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A classical tool for s tudying Hilbert 's  irreducibility theorer~ is Siegel's finite- 
ness theorem for S-integral points on algebraic curves. We present a different 
approach based on s-integral points rather than S-integral points. Given an 
integer s > 0, an element t of a field K is said to be s-integral if the set of 
places v E MK for which Itlo > t is of cardinality < s (instead of contained in 
S for "S-integral ). We prove a general diophantine result for s-integral points 
(Th. l .4) .  This result, unlike Siegel's theorem, is effective and is valid more gen- 
erally for fields with the product  formula. The main application to Hilbert 's  
irreducibili ty theorem is a general criterion for a given Hilbert subset to con- 
tain values of given rational functions (Th.2.1). This criterion gives rise to very 
concrete applications : several examples are given (w Taking advantage of 
the effectiveness of our method, we can also produce elements of a given Hilbert 
subset of a number field with explicitely bounded height (Cor.3.7). Other ap- 
plications, including the case that  K is of characteristic p > 0, will be given in 
forthcoming papers ([81,[9]). 

Hilbert  subsets of a field K are classically defined to be the sets of the form 

Hp ...... p~ = {t 6 K]Pi(t, Y )  is irreducible in K[Y], i = 1 . . . . .  n}, 

where P i ( T , Y ) i s  an irreducible polynomial in K(T)[Y], i = 1 . . . . .  n. 
Hilbert ' s  irreducibility theorem asserts that  Hilbert subsets of Q are infinite 
[14 ;Ch.9]. More generally, a field K with the same property is called hilber- 
tian. Most of the applications of this paper are explicit forms of Hilbert 's theo- 
rem. Furthermore,  the base field It" will only be assumed to be a field with the 
product  formula [14 ;Ch.2]. From results of Weissauer and Uchida, such fields 
are known to be hilbertian if they are of characteristic 0 or, of characteristic 
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p > 0 and imperfect [12 ;Ch.ll,14]. Number fields, regular function fields over 
a constant field k are typical examples. 

A classical tool for studying the Hilbert property is Siegel's finiteness the- 
orem for S-integral points on algebraic curves [14 ;Ch.8]. We follow a different 
approach based on s-integral points rather than S-integral points. Given an 
integer s _> 0, an element t 6 K is said to be s-integral if the set of places 
v E MK for which [t]~ > 1 is of cardinaiity _< s. That  is, the condition "of 
cardinality < s" replaces the condition "contained in S" in the usual definition 
of "S-integral point". For example, usual integers are 1-integrai in Q. In w 
we establish a general diophantine result for s-integral points (Th.l.4 below), 
which will play the role of Siegel's theorem. Th.l .4 uses a basic result due to 
Sprindzuk [20]. The main theorems of [5], which are more precise and more 
general variants of Sprindzuk's result, are recalled briefly in w 

Let P = {PI , . . .  ,Pro} be a family of m polynomials in K(T)[Y].  For each 
t fi K,  define Dr(P)  (resp. D+(P) )  to be the minimal (resp. maximal) degree 
over K of a field generated by m distinct elements yl(t) . . . . .  ym(t) 6 Is such 
that yi(t) is a root of Pi( t ,Y ) ,  i = 1 , . . . ,  m. These definitions extgnd naturally 
to the points t = co and t = gen, i.e., respectively, the point at infinity and 
the generic point of I? 1 (see w 

T h e o r e m  ( T h . l . 4 )  - -  Assume that the polynomials Pl . . . .  , P,~ are separable 
over K ( T )  and unramified above T = co. Then if t is an s-integral point of K 
of sufficiently large height h(t), we have the inequality 

(1) s D + ( P )  Dr(P)  > Dgen(P) 

Geometrically, the condition "Pi(T,Y) unramified above T = co" merely 
means that the function T has only simple poles on a smooth projective model 
of the curve Pi(t, y) = 0. We also use the phrase "co is not a branch point of 
Pi(T, Y)" .  Equivalently, the polynomial Pi(T, Y )  is totally split in K((1/T)) .  
This condition is not really restrictive, at least when ramification above T = co 
is tame : one can indeed reduce to the unramified situation by some "blowing- 
up" T -~ T ~ (e > 0). 

Several papers, in particular of Bombieri [1], Sprindzuk [20] and the author 
[5], were devoted to the case of a single polynomial, i.e., m = 1, in the eighties. 
We now explain why passing to the case of several polynomials is the main 
point of Th.l.4. 

The following example, due to J. Coates [1], is a nice illustration of the 
case of a single polynomial P ( T , Y ) .  Take K = Q and s = 1. Assume that 
P is irreducible in K(T)[Y]  (which implies Dg, , (P)  = degv(P))  and that the 
function induced by T on the algebraic curve with affine equation P(t, y) = 0 
has at least two poles that are not conjugate over Q (which implies D + ( P )  < 
degv(P)) .  Then it follows from inequality (1) that Dr(P) > 1 for all but finitely 
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many integers t, i.e., there are only finitely many solutions to the equation 
P(t,  y) = 0 with (t, y) E Z • Q - -  a classical diophantine result of Runge. This 
is not fully satisfactory though. Indeed the situation where all the poles of T 
are simple and conjugate over K may happen quite often : this is the spirit  of 
Hilbert ' s  irreducibility theorem. In this case, D + ( P )  = degy(P)  = Dge,(P) 
and inequality (1) is trivial. 

On the contrary, inequality (1) always yields interesting conclusions for large 
m in situations where m varies and this holds : Dgen(P) is increasing with m 
whereas D + ( P )  is bounded by a constant not depending on m. We will reduce 
to such situations in applications. This strategy already appears in some form 
in papers of Fried and Weissauer ([11],[21]). These papers appeared approxi- 
mately at the same period as those of Bombieri, Sprindzuk and the author. 
Although the methods may look somewhat different - -  for example Weissauer 
uses non-standard analysis - - ,  they seem to rest on common basic principles. 
They certainly all did influence the author.  This paper can be considered as an 
a t t empt  to unify and develop these various works. 

The main applications of Th. l .4  are concerned with Hilbert 's  irreducibility 
theorem. In w we prove a quite general criterion for a Hilbert subset to con- 
tain values of given rational functions. More precisely, given a Hilbert subset 
Hp ...... p, of K, an infinite set f of non constant polynomials f ( T )  E KIT] and 
an integer s > 0, we define two assumptions on Pl . . . . .  P ,  and f, labeled (A), 
(B) and show the following. 

T h e o r e m  (Th .2 .1 )  - -  Under assumptions (A ), (B), there erists a finite subset 
fo C f with this properly : 

(2) For all s-integral points t 6 K of su~ciently  large height, at least one out 
of the values f ( t )  with f E fo lies in the Hilberl subset Hp ...... p . 

Assumption (A) is that  or is not a branch point of P,  i.e., that all polyno- 
mials P t , . - - ,  P ,  are unramified over T = ~ .  In characteristic 0, assumption 
(B) is that  no more than one point x E I?t(7~) has the property that f (x )  is in 
the branch point set of P for infinitely many f E f. (There is an extra "tame- 
ness condition" in positive characteristic). w gives a first series of concrete 
applications of this general criterion. For example Cor.2.7 is an effective form 
of Weissauer's result (reproved by Fried with s tandard methods) that fields 
with the product formula are separably hilbertian. Here is another example. 
If the polynomials P l , . . . ,  P~ are unramified above T = 1 and T = eo and 
tamely ramified above T = 0, then there exists an integer Mo with the fol- 

lowing property : there always is at least one element of Hpt ..... p, among Mo 
consecutive powers t , t " , . . . , t  M* of suitably large s-integers t (Cor.2.9). Over 
the rationals and for usual integers t, the same result is shown to hold with 
Mo = 2 (Prop.2.11). But Prop.2.11 uses Siegel's theorem. Cor.2.9 and Th.2.1 
are more general : the base field K is any field with the product formula, pos- 
sibly of characteristic p. This will be developed in [8]. Also "s-integral' is more 
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general than "S-integral" : for example, our method provides results on prime 
powers p,n (Cor.2.10). 

Furthermore, unlike Siegel's theorem, our results are effective : for number 
fields, the constants involved are explicitely computable from the data. In w 
we prove this effective version of l-Iilbert's irreducibility theorem. 

T h e o r e m  (Cor .3 .7)  - -  Let P1 . . . .  , Pn be n irreducible polynomials in 
Q[T,Y] \ Q[T]. Then there ezists in the Hilbert subset H e  ...... e .  a rational 
number z = u / v  E Q of height 

(3) h(x) = max(Log lul, Log Ivl) ~ 101~ l~176 Log(D) (H.~ + 1) 

where deg(Pi) < D and h(Pi) _< H, i = 1 . . . .  ,n. 

To our knowledge, no such result was known before. Furthermore, the un- 
derlying proof of Hilbert's theorem avoids several usual reductions, which turn 
out to be fairly expensive in terms of constants (Cf. Remark 3 of w A more 
precise algorithm is also given in w which, together with some results on the 
factorization of polynomials in one variable ([16], [15]), leads to the following 
result. 

T h e o r e m  (Cor .3 .8)  - -  Let P1 . . . . .  Pn be n irreducible polynomials in Q[T, Y]\  
Q[T], with degree < D and logarithmic height < H. Then one can find a specific 
specialization z E H~,~ ..... ~, in time H ~ exp(nD~ 

Using a different method, Schinzel and Zannier recently improved the bound 
in Cor.3.7 [18]. Their method however does not allow to improve Cor.3.8. Get- 
ting polynomial time in Cor.3.8, i.e., replacing exp(D ~ by D ~ seems to 
be a difficult problem. More general versions of Cor.3.7 (arbitrary number field 
as base field, several variables, etc.) are given in w which is the "effective" part 
of this paper. Some results of the first sections are followed by an "Addition 
to Th." which is concerned with the values of the constants involved in the 
number field case. These additions are systematically proved in w 

We will devote a forthcoming paper [8] to further applications of Th.l.4. In 
particular, we will investigate more closely the case of a field Is of characteristic 
p > 0, which, due to the possibility of unseparability and wild ramification, is 
more delicate and requires additional techniques. We only announce here two 
results of [8]. 

