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When you reach with your straw for the final drops of a milkshake,
the liquid forms a train of plugs that flow slowly initially because of
the highviscosity. They then suddenly rupture and are replacedwith
a rapid airflow with the characteristic slurping sound. Trains of
liquid plugs also areobserved in complexgeometries, suchas porous
media duringpetroleumextraction, inmicrofluidic two-phaseflows,
or in flows in the pulmonary airway tree under pathological con-
ditions. The dynamics of rupture events in these geometries play the
dominant role in the spatial distribution of the flow and in de-
termining how much of the medium remains occluded. Here we
show that the flow of a train of plugs in a straight channel is always
unstable to breaking through a cascade of ruptures. Collective
effects considerably modify the rupture dynamics of plug trains:
Interactions among nearest neighbors take place through the
wetting films and slow down the cascade, whereas global inter-
actions, through the total resistance to flow of the train, accelerate
the dynamics after each plug rupture. In a branching tree of
microchannels, similar cascades occur along paths that connect the
input to a particular output. This divides the initial tree into several
independent subnetworks,which then evolve independently of one
another. The spatiotemporal distribution of the cascades is random,
owing to strong sensitivity to the plug divisions at the bifurcations.
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The motion of liquid plugs through a connected network of
channels may involve many degrees of freedom evolving via

a similarly large number of interactions: each immiscible interface
introduces a degree of freedom into the problem owing to its
ability to deform and to move, whereas each connecting branch
between different areas introduces an interaction path that allows
the flow in one region to influence the behavior in other areas of
the network. The resulting flow pattern determines, among other
things, how water or oil is extracted from porous media (1–3), the
imbibition of paper (4, 5), and the stability of flow in a microfluidic
device (6, 7).
Liquid–gas two-phase flows also occur in the pulmonary airway

tree, which is constantly coated with a thin liquid film. When the
thickness of this film increases beyond some limit, plugs of liquid
may form (8, 9) and therefore occlude the flow of air to the distal
branches. Evidence of such behavior has been observed in pa-
thologies ranging from asthma (10, 11) to cystic fibrosis (12).
Furthermore, liquid plugsmay be used asmeans to deliver medical
treatment into the lung, e.g., in surfactant replacement therapy
(13), and these plugs were observed to go through complex divi-
sions, breaking and reforming before reaching their intended
target (14).
The structure of the lung as a branching binary tree has moti-

vated many studies on the motion of gas–liquid flows into bi-
furcating channels (15–20), with numerical work also taking into
account the elasticity of the pulmonary walls, (e.g refs. 21 and 22).
However, nearly all the model experiments and simulations have
considered the simplest situations, either studying the motion of a
single liquid plug or gas finger or concentrating on the flow
through a single bifurcation, or both. This reduces the number of

independent degrees of freedom and, by the same token, the range
of behaviors those models can explore.
These studies therefore cannot account for complex interactions

that involve many levels in the tree, which are observed in the real
lung. Indeed, experiments on animal lungs have shown that mul-
tilevel interactions are primordial during the reinflation of a col-
lapsed lung. Alencar et al. (23, 24) reported that reopening takes
place through an avalanche of events in which distinct regions are
reopened in nearly singular bursts. However, ex vivo observations
of the spatial behavior during reinflation are prohibitively complex,
therefore limiting the comparison between the experiments and the
theoretical models to measurements at the root of the tree (25).
Here we study the flow and rupture of liquid plugs that initially

occludemicrofluidic channels, as they are submitted to an imposed
pressure head. Our experiments are conducted in microfluidic
systems consisting of a straight channel or a branching network of
channels, formed in a polydimethylsiloxane (PDMS) substrate
using conventional soft lithography techniques. We show that the
dynamics of a train of plugs differ from those of a single occlusion
because the plugs interact via both short- and long-range mecha-
nisms. The physics underlying plug interactions are first deduced
from the reopening of a single straight channel, by comparing
experimental measurements with the results of a one-dimensional
analytical model. Experiments in a branching tree are then per-
formed, showing the existence of cascades of ruptures that occur
along well-defined paths through purely hydrodynamic effects.

