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When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex
dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar
drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained.
Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation
level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact
line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs.
For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the
suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile
drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically
induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the
origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops,
the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the
nonlinear dependence of the drop response frequency on the dynamically induced stretching.
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I. INTRODUCTION

Surface acoustic waves (SAWs) are versatile tools for the
actuation of fluids at small scales. In digital microfluidic,
they can be used to move [1–3], divide [4], merge [5],
atomize [6–11], mix [12], or heat [13–18] sessile droplets.
In microchannels, they can induce fluid pumping [19,20]
and mixing [21–23]. Finally, in both configurations, they can
be used to manipulate and sort particles [24–31] and cells
[26,32–38]. More recently, new types of surface acoustic
waves, the so-called swirling waves (2D counterparts of Bessel
beams) [39,40], have been under investigation to achieve new
operations, such as 3D on-chip single-particle manipulation
[41] or vortical flow synthesis with controlled topology [42].

However, despite an extensive literature on the use of SAW
for labs-on-chips actuation [43–45], a clear understanding
of the underlying physics is still missing for many of these
systems [46]. One of the reasons is that the nonlinear
coupling between the acoustic waves and the liquid response
involves time and length scales that differ by several orders
of magnitude, along with nonlinear effects, which render the
analysis and simulation of these behaviors extremely difficult.
A difficult problem is the physical understanding of droplets
dynamics excited by planar propagative SAW. In this case the
droplet undergoes both oscillatory and translational motion
[3,47] that are strongly coupled to each other [48]. The
droplet vibrations have been identified [3] to be inertiocapillary
Rayleigh-Lamb quadrupolar oscillations, whose frequency
fosc is roughly 50 Hz, while the acoustic excitation is around
fsaw = 20 MHz. However, the origin of these oscillations
[46,49] and their influence on the droplet translational motion
[48] remain unexplained. As the SAW is radiated within the
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drop, it can generate both Eckart acoustic streaming and
radiation pressure at the liquid-air interface. The relative
contribution of these effects depends on the attenuation length
of the wave in the liquid [3]. For a water droplet excited
at 20 MHz, the wave attenuation length is typically around
10 cm compared to the drop size of a few millimeters and the
wavelength of about 75 microns. Thus, the bulk attenuation
is weak enough to allow for significant acoustic pressure to
reach the interface and the radiation pressure acts by pushing
the drop-free surface upwards, which leads to an average
drop deformation and oscillations. Figure 1 shows a typical
sequence for the dynamics for the drop, together with the
geometrical definitions.

In this paper, we investigate the dynamics of sessile and
pendant drops excited by Rayleigh-type SAW of frequency
20 MHz. It is shown that even for relatively small droplets,
gravity strongly affects the drop dynamics. For pendant drops,
new regimes are observed close to the detachment threshold
with the appearance of a quasistatic equilibrium. Away from
this threshold, the comparison of sessile and pendant drops
dynamics allows us to identify the role played by gravity on
the frequency fosc and amplitude of oscillations �h: since
drops are nonlinear oscillators, their characteristic frequency
relies on the average stretching of the string (here the drop
shape). In the case of pendant drop, this stretching is mainly
induced by stationary effects (gravity and radiation pressure)
that both act in the same direction. For sessile drops, however,
gravity and radiation pressure act in opposition and the average
stretching is mainly induced by nonlinear dynamical effects,
which depend on �h. Thus, in this case fosc is strongly
influenced by �h.

The motion of the contact line over one cycle is then
analyzed for both pendant and sessile droplets. While the
contact line dynamics is shown to depend also on gravity,
it essentially remains a linear function of the amplitude
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FIG. 1. Successive deformations of a drop excited by a Rayleigh
SAW, leading to both translational motion at velocity V and
oscillations of amplitude �h and frequency fosc. The radiated acoustic
wave leads to an average drop height hm. The plain line circle and
base radius Ro correspond to the shape without acoustic forcing.

of oscillations in both cases. As a consequence, both the
frequency fosc and the contact line motion over one cycle are
directly dependent on the drop amplitude of oscillations for
sessile droplets. In this case, it is thus possible to determine a
relation between the droplet velocity V and the amplitude �h.
This equation quantitatively compares to the experimentally
observed tendencies for all drop sizes, and in particular the
saturation of the droplet velocity as a function of the amplitude
of oscillation, previously observed in Ref. [48]. Consequently,
it is shown that this saturation is mainly induced by the
decrease of fosc with �h.

In Sec. II, the experimental setup is presented and the
relevant dimensionless numbers are introduced. In Sec. III,
we first analyze the motion and oscillation of both sessile and
pendant drops and compare them in order to determine the
effect of gravity. Finally, in Sec. IV the correlation between
the droplet oscillations and translational motion is interpreted
in light of previous results.

II. METHOD

A. Description of the setup

Sessile and pendant drop of deionized water are actuated
by Rayleigh-type surface acoustic waves at driving frequency
20 MHz synthesized at the surface of a 1.05-mm-thick x-
cut lithium niobate (LiNbO3) piezoelectric surface in the z

direction by interdigitated transducers (IDTs). The latter are
excited by a high-frequency generator (IFR 2023A) and an
Empower RF 1037 amplifier (see Fig. 2). The IDTs have been
fabricated by successively sputtering a titanium (Ti) layer (20
nm thick) and a gold (Au) layer (200 nm thick) on the LiNbO3

substrate. Spacing and width of the interdigitated fingers (both
equal to a = 43.75 μm in the present system) determine the
frequency of the surface acoustic wave according to the law
fsaw = cs/λ = cs/4a, where λ = 175 μm is the wavelength
and cs ≈ 3484 m.s−1 is the sound speed in the substrate
in the z direction [50]. The aperture of the IDT is 2 cm.
The amplitude of the acoustic wave was measured with a
Mach-Zender interferometer. The substrate surface was treated
by a self-assembled monolayer (SAM) of OTS (octadecyltri-
cholorisilane), making it hydrophobic (static contact angle of
98◦) and with weak contact angle hysteresis (15◦). To avoid
the acoustic wave reflection by the edge of the substrate, an

FIG. 2. Sketch of the experimental setup. A sessile drop of
deionized water is excited with a Rayleigh surface acoustic wave
of frequency 20 MHz synthesized at the surface of a x-cut niobate
lithium substrate along the z axis. The wavelength λ and the aperture
of the IDT W are, respectively, equal to 175 μm and 2 cm.

acoustic absorber (Blu-tack “UHU patafix”) was placed at the
extremity of the substrate, 5 cm away from the IDT in the
propagation direction.