T h e o r e m  [8 ;Th.2.2] - -  Let K be afield with the product formula. Let P ( T , Y )  E 

K(T)[Y] be a polynomial, absolutely irreducible and separable over K ( T ) .  As- 

sume further that P(T,  Y)  is tamely ramified above T = cx~. Let b be an element 

of  K of height h(b) > 0 such that 

(*) b ~ K t (i.e, b is not a gth power in K )  for  all primes g and - b  q~ I( 2. 
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Then P(b m, Y) is irreducible for infinitely integers rn > O. 

T h e o r e m  [8 ;Th.3A] - -  Let K be a global field. Let Vo be a place of K. Then 
every Hilbert subset of K is dense in H~r Kv for the "strong approzimation 
topology", i.e., the topology involved in the strong approzimation theorem for 
global fields [2]. 

These results were only known for number fields as a consequence of Siegel's 
theorem ([7] for the first one ; [19 ;Ch.9.7], [17], [5] for the second one). In 
characteristic p > 0, the second result answers a question of B. Kunyavsky. 

I wish to thank Ivl. Chardin and M. Giusti  for useful hints concerning the 
use of resultants in the last section and M. Friecl for a thorough reading of the 
manuscript  and many valuable suggestions. 

N O T A T I O N  

H e i g h t s .  We adhere to the notation of [14]. Let F' be a field with a proper set 
MF of absolute values satisfying the product  formula with multiplicities 1. For 
each finite extension K of F ,  the set of absolute values of K extending those 
of MF is a proper set MK, satisfying the product  formula with multiplicities 
[K~ : F~] for v E MK. For each integer n >_ 1, the (absolute logarithmic) height 
of points ( z o , . . . ,  x~) E Ig~(F) is then defined by 

1 
(4) h ( zo , . . . , z , ~ ) -  [K F-~] Z [K, :F~] Log(max(lzol . . . . .  ,[z~t~)) 

vE3,1K 

where K is any field containing z o , . . . ,  z~. One defines the height of an element 
z E T to be the height in I?I(F) of (1 ,z) .  By height of a family of polynomials 

Pt,  . . . ,  Pm we mean the height of the collection of the coefficients of P I , . . . ,  Pro. 
For a rational function f E If(T),  "h(f )  _< h" (respectively "deg(f) < d") 
means that f can be writ ten f = A/B  with A, B E If(T) such that h(A, B) < h 
(respectively max(deg(A),  deg(B)) < d). In the sequel, a field with the product 
formula is a finite extension K of a field F with the product formula with 
multiplicities 1 and the associated height is the one defined above. 

A l g e b r a i c  cu rves  a n d  f u n c t i o n  f ie lds .  Throughout  this paper, by algebraic 
curve we mean a smooth projective geometrically irreducible curve defined over 
K.  There is a classical dictionnary between algebraic curves and irreducible 
polynomials in KIT,  Y] or, equivalently, function fields in one variable over 7~" : 
points on curves correspond to places of fields and nonconstant morphisms 
between curves to field homomorphisms. In particular,  if C is the algebraic 
curve associated to a polynomial P(T, Y)  E K[T, Y], then each non constant 
rational function ~o in the function field K(T)[Y]/(P)  induces a finite morphism 
~o : G ---, IP 1 defined over K.  This applies in part icular  to ~o = T. Then we have 
deg(~) = [ 'K(C):  "K(~p)] --- degy e .  
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U n r a m i f i e d  f ibers .  A polynomial P(T, Y) 6 K(T)[Y] is said to be separable 
over K(T) if it has no multiple roots in K(T). In that case, we say that a point 
to e I?I(K ") is not a branch point of P(T,Y) ,  or that P(T,Y)  is unramified 
above T = to, if P(T, Y) is totally split in K ( ( T -  to)) (as a polynomial in Y), 
i.e., has d = deg~, P distinct roots y~ . . . . .  yd in K ( ( T -  to)). Then the field 
generated by the coefficients of yi will be denoted by K(yi(to)), i = 1 . . . . .  d. 
When the polynomial P(to,Y) has d distinct roots in K,  i.e., when to is not 
a root of the discriminant A(T) of P(T,Y)  relative to Y, then yi is a power 
series in T - to and the field K(yi(to)) is the field generated by the constant 
term of yi, i = 1 , . . . , d .  When to = 03, T -  to should be replaced by l IT.  
For convenience, we note that these definitions can be generalized to include 
the case that to = T is the generic point of lid 1 : only replace in the above 
K ( ( T -  to)) by g ( t o ) ( ( T -  to)). Then the generic point to = T is not a branch 
point of P(T, Y) and each of the Laurent series y solution of P(t, y) = 0 consists 
of a single constant term in K(T). If P(T,Y)  is absolutely irreducible (i.e., 
irreducible in K'(T)[Y]) and ~o : C --. l? 1 is the finite morphism induced by 
T on the algebraic curve associated with P(T,Y) ,  then the points of C in 
the fiber ~o-l(to) correspond to the distinct irreducible factors of P(T,Y) in 
-K((T - to))[Y]. Thus, if to is not a branch point of P(T, Y), then the fiber 
~o-l(to) consists of d = degy P distinct points Q1,...  ,Qa, which correspond 
to the distinct Laurent series Yt . . . .  , Yd in K ( ( T -  to)) solution of P(T, Yi) = O. 
The field K(yi(to)) corresponds to the field of definition K(Qi) of the point Qi 
onC,  i = l , . . . , d .  

1 s-INTEGRAL POINTS 
1.1  Sprindzuk's inequalities 

In 1979, Sprindzuk proved a general result on the values of algebraic func- 
tions [20]. There were several variants of Sprindzuk's theorem in the eighties 
([1], [5], [ l l  D. To our knowledge, the most precise and most general ones were 
given in [5]. Th.l .1 below can be regarded as a slightly weakened but more 
practical form of these results. Several proofs of Sprindzuk's result were given. 
The most general one corresponds to an algebraic approach due to Bombieri 
[1]. His quite conceptual proof rests on Well's decomposition theorem and the 
quadraticity of the canonical height on abelian varieties. Although Bombieri 
restricts to number fields, his proof is valid for any field K with the product 
formula. However there is a slight error in Bombieri's original paper. Correct 
statements and proofs can be found in [4] and [5]. Also, the constants involved 
in Bombieri's method can't  seem to be easily computed. The effective part 
of Th . l . l  comes from another proof of Sprindzuk's result given in [5]. Like 
Sprindzuk's original one, this alternate proof involves analytical methods from 
the transcendental number theory. 

Let K be a field with the product formula. Let P(T,Y)  be a polynomial, 
irreducible in K(T)[Y], separable over K(T) and unramified above T = 03. 
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Denote the d = degy(P)  roots in K ( ( 1 / T ) )  of the polynomial P(T ,Y )  by 

Y l , . . .  ,Yd. 

T h e o r e m  1.1 - -  There exist two constants A and B with the following 
properly. Let t E K and v E MK. Then for any non constant divisor D(Y)  E 
K[Y] of P(t, Y), we have : 

(1) [K~ : F,,] Log lily 
max [K(yi(oo)) :  F] 
l<i_<d 

< deg(D)h(t) + A + B V / - ~  
- degy P " 

A d d i t i o n  to  T h . t . 1 .  Assume further that K is a number field and that the 
polynomial P(T, Y)  is irreducible in K[T, Y] and totally split in 7~[[1/T]]. Then 
the constants A and B can be taken to be 

f A = 15 deg(P)2h(P) + 136 deg(P) 3 + 3 deg(P)  Log(E) 
(2) ], B = 3 deg(p)3h(p) + 25 deg(P)  4 + deg(P)  2 Log(E) 

where E is the Eisensiein constant of the polynomial P, i.e., the l.c.m, of the 
Eisenstein constants of the Laurent series Yl , . . . ,Y~ E K((1/T)) satisfying 
P(T,y~) = O, i = i . . . . .  d. 

Proof. We give two proofs corresponding to the two approaches of Sprindzuk's 
theorem. We refer to [5] for more details. 

Geometrical viewpoint. Thanks to the assumption "P(T ,Y)  separable over 
K(T)",  one may restrict to the case where P is absolutely irreducible. In fact, 
the separabil i ty over K of the constant field of P is sufficient (see [3 ;Ch.5 w 
Then the da ta  can be viewed geometrically as follows : an algebraic curve C and 
a finite separable morphism ~ : C ~ IP t, both defined over K ; furthermore, 

the map !o is assumed to have only simple poles. By taking A sufficiently large 
one may assume that  t is not a root of the discriminant A(T)  of P(T,Y) .  Then 
the roots of P( t ,Y )  correspond to the points in the fiber ~o-~(t). Let M be a 
point in this fiber that  corresponds to a root of the divisor D(Y) of P(t, Y)  
and let ~ be an extension to K of the given place v E Mr<. 

If M is 0-adically suitably close to some pole Q of ~(*), one may apply Th.3 
of [5] to obtain 

(3) [K(Q, M)o : F~] de~(~) [K(Q,M) F] L~ [~(M)[~ _< h ( ~ ( M ) ) + O ( ~ )  

(*) The e~ct condition o. M is that, for some pole Q of ~o, we h~ve AQ(M, v) > 5v where 
�9 ~Q is the  Well function associated to the divisor ( Q )  and (~v)veM, is a c e r t ~ n  /~/k-conatant  
depend ing  on the zeroes and poles of ~ (here k is a field of ra t ional i ty  for C ,  ~ and the zeroes 
and poles of ~ ) .  The  A/k -cons tan t  (~v)vEMk is the one tha t  appears  in Th .3  of [5] 
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(4) 

to obtain 

[ K ( Q , M ) :  F] < [K(Q) :  F] [ K ( M ) :  K] 

[K(Q, M)~ :F~] > [K~ :F~] 

(5) [K, : F~] Log I~(M)I, [K(M) : K] 
max [K(Q) :  F] < deg(~o) 

~(Q)=oo 

which is the geometrical form of (1). 
If M is ~7-adically "far from" all the poles of ~(**), then Well's decomposition 

theorem [14 ;Ch.10] readily shows that  the lefthand term in (3) can be bounded 
even more sharply by a term O(1). [] 

Arithmetical viewpoint (in characteristic 0 only). We can restrict to the case 

[IG : Fo] Log Itlo 
m a x  [K(yi(co)) : F] 
l<i<d 

> A  

Indeed (1) is trivial in the opposite case. Then taking A suitably large insures 
that the power series yi(t) are convergent in K~, i = 1 , . . . ,  d. The corresponding 
sums, yi,~(t), i = 1 . . . . .  d, are the d roots of P(t ,Y) .  At least one of them is a 
root of D(Y).  Then Th.2 of [5] (with X = I /T)  yields the required inequality. 
[] 

Remark 1. There is no preliminary reduction to the "absolutely irreducible" 
case in the arithmetical proof : Th.2 of [5] was proved directly under the more 
general hypothesis "P(T, Y) irreducible in KIT, Y]". This "irreducible vs abso- 
lutely irreducible" question is not a totally minor point. In the sequel, we will 
apply Th.l .1 to a composite field extension K(T, yz , . . . ,ym).  This extension 
may have a non trivial constant field even though the function fields K(T, yi), 
i = 1 , . . . , r  do not (take Yt = ~/1 + T  and y~ = V / ~  + T)). 

