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The oscillation instability of sessile drops is ubiquitous in surface acoustic wave (SAW)
-powered digital microfluidics. Yet the physics underlying these phenomena has not been
elucidated owing to the complex interplay between hydrodynamics, acoustics, and capil-
larity. We decipher the instability by combining high-speed imaging of the droplet surface
vibration with inner acoustic pressure measurements. We rationalize the observed behavior
with a model inspired from optomechanics, which couples an intracavity acoustic mode
excited by the SAW to a surface deformation eigenmode through amplitude modulation
and delayed radiation pressure feedback.
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I. INTRODUCTION

Manipulating microparticles, fluids, or soft-matter samples is a key issue in microfluidics, which
aims to control physical, chemical, or biological processes at small scales for, e.g., high-throughput
screening, bottom-up processing, selectivity or detection sensitivity enhancement, or risk reduc-
tion [1]. Among all the available techniques investigated so far, actuation by surface acoustic waves
(SAWs) has been early identified as a versatile and efficient tool in both microchannel and drop
microfluidics [2–5]. The interaction of a SAW with a sessile drop results in various phenomena
depending on the liquid viscosity, drop size, SAW frequency, and phase and intensity distribution:
drop trapping [6], oscillations and transport [7–11], liquid atomization [12–16], particle transport
or segregation [17,18], mixing [19], and heating [20–22]. The physical mechanisms at play in all
these phenomena are all the more difficult to elucidate as they combine acoustics, hydrodynamics,
capillarity, and wetting.

In this work, we specifically address the ∼102 Hz surface oscillation instability of sessile drops
insonicated by ∼106 Hz SAWs, a ubiquitous phenomenon which is observed to precede surface
wave turbulence [23] as well as two key applications of SAWs in microfluidics, atomization [2,24]
and drop transport [9,10], whose elucidation as been quoted as one of the major fundamental
challenges in Yeo and Friend’s reviews on acoustofluidics [2,3]. The occurrence of oscillations of
frequency as low as a few hundreds of Hz in response to MHz acoustic excitation is counterintuitive
and suggests that nonlinear mechanisms drive the coupling between acoustics and hydrodynamics.
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When a SAW irradiates a sessile drop, it is partially converted to a bulk longitudinal wave,
which remains confined within the drop acting as a cavity. Here we operate at moderate acoustic
excitation frequency fae � 1 MHz such that λ � R, where λ = c/ fae is the acoustic wavelength
(c � 1.5 km s−1 is the sound velocity in water) and R � 1.6 mm the drop radius. This enables us
to force a single acoustic mode in the cavity, as opposite to the high-frequency regime (λ � R)
in which the high modal density leads to mode overlapping and in turn to chaotic behavior [25].
On the other hand, it has been known since the seminal work of Rayleigh and Lamb that a drop is
deformable and displays discrete oscillation eigenmodes, whose behavior is similar to a mechanical
oscillator whose stiffness is associated with surface tension and mass to liquid inertia [26,27]. Thus,
the oscillation instability observed here couples an intracavity acoustic mode excited by the SAW
to discrete surface deformation eigenmodes.

By combining high-speed imaging with acoustic pressure measurements and using an insta-
bility model inspired from optomechanics, we demonstrate that drop oscillations result from the
mutual interaction between the confined acoustic mode and a single-drop deformation eigenmode
through amplitude modulation and delayed radiation pressure feedback. Interestingly, this scheme is
reminiscent of the parametric instability of gravitational wave interferometric detectors [28], force-
sensing microlevers [29,30], and opto-mechanical oscillators designed for quantum intrication [31].

The article is organized as follows. In Sec. II we describe the experimental setup and protocol
(complementary information is provided as Supplemental Material). In Sec. III we characterize the
forced acoustic cavity mode. In Sec. IV we evidence and characterize the oscillation instability.
Finally, in Sec. V we model the instability.