In sessile drop experiments, a droplet of calibrated volume
is deposited on the top surface of the substrate corresponding
to the active one. In pendant drop experiments, the setup
is put upsidedown. Then waves are emitted and the droplet
dynamics is recorded with a high speed camera (Photron SA3)
with appropriate optics to obtain a close enough magnification
of the drop. Finally, the drop oscillations and displacement,
as well as the contact line dynamics, are analyzed with
ImageJ software (see movies 1 and 2 in the Supplemental
Material [51] illustrating the typical dynamic of a sessile
and a pendant drop). The drop temperature evolution was
not monitored in the present experiments since it was shown
in previous studies [13–17] that water drop heating induced
by SAW at this frequency and power is weak and that
the characteristic timescale associated with the temperature
increase is significantly larger than the characteristic timescale
of our experiments (≈0.5 s).

B. Relevant dimensionless numbers

The relevant dimensionless number in this study are the
Bond number Bo and the acoustical Weber number Weac.

The Bond number Bo = ρlgL2/σ compares capillary
effects to gravity effects, with ρl the density, g the standard
gravity, L the characteristic size of the system, and σ the
surface tension. In the case of a droplet, the characteristic
length L corresponds to the radius of the drop at rest Ro and
the Bond number quantifies the ability of gravity to deform
droplets (departure from spherical shape imposed by surface
tension). In the present experiments, we considered droplets of
2, 5, 10, and 15 μl corresponding to radii of Ro ≈ (3V/2π )1/3

equal to 1.0, 1.3, 1.7, and 1.9 mm, respectively (if we consider
that the drop are perfectly hemispherical) and thus Bond
number Bo of, respectively, 0.13, 0.24, 0.38, and 0.5. Since
the Bond number is small and the contact angle is around
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FIG. 3. Comparison of the initial static shape of sessile (up)
and pendant (down) drops of volume 2 μl, 5 μl, 10 μl, and 15 μl
(corresponding to Bond numbers of 0.13, 0.24, 0.38, and 0.5,
respectively) deposited on the niobate lithium substrate treated with
OTS.

90o, the adhesion forces are dominant over gravity and the
drop remains attached to the substrate in the pendant case.
Figure 3 compares the shape of these drops at rest when they
are pendant and sessile corresponding to the reversal of the
gravity field. For the four volumes considered, the relative
deformation spans between 4.5% and 18% of the drop initial
height, giving a direct measurement of the static effect of
gravity for the four drop volumes considered.

The acoustical Weber number Weac compares the acoustic
radiation pressure to the capillary effects at the drop surface.
This number, initially introduced in the study of acoustic
levitation [52] or acoustically induced atomization [11],
characterizes the ability of acoustic waves to deform interfaces,
which shape is maintained by surface tension. For a droplet
excited by SAWs, the air-water interface is almost a perfect
mirror for the wave and the radiation pressure pr can be
estimated (in normal incidence) as pr ≈ 2〈eac〉, where eac

is the acoustic energy density of the incident acoustic wave
in the liquid [53] and the brackets 〈〉 correspond to time
averaging. In the plane-wave approximation, the acoustic
energy is equally distributed between potential and kinetic
energy and in space, so 〈eac〉 = 2〈ec〉 with ec the kinetic
energy density. Then, considering a harmonic acoustic wave,
we have 〈ec〉 = 1/2ρlV

2
l , where Vl is the amplitude of the

acoustic velocity perturbation in the liquid and ρl the liquid
density. Finally, since the acoustic wave is radiated in the liquid
with the Rayleigh angle θR , continuity of the velocity field
at the substrate-drop interface gives: Vl = Asωac/ cos(θR),
where As is the amplitude of the normal acoustically induced
displacement at the surface of the substrate, and ωac is the
frequency of the acoustic wave. Finally, the Laplace law gives
the order of magnitude of the pressure drop at the interface
due to capillary effects: pcap ≈ 2σ/R with σ the liquid surface
tension. As a consequence, the acoustical Weber number can
be estimated according to the formula: Weac = pr/pcap =
ρlA

2
sω

2
acR/σ cos2(θR). In this study we explored Weac ranging

from 0.2 to 0.6.

III. COMPARISON OF THE DYNAMICS OF SESSILE AND
PENDANT DROPS: EFFECT OF GRAVITY

The observation of the dynamics of sessile droplet ex-
cited by traveling surface acoustic waves (see movie 1 in

the Supplemental Material [51]) might give the misleading
impression that during an oscillation cycle, the droplet is
stretched by the effect of the wave (radiation pressure) and
then falls down due to gravity. A previous study by Brunet
et al. [3] has shown that the drop frequency fosc depends on
the drop volume V with a power law fosc ∼ V−1/2, which is
typical for Rayleigh-Lamb inertiocapillary vibration modes
[54,55] (a gravity-based restoring force would have led to
a V−1/6 power law; see, e.g., Ref. [56]). We can conclude
from these results that capillary effects are dominant over
gravity ones (as expected at such moderate Bo). Nevertheless,
if gravity effects were negligible, dynamics of sessile and
pendant drops should be strictly identical. We will show in
the following that while it would be the case if the droplet
was a linear oscillator, gravity strongly affects the drop
dynamics due to nonlinearities. More generally, we will show
that independently of its origin (external field, dynamically
induced), the average drop stretching dramatically modifies
the drop response. Before exploring this subject, we will first
identify some specific regimes where the comparison between
sessile and pendant drop dynamics is not relevant. Then we
will compare the dynamics of oscillation and translation of
sessile and pendant drops.

A. Specific regimes for pendant drops

When pendant drops are stretched above a critical threshold
during their oscillation cycle, they detach from the surface,
whereas sessile drops always remain attached to the substrate
at the acoustic powers investigated in this paper. Interestingly,
some new regimes of oscillation and displacement appear
close to this threshold. We will first identify and analyze these
regimes.

1. Phase diagram

The different droplet dynamics observed for pendant drops
are summarized in the phase diagram of Fig. 4. For low
Weac (blue region), the droplet always remains attached to the
surface and undergoes coupled oscillatory and translational
motions similar to the one observed for sessile droplet at the
same acoustic power. In the intermediate region (green), small
variations in the experimental conditions can either lead to the
detachment of the drop or to its sticking to the walls. This
high sensitivity to experimental initial conditions is especially
evident for droplets of 5 μl (corresponding to Bo = 0.24):
for the same control parameters and after a similar transient
regime, the droplet either experiences large oscillations leading
to its detachment from the surface or small oscillations with
larger translation speed (diamonds in Fig. 4 and depicted in
Fig. 5). Finally, for high Weac detachment always occurs.

It is interesting to note that a peculiar regime is observed
for the biggest drop (15 μl, Bo = 0.5) close to the detachment
threshold (triangles on Fig. 4). In this regime, the droplet
reaches an equilibrium state with extremely small oscillations
and slow velocity. The drop shape is quasiaxisymmetric
(explaining why there is no translation) and the drop stretching
remains close to the detachment threshold (see Fig. 6 and
movie 3 in the Supplemental Material [51]).
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FIG. 4. Phase diagram as a function of Weac and Bo summarizing
the different regimes observed experimentally when pendant drops
are excited by SAW. Blue region: no droplet detachment from the
surface. Green region: intermediate region with either detachment
or sticking of the drop to the surface. Red region: systematic drop
detachment. Four drop dynamics are observed: dynamics similar to
sessile drop (circle), detached drop (square), and new dynamics close
to the detachment threshold for 5-μl drops (diamond, described in
Fig. 5) and 15-μl drops (triangle, described in Fig. 6).