(**) According to the previous footnote, the precise condition is that ~ Q ( M ,  ~) ~ r for all poles 
Q or ~ .  T h , t  the left-h,nd side term or (3) c , .  be bounded by �9 term 0 ( 1 )  im~edi,tely ro.ov, s 
from Th.3.7 p.263 of [14] 
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1 .2  s - i n t e g r a l  p o i n t s  

Def in i t ion  1.2 - -  Given an integer s > O, an element t E K is said to be 
s-integral in K if the number o[ places v E MK sttch that It]~ > 1 is tess than 
or equal to s. 

Classically, if S is a finite subset of MK containing the archimedean places 
in MK, S-integral points are defined to be the points t E K such that all the 
places v E MK for which Itlo > 1 are contained in S. If ISI _< s, S-integral 
points are s-integral. The point of the notion of "s-integral point" is this. If 
s > 0 then s-integral points t E K satisfy this condition : 

(6) [K~ : Fo] h(t) 
For at least one place v e MK we have [K F] Log Itlo ~ s 

Th.l.1 has this consequence. 

Co ro l l a ry  1.3 - -  Under the assumptions of Th. l . l ,  there ezists a constant 
ho = ho( P) with the following properly. Let t be s-integral in K and of height 
h(t) > hos 2. Then for each root y(t) E-'K of P ( t , Y ) ,  we have 

(7) [K(y( t ) )  : K] _> d e g y P  
s max  [ K ( U i ( ~ ) ) : K ]  

t < i < d  

A d d i t i o n  to Cor.1.3.  Assume further that K is a number field and that the 
polynomial P ( T , Y )  is irreducible in KIT, Y] and totally split in K[[1/T]]. Then 
the constant ho = ho(P) can be taken to be 

(8) ho = 2700deg(P) t2 + 48deg(P) l~  2 + 12deg(p)S(Log(E)) 2 

Proof. Let D(Y)  E K[Y] be the irreducible polynomial of y(t) over K. Apply 
Th.l.1 to this divisor D ( Y )  of P(t, Y )  and to a place v for which the inequality 
of (6) holds. Conclude that 

h(t) d?g( 
s max [K(yi(oo)) : K] -< h(t) + A + B ~ / ~  l<i<a aegy r 

This leads to the announced inequality (7) provided that t is of suitably large 
height (the precise condition is easily seen to be of the form h(t) > hos2). [] 

As already mentioned in the introduction, Coates noticed that Cor.l.3 con- 
tains the following classical diophantine result due to Runge : take K = Q, if 



116 PIERRE DEBES 

the function T on the curve P( t , y )  = 0 has at least two poles that  are not con- 
juga te  over Q, then the equation P( t ,  y) = 0 has only finitely many solutions 
( t , y )  6 Z2. Unfortunately the situation where all the poles of ~o are simple 

and conjugate over Q, in which case inequality (7) is trivial, may happen quite 
often. Indeed this is the spirit  of Hilbert 's  irreducibility theorem. In the next 
paragraph,  we show that  this difficulty disappears when one works with several 
curves. 

1 . 3  M a i n  r e s u l t  
From now on, fix an algebraic closure K of K and an algebraic closure K(T)  

of K ' (T) .  Let P = { P ~ ( T , Y ) , . . . , P , ~ ( T , Y ) }  be a family of (not necessarily 
dist inct)  polynomials in K(T)[Y].  For i = 1 , . . . , n ,  denote" the branch point 
set of Pi(T, Y )  by Br(Pi)  and set B r ( P )  = I-Jr<i<, Br(Pi) .  For each point 
t 6 IP 1 \ B r ( P ) ,  define the parameters  Dr(P)  and- D + ( P )  by the following 

formulas 

(9) 
Dr(P)  = min 

@,,...,y~) 
D + ( P )  = max 

[KCt ,v lC t )  . . . .  ,v , , (t)):  KCt)] 

[KCt, v~(t) , . . . ,  Urn(t)) : K(t)] 

where in the "min" and in the "max", (Yt , . - . ,Y,~)  ranges over all m-tuples 
with i th entry a root yi E - K ( ( T - t ) )  of Pi(T, Y )  and with no two equal entries. 
The  field K( t ,  y l ( t )  . . . .  , y,,~(t)) should be understood as the compositum of the 
fields K ( t ) , K ( y l ( t ) )  . . . . .  K(y,~(t))  (which are precisely defined in Notation). 
When t = T is the generic point of tP I, we use the subscript "gen" instead of 
"t". Recall that  in this case, K ( ( T -  t)) should be replaced by K(T) .  

R e m a r k  2. In the special case where the polynomial  Pi(t, Y) has deg r Pi sim- 
ple roots in K', i = 1 . . . .  ,m, Dr(P)  (resp. D + ( P ) )  is the minimal (resp. maxi- 
mal) degree over K of a field generated by m distinct  elements yl( t )  . . . . .  ym(t) 6 
I'~ such that  yi(t) is a root of Pi(t ,  Y), i = 1 , . . . ,  m. This holds if t is not a root 
of the discriminant Ai (T)  6 K ( T )  of Pi(T ,Y) ,  i = 1, . . .  ,m,  (so in particular 
for all t E K of sufficiently large height). Similar s tatements  are obtained for 
t = c~ by changing T to 1/T. 

T h e o r e m  1.4 - -  Assume that the polynomials P I ( T , Y )  . . . .  , P . , (T ,Y )  are 
separable over K ( T )  and unramified above T = oo. Let s > 0 be an integer. 
There ezists a constant hi = h i ( P )  depending on P = {Pl . . . . .  Pro} with the 
following property. I f  t is s-integral in K and if  h(t) > his  ~, then t q~ B r ( P )  

and 

(I0) s D+(P) Dr(P) > Dg,n(P) 
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A d d i t i o n  to  T h . l . 4 .  Assume further that K is a number field and that the 
polynomials P t , . . . ,  P,, are in K[T,Y]  and satisfy this condition 

(11) 0 is not a root of  the discriminant of  the polynomials P~(1/T,Y) ,  i = 

I , . . . ,  m, 

~.hen the constant hi can be taken to be 

(12) hi = 21sm+4Dt4m(H ~- + 800) 

where h(Pi)  < H and deg(Pi) < D, i =  1 . . . . .  m. 

Cor.1.3 corresponds to the special case m = 1 of Th.l .4.  But in general m 
has to be taken > 1 so that (10) is not trivial. Indeed for m = 1, the ratio 
D g e , ( P ) / D + ( P )  may be equal to 1, in which case inequality (10) reduces to 
s D t ( P )  > 1. On the contrary, inequality (10) always yields interesting conclu- 
sions for large m if one can arrange for this to hold : Dgen(P) is increasing with 
m whereas D + ( P )  is bounded by a constant not depending on m. That  will 
be the case in our applications. This idea already appears implicitly as a basic 
principle of the proofs of Fried and Weissauer that  a field with the product 
formula of characteristic 0 is hilbertian ([12 ;Ch.14]). 

Proof of  Th.1.4. Let t be s-integral in K and yl( t )  . . . .  , ym(t) be m distinct ele- 
ments of T~'such that  Pi(t, yi(t)) = O, i = 1 . . . . .  m. One may assume that h(t) is 

large enough to guarantee that  the polynomial Pi(t, Y) has only simple roots in 

I-(, i = 1 , . . . ,  m. Consequently, there exists a unique power series y~ 6 A;[[T-t]]  
with constant  term equal to yi(t) such that  P~(T, y~) = O, i = 1 , . . . ,  m. These 
power series Yl , . . . ,Ym are necessarily distinct for their constant terms are. 
Consider the function field K(T,  yl . . . .  , y , , ) .  From the separability assump- 
tion, the extension K(T,  yl . . . .  , y m ) / K ( T )  has a primitive element : .  A field 
with the product formula is necessarily infinite ; it is classical then that z can 
be taken of the form 

(13) z : etyl  + ""  + cmy,.,,, with ci 6 K , i  = 1 , . . . , m  

Let P ( T , Y )  be irreducible in K[T,Y]  and such tha t  P ( T , z )  = 0. From the 
assumptions,  all the conjugates of yi over K ( T )  are in K ( ( 1 / T ) ) ,  i = 1 . . . .  , m. 
Therefore the polynomial P(T,  Y )  is totally split in K ( ( 1 / T ) ) .  More precisely, 
each root zoo 6 K ' ( (1 /T))  of P(T,  Y)  can be written out 

Z o o  =- C l Y l o  o ~- " �9 �9 + C m Y m o o  

with yioo 6 T~'((1/T)) a root of Pi(T, Y) .  This shows that  

[K(zoo(oo)) : K] < D+(P) 
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Now by construction the element c ly l ( / )  + - "  + cmym(t) is a root in ~ of 
the polynomial  P( t, Y).  Apply Cor. l .3  to get 

i14) [ K ( c l y l ( t ) + . - ' + c , n y , ~ ( t ) ) : K ] >  degr  P 
- s D + ( P )  

provided h(t) > his 2 where hi = ho(P) is the constant of Cor. l .3  associated 
with the polynomial P.  Inequality (10) easily follows from these inequalities 

(15) 
deg r P = [K(T,y , , . . . , y ,n) :  K(T)] > Dgen(P) 

[K(clyl(t) + ' "  + c,,~y,,,(t)) : K] < [K(yl(t) . . . . .  y,n(t) : K] [] 

Remark g. (a) The proof actually shows this more precise inequality : if t is 
s-integral  in K and if h(t) > his 2, then 

(16) s D + ( P )  [K(yl(t) . . . .  ,y,n(t) : K] >_ [K(T, y l , . . .  ,y,~) : K(T)] 

where yi E K( ' [ [T-  t]] is the unique power series with constant term equal to 
yi(t) such that  Pi(T, y~) = O, i = 1 . . . .  , m. 