Collective Behavior of Plugs in a Straight Channel
Single-Plug Behavior. When a single plug of length L0 is pushed at
constant pressure in a channel of width w and height h, it rapidly
reaches a velocity V0 that depends on its initial resistance to flow.
In its wake, it leaves a liquid film that remains at rest on the
channel wall. This implies a shortening of the plug, which ruptures
when its length LðtÞ reaches zero. The airway then is opened in the
sense that the flow of air becomes limited only by the viscous re-
sistance of the gas. An example of such behavior is shown in Fig. 1,
which displays snapshots of the experiment, taken at constant time
intervals (see also Movie S1). The positions of the rear and front
interfaces in each frame are located and interpolated to form two
curves whose horizontal distance gives the length LðtÞ of the plug.
The velocity V ðtÞ is given by the slope of the curve for the rear
interface. In this experiment, the velocity of the plug varies from 3
cm/s when the pressure head is applied to 28 cm/s when the plug
ruptures. This acceleration generates an increase of the thickness
of the liquid film left behind the plug and a subsequent rapid de-
crease of its length, leading to rupture after 24 ms.
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The dynamics of this plug can be understood by introducing an
Ohm-like law for the pressure vs. velocity (18, 26),ΔP=RV , where
ΔP is the pressure head. The velocity V of the rear interface is a
measure of the flow rate, and R is the resistance due to the pres-
ence of the liquid in the channel. This resistance is the sum of
capillary contributions Rf and Rr of the front (“f”’) and rear (“r”)
interfaces, and a bulk viscous resistance Rv. Resistances Rf and Rr

are a result of the deformation of the two interfaces from their rest
shape in response to the large velocity gradients in the corners of
the moving liquid bridge, and they depend nonlinearly on V . At
low capillary number Ca= μV=σ, where μ is the viscosity of the
liquid and σ its surface tension, one gets Rf;r =Ff;rðh;wÞCa−1=3.
The explicit expressions of Ff and Fr are obtained, respectively,
from the Hoffman–Tanner law (27, 28) and the Bretherton law
(29) adapted to rectangular channels (30). In turn, the bulk re-
sistance of a long-enough plug can be estimated by modeling the
flow inside it as a Poiseuille flow in a rectangular channel:
Rv ≈ 12μL=h2 for large aspect ratiow=h (31). The relation between
pressure head and speed has been validated experimentally by
Ody et al. (18).
The model describing the plug dynamics is closed with an

equation for LðtÞ that accounts for the liquid left in the stationary
films on the sidewalls. Bretherton’s law (29) provides a way to
estimate this thickness for flow at small Ca in circular tubes. We
rely for this on the empirical law proposed byAussillous andQuéré
(32) for circular tubes, as extended to channels of rectangular
cross-section and larger Ca by de Lózar et al. (33), which we in-
troduce in the mass balance equation for the liquid phase: Let
S=wh be the area of the channel cross-section and Sr and Sf the
areas of the lumens open to air behind the plug and ahead of it,
respectively. During a time interval dt, the advancing plug absorbs
a volume ðS− SfÞVdt at its front interface, where V is the velocity.
The volume left behind is ðS− SrÞVdt and the variation of the
plug’s volume is SdL, so the balance reads Sd

dt L= ½Sr − Sf �V .
Whereas Sr is a function of V as recalled above, Sf reflects the

thickness of the film present ahead of the plug at the considered
time. In particular, Sf ≡ S when the plug is moving along a dry
channel. Details on the model, its derivation, and its numerical
simulation are given in SI Text.
The dynamics of a single plug therefore may be understood with

the model ingredients described above: When the pressure ΔP is
applied, the plug startsmoving at a velocity fixed by its initial length
and physical parameters. The length then progressively decreases
because of liquid deposition, thus lowering the viscous resistance
Rv so that the plug accelerates. The interfacial resistance scales as
V−1=3 and therefore also decreases, contributing further to the
velocity increase. Finally, when the length of the plug approaches
zero, it ruptures. A similar behavior has been observed by Fujioka

et al. (34) through direct numerical simulations of the flow field
inside a moving plug.