2. Detachment

Droplet detachment from the substrate is illustrated on
Fig. 7. At first the drop is stretched vertically forming a
quasicylindrical liquid column. Then the base of the drop is
squeezed and pinches off. It is well known since the work
of Savart [57], Plateau [58], and Rayleigh [54,59] that liquid
columns are unstable to the Rayleigh-Plateau instability. Savart
was the first to observe the decay of liquid jet into drops. Then
Plateau has shown that surface tension favors the development
of long wavelength undulations at the surface of a liquid

FIG. 5. Evolution of the drop height for two droplets of the same
size (Bo = 0.24) excited with the same acoustical signal (Weac =
0.44). The drop can either detach from the substrate (dashed line) or
reach a stable regime with small oscillations and larger translation
speed (solid line).

FIG. 6. Sequence of images (time elapsed between successive
images: 4 ms, captured at 250 fps) of a drop of volume 15 μl (Bo =
0.5) excited with an acoustic power corresponding to Weac = 0.38.
The drop reaches a stable regime with large deformation but almost
no oscillation and translation.

column since they reduce its free surface energy. Nevertheless,
an analysis based solely on surface tension would predict the
formation of the largest droplets (since they minimize the
surface energy) while this is not observed in practice. Later
on, Rayleigh demonstrated that surface tension has to work
against inertia to induce jet breakup. With a stability analysis,
he proved that the most unstable perturbations corresponds
to wavelength λR ≈ 9Rj and that the characteristic time

associated with this instability is TR = 2.91
√

ρlR
3
j

σ
with Rj the

liquid jet radius, σ the surface tension, and ρl the liquid density.
In the present experiments, we measured the critical aspect
ratio hc/Rc of the liquid column during the last oscillation
before breakup occurs (hc and Rc are, respectively, the critical
height and radius of the liquid column before breakup occurs).

The critical height (hc) and radius (Rc) were measured
during the cycle preceding the detachment when the droplet
shape is the closest to a cylinder (minimal variation of the
drop radius along the stretching axis). Rc is the average value
of the cylinder radius along the stretching axis and hc the drop
height. Since the shape is not perfectly cylindrical, the error
bars represent the minimum and maximum values of Rc along
the stretching axis. Independently of the initial drop volume,
we found that droplet detachment occurs when hc/Rc ≈ 4.5
(i.e., λR/2) (see Fig. 8). The same tendency was observed
in Ref. [10] for focused SAWs. An interesting point is that
the development of Rayleigh-Plateau instability requires not

FIG. 7. Sequence of images (time elapsed between successive
images: 2 ms, captured at 500 fps) showing the detachment of a drop
of 10 μl excited with an acoustic power corresponding to Weac =
0.41. The parameters hc and Rc are, respectively, the critical height
and radius of the liquid column before breakup occurs.
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FIG. 8. Critical aspect ratio hc/Rc leading to the drop detachment
from the surface for different initial volumes. Square symbols corre-
spond to the peculiar regime shown in movie 4 in the Supplemental
Material [51].

only a sufficient drop elongation but also a long enough
time for the instability to develop. But since drop oscillations
are inertiocapillarity oscillations, their period also scale as√

ρlR
3
j

σ
, which means that the two phenomena (instability and

drop oscillations) have comparable characteristic times in the
invicid regime.

As we can see in Fig. 8, two detachments deviate from the
value predicted by the theory. Those points correspond to the
peculiar regime presented in Fig. 6 but for a slightly higher
Weac. In this case, droplets experience stable oscillation during
a long time and finally detach in a quasistatic way (see movie
4 in the Supplemental Material).

B. Droplet oscillatory motion

Now we can compare the dynamics of sessile and pendant
drops away from these specific regimes. In this case, droplets
remain attached to the substrate and undergo both oscillations
and a translational motion. In this subsection we will focus on
the effect of gravity on droplet quadrupolar oscillations. In the
next subsection we will investigate the droplet translational
motion.

A direct comparison of the quadrupolar oscillations for
sessile and pendant drops at the same driving parameters
shows that fosc is always higher in the first case than in the
second one (see Fig. 9), when the drop static deformation
induced by gravity and/or the acoustic wave is significant. This
ratio remains close to one only for the smallest Bond number
(Bo = 0.13) where the static deformation induced by gravity
is very small and for the smallest acoustic power Weac < 0.3.
It is interesting to note that even at small initial Bond number
gravity can dramatically affect the oscillatory dynamics of
the drop (factor up to 2 on fosc) when it experiences large
deformations (at large Weac).

FIG. 9. Ratio between sessile and pendant drops oscillation
frequencies fsessile/fpendant as a function of Weac for different Bond
numbers Bo (corresponding to different droplet sizes). The error bars
correspond to the variation of this ratio for the four experiments
performed (two for sessile drops, two for pendant drops). When no
error bars appear, the data point corresponds to the ratio between two
measurements for sessile and pendant drops.

1. Theoretical analysis

To understand this behavior, we will consider that droplet
vibrations can be described by an oscillator equation. This
has been demonstrated for the eigen modes of levitating
droplets [60–62] and sessile droplets with pinned contact lines
[63,64]. The extension of such equations to sessile droplet
with moving contact lines would require to properly include
the dissipation in the vicinity of the triple line [65]. For small
oscillations of the drop, the associated oscillator equation is
linear and thus gravity does not affect its eigenfrequency but
only its equilibrium position. Indeed, if we consider a harmonic
oscillator submitted to the effect of gravity: mẍ = −kx + mg

(with k the spring stiffness, m the mass of the system and g the
standard gravity) and introduce the natural angular frequency

of the system ωo =
√

k
m

, a simple change of variables X =
x − xs with xs = g/ω2

o the static equilibrium position gives:

Ẍ + ω2
oX = 0,

showing that the natural frequency ωo is not affected by the
external constant force field mg. Nevertheless, it has been
proved [61,62,65] that droplets are nonlinear oscillators with
quadratic nonlinearities when they undergo finite amplitude
oscillations. These nonlinearities are due to the convective
nonlinearity of Navier-Stokes equations but also to the nonlin-
earities associated with the interface deformation.

For the sake of simplicity and to qualitatively illustrate
the effect, we will first consider an oscillator with a simple
quadratic nonlinearity αx2 submitted to a constant force field
mg: ẍ + ω2

o(1 + αx)x = g, with α the nonlinearity coefficient.
If we introduce as previously the static equilibrium position
xs , solution of the equation xs + αx2

s = g/ω2
o, and make the
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substitution, X = x − xs , we get

Ẍ + ω2
o(1 + 2αxs + αX)X = 0. (1)

In this case, we clearly see that both the static external force
field mg (leading to a shift of the equilibrium position xs)
and dynamical effects affect the eigenfrequency of the system.
We will analyze these two effects separately. If we consider
tiny oscillations of the system X � xs , around xs , the eigen
frequency of the system ωs becomes ω2

s = ω2
o(1 + 2αxs),

which is to say for moderate droplet deformation αxs � 1:

ωs = ωo(1 + αxs).