(b) The  proof of Th . l .4  can be presented in a more geometrical way by using 
fiber products  of curves. Indeed, regard the polynomial Pi( T, Y)  as an algebraic 
curve Ci and the T variable as a morphism ~0i : Ci ---* IP 1, i = 1 . . . . .  m. Denote 
the fiber product of C I , . . . ,  Cm over the maps ~ol, . . . ,  ~o,~ by r  and the map 
r - "  lid 1 extending the ~ois by Ore. For each point t for suitably large height, 
the r - tuple  (yl(t) . . . . .  y,,~(t)) correspond to some point M = (M1 . . . . .  Mm) on 

~:m- The  argument of the proof of Th. 1.4 essentially consists in applying Th.1.1 
in its geometrical form (5) (or its corollary 1.3) to the irreducible component 
of ~m that  contains M = (Ml . . . . .  M,,~). 

2 H I L B E R T  S U B S E T S  

2 . 1  S t a t e m e n t  o f  t h e  r e s u l t  
Let P = {PI(T, Y ) , . . . ,  Pn(T, Y)} be a family of n polynomials absolutely 

irreducible and separable over K i T  ) and such that  deg r P~ > 2, i = 1 . . . .  , n. 
Under suitable assumptions, Th.2.1 below produces explicit elements of the 
Hilbert  subset Hp ...... p .  As before B r ( P )  is the union of the branch point sets 
of the polynomials P~(T ,Y ) , . . .  ,Pn(T ,Y) .  A point a G IP ~ is called a tamely 
ramified branch point of P if the polynomials Pi( T, Y), i = 1 , . . . ,  n are tamely 
ramified above T = a, that  is, if K is of characteristic 0 or of characteristic 
p > 0 with p dividing none of the degrees of the irreducible factors of P~(T, Y) 
in K ( ( T -  a)), i = 1 , . . . , n .  
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Let f be an infinite set of non constant rational functions f ( T )  E K ( T ) \ K .  A 
point z E IPI(T~) is called exceptional for f if there exists an element t E I?~(K) 
such that  f ( z )  = t for infinitely many f E f. A point z E I71(7~x ") is called 
exceptional for f relative to P if 

(1) There is some t E B r ( P )  such that  f ( z )  = t for infinitely many f E f. 

An exceptional point z for f relative to P is called regular if the t in the 
definition ( i )  can be taken to be a tamely ramified branch point of P .  

Let f be an infinite set of non constant polynomials f ( T )  E K [ T ] \ K .  Th.2.1 
h_as these two basic assumptions. 

(A) oo ~ B r ( P ) ,  i.e., the polynomials PI . . . . .  P ,  are unramified over T = oo. 

(B) Either there is no exceptional point for f relative to P ,  or, there is a 
unique one, which, in addition, should be regular. 

T h e o r e m  2.1 - -  Assume that conditions (.4) and (B} hold. Let s > 0 be an 
integer. Then there ezist a constant h~ > 0 and a finite subset fo o f f  with the 
following properly. [ f t  is any s-integral point in K of height h(t) > Ms  2, there 

ezists a polynomial f E fo such that f ( t )  lies in the Hilbert subset Hp ...... p . 

A d d i t i o n  to  Th .2 .1 .  Let m o > 0 be an integer such that 

(2) 2 m~ > s(degy P l ) [ ' " ( d e g y  Pn)! 

Under conditions (A), (B), the finite subset fo can be taken to be the set con- 
sisting of the mo first terms of a sequence (f,,)m>0 satisfying condition (4) of  
Lemma 2.4. Assume further that K is a number field and that the polynomi- 
als P~ ( f j (T ) ,Y ) ,  i =  1 , . . . , n ,  j = 1 . . . .  ,too, satisfy condition (11) of Th.l .4.  
Then the constant h2 can be taken to be 

(3) h2 = 215'n~ (DD(fo))  14'n~ (3H "~ + 3H(fo) 2 + 812) 

where as usualdegy Pi < D, h(Pi) < H, i =  1 . . . .  ,n and D(fo) and H(fo) are 

integers such that deg f1 < D(fo) and h ( f i )  <_ H(fo), j = 1 . . . . .  too. 

Remark 1. In Th.2.1, f is a set of non-constant polynomials. More generally, 
f can be taken to be an infinite set of non-constant rational functions f ( T )  E 
K ( T ) \ K .  Condition (A) should be then replaced by the more general condition 

(A) The set f(oo) = {f(oo) [ f E f} consists of a single point w E ~t(7~'), not a 
branch point  of P.  Furthermore the point w is a totally ramified point of each 
of the covers f : IP 1 --, ~l  induced by the rational functions f E f. 
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Our proof of Th.2.1 can be used without any change in this more general 
context.  This remark is used in Example 3 of w 

2 . 2  G e n e r a l  r e s u l t s  
The proof of Th.2.1 is given in w and w We start  with some general 

results involved in this proof and in other places of the paper. 

P r o p o s i t i o n  2.2 - -  Let P(T,  Y )  E K(T)[Y]  be a polynomial, irreducible and 
separable over K ( T )  a n d / ( T )  e K(T )  be a rational function. Let a E ~ i ( K )  
and set b = f (a) .  Assume that P(T,  Y)  is unramified over T = b. Then 

(a) The polynomial P ( f ( T ) ,  Y )  is unramified over T = a. 

Let P(d)  be the family of polynomials consisting of P repeated d = deg v P 
times. 

(b) The field generated by the coefficients of the Laurent series y E -K((T - a)) 
solution of P ( / ( T ) ,  v) = o is an eztension of K of degree < D+(P(d) ) .  

(c) The term D + ( P ( d ) )  can be bounded from above ihdependenily on b by 
degy (P)[ 

Proof. The rat ional  function f ( T )  - b can be expanded as a power series in 
T -  a with coefficients in K and with constant term equal to 0. It follows that ,  

if y (T  - b) E K ( ( T  - b)) is any root of P(T,  Y ) ,  then f ( T )  can be substi tuted 
for T in v(T - b) to give a root v ( f ( T )  - b) E K ( ( T  - a)) of P ( f ( T ) ,  Y).  This 
proves (a). Furthermore the coefficients of y ( f ( T )  - b) ~ K ( ( T  - a)) lie in the 
field K(v(b))  of the coefficients ot the initial Laurent series v(T - b). Thus (b) 
follows from the definition of D+(P(d) ) .  It remains to prove (c). Let Vl , - . . ,  Yd 
be the d roots in 7 ~ ( ( T -  b)) of the polynomial P ( T , Y )  and let ~t . . . . .  Ca be r 
K-l inearly independent elements of K(yl(b)  . . . . .  Vd(b)). We wish to show that  
r < d! . Observe that  there exist 

Zt . . . . .  Zr E K(T,  V l , . . . ,  Vd) fl K I l T  - b]] 

such that  Zi(b) = ~i, i = 1 , . . . , r .  Now Zt,  . . . , Z r  are automatical ly linearly 
independent over K(T) .  Conclude that  r < [K(T, Y t , . . . ,  ya) : K(T)].  This last 
dimension is clearly < d! . [] 

P r o p o s i t i o n  2.3 - -  Let P ( T , Y )  E KIT,  Y] be an absolutely irreducible 
polynomial and f ( T )  E K ( T ) \ K  be a nonconslant rational function, l f  f (oo)  = 
w is a totally ramified point of the cover f : pl __. ~I but is not a branch point 
of P, then the polynomial P ( f ( T ) , Y )  is absolutely irreducible. 

In particular,  under condition (A) of Th.2.1, the polynomials P i ( f ( T ) , Y )  
are absolutely irreducible, for all f E f, i = 1 . . . . .  n. 



HILBERT SUBSETS AND S- INTEGRAL POINTS "121 

Proof. Recall from the introduction that if f ( T )  = A ( T ) / B ( T )  with A and 
B relatively prime in KIT], then f(co)  = w is a totally ramified point of the 
cover f : pl __. ~1 if and only if the polynomial A ( Y )  - T B ( Y )  is irreducible in 
~ ( ( T  - ~)).  Now, if ~ r Br(P),  the splitting field N of P(T, Y)  over K ( T )  is 
contained in " K ( ( T - w ) ) .  Conclude then that the polynomial A ( Y ) -  T B ( Y )  is 
irreducible over N. Now if y(T),  U 6 K ( T )  respectively denote a root in Y of 
the polynomials P(T,  Y )  and f ( Y )  - T, this implies that the field extensions 
K'(T, y(T))/'-f((T) and "-i{(u)/'-K(T) are linearly disjoint over K(T).  Conclude 
that 

/[K-(U, y ( T ) ) :  K(U)]  = [ 'K(T,y(T)) :  K'(T)] = degy.(P) 

and so that P ( f ( g ) ,  Y )  is irreducible over K(U).  [] 

2 . 3  P r o o f  o f  T h . 2 . 1  : a p r e l i m i n a r y  l e m m a  

Assume conditions (A), (B) hold. Under condition (B), 

- either there exists a unique exceptional point c~ for f relative to P, that is, 
is the only point in IPI(K) such that f ( a )  E Br (P )  for infinitely many f E f. 
Furthermore, the exceptional point a is regular, that is, there exists a tamely 
ramified branch point a of P with f(c~) = a for infinitely many f G f. 

- or, there is no exceptional point for f relative to P. In that case, set a = cc 
and a = r (or a = w in the more general context of Remark 1). 