II. EXPERIMENTAL SETUP

A sessile water drop of volume V = 10.0 μl is deposited on a 10-mm-thick glass slab using a
precision micropipette. The drop partially wets the slab with a contact angle θw close to 90◦ and a
contact line radius Rw = 1.65 mm defined in Fig. 1. The drop is irradiated by a plane, progressive
Rayleigh wave with frequency fae = 0.84 MHz, which is generated by mode conversion using a
broadband custom Imasonic contact longitudinal transducer mounted on an Olympus ABWX-2001
variable-angle plexiglas wedge, as sketched in Fig. 1. Since the ratio of substrate thickness over
Rayleigh wavelength is approximately equal to three, guided waves are practically pure surface
(Rayleigh) waves, according to [32]. The slab edges are surrounded by PDMS, which ensures
efficient attenuation of SAW echoes in the glass slab. The tip of a Precision Acoustics needle
hydrophone with 200 μm-diameter active element is put in contact with the liquid, allowing us to
measure the intracavity acoustic pressure. Full pictures of the drop are acquired using a IDS Imaging
camera at 30 frames per second (fps), from which the height of the drop apex H is monitored during
the whole evaporation process. The oscillations of the drop-free surface in a narrow field close to
its apex, shown in Fig. 1, are recorded at 1000 fps with a 2.2 μm/pixel resolution using a Photron
SA-5 high-speed camera equipped with a zoom lens (Navitar ×40 objective).

Basically, the experiments consist in exciting the drop with a harmonic SAW at carrier frequency
fae close to one of the resonance frequencies far of the acoustic cavity formed by the drop.
Amplitude ramps are applied in order to detect the onset of the surface oscillation instability as
function of the drop volume. Complementary details about the experimental setup and timescales
are given in [33].

III. THE DROP AS AN ACOUSTIC CAVITY

First, the linear acoustic response of the cavity formed by the drop is determined by supply-
ing the transducer with a voltage signal u(t ) whose frequency linearly sweeps over the range
0.8–0.9 MHz, with low amplitude U = 5 V and 20 ms duration, while the intracavity pressure p(t )
is recorded. The spectral amplitude |u( f )| of u(t ) is displayed in Fig. 2(a). The spectral amplitude
P̂( f ) = |p( f )/u( f )| of the pressure response of a freshly deposited drop (height H0 = 1.72 mm)
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FIG. 1. Sketch of the experimental setup. A 10.0 μl water drop deposited on a glass slab is irradiated with
a harmonic progressive Rayleigh wave generated using a contact longitudinal transducer mounted on a wedge.
The slab edges are surrounded by PDMS, which ensures efficient attenuation of SAW echoes in the glass
slab. A needle hydrophone, whose tip is brought into contact with the liquid surface, measures the intracavity
pressure. Full pictures of the slowly evaporating drop are taken at 30 fps using a camera (main picture at top
right of the figure), while the oscillations of the drop-free surface in a narrow field close to its apex (red frame
on the picture) are recorded at 1000 fps using a high-speed camera (narrow picture on the left of the main
picture). A laser vibrometer pointing close to the apex is used for measuring low-amplitude surface oscillations
in independent experiments dedicated to the characterization of the unstable surface eigenmode, which are
presented in [33].

is shown in Fig. 2(a), where p( f ) is the Fourier transform of p(t ). P̂ exhibits two peaks in the
range 0.8–0.9 MHz respectively at far � 0.81 MHz and f ′

ar � 0.87 MHz. Considering the drop
as hemispherical and assuming (1) no displacement of the rigid glass surface (hereinafter called
equatorial plane) and (2) pressure node at the drop-free surface, the acoustic eigenmodes can
be expressed using spherical waves [34]. Their eigenfrequencies f�,q satisfy j�(2πR f�,q/c) = 0
where R = [3V/(2π )]1/3 = 1.68 mm, with j� the spherical Bessel function of the first kind, � a
positive integer, and q the number of the root of j� in ascending order [33]. Two eigenfrequencies
f2,1 = 0.82 MHz (corresponding to three degenerate modes symmetrical to the equatorial plane,
labeled by m = 0,±2 [33]) and f0,2 = 0.89 MHz fall in the range 0.8–0.9 MHz and are found to be
close to the measured peak frequencies far and f ′

ar. This demonstrates that these peaks do correspond
to the resonant forcing of cavity eigenmodes.