From a physical point of view, the effect of the external force
field is clear: since the string is nonlinear and depends on
the oscillator stretching, the gravity field simply modifies the
equilibrium position of the system and thus its eigenfrequency.

To understand the role of dynamical effects, we can
consider the situation when xs � X. In this case, Eq. (1)
becomes simply the one of a nonlinear oscillator with quadratic
nonlinearities:

Ẍ + ω2
o(1 + αX)X = 0.

This problem is treated in Landau textbook [66]. Poincaré
expansion of X: X = εX1 + ε2X2 + ε3X3, with X1 =
A cos(ωd ) and ωd = ωo + εω1 + ε2ω2, gives

X2 = −αA2

2
+ αA2

6
cos(2ωdt).

We obtain the classical result that a quadratic nonlinearities
leads to a static deformation xd = −αA2/2 and oscillations
at frequency 2ωo. With this asymptotic expansion, we can
also compute the eigen frequency shift induced by nonlinear
effects: ωd = ωo(1 + 5/6 αxd ).

Now, if we combine the effects of the stationary
force field and dynamical effects we simply obtain: ωnl =
ωo[1 + α(xs + 5/6xd )], where ωnl is the eigen frequency of
the nonlinear oscillator. It is interesting to note that both
effects depend on the average stretching of the spring-mass
system. Nevertheless, while the frequency shift induced by
a steady external force field is independent of the amplitude
of oscillation of the system, the frequency shift induced by
dynamical effects is proportional to A2 (since xd ∝ A2).

The same method applies to the nonlinear equation describ-
ing drop quadrupolar oscillations [62]:

ẍ + 2λẋ + ω2
ox + αω2

ox
2 + βẋ2 + γ xẍ = 0. (2)

In this case, proper analysis (see the Appendix) shows that

ωnl = ωo[1 + (α − γ /2)xs + Kxd ], (3)

where K is a complex function of the nonlinear coefficients
α, β, and γ , and xd ∝ A2. Of course, this analysis holds
for weakly nonlinear systems. For larger nonlinearities, the
dependence of the eigen frequency over the average drop
stretching might be more complex than a simple linear shift.

2. Experimental results

The dependence of the eigenfrequency fosc on its aver-
age stretching hm = 1/T

∫ T

0 h(t)dt has been measured for
different acoustical power and droplet sizes (see Fig. 10).

FIG. 10. Eigen frequency fosc divided by the Rayleigh-Lamb
frequency fo as a function of the drop average height hm divided
by the drop static radius Ro = (3V/2π )1/3 in the absence of gravity
effects for different drop volumes and acoustical powers.

When fosc divided by fo = 1/2π
√

8σ/ρlR3
o (predicted by

Rayleigh-Lamb theory) is plotted as a function of hm divided
by Ro = (3V/2π )1/3 (the drop radius in absence of gravity
effects), all data collapse into a single curve for both sessile
and pendant drops as expected from previous analysis [67].
Nevertheless, the power law differs in these two cases. Data
points are well fitted by a linear law for pendant drops
(fosc/fo ≈ 2.04 − 0.9hm/Ro) and by a power law fosc/fo =
1.25(hm/Ro)−3/2 for sessile ones.

To determine which effects are responsible for the drop
stretching (external force field or dynamical effects), we
plotted the dimensionless average droplet stretching hm/Ro

as a function of the droplet amplitude of oscillation �h/Ro

(see Fig. 11). For pendant drops no correlation between these
two parameters is observed (except for the smallest drops
of 2 μl), while for sessile droplets, a power law hm/Ro ≈
1.25 + 0.21(�h/Ro)2 is obtained as expected from previous
analysis when dynamical effects are dominant. Thus, these
experiments show that the average drop stretching is mainly
caused by stationary external force fields in the case of pendant
drop, whereas dynamical effects induced by large amplitude
oscillations are dominant for sessile drops. Indeed, in the
first case, gravity and the radiation pressure induced by the
acoustic field act in the same direction and lead to large hm.
For sessile drops, however, they act in opposite directions, and
the average deformation induced by the drop oscillations and
nonlinearities becomes dominant. Of course, for the smallest
Bo (tiniest drops) the same evolution is observed for sessile and
pendant drops since in this case gravity forces are negligible
compared to capillary effects.

With these experimental results we can now explain the
trends observed on Fig. 9. A higher frequency for sessile
drops at constant Weac is simply the result of smaller averaged
deformations compared to those of pendant drops, which lead
to a smaller frequency shift induced by nonlinear effects.
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FIG. 11. Drop average height hm as a function of the drop
amplitude of oscillation �h both divided by Ro = (3V/2π )1/3, the
drop static radius in absence of gravity. Only data for sessile drops
show clear correlation between both quantities.

In conclusion, gravity acts indirectly on the drop oscillation
frequency through the nonlinearities of the drop vibrations.
The frequency shift can be significant (factor up to 2.5) even at
moderate Bond numbers. Moreover, inverting the gravity field
does not only affect the value of the eigen frequency, but also
its dependance over the amplitude of the drop oscillations.

Finally, an interesting result is that it is possible to collapse
all data obtained for both pendant and sessile droplets, different
acoustical powers and droplet sizes by simply replacing the
radius by the average height hm in Rayleigh-Lamb formula
(see Fig. 12). It simply means that the characteristic length for

FIG. 12. Drop oscillation frequency as a function of the drop
average height hm for sessile (red) and pendant (blue) drop of different
volumes, and different driving acoustical power. All data collapse into
a single trend close to the power law predicted by the Rayleigh-Lamb
theory.

FIG. 13. Sessile (red or gray) and pendant (blue or black) drops
translation speed as a function of the dimensionless amplitude
�h/Ro. The droplet velocity is measured from the side views of
the drop motion by monitoring the position of the contact line and
applying a low pass filter to suppress the effect of the drop oscillations.

the computation of stretched droplets eigen frequency is no
longer the drop radius but instead their average height.

C. Droplet translational motion and correlation
with the oscillations

When a droplet is excited by traveling surface acoustic
waves, it moves in the same direction as the wave. This
translation is due to the asymmetry of the acoustic field
radiated in the drop along Rayleigh angle (given by Snell-
Descartes law), which induces asymmetric deformation of the
drop and thus different contact angles at the front and rear
parts of the drop contact line.

In a recent paper, we have shown that there is a strong
correlation [48] between droplet translational and oscillatory
motion of sessile droplet. This correlation is represented on
Fig. 13 for sessile and pendant drops. The good collapse of
the data for sessile droplet and the smallest pendant drops
(2 μl and 5 μl) indicates that in these cases, the amplitude
�h is the main quantity ruling its translational velocity.
Whereas at higher volume (10 μl and 15 μl) pendant drop
velocities V deviate from this correlation. It is also interesting
to note that the translational velocity increases rapidly for drop
oscillation �h/Ro < 0.3 and then a saturation occurs for larger
oscillations.

