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In his seminal paper, Bretherton studied the motion of long bubbles in capillary tubes. Here, we unveil
the negative configuration wherein a long liquid drop is stably transported in a capillary tube and
surrounded by a flow-induced air cushion. These drops are formed when a liquid plug is pushed above a
critical velocity sufficient to induce an inversion of the front meniscus with a radius of curvature smaller
than the tube radius. The drop shape and lubricating air film thickness is reminiscent of Bretherton’s
calculation and can be inferred from an adapted analytical theory.
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In his 1961 seminal paper [1], Bretherton studied exper-
imentally and theoretically the motion of long bubbles in
capillary tubes in the limit of creeping flows, i.e., at low
Reynolds and capillary numbers. This configuration was first
explored in millimetric tubes at very low flow rates or with
highly viscous fluids. Then, the emergence of microfluidics
[2,3] led to some renewed interest in Bretherton’s theory,
owing to its relevance to various two-phase flow configu-
rations at small scales, including bubbles [1,4,5], plugs
[6–11], and foam [12–14] dynamics in capillary tubes.
Moreover, his theory was extended later on to a larger
range of flow parameters, e.g., larger capillary and Reynolds
numbers [15–17], more complex tube geometry [18–20], or
non-Newtonian embedding liquids [21,22]. In this Letter, we
investigate experimentally, theoretically, and numerically the
negative of Bretherton’s configuration, i.e., a long liquid
drop moving in an air-filled cylindrical tube, whose contact
with the walls is prevented by a self-induced air cushion.
First, we show experimentally and numerically that these
levitating drops can be formed by pushing a liquid plug
inside a microfluidic channel at a capillary number large
enough to induce an inversion of the meniscus with a radius
of curvature smaller than the radius of the tube. Second, we
develop an analytical model that is able to recover the shape
and thickness of the air lubricating film at walls in the limit
of low (air) capillary numbers. Finally, we explore a larger
set of parameters and draw a phase diagram delimiting the
regimes in which long levitating droplets are formed. While
systems designed to synthesize bubbles or drops in liquids
are ubiquitous in microfluidics [23–25], the formation of
long levitating drops in air has only been reported in
hydrophobic channels [26], wherein contact with the walls
is prevented by the specific surface treatment. This work
provides a simple way to generate long drops of controlled
length stably propagating in regular tubes, which may serve
in digital microfluidics to transport liquids without any wall
contamination.

Methods and results.—Experimentally, a long levitating
drop is synthesized inside a glass cylindrical capillary tube
of radius R ¼ 0.5 mm (i) by injecting with a needle a
controlled amount of silicone oil in the tube leading to the
formation of a liquid plug, as depicted in Fig. 1(a), and
(ii) by pushing this liquid plug with a large constant air flow
rate Q in the range 1–50 mL=min. The tubes were care-
fully cleaned prior to experiments with acetone, isopropyl
alcohol, and dichloromethane to obtain perfectly wetting
walls. The plug and then droplet evolution are recorded at
10 000 or 15 000 frames per second with a high speed
camera (Photron SA3) mounted on a Leica Z16 macro-
scope [Fig. 1(a) and videoM1 in the Supplemental Material
[27] ]. At rest (Image 0), the plug front and rear menisci are
two opposite half-spheres tangent to the walls, which
fulfills both the Young–Laplace law (leading to spherical
liquid and air interfaces) and the perfectly wetting con-
dition of silicone oil on the walls (leading to a 0° contact
angle). Then, a flow rate sufficient to induce an inversion
of the curvature of the front interface with a radius of
curvature smaller than the tube radius is imposed (Image 1).
This leads to the formation of a thin air film surrounding the
front part of the liquid plug, as evidenced by the grayer
color of the liquid (indicating that the liquid is no longer
contacting the walls). The thin film of air extends pro-
gressively downward around the plug (Image 2) until it
contacts the rear interface of the plug (Image 3), leading to
the detachment of the drop, which then propagates stably in
the tube (Image 4). The shape of the drop evokes the shape
of Bretherton’s bubble [1] with a phase inversion. Note that,
to improve the repeatability of the experiments and ease the
comparison with the simulations (i.e., avoid contact line
problems), the walls were prewetted prior to the experi-
ments by injecting a liquid plug inside the channel and
pushing it with a low constant flow rate Q ¼ 4.5 μL=min
(corresponding to a low capillary numberCal≈4.6×10−4),
leading to the deposition on the walls of a thin liquid film of
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controlled thickness [1,9] hp ¼ 0.643Rð3CalÞ2=3 ≈ 4 μm,
with R the radius of the capillary tube, Cal ¼ ðμlU=σÞ the
capillary number of the liquid comparing viscous effects to
surface tension ones, μl the liquid dynamic viscosity, andU
the speed of the rear interface of the plug. More details
about the experimental procedure are given in Section II of
the Supplemental Material [27]. Numerically, the same
dynamics [Fig. 1(c)] is simulated in a 2D axisymmetric
configuration with a volume of fluid method [28] imple-
mented in the open-source code OpenFOAM, solving the
following set of equations:

∇ · u ¼ 0;

∂tρuþ∇ · ðρu ⊗ uÞ ¼ −∇ðpÞ þ μΔðuÞ þ σκnδS;

∂tαþ∇ · ðαuÞ ¼ 0;

ρ ¼ αρl þ ð1 − αÞρg; μ ¼ αμl þ ð1 − αÞμg;

where σ is the surface tension, μi and ρi the viscosity and
density of the phase i, (i ¼ l for the liquid and g for the

gas), u the fluid velocity, and p the dynamic pressure. α is a
phase marker equal to 0 in the gas and 1 in the liquid. The
interface between the two fluids thus corresponds to
α ∈ ½0; 1�. The initial and boundary conditions are detailed
in Section IV of the Supplemental Material [27]. The term
taking into account the effects of surface tension is σκnδS,
with δ the Kronecker symbol, equal to 1 on the interface.
This modeling was introduced by Brackbill et al. [29] and
called the continuum surface force model. Since the volume
of fluid method is known to generate parasitic currents
[30–32], i.e., spurious hydrodynamic vortices close to
the interface, a restrictive time step was imposed to
guarantee the stability of this parasitic flow [33] Δt ≤
max ½0.1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρΔx3=σ

p
; 10ðμΔx=σÞ�, with Δx the characteristic

length of a mesh cell. We also implemented an adaptive
mesh in the code. Indeed, the correct calculation of the flow
close to the walls and interfaces requires a refined mesh for
the sake of precision. Without adaptive mesh, the calcu-
lation cost would be prohibitive.
Transition from liquid plug to long levitating drop.—The

dynamics of liquid plugs in perfectly wetting channels has
been widely studied experimentally [8,9,34], numerically
[35–37], and theoretically [6–8,10,11,38]. From a theo-
retical perspective, a liquid plug can be seen as a bridge of
liquid trapped between two semi-infinite air bubbles.
Hence, the laws of deformation of the front (respectively
rear) interface of a liquid plug can be inferred from
corresponding laws derived for the deformation of the rear
(respectively front) interface of long bubbles [1,4,39,40].
Nevertheless, most studies have been conducted in the
analytically tractable low or intermediate [15,16] capillary
number limit, wherein the curvature sign of the meniscus is
not changed.
Hoffman [41] studied experimentally the evolution of the

front meniscus of an advancing liquid finger on a large
range of liquid capillary numbers (ranging from ≈4 × 10−5

to ≈35). He reported an evolution of the apparent contact
angle from ≈5° to ≈180°, corresponding to an inversion of
the front meniscus curvature from C ≈ −2=R to C ≈ 2=R
(with R the radius of the tube). This behavior was
rationalized later on by Boender et al. [42] with approxi-
mate analytical models. Here we show both experimentally
[Fig. 1(b)] and numerically [Fig. 2(a),(c)] that when the
capillary number exceeds a critical capillary number Cacl at
which the radius of curvature becomes equal to the tube
radius R (or more precisely R − hp in this Letter owing to
the existence of a prewetting film), the radius of curvature
continues to decrease (while more slowly) through the
appearance of a thin air film that fills the gap between the
front meniscus and the walls [Fig. 2(c)]. The appearance of
this film of air is the key ingredient in the formation of long
levitating drops from the fast dynamics of liquid plugs.
Indeed, this film of air extends progressively backward
[Fig. 1(b)] until it reaches the back of the drop, hence
provoking its detachment. Interestingly, this deposition of a

(a)

(c) 

(d) 

(b)

FIG. 1. Transition from a liquid plug to a long levitating drop.
(a) Sketch of the experimental device. (b) Sketch of the drop
formation process. (c) Snapshot of an experiment: a 10−4 m2 s−1
silicone oil liquid plug of length 19 mm is pushed inside a
capillary tube of radius R ¼ 0.5 mm by a constant flow of air
(Q ¼ 11 mL=min) with a syringe pump, leading to a velocity of
the rear interface U of 0.6 ms−1 (corresponding to a capillary
number Cal ¼ ðμlU=σÞ ¼ 2.8, with μl the liquid dynamic
viscosity and σ the surface tension). Image 0 shows the initial
plug shape before actuation. Image 1 (t ¼ 0 ms) shows the
deformed rear interface and the inverted front interface when
the plug is pushed by a flow of air. Image 2 (t ¼ 0.6 ms) shows
the evolution of the liquid plug and the appearance of a thin film
of air surrounding the liquid at the front of the plug. Image 3
shows (t ¼ 2.3 ms) the drop detachment, and Image 4 shows the
detached long liquid drop stably propagating in the tube.
(d) Numerical simulation of the previous experiment with the
same flow parameters: black is silicone oil, white is air.
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thin air film behind the drop front interface is reminiscent of
the deposition of a thin film of liquid behind the front
interface of a bubble predicted by Bretherthon’s theory but
with a phase inversion.
Thin air film thickness prediction: anti-Bretherton.—