Multiple-Plug Behavior. The evolution of a set ofN = 5 plugs, forced
at constant pressure head 2 kPa, is depicted in the spatiotemporal
graph of Fig. 2A (see also Movie S2). The plugs are initially dis-
tributed as shown in the top image and start advancing when the
pressure head is applied at t= 0. Plugs are numbered from right to
left, beginning with the most advanced one. The distance dk be-
tween the rear interface of plug k and the rear interface of plug k+ 1
remains nearly constant because the air compressibility is negligible
at these pressures. As a consequence, all plugs move at the same
velocityV ðtÞ and the behavior of the plug trainmay be characterized
by a single capillary number, which is plotted in Fig. 2A, Right. We
observe that Ca stays constant up until t ’ 180 ms, then increases
up to the time when plug 1 ruptures at t ’ 400 ms, then more ir-
regularly until t ’ 630 ms (rupture of plug 2), and finally diverges
around t ’ 800 ms, when plugs 3–5 break nearly simultaneously.
Examination of this cascade leads us to identify two plug in-

teraction mechanisms: Long range effects arise from the super-
positions of resistances within the plug train, whereas short range
interactions take place between nearest neighbors via the wetting
film. Indeed, plug k gains some fluid left behind by plug k− 1 and
leaves some fluid, which is taken up by plug k+ 1. Because the film
thickness depends on the instantaneous capillary number (see SI
Text for discussion), the balance between the liquid intake and
deposition generates plug length variations when the two layers
have different thicknesses. When the train of plugs is forced at a
constant velocity—for example, by using a syringe pump—the
thickness of the liquid films between the plugs remains constant, so
the plugs (except plug 1) always lose asmuch liquid as they gain and
thus keep their initial length. When the plugs are pushed at con-
stant pressure, as in Fig. 2, their velocity changes, leading to
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Fig. 1. Spatiotemporal evolution of a single plug of initial length
L0 = 740 μm pushed at constant pressure head 2 kPa. The montage is pro-
duced by stacking snapshots of the channel taken every 4 ms on top of one
another. The liquid appears bright and the air dark. The dashed lines show
the positions of the front and rear interfaces as functions of time.
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Fig. 2. Dynamics of a set of equally spaced monodisperse plugs. The initial
length of the plugs is Lk;0 = 800 μm, and the distance separating two adja-
cent plugs is dk ’ 2 mm. The whole train is pushed at constant pressure head
2.0 kPa. (A) Image corresponding to the experiment. (Upper) Initial plug
configuration; liquid (air) appears light (dark) gray. (Lower) Spatiotemporal
diagram displaying the gray values along the center line of the channel as
a function of time. Velocities and lengths of the plugs are obtained from the
slopes of the boundaries and the distances between them, respectively. The
gray dashed line indicates the moment when the plugs reach the initial
position of their immediate predecessor. (Right) Capillary number of the
plug train as a function of time. (B) Spatiotemporal diagram obtained nu-
merically from the model for the same conditions as in A.

860 | www.pnas.org/cgi/doi/10.1073/pnas.1211706110 Baudoin et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211706110/-/DCSupplemental/pnas.201211706SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211706110/-/DCSupplemental/sm02.avi
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211706110/-/DCSupplemental/pnas.201211706SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211706110/-/DCSupplemental/pnas.201211706SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1211706110


variations in the film thickness. These variations couple back with
the resistance to flow and velocities in two ways, as discussed below.
First, the resistance Rf associated with the displacement of the