To understand this trend, we investigated the motion of the
contact line during an oscillation cycle for both pendant and
sessile drops. Indeed, V can be seen as the product of fosc

times the net displacement per cycle D.
Figure 14 compares the time-evolution shapes for sessile

and pendant drops during a period at the same acoustic
power, for the same drop size and for the same oscillation
amplitude (see also movie 5 in the Supplemental Material
[51]). For sessile drops, the contact line at the rear and
that at the front move alternatively forward during the drop
stretching and flattening (with much smaller displacement of
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FIG. 14. Sessile (top) and pendant (bottom) drop shape evolution
during an oscillation cycle. Left: initial and final shape. Center: shape
evolution during the drop stretching phase. Right: shape evolution
during the flattening phase.

the opposite contact line). However, for pendant drops, forward
displacement of the rear contact line essentially occurs during
the drop elongation while the front contact line first moves
backward and then forward. This picture is representative of
most of the cycles observed for different acoustical powers
and droplet sizes.

Then, we analyzed the relation between the net motion of
the front contact line during the drop extension and flattening
as a function of �h/Ro (see Fig. 15). The contact line
displacement per period is essentially a linear function of the
amplitude of oscillation during both the stretching (backward
movement of the contact line) and the flattening (forward
movement of the contact line). Sessile and pendant drops
front contact lines displacement have the same dependency
on the amplitude of oscillation during the stretching phase
but as seen on Fig. 15, the backward motion is smaller at
same amplitude of oscillation for sessile drops. Since the
frequency of oscillation is also smaller for pendant drops at the
same amplitude of oscillation, it explains why pendant droplet
velocity is always smaller as observed on Fig. 13.

IV. SEMIEMPIRICAL LAW AND ORIGIN OF THE
SATURATION FOR SESSILE DROPS

The translational velocity for sessile drops under SAW
excitation is strongly correlated to the amplitude of oscillation
(see Fig. 13 and Ref. [48]). Nonetheless, no clear explanation
of the relation between these quantities has been drawn,
especially for the saturation at high oscillation amplitude. In
the previous section we decompose the drop velocity as the
product of the net displacement per cycle D times the drop
oscillation frequency fosc: V = D × fosc. On the one hand,
we have shown that D is essentially a linear function of the
drop amplitude of oscillation (Fig. 15). On the other hand,
drop frequency in the sessile case is governed by dynamical
nonlinear effects and is related to the mean deformation
(Fig. 10) induced by amplitude of oscillation (Fig. 11). Those
results can be summarized by the following relations:

(1) D = K1 × �h/Ro + K2,
(2) fosc/fo = K3(hm/Ro)−3/2,
(3) hm/Ro = K4 + K5(�h/Ro)2,

FIG. 15. Forward (up) and backward (down) displacement of the
front part of the contact line of sessile (red or gray) and pendant
(blue or dark) drops as a function of the dimensionless amplitude
of oscillation �h/Ro. The backward and forward displacements per
cycle are calculated by monitoring the extreme positions of the contact
line over one oscillation cycle, subtracting them to obtain the forward
and backward displacements and averaging them over all the cycles
in the stable regime.

with the coefficients K1 = 0.50, K2 = 0.02, K3 = 1.25, K4 =
1.25, and K5 = 0.21 determined experimentally. If we com-
bine these relations, we obtain

V

Vo

= C1

[
�h

Ro

+ C2

]
×

[
1 + C3

(
�h

Ro

)2]−3/2

, (4)

with Vo = foRo the characteristic velocity associated
with droplet oscillation, C1 = K1K3K

−3/2
4 ≈ 0.45, C2 =

K2/K1 ≈ −0.04, and C3 = K5/K4 ≈ 0.17.
The predictions obtained with Eq. (4) are compared to

experimental data on Fig. 16. The trends are globally recovered
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FIG. 16. Dimensionless sessile droplet translation speed V/Vo

as a function of the drop amplitude of oscillation �h/Ro, with Vo =
foRo the characteristic velocity associated with droplet oscillations
and Ro ≈ (3V/2π )1/3 the drop static radius in absence of gravity.
Dashed line: Eq. (4).

even if a weak discrepancy is observed for intermediate
amplitude oscillations. These differences come from the fact
that the net motion per period is not perfectly a linear
function of �h. Nevertheless, this comparison allows us
to understand that the saturation of the droplet velocity is
due to the decrease of f induced by dynamical nonlinear
effects.

V. CONCLUSION

In this paper, we have analyzed the effect of gravity on
the dynamics of drops excited by SAWs but also clarified
the link between droplets oscillations and their translational
motion. Further investigations using different contact angles
and hysteresis would be of interest to get a deeper insight
into the relation between drop oscillation and contact line
mobility. Moreover, as underlined in a recent review [46],
another great challenge is to unveil the origin of the drop
oscillations and establish the missing link between the high-
frequency (∼20 MHz) acoustic excitation and the low-
frequency (∼50 Hz) droplet oscillatory response.
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APPENDIX

Oscillating droplets can be modeled by the following
nonlinear equation [62]:

ẍ + 2λẋ + ω2
ox + αω2

ox
2 + βẋ2 + γ xẍ = 0. (A1)

To determine the frequency shift induced by a stationary
force field, we follow the same approach as presented in
Sec. III B. We introduce the equilibrium position xs + αxs

2 =
g/ωo

2 and then make the substitution X − xs . Equation (A1)
thus becomes

Ẍ + 2λ

1 + γ (xs + X)
Ẋ + 1 + α(2xs + X)

1 + γ (xs + X)
ω2

oX

+ β

1 + γ (xs + X)
Ẋ2 = 0.

We then assume that X � xs ; i.e., the drop oscillation is
small compared to the static deformation. This hypothesis
is supported by experimental observations on pendant drops
(Fig. 11). Then, by neglecting the influence of the viscosity,
we get

Ẍ + 1 + 2αxs

1 + γ xs

ω2
oX = 0.

Finally, for small static deformations (γ xs,αxs � 1), the
frequency shift induced by a stationary force field is

ωs = ωo

[
1 +

(
α − γ

2

)
xs

]
.

Drop frequency shift induced by large oscillations has
been theoretically investigated by Tsamopoulos and Brown
[61]: they showed that drop frequency evolves as ωd =
ωo(1 + K ′A2) with A the amplitude of oscillation, in good
agreement with experiments [60].

Now following the Landau method used in Sec. III B, the
differential equation ruling the time evolution of X2 is

Ẍ2 + ω2
oX2 = 1

2

(
α + (β − γ )ω2

o

)
A2

− 1
2

(
α − (β − γ )ω2

o

)
A2 cos(2ωdt).

By solving this equation, we obtain the following expres-
sion for X2:

X2 =
[
(γ − β)ω2

o − α
]

2ω2
o

A2 −
[
α − (γ + β)ω2

o

]
2ω2

o

A2 cos(2ωdt).