L e m m a  2.4 - -  (a) There ezists a sequence (fro)m>0 of elements o f f  such 
that 

l~(~)  = a 
(4) f~,I(Br(P)) (3 f~l ,(Br(P)) C {a} 

for all distinct integers m, rn ~ > O. 

(b) l f  (f~),,~>o is any sequence o f f  satisfying (~), then we have the following 
conclusion. 

(5) Denote the splitting field over T((T) of the polynomial Pi( fm(T),  Y)  by Ei,,~, 
i =  1 . . . . .  n, rn > O. For all m >__ 0 and i = 1 . . . .  ,n, if yi,~+t fi K(T)  is an 
arbitrary root of P i ( fm+t (T) , y im+l )  = O, then the eztension K(T, yim+t) is 
linearly disjoint from the eztension El l  ""  E,1 ""  Etm ' "  E,~,n over'-K(T). 

Proof. (a) The sequence (fro)m>0 is defined inductively. Let fa,o be the subset 
of f of all f E f such that f(c~) = a. Pick fl in fa,,. Then, given fl . . . .  , fM 
satisfying (4) for all distinct integers m, rn' = 1 , . . . ,  M, consider the set 
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S =  U f / - ' ( B r ( P ) )  
i~ j<M 

We need to prove that there exists an element fM+l E f~,,a distinct from 
f l  . . . .  ,fM such that . f ~ . l ( B r ( P ) ) N  5" C {ct}. Assume the contrary holds. 
Then, since Br(P)  and S are finite and f~,a is infinite, there exists r E B r ( P )  
and s E S, s # a such that f (s)  = r for infinitely many f E f. This contradicts 
assumption (B). 

(b) Suppose given in general a sequence (f~)m>0 of elements o f f  satisfying (4). 
Fix an integer m > 0. From Prop.2.2, if yij is an arbitrary root of Pi(fj (T), Y) ,  
then the branch point set of the extension K(T, y i j ) /K(T)  is contained in 
f j " l (Br (P) ) ,  i = 1 , . . .  ,n and j > 0. Classically, extensions that are conjugate 
over K(T) have the same branch points ; also the branch point set of a com- 
positum of function fields is the union of the branch point sets of the function 
fields ; in addition, ramification remains tame in the compositum extension if 
it is in the original function fields. Thus it follows from (4) that the extension 

(6) K(T, yi re+l) I"1 Ell  "'" EnI ""  Elm "'" Enm 

of K can have only one branch point, namely a, i = 1 , . . . , n .  The "hat" 
indicates that we took the Galois closure over K(T).  In addition, ramification 
above a in this extension is tame. It is a classical consequence of Hurwitz's 
formula [13 ;Ch.4] that this forces the extension (6) to be trivial. And that 
implies the linearly disjointness statement of Lemma 2.4. 

Remark 2. Denote the set ofexceptional points for f, i.e., such that there exists 
an element t E ~I(T')  such that f ( z )  = t for infinitely many f E f, by Ezc(f). 
Given the set f, a natural assumption that insures that condition (B) (and so 
conclusion (a) of Lemma 2.4) holds is that the values t = f ( z )  that correspond 
to exceptional points z E Ezc(f)  do not meet the branch point set Br(P) ,  or 
at most in one point (which should in addition be a tamely ramified branch 
point). 

Consider the special case f = {T"*lm > 0}. Then both the set Ezc(f) and 
the set of corresponding values t consist of 0, 1, oo and all roots of unity in 
K. The natural assumption above that insures condition (B) is that none of 
these elements (except possibly one) lie in the branch point set Br(P) .  In that 
special c a s e  however, the weaker condition 

(7) ~ ,  1 ~ Br (P)  and 0 is a tamely ramified branch point set of P 

guarantees conclusion (a) of Lemma 2.4. In other words, roots of I other than 
1 can be disregarded. 
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Indeed take a = a = 0. The proof of conclusion (a) of Lemma 2.4 is the 
same as above except that the end of the argument should be replaced by this : 

"Since B r ( P )  and S are fni te ,  there exists r E B r ( P )  and s E S, s r 0 such 
that  f ( s )  = r for infinitely many f E f of the -form f ( T )  = T k with k a 
suitably large multiple of all the orders of roots of unity in S. Since s r 0 and 
co ~ B r ( P ) ,  the only possibility is that  s is a root of 1. But then r = f ( s )  = 1, 
which contradicts "1 ~ Br (P )" . "  

This remark will be used in Example 4 of w 

2 . 4  E n d  o f  p r o o f  o f  T h . 2 . 1  

P a r t  1 : T h e  bas i c  i n e q u a l i t y .  Let (fro)m>0 be a sequence of elements of f. 
Let s > 0 be an integer. Fix an integer m > 0 such that  

(8) 2 m > s(degv P~)! . . .  (deg r P . ) !  

With  no loss we may assume that  the polynomials P i ( f j ( T ) , Y ) ,  i =  1 . . . . .  m, 
j = 1 . . . . .  m are irreducible in K[T, Y] : if necessary, multiply these polynomials 
by suitable elements in K[T]. Let h2 be the largest one of the constants ht of 
Th. l .4  associated with the families 

Pi(fm) = {Pi, ( f t (T) ,  Y ) , . . . ,  P i~( fm(T) ,  Y)} 

where i = (11 . . . . .  ira) ranges over all families of indices ij E {1 . . . . .  n) indexed 
by ( 1 , . . . , m } .  Let t be an s-integral point of I(  of height h(t) > h,.s 2. Let 
~1 , . . - ,  di,~ be n positive real numbers. 

Assume that  for each j = 1 , . . .  ,m there exists ij E {1 . . . .  ,n} such that  the 

polynomial PG(f j ( t ) ,Y )  has a root yj(t)  E K of degree [K(yj(t) : Ix'] < 6i,. 
Consider the family of polynomials P i ( f )  = {Pi, ( / t ( T ) ,  Y) . . . .  , Pi , ( /m(T) ,  Y)}. 
They are separable over K(T)  since the polynomials P t , . . . ,  Pn are. From as- 
sumption (A) and Prop.2.2 (a), they are unramified above T = c~. Applying 
Th. l .4  to the family Pi ( f )  gives 

(9) Dt~,n(Pi(f)) 
61," '6i= >_ [K(y,(t)  . . . . .  ym( t ) ) :  K] >_ s D + ( p i ( f ) )  

Now it follows from Prop.2.2 (b) tha t  

(I0) D + ( P i ( f ) )  -< H D + ( P i ( d i ) )  
l_<i_<n 

where P i (d i )  is the family of polynomials consisting of Pi repeated di = degy Pi 
times, i = 1 . . . . .  n. Use Prop.2.2 (c) and subst i tute (10) back in (9) to obtain 
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(11) Dgen(Pt(f)) < s(degy P1)[' "" (degr Pn)! 6 i t ' "  6i~ 

P a r t  2 : Conc lu s ion  of  the  p roof .  In this part, the sequence (f,~)m>0 is 
selected to be a sequence of elements o f f  satisfying condition (5) of Lemma 2.4 
(e.g. the sequence (fm),~>0 constructed in Lemma 2.4 (a)). I fy j  is an arbitrary 
root in I f (T)  of Pi i ( f j (T) ,Y) ,  j = 1, . . .  ,m, then 

~-[((T, y , (T)  . . . .  ,ym(T)):  ~(T) ]  = H [K(T, y j (T) ) :  K'(T)] 

= degy Pit "" .degy P/~ 

The second equality comes from the absolute irreducibility of the polynomials 
P~( f j (T) ,Y )  (Cf. Prop.2.3). A fortiori we have 

[K(T, yl(T)  . . . . .  y,~(T)) : K(T)] = Dge,(Pi(f))  -- degr Pi, '"-degy Pi.  

For 6i = degy Pi/2, i = 1, . . .  ,n, (11) then gives 

(12) 2" _< s(degy ,~ .- (degy P.)!  

which contradicts (8). Conclude that there exists an integer j E {1 . . . . .  m} 
with the property that the polynomial P~(fj(t), Y) has all of its roots of degree 
over K larger than degy Pi/2, i = 1 , . . .  ,n. Then necessarily the polynomial 
P~(fj(t), Y )  is irreducible in I'[[Y], i =  1 . . . .  ,n. That  is, f j ( t )  is in the Hilbert 
subset Hp, ..... e . [] 

Remark g. There usually is a preliminary step in proofs of Hilbert's irreducibil- 
ity theorem, which reduces the problem to studying sets of the form 

(13) V~ ...... ON = {t E KIQi( t ,Y)  has no root in K , i  = 1 , . . . , N }  

rather than Hilbert subsets Hp ...... p. themselves (e.g. [14 ;Ch.9,Prop.l.1]). Here 
we do not use this reduction : our proof directly provides elements of He, ..... p .  
This remark is important for effectiveness. Indeed, this reduction step turns out 
to be quite expensive in terms of constants : degrees and heights of the polyno- 
mials QI . . . . .  QN that replace the polynomials P l , . . . , P n  are respectively of 
order D ~ and D ~  (where degy Pi <_ D, h(Pi) < H, i = 1 . . . . .  n) in general. 
Only because our proof avoids this usual reduction step could we obtain the 
bound of Cor.3.7. 
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2 . 5  E x a m p l e s  
We give a series of special cases of Th.2.1. In these examples, the n polynomi- 

als P I ( T , Y )  . . . . .  P,~(T,Y) E K[T,Y]  are absolutely irreducible and separable 
over K ( T )  and s > 0 is an integer. Denote the set of exceptional points for 
f ,  i.e., such that  there exists an element t E IPt(K) such that  f ( z )  = t for 
infinitely many f E f, by Ezc( f ) .  

Example 1. Let (a,~)m>0 be a sequence of distinct elements of the field K. Set 
f = {T + a,,~ Irn > 0}. Then E z c ( f )  = {oo}. We obtain 

C o r o l l a r y  2.5 - -  Assume PI(T, Y)  . . . . .  P . (T ,  Y )  E KIT,  Y] are unramified 
above T = oo. Then there exist an integer Mo > 0 and a constanl h~ with this 
property. For all s-integral point t E K such that h(t) > h~.s 2, at least one out 

of the Mo elements t + a t , . . . , t  + aM, belongs to the Hilbert subset Hpt,...,p . 