Due to evaporation, the height H of the drop apex decreases in time while its contact line remains
pinned during the first 5 min, resulting in a continuous increase of far; see Figs. 2(a) and 2(b). A
numerical calculation (using Comsol software) of the acoustic eigenmodes of a sessile drop with
variable height H , fixed Rw, initial volume V , and initial height H0 evidences that, when the drop
is not hemispherical (H �= Rw), the eigenfrequencies of the (� = 2, q = 1) modes split [33]. The
comparison between the variations of far with H measured during several experiments and the
computed variations of the eigenfrequencies of the m = ±2 and m = 0 modes vs H , shown in
Fig. 2(b), allows us to unambiguously identify far as the resonance frequency of the (� = 2, q = 1,

m = ±2) modes, whose pressure field distribution is shown in inset of Fig. 2(b).
As shown in Fig. 2(a), during evaporation the cavity pressure response is accurately described

by a one-dimensional (1D) resonator model:

P̂( f ) = P̂i

∣∣∣∣1 +
[

1 − π

2Qar
exp

(
iπ

f

far

)]∣∣∣∣
−1

, (1)
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FIG. 2. (a) Red curve: Narrow-band spectrum |u( f )| of the frequency-swept voltage periodically applied
to the transducer to scan the drop acoustic resonances during its evaporation. Spectrum P̂( f ) = |p( f )/u( f )| of
the drop pressure response immediately after its deposition (thin black curve) and after 3 min of evaporation
(bold black curve). Blue curve: best fit by Eq. (1). f2,1 and f0,2 are the numerically predicted acoustic
eigenfrequencies of a hemispherical drop with radius R = 1.68 mm. (b) Acoustic resonance frequency far

vs drop height H during the evaporation of three drops (connected red, black, and blue symbols). Solid and
dashed curves: theoretical predictions; see text. Inset: Pressure distribution of the forced m = ±2 eigenmodes.
(c) Corresponding acoustic quality factor Qar . Bold symbols: measurements during which the oscillation
instability is observed.

where P̂i = (3.5 ± 1.5) kPa V−1 is the magnitude related to the excitation of the acoustic wave
injected into the drop by mode conversion of the leaky SAW and Qar is the quality factor, whose
value is determined by fitting Eq. (1) to the resonance peak. Figure 2(c) displays the variations of
Qar vs H measured over several experiments. Its fluctuations lie in the range 80–250. Its dispersion
may be ascribed to the slight variations of the shape of the triple lines along the substrate and the
needle tip from one experiment to another, while its variations during evaporation may be ascribed
to the evolving drop shape.

IV. OSCILLATION INSTABILITY

We now address the oscillation instability. Due to evaporation, far increases at a typical rate of
3.5 kHz min−1. Instead of continuously adjusting the frequency fae of the acoustic excitation for
maintaining the same interference conditions in the drop, we set fae slightly above the initial value
of far [see Fig. 2(a)] fae = 0.84 MHz. Hence, far crosses fae after 3–4 min and the drop acoustic
resonance is scanned in 5 min, which leads us to analyze how the drop unstable behavior changes
with time. Accordingly, every 15 s, (1) the linear acoustic response of the cavity is measured as
described in Sec. III [see inset in Fig. 3(a), (2) then the drop is insonicated using a harmonic SAW
with fixed frequency fae, amplitude U increasing as

