

(10) h(P) = K0
vEMy

Also recall these elementary formulas. If f;,..., fi € Q[Y1,...,Y,] are of degree
less than d, then

(11) { ho(fr--fe) S h(f1) + -+ ho(fi) + €un(k — 1) Log(1 + d)
ho(fi4 -+ fi) S ho(fr,-.., fr) + €0 Log(k)

where €, = 0 if v is finite and g, = 1 if v is archimedean. Also in the sec-
ond inequality, k,(fy,..., fi) is the v-adic height of the collection of all the
coefficients of fi,..., fi.

Now write R as a (degy, (A) +degy, (B)) determinant and use (11) to obtain

deg(R) < degy, (B) deg(A) + degy, (4) deg(B)

hy(R) £ deg)’.(B)hv(A) + dngl(A)hv(B)+
+€y(n — 1) degy, (AB) Log(1 + max(deg(A), deg(B)))
+¢, Log((degy, (AB))!)

The result readily follows. O

Proof of Prop. 3.4. Set D; = deg(FP:), i = 1,...,m. We show by induction that
fori=1,...,m:
deg(R:) < 26Dy --- D;
(12) A(R:) < (8Dy -+ Di) [Hf) 4 2200) . gim1 MR 4 M)
+2(m+ 2)(26D, - -- D;)?
The result will then follow from deg(P) < deg(Rm) and h{P) < h(ﬁm) +
2deg(Rm) (use Prop.3.1 for the latter).

For i = 1, we have

deg(R,) < deg(Resy, (F, P,) < 2deg(F)deg(P,)
h(R1) < h(Resy,(F, P,)) + (m + 2) deg(Resy, (F, P,))
< 8h(P1)+ D1h(F)+ (m+ 2)(6 + Dy) Log(é + D1) + 2(m + 2)6D,

< 6D, (”(D—i?) + E%F—)) + (m + 2)(26D, Log(26D,) + 26D, )
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(Use a+4-b < 2ab, (for a,b > 1) for the last inequality and then z Log(z)+z < z2
(for z > 1) to get (12) in the case m = 1). We then proceed inductively. For
1 < i< m, we have

deg(R:) < deg(Resy,(Ri-1, P}))
< 2deg(Ri-,) deg(P:)
< 22-'6D, -+ Di_1)D;
and

h(R;) < h(Resy,(Ri_y, P\)) + (m + 2) deg(Resy,(Ri_1, P}))
< deg(R;_1)h(P:) + Dih(R;_y)
+ (m+2)(2 Dy Diy 6+ D;) Log(2-'Dy --- Din 16 + D)
+ (m+2)(2°6D, --- D)
< (276D, -+ Di_y)h(P:)

h(P) | o B(P2)  oi-2h(Piet) | A(F)
Dll +2 Dz el 2 D‘._x + 3 ]

+2Di(m +2)(2°71D, --- D;_1)?
+(m+2)[(26D, --- D;) Log(2'6 Dy - -- D;)

+ D,’(&Dl -+ Diy) [

+296D; - - D]
< (8Dy--- D;) [-——h(DPI‘) + 2___"5;:2) ...2"“1———}’(0}:‘) + h(—p]

+ (m+2)(2°6D; - D) (1 + %) O

Proposition 3.6 — The eztension K(T,y1,...,ym)/K(T) has a primitive
element of the form

(13) z=ayr+ - -+ Cm¥m,

where ci,...,cm are integers such thatc; = 1 and ¢; < D™, i =2,...,m

(where as usual deg(P) < D, i=1,...,m).

Proof. The following proof is due to D. Poulakis. Let S be the set of (m — 1}-
tuples (22,...,2m) € Z™" ! with 0 < z; < D*™, j = 2,...,m. Consider the
subset S’ C S consisting of the (m — 1)-tuples (z2,...,2m) € S such that there
exist two distinct K (T')-homomorphisms ¢,0’ of K(T,y1,...,ym) into K(T)
for which

W+ 2oyl + o F 2myl = 90 2235+ ZmY
Set d,, = [K(T,u1,---,ym) : K(T)]. We have d,, < D™ and so

card(s') < (") (2D*™)™? < (2D*™)™1 = card(S)
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Therefore S\S’ # 0. Classically if z,...,zm € S\, then yy+caya+- - +Cmym
satisfies the conclusion of Prop.3.6. O