Example 2. Let (am)m>0 be a sequence of distinct non-zero elements of K and 
f = {amTlm > 0}. Then Exc(f)  = {0, oo}. We obtain 

C o r o l l a r y  2.6 - -  Assume PI(T, Y ) , . . . ,  P , (T ,  Y )  E I([T, Y] are unramified 

above T = oo and tamely ramified above T = O. Then there exist an integer 
Mo > 0 and a constant h~ with this property. For all s-integral point t E K 
such that h(t) > h2s 2, at least one out of  the 3Io elements a l t , . .  . ,aM~ belongs 
to the Hilbert subset Hpl ..... p . 

Ezample 3. This example uses the slightly more general form of Th.2.1 given 
in Remark 1. Let bo E F t ( K )  \ B r ( P )  not a branch point of Pt . . . .  , P , .  Let 
(am),,,>0 be a sequence of distinct elements of K.  Set 

1 
Ym(T) = bo + T + a------~ ( r e>O)  

and f = {f,~(T)irn > 0}. Then f(oo) = {bo} and E z c ( f )  = {bo}. Thus condi- 
tions (A) (of Remark 1) and (B) hold. We obtain 

C o r o l l a r y  2.7 (Fried, Weissauer) - -  There ezist an integer Mo > 0 and a 
constant h2 with this property. For all s-integral point t E K such that h(t) > 

h~s 2, at least one out of  the Mo elements 

1 1 
bo + - - , . . . , b o  + 

t + a I t + aM, 

belongs to the Hilbert subset Hp~ ..... p . 

Both Weissauer [21] and Fried [11] use in the special case of Example 3 ar- 
guments that  are similar to ours. But Weissauer's approach uses non standard 



126 PIERRE DEBES 

analysis while Fried's one assumes the existence of non principal ultrafilters 

on 1~. Our method is completely explicit. We will compute in w all the con- 
s tants  involved and will obtain a new effective version of Hilbert 's  irreducibility 
theorem over a number field (Cor.3.7). In Cor.2.7, the polynomials PI . . . .  , P~ 
are assumed to be absolutely irreducible. We will use the following lemma to 
reduce to this case. 

L e r n m a  2.8 - -  (a) Let L / K  be a field extension with K r L and P(T) be 
a polynomial in LIT] \ K[T]. Then the number of elements t E Ix" such that 
P(t) E K is less than or equal to deg(P).  
(b) Let P(T, Y)  be an irreducible polynomial in KIT, Y]. Let 

P (T ,Y )  = a.(T)  I I ~ ( T , Y ) . . . I I . ( T , Y )  

be a factorization of P (T ,Y )  in-KIT, Y], with a . (T)  E K[T] and II 1 . . . . .  II. 
monic polynomials (in Y).  Let L be an extension of K containing the coeffi- 
cients of H t , . . . ,  Hr. Then, for all but finitely many elements t E K, if Hi(t, Y)  
is irreducible in L[Y], i=  i , . . . ,  r, then P(t ,  Y) is irreducible in h'[Y]. 

Proof. (a) Use for example the Lagrange interpolation formulas. 

(b) Let t E K such that IIi(t,  Y ) i s  irreducible in L[Y], i = 1 , . . .  , r  and a,(t)  r 
0. Assume P(t, Y)  = a , ( t )Q(Y)R(Y)  with Q(Y), R(Y)  E K[Y] monic. Then 
necessarily there exists a subset I C {1 . . . . .  r} such that  Q(Y) = ~ e l  I I i ( t ,Y)  

and R(Y)  = IIi~tz II~(t,Y). From (a), except for finitely many t E K, one 
can infer that  both polynomials l-]iet IIi(T,Y) and I~i~tt II i(T,Y) must be 
in KIT, Y]. Conclude then from the irreducibility of P(T, Y)  in KIT, Y] that  
necessarily [ = 0 or I = { 1 , . . . , n } .  (It is readily checked that  the number of 
exceptional t is < deg(P)2deg(P)). []  

Example 4. Let f = {T~lm > 0}. Then Exc(f) = {0, 1,c~} U ~  where # ~  is 
the set of all the roots of unity in K. Taking Remark 2 into account we obtain 

C o r o l l a r y  2.9 - -  Assume P t ( T , Y ) , . . . ,  P,~(T,Y) E KIT, Y] are unramified 
above T = ~ and above T = 1 and are tamely ramified above T = O. Then 
there exist an integer Mo > 0 and a constant h2 with this property. For all s- 
integral point t E K such that h(t) > h~s 2, at least one out of the Mo elements 
t,t~'. . .  ,t M* belongs to the Hilbert subset He, ..... p,. 

Example 5. This is a special case of Example 4. Take K = Q, n = 1, PI(T, Y)  = 
T ( aY  ~" + Y + I) - 1 where a E 7Z, a # 0. The assumptions of Cor.2.9 hold. Take 
s = 1. Inverses of prime powers 1/p 'n are 1-integral points of Q. Cor.2.9 yields 
tha t  there exists an integer Mo > 0 and a constant h~ with this property. For 
all prime powers pm such that  pm > h2, at least one out of the Mo elements 
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pro, . . . ,  proM, iS not of the form ay" + y + 1 with y E Q. Furthermore, the 

integer M,  can be explicitely determined by using the "Addition to Th.2.1". 
Fix an integer mo such that  2 m* > (degy PI)! �9 Then Mo can be taken to be 
the moth term kmo of a sequence of integers (kin)m>0 such that  the sequence 
( T ~ ) , n > 0  satisfies condition (4) of Lemma 2.4. It is easily checked that  one 
can take mo = 2, kt = 1 and k~ = k any integer k > 1. Finally we obtain the 
following result. 

C o r o l l a r y  2.10 - -  Let a > 1 and k > 2 be two integers. Then there exist 
only finitely many prime powers p'~ (p prime, m > O) such that p'~ and pkrn 
are of the form ay 2 + y +  1 with y E Q. 

This example can be easily generalized to the situation P(T,  Y)  of the form 
T M ( Y )  - 1 with M ( Y )  E Q[Y] to give results about  the diophantine equation 
M(y)  = pro. 

2 . 6  T h . 2 . 1  v e r s u s  S i e g e l ' s  t h e o r e m  
In the introduction, we mentioned some advantages of our results over 

Siegel's theorem. Th. l .4  and Th.2.1 lead to 

�9 more general results : here the field K is a field with the product formula, pos- 
sibly of characteristic p > 0 whereas Siegel's theorem is valid for number fields 
(or, more generally for extensions of finite type of Q [14]). Also "s-integral" is 

more general than "S-integral".  

�9 effective results : unlike Siegel's theorem, the constants involved in the state- 
ments can be explicitely computed from the data.  

Now of course, when Siegel's theorem is valid and if one is not interested with 
effectiveness, then Siegel's conclusions are better  than ours for S-integral points. 
For example,  thanks to Siegel's theorem, one can prove the following result, 
which should be compared to Th.2.1. Keep the notation of Th.2.1. Assume 
that K is a number field. Let S be a finite set of places of K containing the 
archimedean ones. 

P r o p o s i t i o n  2.11 - -  Assume conditions (.4), (B) hold. Then there ezists a 
constant h2 > 0 and two polynomials f l , f ~  E f with the following property. I f t  
is any S-integral point of K of height h(t) > h2, then either f t ( t )  or f2(t) lies 
in the Hilbert subset Hpt ..... p . 

Tha t  is, for S-integral points, conclusion of Th.2.1 holds with [fo[ = 2. 

Proof. Classically, it is sufficient to prove the weaker conclusion where H = 
Hp ...... p, is replaced by V' = V' (defined in Remark 3). Let f l ,  f~. be PI,...,Pn 
two a priori arbi t rary polynomials in f. For each bi-index i = (il , i2) with 
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entries il, i2 in {1 . . . . .  n), denote the function field over K of the affine curve 
Pir = 0 by Eij, j = 1,2 and the compositum field EilEi~ by El. From 
Lemma 2.4, f t  and f2 can be selected such that 

[Et:  K'(T)] = [Ei, : 7~'(T)][Ei, : K(T)]  _> 4 

From assumption (B), co is not a branch point of the extension EI/-K(T). 
Consequently if C| denotes a smooth projective model of the function field El, 
then the function T has 4 distinct poles on Ct. From Siegel's theorem, the set 
of points M E C(K) such that T(M) is S-integral is a finite set Fi. 

Now i f t  is an S-integral point of K such that b o t h / t ( t )  and f2(t) are not 
in V~ ...... p . ,  then either t E Br (P )  or there exists a bi-index i = (il, i2) and a 
point M E Ci such that t = T(M). [] 

3 E F F E C T I V E  R E S U L T S  

In this section the field K is assumed to be a number field. 

3 . 1  T h e  c o n s t a n t s  A, B a n d  ho o f  T h . I . 1  a n d  C o r . l . 3  
For a number field K, the constants A and B are explicitely given p. 20 of 

[3] (or, in a more general context, p. 379 of [5]). They are expressed in terms of 
the partial degrees, the height and the Eisenstein constant of the polynomial 
P .  Recall the definition of the latter. Denote the roots of P(T, Y) in "KIll/T]] 
by Yl, . . . ,Ya. Set 

1 (1) y, = i =  I , .  

m>0 

Then the Eisenstein constant of P is the smallest integer E E ~ such that 
Emyi,n is an algebraic integer for all m > 0, i = 1, . . . ,d .  In [10], Dwork and 
Van der Porten give a general bound for the Eisenstein constant of a polynomial. 
But this bound is not fully satisfactory for our purposes for it makes A and B 
depend on the field K. We prefer to postpone the evaluation of the Eisenstein 
constant to next paragraph where the situation is more specific and where more 
elementary results can be used. The constant ho of Cor.l.3 is easily obtained 
from the constants A and B. 