We can then express the mean deformation induced by the
nonlinearities of the equation (A1):

xd = 〈X〉 = 〈X2〉 =
(
(γ − β)ω2

o − α
)

2ω2
o

A2.

The frequency shift can now be expressed in terms of the
average deformation:

ωd = ωo

{
1 + K ′ 2ω2

o[
(γ − β)ω2

o − α
]xd

}
= ωo(1 + Kxd ).

Finally, since we perform weakly nonlinear analysis
(through asymptotic expansion), the two effects can be added
to obtain the drop nonlinear frequency:

ωnl = ωo[1 + (α − γ /2)xs + Kxd ].
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Hänggi, and A. Wixforth, Phys. Rev. Lett. 100, 034502 (2008)..
[13] J. Kondoh, N. Shimizu, Y. Matsui, M. Sugimoto, and S.

Shiokawa, IEEE Ultrason. Symp. 2, 1023 (2005).
[14] S. Ito, Y. Sugimoto, Y. Matsui, and J. Kondoh, Jpn. J. Appl.

Phys. 46, 4718 (2007).
[15] J. Kondoh, N. Shimizu, Y. Matsui, M. Sugimoto, and S.

Shiokawa, Sensors Actuators A 149, 292 (2009).
[16] J. Reboud, Y. Bourquin, G. Wilson, G. Pall, M. Jiwaji, A. Pitt,

A. Graham, A. Waters, and J. Cooper, Proc. Natl. Acad. Sci.
U.S.A. 109, 15162 (2012).

[17] T. Roux-Marchand, D. Beyssen, F. Sarry, and O. Elmazria, IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 62, 729 (2015).

[18] R. J. Shilton, V. Mattoli, M. Travagliati, M. Agostini, A. Desii,
F. Beltram, and M. Cecchini, Adv. Funct. Mater. 25, 5895
(2015).

[19] S. Girardo, M. Cecchini, F. Bletram, R. Cingolani, and D.
Pisignano, Lab Chip 8, 1557 (2008).

[20] M. Cecchini, S. Giardo, D. Psignano, R. Cingolani, and F.
Beltram, Appl. Phys. Lett. 92, 104103 (2008).

[21] W.-K. Tseng, J.-L. Lin, W.-C. Sung, S.-H. Chen, and G.-B. Lee,
J. Micromech. Microeng. 16, 539 (2006).

[22] M. Tan, L. Yeo, and J. Friend, Europhys. Lett. 87, 47003 (2009).
[23] M. B. Dentry, J. Friend, and L. Yeo, Lab Chip 14, 750 (2014).
[24] R. Shilton, M. Tan, L. Yeo, and J. Friend, J. Appl. Phys. 104,

014910 (2008).
[25] J. Shi, X. Mao, D. Ahmed, A. Colletti, and T. Huang, Lab Chip

8, 221 (2008).
[26] J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, and T. Huang, Lab Chip

9, 2890 (2009).
[27] R. Raghavan, J. Friend, and L. Yeo, Microfluid. Nanofluid. 8,

73 (2010).
[28] S. Tran, P. Marmottant, and P. Thibault, Appl. Phys. Lett. 101,

114103 (2012).
[29] X. Ding, S.-C. S. Lin, B. Kiraly, H. Yue, S. Li, J. Shi, S.

Benkovic, and T. Huang, Proc. Natl. Acad. Sci. U.S.A. 109,
11105 (2012).

[30] J. Guo, J. Li, Y. Chen, L. Yeo, and J. Friend, IEEE Trans.
Microwave Theory Tech. 62, 1898 (2014).

[31] D. Collins, T. Alan, and A. Neild, Appl. Phys. Lett. 105, 033509
(2014).

[32] T. Franke, S. Braunmuller, L. Schmid, A. Wixforth, and D.
Weitz, Lab Chip 10, 789 (2010).

[33] A. Hartmann, M. Stamp, R. Kmeth, S. Buchegger, S. Bernd, B.
Saldamli, R. Bugkart, M. Schnieder, and A. Wixforth, Lab Chip
14, 542 (2014).

[34] A. Bussonnière, Y. Miron, M. Baudoin, O. Bou Matar, M.
Grandbois, P. Charette, and A. Renaudin, Lab Chip 14, 3556
(2014).

[35] N. Sivanantha, C. Ma, D. Collins, M. Sesen, J. Brenker, R.
Coppel, A. Neild, and T. Alan, Appl. Phys. Lett. 105, 103704
(2014).

[36] X. Ding, Z. Peng, S.-C. S. Lin, M. Geri, S. Li, P. Li, Y. Chen,
M. Dao, S. Suresh, and T. Huang, Proc. Natl. Acad. Sci. U.S.A.
111, 12992 (2014).

[37] P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.-H. Huang, C. Truica,
J. Drbick, W. El-Deiry, M. Dao, S. Suresh, and T. Huang, Proc.
Natl. Acad. Sci. U.S.A. 112, 4970 (2015).

[38] F. Guo, P. Li, J. French, Z. Mao, H. Zhao, S. Li, N. Nama, J.
Fick, S. Benkovic, and T. Huang, Proc. Natl. Acad. Sci. U.S.A.
112, 43 (2015).

[39] A. Riaud, J.-L. Thomas, E. Charron, A. Bussonnière, O. B.
Matar, and M. Baudoin, Phys. Rev. Appl. 4, 034004 (2015).

[40] A. Riaud, J.-L. Thomas, M. Baudoin, and O. B. Matar, Phys.
Rev. E 92, 063201 (2015).

[41] D. Baresch, J.-L. Thomas, and R. Marchiano, Phys. Rev. Lett.
116, 024301 (2016).

[42] A. Riaud, M. Baudoin, J.-L. Thomas, and O. B. Matar, Phys.
Rev. E 90, 013008 (2014).

[43] L. Yeo and J. Friend, Biomicrofluidics 3, 012002 (2009).
[44] J. Friend and L. Yeo, Rev. Mod. Phys. 83, 647 (2011).
[45] X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D.

Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, Lab
Chip 13, 3626 (2013).

[46] L. Yeo and J. Friend, Annu. Rev. Fluid Mech. 46, 379
(2014).

[47] D. Beyssen, L. Brizoual, O. Elmazria, and P. Alnot, Sensors
Actuators B 118, 380 (2006).

[48] M. Baudoin, P. Brunet, O. Bou Matar, and E. Herth, Appl. Phys.
Lett. 100, 154102 (2012).

[49] J. Blamey, L. Yeo, and J. Friend, Langmuir 29, 3835 (2013).
[50] J. Campbell and W. Jones, IEEE Trans. Sonics Ultrason. 17, 71

(1970).
[51] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.93.053106 for movies showing the dynam-
ics of sessile and pendant drops.