Proof of Prop.3.2. (3) readily follows from Prop.3.4 and Prop.3.6 (applied
to F = Y7 + ¢c2Yo + -+ + ¢mYm). The polynomial P(T,Y) is unramified
above T' = oo, i.e., totally split in K((1/T)), because so are the polynomi-
als Py,..., Pm. Furthermore, the form of the roots of P(T,Y) shows that the
Eisenstein constant E of P can be bounded by E| - - E,, where E; is the Eisen-
stein constant of the polynomial £, i = 1,...,n. Under assumption (11) of §1,
the Eisenstein constants £, ..., E,, can be bounded quite easily. For example,
Prop. p.387 of [5] gives

Log(E:) <4DH +9D% i=1,...,m

which proves (4). The final bound for h; follows from (3), (4) of §3 and (8) of
§1. O

3.4 The constant A, of Th.2.1

Let P = (P (T,Y),...,P.(T,Y)} be a family of polynomials and (fm)m>o
be a sequence of elements of f like in the “Addition to Th.2.1”. Let s > 0 be
an integer. From the proof of Th.2.1, the constant h; can be obtained in the
following way. Fix an integer m, > 0 such that

2™ > s(degy P)!---(degy Pn)!

Consider the polynomials Fi(f;(T),Y),i=1,...,n, j = 1,...,m,. Multiply
each P;i(f;(T).Y) appropriately by an element of K(T') so to obtain a poly-
nomial E-j(T, Y) in K[T,Y]. Then h; is the largest one of the constants h; of
Th.1.4 associated with the families P; = {5;,,(T.Y),. .. ,ﬁ;mmo(T, Y)} where
i= (i1,...,im,) ranges over all families of indices i; € {1,...,n} indexed by
{L,...,m,}.

In the following estimates, we use the following notation : degy P; < D,
MP)< H,i=1,...,nand deg fj < D(f,), h{f;) < H(f), 71 = 1,...,m,.
Using (10) and (11), one obtains

(14) { deg(P;) < DD(fo)
h(P;) < H + DH(f,) + 2DD(f,)

Report these estimates in the formula for A; to get the bound for h, announced
in Th.2.1, i.e.,

(15) hy = 2'3me 4 (DD(£,)) 14 +2 (3H? + 3H(£,)” + 812)
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3.5 Effective version of Hilbert’s irreducibility theorem

Our goal is to make Example 3 of §2.5 completely explicit so to give a
completely effective version of Hilbert’s irreducibility theorem. Recall some
basic properties of the height on K [14;Ch.3]. For ay,...,ar € K,(k > 1),
then

h(oyoz) < A(a) + h(az)

(1) hlay + -+ k) < h(or) + -+ + h(a) + Log(k)

If P e K[Y] and « € K a root of P, we have the Liouville inequality

17) h(a) < h(P) + Log(2)

Let P(T,Y),...,Pa(T,Y) € K[T,Y]\ K[T] be n absolutely irreducible
polynomials of total degree less than D and of height less than H. The following
algorithm is an effective version of Example 3 of §2.5. [t is the most precise
result of this section.

ALGORITHM

(1) Take m, an integer with 2™ > [K : Q]D"P.

(2) Take b, € K such that h(b,) > 6D + 2DH + Log(2).

(3) Take a integral in K such that h(a) > 12D? + 4DH + 2h(b,) + 5 Log(2).
(4) Set fn(T) =bo + gtz (m>0)

(5) Compute

ho = 2VmetADAML+2(3[12 4 9(h(b,) + Log(3))? +9(Log(m,))* +9h(a)? +812).
(6) Take t € Z of height Log |t| > ha[K : Q]*

(7) Conclusion : at least one out of the m, elements fi(t),..., fm, (t) belongs
to the Hilbert subset Hp,, . p,.

Comments. (a) We took s = [K : Q] so that integers t € Z are s-integral in
K. The quantity 6D + 2DH is an upper bound for the height of the discrim-
inants of the polynomials Py, ..., P,. Thus condition (2) guarantees that the
polynomials Pi(f;(T),Y),i=1,...,n,j=1,...,m,, satisfy condition (11) of
§1. Condition (3) insures that no non-zero multiple ma of a is of the form

1 1

r—b,—r’—bo

(18) ma =

with r, 7' two branch points of P,..., P,. This requirement on the element
a guarantees that the sequence (fm)m>o satisfies condition (4) of Lemma 2.4.
(We selected a integral in K so to insure that h(ma) > h(a) if m # 0).
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{b) When some of the polynomials P,(T,Y),...,Pn(T,Y) are irreducible in
K[T,Y] but not absolutely irreducible, the following procedure can be used.
Replace the polynomials Py,..., P, by the collection Q,...,Qn of all their
irreducible factors in K[T',Y]. These polynomials have their coefficients in a
certain field L. Apply the above algorithm (steps (1) through (5)) to the poly-
nomials @,,...,Qxn. We have

N<nD

[L:K]<nD!
(19) deg(Qr) < D

h(Q,-) <H+2D

where i = 1,...,N. From Lemma 2.8, for all but possibly nD2P elements
te K,ifQ:(t,Y)isirreduciblein L[Y],i = 1,..., N, then P;(¢,Y) is irreducible
in K[Y], i=1,...,n. The final steps (6) and (7} of the algorithm become

(6°) Take M = nD2? integers ty,...,tp € Z of height > hy[L : QJ?
(7°) Conclusion : at least one out of the m,M elements fi(te),-.., fm,(te),
k=1,..., M belongs to the Hilbert subset Hp _ p,.