3 . 2  T h e  c o n s t a n t  hi o f  T h . I . 4  
As in w let P = {PI(T,Y) . . . . .  P,,(T,Y)} be a family of polynomials in 

K(T)[Y] unramified above T = co. Let H, D > 0 be two real numbers such 
that  

h(Pi) < H, deg(Pi) < D, i =  1 . . . .  ,m 
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From the proof of Th.l.4, the constant hi = h t (P)  can be obtained in the 
following way. Let yi E K(T)  be a root of the polynomial Pi(T, Y), i = 1 . . . .  ,m 
and 

(2) z = c l y t + . . . + e , ~ y m ,  w i t h c i E E ,  i =  1 , . . . , m  

be a primitive element of the extension K(T, y t , . . .  , ym) /K(T) .  Let P(T, Y) e 
K[T, Y] be an irreducible polynomial such that P(T, z) = 0. Then the constant 
ht is the constant ho(P) of Cor.l.3. The problem consists in evaluating the 
degree and the height of the polynomial P(T ,Y) .  Since we just need upper 
bounds, we can work with a multii~le in K[T, Y] of the polynomial P(T, Y) 
and then use the following result (e.g. [14 ;Prop.2.12 p.61]). 

P r o p o s i t i o n  3.1 - -  / f  f t ,  f2 6 Q[YI , . . . ,  Y.], then 

h(f l)  S h(f l)  + h(A) < h ( f l h )  + ndeg(f l f2)  

In w we show that such a multiple can be obtained by iteration of resul- 
tants and we give estimates for the degree and the height of this polynomial 
in terms of PI . . . . .  Pm and cl . . . . .  e,,,. Then we bound cl , . . . ,c , , ,  (Prop.3.6). 
Finally we will obtain the following result. 

P r o p o s i t i o n  3.2 - -  Assume that the polynomials Pt , . �9 �9 P,n satisfy condition 
(11) o fw  Then we ha,,e 

I deg(P) < (2m)" 
(3) h(P) < 2-mDm-tH + 8rn(2D) 2m 

Furthermore the polynomial is unramified above T = oc and the Eisenstein 
constant E of P can be bounded as follows 

(4) Log(E) < 4mDH + 9roD 2 

Consequently we obtain 

(~) ht ~_ 2tsm+4Dt4m(H2 + 800) 

3 . 3  P r e l i m i n a r y  r e s u l t s  
The resultant of two polynomials 

f ( Y )  = avYV + ' "  + ao 

g(Y) = bqY q + "" + bo 

(with a v # O) 

(with b~ # 0) 
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with coefficients in a ring R is denoted by Resy( f ,  g). We also define the reduced 
resultant Resy( f ,g)  by the formula 

A 

Resv( f ,  g) = . ~  Rest  (f ,  g) 

Let F(T, YI . . . . .  Y,n, Z) e KIT, Yl . . . . .  Y,n, Z]. We inductively define poly- 
nomials ~. ,  i = 1 , . . . , m  by the formulas : 

(8) 
kt = Re"-'Sy,(F, Pl) 
~, = ~ r . ( . ~ - l ,  P~) for 2 < i < m 

From standard properties of resultants, we have 

P r o p o s i t i o n  3.3 - -  For i = 1, . . . ,rn,  ~. is a polynomial in the variables 
T, Z and ~ with j > i and with coefficients in K. In particular, ~ E KIT, Z]. 
[f z E K(T)  is a root of ~ ,  i.e., R~(T , z )  = O, then there exist Yl, . . . ,Ym in 
K(T)  such that 

(7) 

PI(T, yl) = 0 

Pm(T, ym) = 0  
F(T, y l , . . . , ym , z )  = 0 

Let P(T, Z) be an irreducible polynomial in K[T, Z] such that  P(T, z) = O. 
Thus the polynomial fi~n is a multiple in KIT, Z] of the polynomial P(T, Z). 

P r o p o s i t i o n  3.4 - -  / fh (P / )  < H, deg(P~) <_ D, i = 1 . . . .  ,m, anddeg(F) < 
6, then 

(8) 
deg(P) _< 6(2D) m 
h(P) 5 2"~6D'~-IH + D'~h(F) + 7rn6~(2D) 2m 

We first establish some general estimates of the size of a resultant. 

P r o p o s i t i o n  3.5 - -  Let A, B E K[Y1, . . . ,  Yn] be two polynomials such that 
degyl (A), degyl (B) > 0. Set R = Resy~ (A, B). Then 

deg(R) _< 2deg(A) deg(B) 
(9) h(R) <_ deg(A)h(B) + deg(B)h(A) 

+n  deg(AB) Log(deg(AB)) 
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Proof. Given a place v E MK and a polynomial P with coefficients in K, define 
the v-adic height h~(P) of P to be the Log of the maximum of the v-adic 
absolute values of the coefficients of P. Note that 

1 
(10) h(P) = t,.~jrK'nl Z [K~: Q~] h,(P) 

vEMK 

Also recall these elementary formulas. If f l  . . . .  , fk E Q[Y1 . . . .  , Yn] are of degree 
less than d, then 

(11) ( h ~ ( f l . . . f k ) < h ~ ( f t ) + . . . + h ~ ( f k ) + e ~ n ( k - 1 ) L o g ( l + d )  
h~(fl + . . .  + f , )  < h~(fi . . . . .  fk) + e~ Log(k) 

where e~ = 0 if v is finite and eo = 1 if v is archimedean. Also in the sec- 
ond inequality, ho(fl-, . . . .  fk) is the v-adic height of the collection of all the 
coefficients of f l , . . . ,  fk- 

Now write R as a (degrt(A)+degv~(B)) determinant and use (11) to obtain 

deg(R) < degy, (B) deg(A) + degv, (A) deg(B) 

ho(R) <_ deg}q(B)h~(A) + degvt(A)h~(B)+ 
+e~(n - 1) degv, (AB) Log(1 + max(deg(A), deg(B))) 

+e,  Log((degyi (AB))!) 

The result readily follows. [] 

Proof of Prop. 3.4. Set Di = deg(Pi), i = 1 , . . .  ,m. We show by induction that 
for i = l , . . . , m  : 

deg(/~.) < 2i6Dl .. .  Oi 
(12) h(~.)  _< (6DI...Di)[[n(P~) + 2h--('C~ " '" 2i-t  h ( P ' ) O '  D, O, + hf~ -'-'-'2)] 

+2(m + 2)(2i6D1 ...  Di) 2 

The result will then follow from deg(P) < d e g ( ~ )  and h(P) < h(~?.m)+ 
2 d e g ( / ~ )  (use Prop.3.1 for the latter). 

For i = 1, we have 

deg(Ri) < deg(Resy, (F, P1) < 2 deg(F) deg(Pi) 

h(,~t) _< h(Resy~(F, PI)) + (m + 2) deg(Resv,(r, P,)) 

< 6h(Pi) + Dth(F) + (m + 2)(6 + Di)  Log(6 + Di) + 2(m + 2)6DI 

<_6DI \----~l + +(m+2)(26DiLog(26Dt)+26D1) 
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(Use a+b ~_ 2ab, (for a, b > 1) for the last inequality and then x Log(x)+z < x 2 
(for x > 1) to get (12) in the case m -- 1). We then proceed inductively. For 
1 < i _ < m ,  wehave 

deg(~')  _ degCmsv, CR,_l, P,)) 

< 2deg(L_ ) deg(Pd 
< 2(21-16D1 "'" O i - l ) D i  

and 

< h( Pal) + (m + 2) Pal) 

< deg(Ri_l )h(Pi )  + Oih(Ri -1 )  

+ (m + 2)(2i-1D1 . . .  Di-16 + Di) Log(2i- lDl  - "  Di-16 + Di) 

+ (m + 2)(2i601 . . .  Di) 

< (2i-16Dt ' ' -  Di - t )h (P i )  

[h(P, )  2 h ( P 2 ) . .  2,_~ h ( P i _ , ) ~ F _ ~ ]  
+ D i ( 6 D l . . . D i _ 1 )  [ - ~ t  + D~ " Di_------~ + 

d 

+ 2Di(m + 2)(2i- t6D1 . . .  Di_t)  "~ 

+ (m + 2) [(2i6Dt . . .  Di) Log(2i6Dt ' ' '  Di) 

+2idiDl "-" Di] 

< ( , O l . . . D i ) [ h ( P 1 )  2h(P2) ..21-1h_.~/i) + ~ - ~ ]  
- [ O ~  + O , .  " 

1 
+ (m + 2)(2i601 . . .Di)2(1 + 7) [] 

P r o p o s i t i o n  3.6 - -  The extension K ( T , y ~ , . . . , y m ) / K ( T )  has a primitive 

element of the form 

(13) z = clyl  + ""  + c,,y,~, 

where c t , . . . , c m  are integers such that cl = 1 and ci < D ~''~, i = 2 . . . .  , m  

(where as usual deg(Pi) _< D, i =  1 . . . . .  m) .  

Proof. The following proof is due to D. Poulakis. Let S be the set of (m - 1)- 
tuples ( z ~ , . . . , z m )  E 7/- '~-t  with 0 < z i < D "-m, j = 2 . . . . .  m.  Consider the 
subset S' C S consisting of the (m - 1)-tuples (z, . . . . .  zm) E S such that there 
exist two distinct K(T)-homomorphisms a,~r' of K(T ,  yt . . . . .  y,~) into K(T)  

for which 

COt I t 
y~ + z~y~ + . . .  + z , , y ~  = Yl + z~y~ + . . .  + z,,,ym 

Set d,n = [K(T,  y t , . . . , y m ) :  If(T)].  We have d,~ _< D "  and so 

card(~ l) <_ 
2 
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Therefore S \ S '  # 0. Classically if z2 . . . . .  zm 6 S \ S ' ,  then Yt +c2y2+" . . + c m y ~  
satisfies the conclusion of Prop.3.6. [] 

Proof  of  Prop.3.e. (3) readily follows from Prop.3.4 and Prop.3.6 (applied 
to F = Y1 + c2Y2 + "'" + c,~Y,,) .  The polynomial P ( T , Y )  is unramified 
above T = oo, i.e., totally split in K((1/T)) ,  because so are the polynomi- 
als PI . . . . .  Pro. Furthermore, the form of the roots of P ( T ,  Y )  shows that the 
Eisenstein constant E of P can be bounded by E1 " "  Em where Ei is the Eisen- 
stein constant of the polynomial Pi, i = 1 , . . . ,  n. Under assumption (11) of w 
the Eisenstein constants E l , . . . ,  E,,, can be bounded quite easily. For example, 
Prop. p.387 of [5] gives 

L o g ( E / ) < 4 D H + 9 D  2, i = l . . . .  , m  

which proves (4). The final bound for hi follows from (3), (4) of w and (8) of 
w []  

3 . 4 T h e  c o n s t a n t  h.~ o f  T h . 2 . 1  
Let P = {PI(T ,  Y )  . . . . .  P , ( T ,  Y)} be a family of polynomials and (f,~)m>0 

be a sequence of elements of f like in the "Addition to Th.2.1". Let s > 0 be 
an integer. From the proof of Th.2.1, the constant h2 can be obtained in the 
following way. Fix an integer m o >  0 such that 

2 m~ > s(degv P t ) ! ' "  (degv Pn)! 