front interface decreases as the thickness of the precursor film
increases. This has been demonstrated experimentally (26) and
justified theoretically (35) for a single plug in a prewetted channel.
In our experiment, the thickness of the film left behind a plug may
display large changes, as seen in Fig. 1, which generates resistance
variations for the following plug. In a train of plugs, the capillary
number of a plug affects the next one with a delay equal to the time
required to cover the distance that separates them. So when plug k
arrives at the position initially occupied by plug k− 1, it encounters
a thicker film that decreases the resistance of its front interface
and leads to an increase in velocity. This sudden acceleration is
observed at t ’ 180 ms, as marked by the dotted horizontal line in
Fig. 2A. The second way in which neighboring plugs interact is via
the mass balance. Like the lubrication effect, this takes place with
a delay because the plugs are traveling at finite speed. Liquid
exchange tends to lengthen the cascade duration because the fluid
taken up by a plug increases its length. The two short-range effects
therefore are antagonistic.
Using an analogy with electrical circuits, the train of plugs

submitted to a constant pressure head ΔP may be viewed as a se-
ries of resistors and the total resistance as the sum of the individual
resistances. Therefore, rupture of plug k leads to long-range effects
because it corresponds to a sudden drop to zero of the corre-
sponding resistance. Consequently, the speed of the remaining
plugs suddenly increases, further hastening the deposition of the
wetting film and inducing new ruptures. This catastrophic speed-
ing-up is at the origin of the cascade observed in our experiments.
It is easier to observe when the initial distribution of plugs is ir-
regular and their size polydisperse. An example is shown in Fig. S1,
in which a train of 10 plugs is pushed at constant pressure head (see
also Movie S3). The evolution of the train is dominated mainly by
short-range interactions until t= 300 ms (dotted line), when three
plugs break nearly simultaneously. The velocity of the remaining
plugs then displays a large increase, and the subsequent ruptures
take place within shorter and shorter time intervals, with all the
remaining plugs broken between t ’ 320 ms and t ’ 370 ms. The

rapid variation of the velocity points to the finite-time singularity
nature of the cascade.

Model and Simulations. Because at a given time all plugs move at
the same speed, interactions between plugs may be treated by
generalizing the equation for a single plug to a series of plugs:
ΔP=

PN
k=1RkV , where Rk is the resistance ascribed to plug k.

The lubricating role of the wetting film thickness is taken into
account by expressing the front interface resistance Rf

k as a func-
tion of the cross-sectional area Sðx; tÞ of the lumen open to air
ahead of plug k. This area is given by Sðxk +Lk; tÞ, which is de-
termined by the history of the previous plugs k− 1, k− 2, . . . The
surface in front of plug 1 is just Sðx> x1 +L1Þ=wh. The fluid
distribution in the channel then may be computed as a function of
time, once the conservation of liquid is expressed. For each plug,
we get d

dt Lk = − ½1− SðxkÞ=Sðxk +LkÞ�V . The area SðxkÞ of the
lumen behind plug k then serves as an input in the computation
for plug k+ 1. Plug rupture takes place when Lk = 0 and is
accounted for by setting Rk = 0. The positions of the plugs may be
obtained by integrating the velocity V, as discussed in SI Text.
The results of themodel are shown in the bottompanels of Fig. 2

(monodisperse) and in Fig. S1 (polydisperse). In both cases, the
motion of the plugs and the order of plug ruptures are reproduced
correctly. Quantitative predictions from themodel were compared
with results from experiments with trains made of one to seven
plugs. Two quantities were measured: (i) the time tc required for
complete reopening of the airway (all plugs have ruptured), called
“cascade duration,” and (ii) the penetration lengthLc, which is the
distance between the initial position of plug 1 and its positionwhen
it breaks, also indicating the necessary channel length for a cascade
to be observed. Results are presented in Fig. 3, in which each
square marks a single run. (The simulation derivation is supported
by Figs. S2–S6 and the physical parameters are listed in Tables S1
and S2.)
The solid line corresponds to the predictions obtained with the