√
t from 0 to 55 V in 1 s, as sketched in Fig. 3(a),

so that the radiation pressure (RP) exerted by the intracavity acoustic field on the drop surface,
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FIG. 3. (a) Amplitude U (t ) of the sine voltage signal prescribed to the transducer, which is 15 s-periodic,
1 s-long (note the breaks on timescale). Inset: Zoom on the frequency-swept, small-amplitude signal used
to assess the cavity acoustic response. (b) Relative height h(t ) (arbitrary origin) of the drop surface imaged
using the high-speed camera, undergoing a slow decrease due to evaporation and possibly oscillations during
excitation. (c) Enlargements of the parts of the signals framed in blue in (a) and (b), evidencing the surface
oscillation instability triggered for U � Uth starting from tth. (d) Spectrogram of h(t ) evidencing a monochro-
matic oscillation at frequency fso � 230 Hz. Inset: Corresponding drop deformation pattern independently
measured from above [33]. (e) Amplitude P(t ) of the intracavity pressure p(t ), displaying modulation starting
from tth. (f) Spectrogram of p showing the appearance of satellite peaks shifted from the carrier frequency fae

by ± fso starting from tth. Inset: Sketch of the feedback of the drop deformation on the intracavity field.

which is proportional to U 2, increases linearly in time, (3) while p(t ) and the drop surface height
h(t ), defined in Fig. 1 and shown in Fig. 3(b), are recorded, (4) the remaining time is dedicated to
data transfer.

As can be understood from Fig. 2(a), during evaporation, starting from nonresonant conditions
(“blue detuning” in optical physics), the drifting resonance frequency far crosses fae for a given
height Hres � 1.63 mm, realizing a resonant forcing. When far overruns fae, the cavity is driven
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FIG. 4. (a)–(c) Left scale, joined black symbols: H -dependent pressure response P̂ at excitation frequency
fae. Right scale, joined red symbols: instability threshold voltage Uth vs H . Blue curve: best fit of Uth (h) by
Eqs. (4) and (6). (d) Solid curves: measured surface oscillation frequency fso vs U (� Uth) for several values
of H . Dashed curves: corresponding predictions from Eq. (7).

away from resonance (“red detuning”). Accordingly, as shown in Figs. 4(a)–4(c), when H decreases,
the magnitude of the intracavity pressure response to excitation P̂( fae) first increases, then reaches
a maximum when far = fae, and finally decreases. The effect of the evaporation on the drop
eigenmode excitation and the way to take advantage of it are reminiscent of a previous study of
concentration patterns of colloids in SAW-excited drops [35].

Meanwhile, as shown in Figs. 3(b) and 3(c), h slowly decreases due to evaporation and undergoes
oscillations during excitation when U exceeds a threshold Uth. The variations of Uth vs H , measured
during several experiments, some of which displayed in Figs. 4(a)–4(c), reveal that two instability
tongues reproducibly show up on the right-hand side ( fae > far) and left-hand side ( fae < far) of the
peak on the curve of variation of P̂( fae) vs H , demonstrating that the instability onset depends on the
acoustic interference conditions and the instability occurs close to (and not at) an eigenfrequency of
the acoustic cavity. Also, Fig. 2(c) shows that the occurrence of the instability is not correlated to
the variations of Qar.

The spectrogram of h(t ) shown in Fig. 3(d) evidences that, at the instability onset, h shows
harmonic oscillations of frequency fso � 230 Hz. An independent recording of the deformations
of the image of a grid visualized through the drop [33] allowed us to measure the free-surface
deformations and to identify the corresponding forced surface eigenmode, whose experimental
pattern is shown in inset of Fig. 3(d) [33,36]. We conclude that the instability involves a single
surface deformation eigenmode.