[52] W. Shi, R. Apfel, and R. Holt, Phys. Fluids 7, 2601 (1995).
[53] F. Borgnis, Rev. Mod. Phys. 25, 653 (1953).
[54] L. Rayleigh, Proc. R. Soc. London A 29, 94 (1879).
[55] H. Lamb, Hydrodynamics (Cambridge University Press,

England, 1932).
[56] M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery,

Europhys. Lett. 47, 189 (1999).
[57] F. Savart, Ann. Chim. Phys. 53, 337 (1833).
[58] J. Plateau, Mem. Ac. Roy. Sci 23, 1 (1849).
[59] L. Rayleigh, Proc. London Math. Soc. 10, 4 (1878).
[60] E. Trinh and T. G. Wang, J. Fluid Mech. 122, 315 (1982).
[61] R. Tsamopoulos and R. A. Brown, J. Fluid Mech. 127, 519

(1983).

053106-10

http://dx.doi.org/10.1007/s00216-004-2693-z
http://dx.doi.org/10.1007/s00216-004-2693-z
http://dx.doi.org/10.1007/s00216-004-2693-z
http://dx.doi.org/10.1007/s00216-004-2693-z
http://dx.doi.org/10.1016/j.snb.2005.03.100
http://dx.doi.org/10.1016/j.snb.2005.03.100
http://dx.doi.org/10.1016/j.snb.2005.03.100
http://dx.doi.org/10.1016/j.snb.2005.03.100
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1039/C4LC01453G
http://dx.doi.org/10.1039/C4LC01453G
http://dx.doi.org/10.1039/C4LC01453G
http://dx.doi.org/10.1039/C4LC01453G
http://dx.doi.org/10.1007/s10404-012-0990-y
http://dx.doi.org/10.1007/s10404-012-0990-y
http://dx.doi.org/10.1007/s10404-012-0990-y
http://dx.doi.org/10.1007/s10404-012-0990-y
http://dx.doi.org/10.1109/ULTSYM.1989.67063
http://dx.doi.org/10.1109/ULTSYM.1989.67063
http://dx.doi.org/10.1109/ULTSYM.1989.67063
http://dx.doi.org/10.1109/ULTSYM.1989.67063
http://dx.doi.org/10.7567/JJAPS.29S1.137
http://dx.doi.org/10.7567/JJAPS.29S1.137
http://dx.doi.org/10.7567/JJAPS.29S1.137
http://dx.doi.org/10.7567/JJAPS.29S1.137
http://dx.doi.org/10.1143/JJAP.43.2987
http://dx.doi.org/10.1143/JJAP.43.2987
http://dx.doi.org/10.1143/JJAP.43.2987
http://dx.doi.org/10.1143/JJAP.43.2987
http://dx.doi.org/10.1063/1.2953537
http://dx.doi.org/10.1063/1.2953537
http://dx.doi.org/10.1063/1.2953537
http://dx.doi.org/10.1063/1.2953537
http://dx.doi.org/10.1103/PhysRevLett.103.024501
http://dx.doi.org/10.1103/PhysRevLett.103.024501
http://dx.doi.org/10.1103/PhysRevLett.103.024501
http://dx.doi.org/10.1103/PhysRevLett.103.024501
http://dx.doi.org/10.1103/PhysRevE.86.056312
http://dx.doi.org/10.1103/PhysRevE.86.056312
http://dx.doi.org/10.1103/PhysRevE.86.056312
http://dx.doi.org/10.1103/PhysRevE.86.056312
http://dx.doi.org/10.1103/PhysRevLett.100.034502
http://dx.doi.org/10.1103/PhysRevLett.100.034502
http://dx.doi.org/10.1103/PhysRevLett.100.034502
http://dx.doi.org/10.1103/PhysRevLett.100.034502
http://dx.doi.org/10.1143/JJAP.46.4718
http://dx.doi.org/10.1143/JJAP.46.4718
http://dx.doi.org/10.1143/JJAP.46.4718
http://dx.doi.org/10.1143/JJAP.46.4718
http://dx.doi.org/10.1016/j.sna.2008.11.007
http://dx.doi.org/10.1016/j.sna.2008.11.007
http://dx.doi.org/10.1016/j.sna.2008.11.007
http://dx.doi.org/10.1016/j.sna.2008.11.007
http://dx.doi.org/10.1073/pnas.1206055109
http://dx.doi.org/10.1073/pnas.1206055109
http://dx.doi.org/10.1073/pnas.1206055109
http://dx.doi.org/10.1073/pnas.1206055109
http://dx.doi.org/10.1109/TUFFC.2014.006710
http://dx.doi.org/10.1109/TUFFC.2014.006710
http://dx.doi.org/10.1109/TUFFC.2014.006710
http://dx.doi.org/10.1109/TUFFC.2014.006710
http://dx.doi.org/10.1002/adfm.201501130
http://dx.doi.org/10.1002/adfm.201501130
http://dx.doi.org/10.1002/adfm.201501130
http://dx.doi.org/10.1002/adfm.201501130
http://dx.doi.org/10.1039/b803967d
http://dx.doi.org/10.1039/b803967d
http://dx.doi.org/10.1039/b803967d
http://dx.doi.org/10.1039/b803967d
http://dx.doi.org/10.1063/1.2889951
http://dx.doi.org/10.1063/1.2889951
http://dx.doi.org/10.1063/1.2889951
http://dx.doi.org/10.1063/1.2889951
http://dx.doi.org/10.1088/0960-1317/16/3/009
http://dx.doi.org/10.1088/0960-1317/16/3/009
http://dx.doi.org/10.1088/0960-1317/16/3/009
http://dx.doi.org/10.1088/0960-1317/16/3/009
http://dx.doi.org/10.1209/0295-5075/87/47003
http://dx.doi.org/10.1209/0295-5075/87/47003
http://dx.doi.org/10.1209/0295-5075/87/47003
http://dx.doi.org/10.1209/0295-5075/87/47003
http://dx.doi.org/10.1039/C3LC50933H
http://dx.doi.org/10.1039/C3LC50933H
http://dx.doi.org/10.1039/C3LC50933H
http://dx.doi.org/10.1039/C3LC50933H
http://dx.doi.org/10.1063/1.2951467
http://dx.doi.org/10.1063/1.2951467
http://dx.doi.org/10.1063/1.2951467
http://dx.doi.org/10.1063/1.2951467
http://dx.doi.org/10.1039/B716321E
http://dx.doi.org/10.1039/B716321E
http://dx.doi.org/10.1039/B716321E
http://dx.doi.org/10.1039/B716321E
http://dx.doi.org/10.1039/b910595f
http://dx.doi.org/10.1039/b910595f
http://dx.doi.org/10.1039/b910595f
http://dx.doi.org/10.1039/b910595f
http://dx.doi.org/10.1007/s10404-009-0452-3
http://dx.doi.org/10.1007/s10404-009-0452-3
http://dx.doi.org/10.1007/s10404-009-0452-3
http://dx.doi.org/10.1007/s10404-009-0452-3
http://dx.doi.org/10.1063/1.4751348
http://dx.doi.org/10.1063/1.4751348
http://dx.doi.org/10.1063/1.4751348
http://dx.doi.org/10.1063/1.4751348