When the polynomials P,..., P, are absolutely irreducible, then one can
pick m,, b,, a in Z such that

(20) h(b,) + Log(3) < 7D* + 2DH

{ Mo < rogay(Log(r) +nD Log(D)) + 1
h(a) < 27D* +8DH

where r = [K : Q]. Some calculations then lead to

(21) ho < 0, 95.1010D58"D Log(D)+43 Log(r)(H2 + 1)

The final steps (6) and (7) finally give conclusion (a) below. Conclusion (b)
follows similarly from steps (6”) and (7).

Corollary 3.7 — (a) If the polynomials Py,..., P, € K[T,Y] are absolutely
irreducible, then there erists in the Hilbert subset Hp, . p, a rational number
z=ufv € Q of height

(22)  h(z) = max(Log |ul, Log |v]) < 1010 D%8"D Lea(D)+46Log(r)( 2 4 1)

(b) If the polynomials Py, ..., P, are only assumed to be irreducible in K[T,Y],
the same conclusion holds with this bound for h{zx) :
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(23)  h(z) = max(Log |u|, Log |v]) < 1010 D%0nD? Log(D)+46 Log(r) g2 4 1)

The right-hand term of (23) is actually an upper bound for the height of the
moM elements fi(ti),..., fm,(te), k= 1,..., M of step (7’). At least one out
of these my M elements lies in the Hilbert subset Hp,,  p,. Thus, finding an
element in Hp, . p. requires at most to test for the irreducibility of the m,Af
polynomials P;(z,Y), where i = 1,...,n and z ranges over the list of m,M
elements above. The height of these polynomials can be easily bounded :

h(P(z,Y)) < Log(D + 1) + h(P) + h(z)

Factoring polynomials in one variable of degree less than H and logarithmic
height less than H takes polynomial time (rDH)9(1) ([16],(15]). Conclusion :

Corollary 3.8 — Let Pi,..., P, be n irreducible polynomials in K[T,Y}\
K([T), with degree < D and logarithmic height < H. Then one can find a
specific specialization z € Hp,, . p, in time HOM) exp(nDP(Log*(r)) (where

Log*(r) = max(Log(r), 1)).

Thus we obtain a bound which is polynomial in H but not in D. A polyno-
mial bound in both H and D would be a quite interesting improvement. This
would indeed provide a deterministic algorithm for factoring polynomials in two
variables in polynomial time. The nonpolynomial growth of our bound mainly
comes from condition (2) of Th.2.1 which imposes to take the parameter m,
of the algorithm fairly big ; precisely the algorithm requires that 2™ > rD"D,
From Prop.2.11, we know that m, can actually be taken to be equal to 2. But
Prop.2.11, which relies on Siegel’s theorem, is not effective. Nevertheless this
suggests that the above condition on m, might be improved.

3.6 Hilbert subsets of higher dimension

In this paragraph we use the results of the previous one to deduce similar
results for Hilbert subsets of arbitrary dimension ¢ > 1. The classical tool for
reducing to the dimension 1 is the Kronecker transformation [14 ;Ch.9]. Making
it effective does not present any particular difficulty. We only state the result
and leave the details to the reader.

Fix two integers q,p > 0. If Py,..., P, are n polynomials, irreducible in
the ring K[T1,...,T,,Y1,...,Yy), the Hilbert subset Hp, . p_ is defined to be
the subset of K9 consisting of all g-tuples (¢1,...,t,) such that the polynomial
Pi(ty,...,tg,Y1,...,Yp) isirreducible in K[1y,...,Yp], i =1,...,n. Let D, H >
0 such that deg{(P) < Det h(P)< H,i=1,...,n.
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Corollary 3.9 — The Hilbert subset Hp,
in Q7 such that, fori=1,...,q,

p, contains a g-tuple (ty,...,t,)

(24) h(t,) S 1010.2' (D+ 1)100[’1(D+1)6(’+')+46P2‘ LOS(")] (H + 1)'."
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