V. MECHANISM OF INSTABILITY

To gain insight into the instability mechanism, we consider the time evolution of the magnitude
P of p(t ), shown in Fig. 3(e). P smoothly increases with U up to the instability threshold. Once the
surface oscillates, P exhibits oscillations at the frequency of the drop surface oscillations fso and
whose amplitude increases with U .
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A. Amplitude modulation of the intracavity field by surface oscillations

This amplitude modulation of p(t ) can be explained as follows: the drop behaves as a 1D
resonator with an effective length modulated by the free surface oscillations h(t ) = A cos (ωsot )
with ωso = 2π fso; see inset in Fig. 3(f). Hence, far is modulated at frequency fso with amplitude
A dfar

dh , where dfar

dh , which quantifies the sensitivity of far to drop deformations, is always negative
since a 1D resonator eigenfrequency decreases with its length. Since the delay of adaptation of
intracavity pressure p(t ) to variations of interference conditions τar = Qar/ωar � 20 μs is much
shorter than the period of these variations f −1

so � 4 ms, P(t ) quasistatically follows these variations
and in turn adopts a similar modulation at frequency fso, with amplitude �P = U ∂P̂

∂ far
( fae) A dfar

dh .
This is experimentally confirmed by the spectrogram of p(t ) shown in Fig. 3(f), which displays
at �P/P 	 1 a single pair of satellite peaks shifted from fae by ± fso, a signature of amplitude
modulation at frequency fso [33].

B. Feedback of the amplitude-modulated intracavity field on surface oscillations

Now we consider the feedback of the amplitude-modulated intracavity field on surface oscilla-
tions. This feedback is provided by the radiation pressure exerted by the intracavity acoustic field
on the drop surface. Radiation pressure, which is the time average over f −1

ae of the pressure p(t )
exerted on the drop-free surface, is a normal stress oriented outwards whose magnitude 
 satisfies
in order of magnitude


 = P2/(ρc2), (2)

where ρ is water density [37,38]. As a consequence, the intracavity pressure modulation (with
amplitude �P) induced by the surface oscillations results in radiation pressure oscillations of
amplitude �
 = 2P �P/(ρc2) at instability onset, which have therefore the same frequency fso

as the surface oscillations. These radiation pressure oscillations may damp or amplify the surface
oscillations depending on their phase difference, as analyzed hereinafter.

Close to resonance, the amplitude h of the surface eigenmode forced by radiation pressure
oscillations follows the dynamics of a forced mass-spring system: ḧ + ωso

Qso
ḣ + ω2

soh = F (h)
m , where

ḣ is the time derivative of h and Qso = (40 ± 15) is the independently measured quality factor of
the resonance of the surface eigenmode [33]. Evaluating the effective wave number of the surface
eigenmode as kso = 4

R [33], F ∝ k−2
so �
 is the modulated acoustic radiation force exerted on a

portion of drop surface of characteristic size equal to one deformation wavelength λso = 2π/kso

and m ∝ ρk−3
so the corresponding mass of moving water. At the instability onset, we can linearize

the variations of F around equilibrium: F (h)
m = Ka

m h where Ka = F ′(0). Thus, h satisfies

ḧ + ωso

Qso
ḣ +

(
ω2

so − Ka

m

)
h = 0, (3)

where

Ka

m
= kso

ρ2c2
U 2 P̂

∂P̂

∂ far
( fae)

dfar

dh
(4)

within an unknown factor. Note that Ka accounts for a change in the surface stiffness mω2
so (“acoustic

spring”) induced by radiation pressure [39].

C. Delayed radiation pressure feedback as a plausible origin of the instability

1. Case H > Hres (early stage of evaporation)

First, we focus on the case H > Hres encountered at the early stage of evaporation, which
corresponds to the right-hand side of the peak of the P̂( fae) vs H curves shown in Figs. 4(a)–4(c) and
where fae > far (domain of blue detuning). In this domain, a decrease of far due to a crest (h > 0)
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moves far away from fae and thus detunes the cavity, resulting in ∂P̂
∂ far

( fae) > 0 and hence Ka < 0.
According to Eq. (3), the surface eigenmode dynamics is that of a stiffer yet damped free harmonic
oscillator exhibiting no instability. To explain the oscillation instability, a key point is to consider the
finite delay τar of adaptation of P, and hence of 
, to the variations of the intracavity interference
conditions caused by the surface oscillations at pulsation ω. In the harmonic regime, this results in a
phase lag of F with respect to h. With the convention that the actual harmonic surface deformation
is the real part of h = H exp(iωt ), Ka has to be changed to Ka exp(−iφ) in Eq. (3), where φ > 0 and
φ = ωτar � ωsoτar � 0.03 	 1. Noting that in harmonic regime iωh = ḣ, h satisfies