Since these two configurations share some similarities, we
derived a model to evaluate the thickness of the air film as a
function of the capillary number by following a similar
procedure as the one proposed by Bretherton. First, it is
important to stress that two capillary numbers are involved
in this problem: one based on the gaseous phase Cag ¼
μgU=σ and one based on the liquid Cal ¼ μlU=σ. Of
course these are proportional to each other, Cag ¼
μg=μlCal, with a constant depending on the gas and liquid
viscosity ratio. The condition for the formation of an anti-
Bretherton drop from a liquid plug imposes that Cal >
Cacl ∼Oð1Þ since viscous stresses must overcome surface
tension to induce an inversion of the front interface up to a
point wherein the radius of curvature becomes smaller than
the radius of the tube. On the other hand, the thickness of
the film of air appearing behind the drop front interface
relies on the capillary number in the air Cag. This capillary
number remains small (Cag in the range 10−4 to 10−2) in all
the simulations and experiments provided in this Letter, as
well as the Reynolds number associated with the flow in the

air film (Reg in the range 10−3 to 2). Hence, the classic
lubrication approximation can be used to describe the flow
in the thin air film:

� ∂xpg ¼ μg∂2
yyux

∂ypg ¼ 0
⇒

dpg

dx
¼ μg

d2ux
dy2

; ð1Þ

with ux and pg the longitudinal velocity and pressure in the
air film. We adopt here a quasi-2D approximation of the
axisymmetric problem. This approximation was introduced
and thoroughly justified by Bretherton in his paper [1] and
holds as long as the capillary number is small, leading to
the deposition of a thin film compared to the tube radius.
For intermediate capillary numbers, the modified Laplace
pressure must be used, leading to the Ausillous and Quére
equation [15,16]. Owing to the large difference of viscosity
between the fluid and the air, the thin prewetting film of
liquid on the walls can be considered at rest, and the
velocity inside the detaching drop can be considered as
constant. This approximation is discussed in detail in
Section III of the Supplemental Material [27] and con-
firmed by the numerical simulations. Hence, in the drop
frame of reference, the boundary conditions at the walls
(or more precisely the prewetting film surface) becomes
uxðy ¼ 0Þ ¼ −U with U the drop speed, while at the
interface between the film and the drop, i.e., at y ¼ hðxÞ,
we have ux½hðxÞ� ¼ 0 where hðxÞ denotes the thickness of
the air film. See Section III of the Supplemental Material
[27] for a detailed discussion of these boundary conditions.
The normal stress balance at the drop interface gives
p ¼ −σfð1=RÞ þ ½d2hðxÞ=dx2�g, with p ¼ pg − pl, where
pg and pl are the pressures in the gas and liquid phase,
respectively. Finally, the mass conservation in the air film

gives
R hðxÞ
0 uxdy ¼ −UH, with H the constant thickness

of the film far from the drop front meniscus. The only
difference from the equations derived by Bretherton is the
boundary condition at y ¼ hðxÞ, which for a drop (present
case) is an adherence condition ux½hðxÞ� ¼ 0, while for a
bubble is a zero stress condition. The combination of these
equations with the change of variable x ¼ Hð12CagÞ−1=3ξ
and hðxÞ ¼ Hψ leads to the celebrated Landau–Levich
equation [1,43]:

d3ψ
dξ3

¼ ψ − 1

ψ3
: ð2Þ

This equation coincides with the one obtained by
Bretherton except for the coefficient in the change of
variable x ¼ Hð12CagÞ−1=3ξ, which is 12 instead of 3
for a bubble. Hence, we can infer the thickness of the film
of air from the solution obtained by Bretherton by a simple
change of coefficient:

ha
R

¼ 0.643ð12CagÞ2=3: ð3Þ

(a)

(b) (c)