http://dx.doi.org/10.1073/pnas.1209288109
http://dx.doi.org/10.1073/pnas.1209288109
http://dx.doi.org/10.1073/pnas.1209288109
http://dx.doi.org/10.1073/pnas.1209288109
http://dx.doi.org/10.1109/TMTT.2014.2342667
http://dx.doi.org/10.1109/TMTT.2014.2342667
http://dx.doi.org/10.1109/TMTT.2014.2342667
http://dx.doi.org/10.1109/TMTT.2014.2342667
http://dx.doi.org/10.1063/1.4891424
http://dx.doi.org/10.1063/1.4891424
http://dx.doi.org/10.1063/1.4891424
http://dx.doi.org/10.1063/1.4891424
http://dx.doi.org/10.1039/b915522h
http://dx.doi.org/10.1039/b915522h
http://dx.doi.org/10.1039/b915522h
http://dx.doi.org/10.1039/b915522h
http://dx.doi.org/10.1039/C3LC50916H
http://dx.doi.org/10.1039/C3LC50916H
http://dx.doi.org/10.1039/C3LC50916H
http://dx.doi.org/10.1039/C3LC50916H
http://dx.doi.org/10.1039/C4LC00625A
http://dx.doi.org/10.1039/C4LC00625A
http://dx.doi.org/10.1039/C4LC00625A
http://dx.doi.org/10.1039/C4LC00625A
http://dx.doi.org/10.1063/1.4895472
http://dx.doi.org/10.1063/1.4895472
http://dx.doi.org/10.1063/1.4895472
http://dx.doi.org/10.1063/1.4895472
http://dx.doi.org/10.1073/pnas.1413325111
http://dx.doi.org/10.1073/pnas.1413325111
http://dx.doi.org/10.1073/pnas.1413325111
http://dx.doi.org/10.1073/pnas.1413325111
http://dx.doi.org/10.1073/pnas.1504484112
http://dx.doi.org/10.1073/pnas.1504484112
http://dx.doi.org/10.1073/pnas.1504484112
http://dx.doi.org/10.1073/pnas.1504484112
http://dx.doi.org/10.1073/pnas.1422068112
http://dx.doi.org/10.1073/pnas.1422068112
http://dx.doi.org/10.1073/pnas.1422068112
http://dx.doi.org/10.1073/pnas.1422068112
http://dx.doi.org/10.1103/PhysRevApplied.4.034004
http://dx.doi.org/10.1103/PhysRevApplied.4.034004
http://dx.doi.org/10.1103/PhysRevApplied.4.034004
http://dx.doi.org/10.1103/PhysRevApplied.4.034004
http://dx.doi.org/10.1103/PhysRevE.92.063201
http://dx.doi.org/10.1103/PhysRevE.92.063201
http://dx.doi.org/10.1103/PhysRevE.92.063201
http://dx.doi.org/10.1103/PhysRevE.92.063201
http://dx.doi.org/10.1103/PhysRevLett.116.024301
http://dx.doi.org/10.1103/PhysRevLett.116.024301
http://dx.doi.org/10.1103/PhysRevLett.116.024301
http://dx.doi.org/10.1103/PhysRevLett.116.024301
http://dx.doi.org/10.1103/PhysRevE.90.013008
http://dx.doi.org/10.1103/PhysRevE.90.013008
http://dx.doi.org/10.1103/PhysRevE.90.013008
http://dx.doi.org/10.1103/PhysRevE.90.013008
http://dx.doi.org/10.1063/1.3056040
http://dx.doi.org/10.1063/1.3056040
http://dx.doi.org/10.1063/1.3056040
http://dx.doi.org/10.1063/1.3056040
http://dx.doi.org/10.1103/RevModPhys.83.647
http://dx.doi.org/10.1103/RevModPhys.83.647
http://dx.doi.org/10.1103/RevModPhys.83.647
http://dx.doi.org/10.1103/RevModPhys.83.647
http://dx.doi.org/10.1039/c3lc50361e
http://dx.doi.org/10.1039/c3lc50361e
http://dx.doi.org/10.1039/c3lc50361e
http://dx.doi.org/10.1039/c3lc50361e
http://dx.doi.org/10.1146/annurev-fluid-010313-141418
http://dx.doi.org/10.1146/annurev-fluid-010313-141418
http://dx.doi.org/10.1146/annurev-fluid-010313-141418
http://dx.doi.org/10.1146/annurev-fluid-010313-141418
http://dx.doi.org/10.1016/j.snb.2006.04.084
http://dx.doi.org/10.1016/j.snb.2006.04.084
http://dx.doi.org/10.1016/j.snb.2006.04.084
http://dx.doi.org/10.1016/j.snb.2006.04.084
http://dx.doi.org/10.1063/1.3701725
http://dx.doi.org/10.1063/1.3701725
http://dx.doi.org/10.1063/1.3701725
http://dx.doi.org/10.1063/1.3701725
http://dx.doi.org/10.1021/la304608a
http://dx.doi.org/10.1021/la304608a
http://dx.doi.org/10.1021/la304608a
http://dx.doi.org/10.1021/la304608a
http://dx.doi.org/10.1109/TSU.1970.7404095
http://dx.doi.org/10.1109/TSU.1970.7404095
http://dx.doi.org/10.1109/TSU.1970.7404095
http://dx.doi.org/10.1109/TSU.1970.7404095
http://link.aps.org/supplemental/10.1103/PhysRevE.93.053106
http://dx.doi.org/10.1063/1.868708
http://dx.doi.org/10.1063/1.868708
http://dx.doi.org/10.1063/1.868708
http://dx.doi.org/10.1063/1.868708
http://dx.doi.org/10.1103/RevModPhys.25.653
http://dx.doi.org/10.1103/RevModPhys.25.653
http://dx.doi.org/10.1103/RevModPhys.25.653
http://dx.doi.org/10.1103/RevModPhys.25.653
http://dx.doi.org/10.1209/epl/i1999-00371-6
http://dx.doi.org/10.1209/epl/i1999-00371-6
http://dx.doi.org/10.1209/epl/i1999-00371-6
http://dx.doi.org/10.1209/epl/i1999-00371-6
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1017/S0022112082002237
http://dx.doi.org/10.1017/S0022112082002237
http://dx.doi.org/10.1017/S0022112082002237
http://dx.doi.org/10.1017/S0022112082002237
http://dx.doi.org/10.1017/S0022112083002864
http://dx.doi.org/10.1017/S0022112083002864
http://dx.doi.org/10.1017/S0022112083002864
http://dx.doi.org/10.1017/S0022112083002864


DYNAMICS OF SESSILE AND PENDANT DROPS EXCITED . . . PHYSICAL REVIEW E 93, 053106 (2016)

[62] A. Bussonnière, Surface acoustic waves actuators for mi-
crofluidic: from underlying physics to biological applica-
tions, Ph.D. thesis, Université Lille 1, Villeneuve d’Ascq,
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