ḧ +
(

ωso

Qso
+ Ka

mω
sin φ

)
ḣ +

(
ω2

so − Ka

m
cos φ

)
h = 0. (5)

Since sin φ > 0 and Ka < 0, the damping term in Eq. (5) is reduced by the delayed radiation pressure
feedback. The condition for instability is a negative damping occurring for U � Uth such that

|Ka(Uth)|
m

= ωarωso

QarQso
(6)

given ω � ωso and sin φ � φ. Furthermore, as shown by Eq. (5), the acoustic spring results in an
increase of the surface oscillation frequency ω′

so with respect to its natural value ωso:

ω′
so =

√
ω2

so − Ka

m
(7)

since cos φ � 1.
The instantaneous oscillation frequency f ′

so is extracted from the spectrograms of h(t ) measured
for several values of H . Figure 4(d) evidences the increase of f ′

so with U , which is in agreement
with the stiffening predicted by Eq. (7). The negative offset of f ′

so with respect to fso = 230 Hz may
be ascribed to the radiation pressure-induced static deformation of the drop; see [33]. To test the
quantitative validity of this model for fae > far, we compare Eqs. (6) and (7) to the experimental
data using Eq. (1) fitted to the resonance curve at each value of H , Eq. (4), and Qar = 100, α,
defined as dfar

dh = −α
far

H , being the only fitting parameter. As shown in Figs. 4(a)–4(c), the measured
and predicted instability tongues Uth(H ) are in quantitative agreement. The same goes for the
measured and predicted rates of variation of f ′

so(U ), as shown in Fig. 4(d). Moreover, the values
of α corresponding to the best fits of U (H ) and of the rates of variation of fso(U ) are scattered in a
narrow range (between 2×10−4 and 10−3). Thus, the proposed model reproduces quantitatively and
self-consistently two main observables of the instability for H > Hres, namely, its threshold and the
radiation pressure-induced stiffening.

2. Case H < Hres (late stage of evaporation): Taking the static drop deformation into account

Finally, we consider the case H < Hres encountered at the late stage of evaporation, which
corresponds to the left-hand side of the peak of the P̂( fae) vs H curve shown in Figs. 4(a)–4(c)
and where fae < far (domain of red detuning). In this domain, ∂P̂

∂ far
( fae) < 0 and hence Ka > 0. As a

consequence, the delayed radiation pressure feedback increases the damping term in Eq. (5). Thus,
according the aforementioned proposed instability mechanism, no oscillation instability should be
observed in the domain of red detuning. To explain the puzzling observation of oscillations in
this domain, it is necessary to consider another effect of radiation pressure, which is the static
deformation of the drop.

To evidence this effect, U is increased as
√

t from 25 to 55 V in order to vary radiation pressure
as quasistatically as possible. For H = H1 > Hres and H = H2 > Hres as defined in Fig. 5(a), we
observe in Figs. 5(b) and 5(c) that when U increases in time, the magnitude of the pressure
response of the cavity P/U monotonously decreases with time outside oscillatory episodes. For
H = H3 � Hres, we observe in Fig. 5(d) that when U increases, P/U increases, then decreases
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FIG. 5. (a) Left scale, joined black symbols: H -dependent pressure response P̂ at excitation frequency fae.
Right scale, joined open magenta symbols: instability threshold voltage Uth vs H . The blue area corresponds
to H > Hres (blue detuning). The orange and red areas correspond to H < Hres (red detuning). (b–f) Time
evolution of the cavity pressure response P/U = P̂ during a U ramp for four different values of the drop
height H = Hi, i = 1 to 4, as defined in (a). Oscillation episodes are visible in (c)–(e). (g) Schematic variation
of the square of the pressure response P̂2 = P2/U 2 = g2 vs H . (h–j) Schematic variation of g2 vs resonator
lengthening h [see inset of (i)] for three different values of the drop height H = HX , X = A, B, C, as defined in
(g). Inset of (i): Sketch of the drop quasistatic deformation.