Consider the polynomials P i ( f j ( T ) , Y ) ,  i =  1 . . . .  ,n ,  j = 1 . . . . .  too. Multiply 
each P i ( f j ( T ) ,  Y )  appropriately by an element of K ( T )  so to obtain a poly- 
nomial Pq(T ,  Y )  in KIT,  Y]. Then h2 is the largest one of the constants ht of 
Th. l .4  associated with the families Pi  = {fii,l(T, Y) . . . .  ,/3,~.m.(T, Y)} where 
i = (it . . . .  , ira~ ranges over all families of indices ij E {1, . . . ,  n} indexed by 
{1 . . . . .  too}. 

In the following estimates, we use the following notation : degy Pi < D, 
h(Pi) < g ,  i = 1 . . . . .  n and degf i  < D(fo), h ( f i )  < H ( f , ) ,  j = 1 . . . . .  too. 

Using (10) and (i1), one obtains 

deg(/3q) < DO(fo) 
(14) h(Pi i )  < H + DH(fo) + 2DD(fo) 

Report these estimates in the formula for h 1 to get the bound for h2 announced 
in Th.2.1, i.e., 

(15) h2 = 2 ~s'~ (DD(fo)) 14m~ (3H 2 + 3H(fo) 2 + 812) 
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3 . 5  Effective version of Hi lbe r t ' s  i r reducibi l i ty  theo rem 
Our goal is to make Example 3 of w completely explicit so to give a 

completely effective version of Hilbert's irreducibility theorem. Recall some 
basic properties of the height on K" [14 ;Ch.3]. For a t , . . . , o k  E "K,(k > 1), 
then 

(16) 
h(al~2) ~ h(~l)  + h(a2) 

h(al  + . . . +  ak) ~ h (a l )  + .-. + h(ak) + LogCk) 

m 
If P E K[Y]  and a E K a root of P,  we have the Liouville inequality 

(17) h(a)  < h ( P ) + L o g ( 2 )  

Let PI(T ,  Y )  . . . . .  P , ( T , Y )  e K[T ,  Y] \ KIT]  be n absolutely irreducible 
polynomials of total degree less than D and of height less than H. The following 
algorithm is an effective version of Example 3 of w It is the most precise 
result of this section. 

A L G O R I T H M  
(1) Take mo an integer with 2 "~* > [K : Q]D " ~  

(2) Take bo E K such that h(bo) > 6D 2 + 2 D H  + Log(2). 

(3) Take a integral in K such that h(a) > 12D 2 + 4 D H  + 2h(bo) + 5 Log(2). 

1 (m > 0) (4) Set f .~(T)  = bo + 

(5) Compute 
h2 = 21sm*+4D14'~'+2(3H2 + 9(h(bo) + Log(3)) 2 + 9(Log(rno)) 2 + 9h(a) 2 + 812). 

(6) Take t e 7/. of height Log [t[ > h2[K : Q]2 

(7) Conclusion : at least one out of the mo elements f l ( t )  . . . . .  f m . ( t )  belongs 
to the Hilbert subset Hp, ..... p . .  

C o m m e n t s .  (a) We took s = [K : Q] so that integers t e Z are s-integral in 
K. The quantity 6D 2 + 2 D H  is an upper bound for the height of the discrim- 
inants of the polynomials P1 , - . - ,  P- .  Thus condition (2) guarantees that the 
polynomials P i ( f / ( T ) , Y ) ,  i = 1 . . . . .  n, j = 1 . . . .  , too, satisfy condition (11) of 
w Condition (3) insures that no non-zero multiple m a  of a is of the form 

(18) m a  - - -  
1 1 

r - bo r' - bo 

with r , r '  two branch points of P I , . . . ,  Pn. This requirement on the element 
a guarantees that the sequence (f,~)m>0 satisfies condition (4) of Lemma 2.4. 
(We selected a integral in K so to insure that h(ma)  > h(a) if m ~ 0). 
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(b) When some of the polynomials P t ( T , Y )  . . . . .  P,~(T, Y )  are irreducible in 
K[T ,Y]  but not absolutely irreducible, the following procedure can be used. 
Replace the polynomials PI . . . .  , P ,  by the collection Q t , . - . ,  Q,v of all their 
irreducible factors in T~'[T,Y]. These polynomials have their coefficients in a 
certain field L. Apply the above algorithm (steps (1) through (5)) to the poly- 
nomials QI . . . . .  Q/v. We have 

(19) 

N < n D  
[L: K] _< nD! 
deg(ei) _< D 
h(Qi) <_ H + 2D 

where i = 1 , . . . , N .  From Lemma 2.8, for all but possibly nD2 ~ elements 
t 6 K,  if Qi(t, Y )  is irreducible in L[Y], i = 1 , . . . ,  N ,  then Pi(t, Y)  is irreducible 
in K[Y], i = 1 , . . . ,  n. The final steps (6) and (7) of the algorithm become 

(6') Take M = riD2 ~ integers t l , . . . ,  tM 6 77.. of height > h2[L : Q]" 

(7') Conclusion : at least one out of the rooM elements A(tk)  . . . . .  fm.( tk) ,  
k = 1, . . . ,  M belongs to the Hilbert subset Hpt ..... p .  

When the polynomials P i , . . . ,  P ,  are absolutely irreducible, then one can 
pick ,no, bo, a in E such that 

(20) 
mo _< ~ ( L o g ( r )  +nD Log(D)) + l 
h(bo) + Log(3) _< 7D -~ + 2DH 
h(a) < 27D 2 + 8DH 

where r = [K : Q]. Some calculations then lead to 

(21) h~ _< 0, 95.101~ ssnD L~176 + 1) 

The final steps (6) and (7) finally give conclusion (a) below. Conclusion (b) 
follows similarly from steps (6') and (7'). 

C o r o l l a r y  3.7 - -  (a) I f  the polynomials P1 , . . . ,  P,  G K[T, Y] are absolutely 
irreducible, then there exists in the Hilbert subset Her ..... p, a rational number 
z = u / v  6 Q of height 

(22) h(z) : max(Log 1'4, Log Iol) ~ 10t~ 58"D Log(O)+46 Log(r)(/t/-2 + 1) 

(b) I f  the polynomials P1 . . . . .  1~ arc only assumed to be irreducible in KIT, Y], 
the same conclusion holds with this bound for h(z)  : 
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(23) h(x) = max(Log ]u], Log Iv]) < 101~ 9~ L~176 + 1) 

The right-hand term of (23) is actually an upper bound for the height of the 
rooM elements f l ( t k ) , . . . , f ,  no(tk), k = 1 , . . . ,  M of step (7'). At least one out 
of these rooM elements lies in the Hilbert subset Hpt ..... p.. Thus, finding an 
element in Hp~ ..... p. requires at most to test for the irreducibility of the rooM 
polynomials P i ( z , Y ) ,  where i = 1 . . . . .  n and z ranges over the list of rooM 
elements above. The height of these polynomials can be easily bounded : 

h(P(z ,  Y) )  < Log(D + 1) + h(P)  + h(z)  

Factoring polynomials in one variable of degree less than H and logarithmic 
height less than H takes polynomial time ( rDH)  ~ ([16],[15]). Conclusion : 

C o r o l l a r y  3.8 - -  Let P ~ , . . . , P ,  be n irreducible polynomials in KIT, Y] \ 
K[T], with degree <_ D and logarithmic height < H. Then one can find a 
specific specialization z E Hp ...... p. in time H ~  exp(nD~ (where 
Log + (r) = max(Log(r), 1)). 

Thus we obtain a bound which is polynomial in H but not in D. A polyno- 
mial bound in both H and D would be a quite interesting improvement. This 
would indeed provide a deterministic algorithm for factoring polynomials in two 
variables in polynomial time. The nonpolynomial growth of our bound mainly 
comes from condition (2) of Th.2.1 which imposes to take the parameter mo 
of  the algorithm fairly big ; precisely the algorithm requires that 2 m~ > rD nD. 
From Prop.2.11, we know that mo can actually be taken to be equal to 2. But 
Prop.2.11, which relies on Siegel's theorem, is not effective. Nevertheless this 
suggests that the above condition on mo might be improved. 

3 . 6  H i l b e r t  s u b s e t s  o f  h i g h e r  d i m e n s i o n  
In this paragraph we use the results of the previous one to deduce similar 

results for Hilbert subsets of arbitrary dimension q _> 1. The classical tool for 
reducing to the dimension 1 is the Kronecker transformation [14 ;Ch.9]. Making 
it effective does not present any particular difficulty. We only state the result 
and leave the details to the reader. 

Fix two integers q,p > 0. If P1 . . . .  ,Pn are n polynomials, irreducible in 
the ring K[Tt . . . .  ,Tq,Y1 . . . . .  Yp], the Hilbert subset H,% ..... p. is defined to be 
the subset of Kq consisting of all q-tuples ( t t , . . . ,  tq) such that the polynomial 
Pi(tl ,  . . . ,  tq, Yl . . . . .  Yp) is irreducible in K[Y1, . . . , Yp], i = 1 , . . . ,  n. Let D, H > 
0 such that deg(P~) _< D et h(Pi) <_ H, i = 1, . . .  ,n. 
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Corollary 3.9 - -  The Hilber~ subsel Hp~ ..... p. conlains a q-tuple ( i t , . . .  ,tq) 
in Qq such that, for i = 1, . . . ,q ,  

(24) h(ti) _< i0 l~ (D + i)I~176 "(D+I)'('+''+46p2' Log(,-)] (H + I) ~'' 
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