full model, which takes into account all the processes described
above. In contrast, the dash/dotted lines in Fig. 3 A and B show the
predictions when short-range effects are neglected, i.e., when the
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Fig. 3. Evolution of the cascade duration (A and C) and the penetration length (B and D) as functions of the number of plugs (A and B) and applied pressure
(C and D) for a set of monodisperse plugs of length 0.78 mm separated by 2.1 mm. In A and B, the pressure head is 2.0 kPa. Squares correspond to
experiments, solid lines to the full model, and dash/dotted curves to predictions from the model without plug interactions.
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resistances of all plugs are just summed as if each of them were
alone in the channel:ΔP=NRsV , withN the total number of plugs
andRs the resistance of an isolated plug.When the interactions are
neglected, the cascade duration and the penetration length are
grossly underestimated and the discrepancy increases with the
number of plugs, stressing the role of liquid exchange between
plugs. This shows that the interactions play a dominant role in the
dynamics of the train, increasing the quantities of interest by
a large factor. The experiments were repeated to measure the
cascade duration and penetration length as functions of the im-
posed pressure head; the results are shown in Fig. 3 C and D. The
model agrees quantitatively with the experiments at low pressures,
but discrepancies appear above 2.5 kPa. This departure is attrib-
uted to the fact that the theoretical expressions used for interface
resistances are valid only at low capillary numbers. Although in-
dividual resistances are not sufficiently well estimated during the
fastest part of the cascade, themodel still may serve as a good basis
for predicting the cascade duration and penetration lengths in
straight rectangular channels.

Cascade of Plug Ruptures in a Bifurcating Network
When considering an initially occluded tree structure, such as the
pulmonary airway, the processes described above must be adapted
to account for geometric effects: the division of plugs at bifurca-
tions and the interactions across different regions in the network
(19). This has been studied in a series of reopening experiments
performed by replacing the straight channel with a six-generation
tree network, as shown in Fig. 4. The widths of the channels in
successive generations are chosen according to the diameter ratio
in Weibel’s symmetric model of the human lung (36), i.e., wi+1=
wi = 2−1=3, where wi is the width of channels in generation i and
w1 = 720 μm. The height of channels is 45 μm everywhere.
The same protocol as for the straight channels is used. The ex-

periment begins by alternately injecting liquid and air into the root
channel to form seven successive plugs that are distributed into the
tree. Indeed, each plug splits into two daughters when it reaches
a bifurcation in the branching tree, thus distributing the liquid into
all regions of the network (19, 20). Although the sequence of
pressures during the plug formation is computer controlled and kept
unchanged for all runs, slight perturbations affect the plug divisions
at each run. The initial distributions therefore differ slightly from
one experiment to the next despite the network symmetry.

A typical experiment is shown in Fig. 4 (see also Movie S4).
Once the initial plug distribution is installed (Fig. 4A), after waiting
sufficient time to make sure the system is at rest, a high pressure
head (3.5–5.5 kPa) is applied at the root, whereas the exits of the
network are maintained at atmospheric pressure. The flow rate in
each path is determined by the pressure difference, which is
equilibrated by the sum of the resistances through each branch of
the path. The small differences in initial distribution of plugs lead
to variations in flow rates among paths, which then are amplified as
the liquid plugs make their way in the network. Ultimately, one
path reopens through a cascade of plug ruptures (Fig. 4B).
This first cascade is followed by several others, each opening

a different path, as shown in Fig. 4C, in which the numbers in-
dicate the order in which cascades occur. The spatial distribution
of the cascades is irregular; they may take place either in adjacent
paths (e.g., 3 and 4) or in well-separated paths (e.g., 4 and 5).
Each cascade divides the network into independent subnetworks
that evolve separately from the rest.
The pressure driving each subnetwork may be inferred by con-

sidering the airflow in the reopened path. Because the pressures
Pin at the root andPout at the exit are fixed, the flow of air that takes
place in the reopened path determines the intermediate values of
the pressure along the path. A typical situation is shown in Fig. 5,
in which the last five generations of the network are displayed
before and just after reopening of path A. The whole subnetwork
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Fig. 4. Initial distribution of plugs and spatial distribution of successive airway reopenings obtained by pushing an initial set of liquid plugs by ΔP = 3:5 kPa in
a six-generation network. A given path is “open” when all the plugs obstructing the airflow from the entrance to the exit have ruptured. (A) Initial plug
distribution in the network. (B) The path taken by the first cascade. (C ) Spatio temporal distribution of successive cascades. Paths are numbered according to
the order in which they reopen.
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Fig. 5. Snapshots taken before and after the reopening of path A, corre-
sponding to thefirst cascade in thenetwork.Pin and Pout are the pressures at the
entrance and exit of the tree. P1, P2, and P3 indicate the intermediate pressures
at the first, second, and third nodes after reopening, with P1 > P2 > P3.
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initially is driven at the common pressure Pin. However, once the
cascade takes place along pathA, the tree gets separated into three
subnetworks, N1, N2, N3, driven at three intermediate values of
the pressure, P1, P2, and P3. The smaller the subnetwork, the
lower the pressure head driving it. On the other hand, the smaller
the subnetwork, the fewer plugs it contains, and hence the lower
the resistance to flow. It therefore is not possible to predict the
path that will be followed by the next cascade.
The readjustment of the driving pressure after each cascade