outside the oscillatory episode. Finally, for H = H4 	 Hres and H = H5 	 Hres, we observe in
Figs. 5(e) and 5(f) that when U increases, P/U increases, then encounters a jump, then decreases
outside oscillatory episodes. This U dependence of P/U = P̂ is not described by Eq. (1), which
states that P̂( fae) depends only on H (which determines far), i.e., should be independent of U outside
oscillatory episodes. To explain this observation, we have to take into account that, in addition to
oscillating, the irradiated drop is quasistatically deformed by radiation pressure, which modifies
the interference conditions in the drop exhibiting the oscillation instability. Such a static nonlinear
behavior has been already observed and modeled by Issenmann et al. [40] in the case of a liquid
surface constituting one end of a near-1D acoustic cavity. In what follows, we show that the model
of Ref. [40] applies to our experimental results, allowing us to explain why oscillations are observed
in the domain of red detuning.

Under the effect of quasistatic radiation pressure, the irradiated drop indeed undergoes a small,
tridimensional (3D), quasistatic deformation with respect to its hemispheric base shape, as sketched
in inset of Fig. 5(i). This deformation is determined by the spatial distribution of the intracavity
acoustic field, the constraints of droplet volume conservation and that of pinned contact line.
Although this deformation is perceptible in the full pictures of the droplet, its 3D shape and its
small amplitude discouraged us from monitoring it. On the one hand, at steady state, the drop
surface curvature κ satisfies 
 ∼ γ�κ , where γ is water surface tension and �κ = κ − 2/R is
the curvature perturbation of the drop. For small deformations, linearization of κ with respect to the
drop deformation leads to �κ ∼ γ h/R2, where h stands for the quasistatic increase h of the effective
length of the 1D resonator describing the behavior of the acoustic cavity. Finally, owing to Eq. (2),
P2 � K γ ρc2

R2 h, where K is a dimensionless factor, or equivalently

P2

U 2
� Kγ ρc2

R2U 2
h. (8)
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On the other hand, the quasistatic increase of the resonator length h leads to a quasistatic
decrease of the cavity resonance frequency far. Defining g(H, h) as g(H, h) = P̂i|1 + [1 −

π
2Qar

exp(iπ fae

far (H+h) )]|−1, we rewrite Eq. (1) expressed for f = fae as

P2

U 2
= g2(H, h). (9)

For given values of H and U , h corresponds to the stable working point of the nonlinear system
described by Eqs. (8) and (9). As illustrated in Figs. 5(g)–5(j), h can be graphically determined as the
abscissa of the intersection point of the line h �→ Kγ ρc2

R2U 2 h, whose slope decreases when U increases,
and of the curve h �→ g2(H, h), which is invariant with respect to U variations. Now we can examine
the three possible cases. (1) As shown in Fig. 5(h), for H = HA > Hres, when U increases from U1

to U2, g2, hence P/U , monotonously decrease from K to L. This qualitatively describes the observed
behavior of P/U for H = H1 > Hres and H = H2 > Hres shown in Figs. 5(b) and 5(c), respectively.
(2) Defining Hinfl as the abscissa of the left-hand inflection point of the h �→ g2(H, 0) curve shown
in Fig. 5(g), as shown in Fig. 5(h), for H = HB such that Hinfl > HB > Hres, when U increases
from U1 to U2, g2 continuously increases, then decreases from M to N . This qualitatively describes
the observed behavior of P/U for H = H3 � Hres shown in Fig. 5(d). (3) As shown in Fig. 5(j), for
H = HC < Hinfl, when U increases from U1 to U2, g2 increases from P to Q where it loses its stability
and then jumps to R. When U further increases from U2 to U3, g2 continuously decreases from R
to S. This qualitatively describes the observed behavior of P/U for H = H4 and H = H5 shown
in Figs. 5(e) and 5(f). The only qualitative difference between experiment and model is the jump
which is experimentally observed to be negative whereas it is theoretically predicted to be positive.
This may be ascribed to a possible drop of the cavity quality factor when the drop discontinuously
changes its shape, a 3D effect that is not taken into account in the 1D model. We conclude to a
qualitative agreement between the model and the observed quasistatic behavior of the cavity.