FIG. 2. Thin air film formation above a critical capillary
number. (a) Numerical evaluation of the front interface curvature
Rcurv of the front interface of a liquid plug divided by the tube
radius R as a function of the capillary number Cal (at constant
Ohnesorge number Oh ¼ 0.4). When the radius of the curvature
exceeds the tube radius [snapshot (b)], spherical droplets are
formed when the plug ruptures. When the plug becomes smaller
than the tube radius (above a critical capillary number), a thin film
of air appears between the plug and the walls [snapshot (c)]
leading to the formation of an anti-Bretherton drop. (b) Snapshot
of numerical simulation: Cal ¼ 0.7, Oh ¼ 0.4. (c) Snapshot of
numerical simulation: Cal ¼ 1.5, Oh ¼ 0.4.
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The validity of this analytical expression was verified
through comparison to numerical simulations of the
dynamics of long drops in capillary tubes resulting from
the rupture of a liquid plug at high liquid capillary numbers
(Fig. 3). The thickness of the film was measured in the flat
part of the drop away from the menisci. The results of the
simulation are presented in Fig. 3 (triangles) and compared
to both the present analytical expression (cyan continuous
line) and the result obtained by Bretherton for bubbles
(purple dashed line). The analytical expression obtained is
in excellent agreement with the simulations in the limit
of low capillary numbers Cag < 3 × 10−3 and differs, as
expected, from the simulations for larger capillary numbers
[15]. Note that the effect of gravity could not be considered
in the axisymmetric simulations. Nevertheless, owing to the
large density of the liquid compared to air, gravity could
lead to a thinner film below than above the drop. This effect
was not noticed experimentally since the drop motion in the
horizontal channel was visualized only from the top and not
laterally. Note also that the adherence condition at the air
and liquid interface leads to shear stresses all along the film
(while the film is at rest in the bubble case away from the
dynamic meniscus). Hence the associated pressure drop is
expected to induce a continuous variations of the air film
thickness for long drops.
Phase diagram.—We further investigated experimentally

and numerically the regimes leading to the formation of

long anti-Bretherton drops on a large set of parameters.
Since the three effects at stake are viscous, inertial, and
capillary effects, a phase diagram can be plotted as a
function of two dimensionless numbers: the capillary
number Cal ¼ μlU=σ and the Ohnesorge number Oh ¼
μl=

ffiffiffiffiffiffiffiffiffiffi
ρlσR

p
(see Fig. 4). The Ohnesorge number compares

viscous effects stabilizing an interface to the geometric
average of destabilizing inertial and capillary effects. In the
range of capillary numbers sufficient to have an inversion
of the front interface curvature, three regimes can be
observed (see Fig. 4 and video M2 in the Supplemental
Material [27]): (i) a regime named “standard breakup” (SB)
wherein the liquid plug becomes thinner and thinner until it
breaks with no droplet production. This regime occurs
when the radius of curvature of the front interface remains
larger than the tube radius. (ii) An intermediate regime
named “droplet ejection” (DE) wherein a small drop is
ejected when the front interface radius of curvature is
almost equal to the tube radius. And finally (iii), the “anti-
Bretherton” large drop production regime leading to the
production of a long droplet separated from the tube walls
by a thin air film. This regime (as discussed before) occurs
when the radius of curvature of the front interface becomes
smaller than the tube radius. Note that the length of the

(a)

(b)

FIG. 3. Lubricating air film thickness. (a) Simulation showing a
long levitating drop moving in a capillary tube and separated
from the walls by a thin air film of thickness ha (b) Evaluation of
the thickness of the air film ha as a function of the air capillary
number Cag. Triangles: numerical simulation. Cyan continuous
line: adapted Bretherton theory for levitating drops. Blue dashed
line: Bretherton’s theory for bubbles.

FIG. 4. Phase diagram summarizing the regimes observed
experimentally and numerically for different capillary and
Ohnesorge numbers. Standard breakup (SB): the plug breaks
from the center with no plug formation. Droplet ejection (DE): a
spherical drop is ejected at the center of the channel. Anti-
Bretherton (AB): a long levitating drop separated from the walls
by an air cushion is formed (see video M2 in the Supplemental
Material [27]).
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ejected droplet depends quasilinearly on the initial plug
length (for sufficiently long plugs) but with a slope that
depends on the capillary number (see Section V in the
Supplemental Material [27]). This provides a means to
control the droplet length.
Conclusion.—In this Letter, we study experimentally,

theoretically, and numerically the dynamics of large drops
levitating in a capillary tube, produced by the rupture of a
liquid plug. We show that the production of these large
drops occurs when a liquid plug is pushed above a critical
speed, sufficient to lead to an inverted front meniscus with a
radius of curvature smaller than the tube radius. This leads
to the development of a thin air film between the plug and
the walls, propagating downward the plug until its com-
plete detachment. The resulting drops’ shapes are reminis-
cent of the shape of the long bubble propagating in a liquid
filled tube and can be inferred from Bretherton’s model
with inverted phases and adapted boundary conditions.
This Bretherton-like transportation mode enables high
speed stable contactless drop transport with reduced fric-
tion and no wall contamination. During the drop formation
phase, however, some liquid is initially deposited on the
walls. Hence to obtain an entirely contamination free
process, either the drop production unit could be separated
from the transport part by using cross junctions or the
potential of other drop synthesis systems to produce long
droplets, such as flow focusing (with high speed air flow),
could be investigated.
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