leads to a delay of successive cascades in time. This is shown in Fig.
6A, which displays a histogram of individual plug ruptures plotted
as a function of time. Ruptures are clustered in groups that cor-
respond to each cascade, which we label using the same numbering
scheme as in Fig. 4. The initial cascades develop when a large part
of the network is still occluded and therefore involve many si-
multaneous plug ruptures. In contrast, later cascades involve fewer
plugs and affect shorter paths of the tree. The time separating
successive cascades, initially short, gradually increases in all
experiments.
The spatial distribution of reopenings is characterized by in-

troducing a quantity ξðNÞ that measures the cumulated number of
branches, between the root and generation 4, that are reopened by
cascades 1 to N (Fig. 6B). The first cascade always corresponds to
ξð1Þ= 4, because all four generations are initially occluded.
However, the evolution of ξ between successive cascades depends
on the size of the reopened subnetwork and thus on the spatial
distribution of successive reopenings. The minimum and maxi-
mum possible evolutions of ξðNÞ, shown in Fig. 6B, may be cal-
culated by simulating different reopening scenarios in the network.
Alternatively, the evolution of ξðNÞ for a random distribution of
reopenings is calculated numerically by performing aMonte Carlo
simulation of the successive paths and taking the mean value of
ξðNÞ for a large number of realizations.
Measurements of ξ were performed for three different driving

pressures, 4.0, 4.5, and 5.0 kPa, by repeating each experiment eight
times. The average value of ξðNÞ for the eight realizations is in-
distinguishable from the random prediction, as shown by the black
symbols in Fig. 6B. The results for a particular experiment, how-
ever, may fall anywhere between the minimum and maximum
values, as shown by the light-gray symbols. The value of ξ is sta-
tistically random over a set of runs.

This large difference between particular runs is a result of the
complexity of fluid redistribution when a plug divides at a bi-
furcation. Indeed, the exact timing of the cascade with respect to
the plug passage through a bifurcation may lead to two different
outcomes: If the plug passes a bifurcation before the cascade takes
place, it separates into two daughter plugs, one in each of the
daughter branches, only one of which will rupture during the
cascade (Fig. S2). Conversely, if the plug bursts before the division,
the occluded subnetwork does not acquire an extra plug. There-
fore, the resistance in the occluded subnetwork, and the time
necessary to reopen it, may display large fluctuations between in-
dividual runs. Indeed, the timing of the cascades and the distri-
bution of the liquid were found to display extreme sensitivity to the
initial conditions, making the prediction of the cascade path im-
possible. On average, Fig. 6 shows that the behavior is in-
distinguishable from a random distribution.

Discussion
The geometry of the bifurcating tree introduces several mod-
ifications to the physical picture developed for the cascades in
straight channels. First, the plug divisions at the successive bifur-
cations add a strong random component to the dynamics in the
network, as described above. This greatly limits the ability to
predict the cascade timing or path. Second, the model proposed
for the straight channels is insufficient to describe the cascades in
the network because the plugs in a given path of the network do not
flow at the same velocity in all generations. Instead, the velocity of
the plugs decreases with the generation number, because the cross-
section increases. This means that plugs closer to the root have
higher capillary numbers than those close to the exits, so the value
of the resistance Rk of each plug depends on the generation
number in which the plug is flowing.
The network’s geometry also implies that the distance between