Now, the model can be used to explain why the oscillation instability was observed for H < Hres.
As illustrated in Figs. 5(b)–5(f), oscillations are actually observed only when P/U decreases with U ,
H being larger or smaller than Hres. According to the model, this is due to a cavity lengthening such
that the stable working point of the acousto-mechanical system is always located on a decreasing
part of the h �→ g2(H, h) curve; see Figs. 5(h)–5(j). As a result, regardless of the value of H and in
particular for H < Hres, oscillations only occur when dP̂

dh < 0. Since dP̂
dh = dP̂

dfar

dfar

dh and dfar

dh < 0, this

leads to the necessary condition dP̂
dfar

> 0, i.e., to Ka < 0, which is precisely the situation in which
delayed feedback is able to trigger the oscillation instability. In other words, the phenomenon of
radiation pressure-induced static drop deformation brings red-detuned drops, drops such that H <

Hres, into states of blue detuning, i.e., such that their static length H + h satisfies (H + h) > Hres, in
which the oscillation instability can be triggered.

To conclude this part, we succeeded in explaining the underlying mechanism of oscillation
instability and the occurrence of both instability tongues by combining a model of instability
triggered by amplitude modulation and delayed radiation pressure feedback and a nonlinear model
of static drop deformation by radiation pressure.

VI. DISCUSSION

Since acoustic streaming results in stresses exerted by the intracavity acoustic field on the drop
surface that add to radiation pressure, it may also be considered as possibly intervening in the
instability mechanism. However, at the frequency investigated here ( fac ∼ 1 MHz), the acoustic
attenuation length La is of the order of 50 m, i.e., it is 3×104 larger than the drop radius R.
Hence the wave attenuation in the drop is extremely small, in contrast to experiments performed at
higher frequencies ( fac ∼ 50 MHz) reported in the literature where La/R ∼ 10 and where acoustic
streaming effects were evidenced. Therefore, we confidently assume that radiation pressure is the
dominant phenomenon intervening in the instability mechanism.
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We note that the phase-locking mechanism proposed in [41,42] for explaining the instability
of low-frequency surface eigenmodes ( fso 	 far) predicts that (1 the components along the liquid
surface of the acoustic and surface eigenmodes coincide and (2) the larger the acoustic amplitude,
the larger the amplitude of the surface oscillation. On the contrary, we observed that the symmetries
of the acoustic and surface eigenmodes did not coincide [see Figs. 3(d) and 2(b)] and that the
oscillation amplitude depends also on the droplet height, thus making the phase-locking mechanism
inadequate for explaining our observations, possibly because it does not take into account the
feedback of the drop shape on the acoustic field.

In the light of these results, our conjecture is that SAW-driven surface turbulence [23] may orig-
inate from the independent excitation of numerous surface eigenmodes above different thresholds
since many surface eigenmodes can in principle interact with the intracavity acoustic field, as shown
in [33]. Moreover, we note that the contact-line pinning, which usually hinders drop transport, can
be overcome by low-frequency drop oscillations [10,11], thus making of this oscillation instability
an essential ingredient of SAW-induced transport. Indeed, since intracavity resonances are expected
to persist up to 40 MHz [9], we expect the above unraveled instability mechanism to hold in the
higher frequency range where drop transport is usually achieved, possibly cooperating with acoustic
streaming. Finally, the instability can be also triggered by a hybrid combination of surface and bulk
waves [32] and is therefore generic, as shown by the experiments dedicated to the imaging of the
drop surface deformations presented in [33].
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