plugs may vary in time, through two mechanisms: (i) Plugs that are
in different generations get closer together as they advance into
the network because those closer to the root of the network are
traveling faster. (ii) The distances separating them may change if
an air bubble, which separates two plugs, divides asymmetrically
at a bifurcation. These mechanisms imply that the short-range
interactions also become more complex in the network.
These modifications in plug distances and velocities imply that

reopening the microfluidic network is more efficient when the
plugs have not yet penetrated deep into the tree, particularly be-
cause the stabilizing short-range interactions play a smaller role in
this case. Therefore, the strategy for reopening such a network
should be to work at high driving pressures. When extrapolating
this statement to the lung reopening, however, one should consider
biological factors such as the effects of the shear stresses and
pressure fluctuations on the epithelial cells, both during the mo-
tion of the plugs (37) and at the location of rupture (38). The
magnitude of these efforts in vivo cannot be obtained from the
current model.
Indeed, the relevance of our study to pulmonary airway re-

opening is limited in that we consider a highly idealized system. In
contrast, the actual lung involves many supplementary mecha-
nisms, such as surfactant (15, 39) or elastic interconnected airways
(21, 40), in addition to being made up of rough tubes bifurcating
asymmetrically. All these effects will complicate the behavior
compared with what is observed here. For instance, surfactants will
introduce several effects. They may retard the plug bursting
compared with clean interfaces, as in the case of soap bubbles, but
they also may enhance the liquid deposition on the walls (39), in
addition to inducing deformations in the leading films that may
increase the shear stress on the wall (37).
A more complete model must also include a description of

airway deformation, which is particularly important because
breathing takes place through the dilation of the diaphragm and
rib cage, which induces a negative pressure that draws the air
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Fig. 6. (A) Histogram of the number of plug ruptures as a function of time for
the same experiment as in Fig. 4. The dotted line numbering corresponds to
the cascades identified on the image. (B) Total number ξ of opened branches
(in which air can flow freely) measured after each cascade. The black symbols
show the variations of ξ obtained experimentally for the driving pressures
shown in the legend by averaging results over eight experiments for each
pressure. The gray symbols correspond to individual experiments. The curves
connect maximum (dash/dotted green) and minimum (dashed red) values of ξ
observed and the average predicted value for supposedly random openings.
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into the lung. Because a plug’s length and resistance are coupled
with the cross-section of the tube containing it, an increase in
tube diameter will reduce the resistance to flow, leading to faster
cascades.
Nevertheless, our simple model has allowed us to identify some

basic mechanisms that will remain important in real pulmonary
flows. Indeed, the lung will still display the collective behavior that
we have observed for a train of plugs, namely through local and
global interactions, and the choice of a particular path in the
network for each cascade. Only the quantitative details will be
modified as more ingredients are added to the airway model but
not the qualitative behavior.

Materials and Methods
Microfluidics and Observations. The microfluidic devices are prepared using
dry-film soft lithography techniques (41). The channels are etched in PDMS
and bonded on a PDMS-covered glass slide. Perfluorodecalin is used as the
working fluid because of its good wetting properties (contact angle 23∘ with
PDMS) and its compatibility with PDMS (42). The pressure at the network
inlet and driving the liquid is imposed using a Fluigent MFCS-8C controller,

which is programmed to achieve specific pressure sequences. The observations
are performed through a stereomicroscope using a fast camera (Photron
Fastcam 1024) filming at 1,000 frames per second. The image sequences then
are analyzed using MatLab and ImageJ.

Experimental Protocol. A train of liquid plugs is created inside the channels
by alternately pushing liquid and air slowly through a Y-junction (18). The
Y-junction then leads to the experimental region, which consists of either
a straight channel (rectangular cross-section of width w =700 μm and
height h= 55 μm) or a branching network. Once the plugs are created and
placed, the pressure is set to zero for a few seconds to achieve a stationary
initial condition, after which a constant pressure head ΔP is applied at the
channel entrance of the channel. More details are given in SI Materials
and Methods.
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