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In this paper, we investigate both experimentally and theoretically the dynamics of a
liquid plug driven by a cyclic periodic forcing inside a cylindrical rigid capillary tube.
First, it is shown that, depending on the type of forcing (flow rate or pressure cycle),
the dynamics of the liquid plug can either be stable and periodic, or conversely
accelerative and eventually leading to plug rupture. In the latter case, we identify the
sources of the instability as: (i) the cyclic diminution of the plug viscous resistance to
motion due to the decrease in the plug length and (ii) a cyclic reduction of the plug
interfacial resistance due to a lubrication effect. Since the flow is quasi-static and
the forcing periodic, this cyclic evolution of the resistances relies on the existence
of flow memories stored in the length of the plug and the thickness of the trailing
film. Second, we show that, contrary to unidirectional pressure forcing, cyclic forcing
enables breaking of large plugs in a confined space although it requires longer
times. All the experimentally observed tendencies are quantitatively recovered from
an analytical model. This study not only reveals the underlying physics but also
opens up the prospect for the simulation of ‘breathing’ of liquid plugs in complex
geometries and the determination of optimal cycles for obstructed airways reopening.

Key words: interfacial flows (free surface), microfluidics, micro-/nano-fluid dynamics

1. Introduction
Since the seminal works by Fairbrother & Stubbs (1935), Taylor (1961) and

Bretherton (1961), gas–liquid flows in capillary tubes have attracted much interest
among different scientific communities due to their widespread occurrence in
many natural and engineered fluidic systems such as pulmonary flows (Grotberg
2011), oil extraction (Havre, Stornes & Stray 2000; Di Meglio 2011), flows in
porous media (Lenormand, Zarcone & Sarr 1983; Hirasaki et al. 1985; Dias &
Payatakes 1986; Stark & Manga 2000) or microfluidic systems (Gunther et al. 2004;
Assmann & von Rohr 2011; Ladosz, Rigger & von Rohr 2016). In particular, liquid
plugs (also called bridges, slugs or boluses) play a fundamental role in pulmonary
flows where they can form in healthy subjects (Burger & Macklem 1968; Hughes,
Rosenzweig & Kivitz 1970) or in pathological conditions (Weiss et al. 1969; Griese,

† Email address for correspondence: michael.baudoin@univ-lille1.fr
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Birrer & Demirsoy 1997; Wright et al. 2000; Hohlfeld 2001) due to a capillary or
elasto-capillary instability (Kamm & Schroter 1989; White & Heil 2005; Duclaux &
Quéré 2006; Heil, Hazel & Smith 2008; Grotberg 2011; Dietze & Ruyer-Quil 2015).
For patients suffering from pulmonary obstructive diseases, these occluding plugs
may dramatically alter the distribution of air in the lungs, hence leading to severe
breathing difficulties.

Conversely, liquid plugs can be used for therapeutic purpose (Van’t Veen et al.
1998; Nimmo et al. 2002): boluses of surfactant are injected inside the lungs of
prematurely born infants to compensate for their lack and improve ventilation (Engle
et al. 2008; Barber & Blaisdell 2010). A thorough understanding of liquid plug
dynamics is therefore mandatory to improve treatment of both patients suffering from
obstructive pulmonary diseases and of prematurely born infants.

When a liquid plug moves inside a cylindrical airway at low capillary number,
deformation of the front and rear menisci occurs near the walls and leads to
interfacial pressure jumps at the front and rear interfaces. This deformation also
leads to the deposition of a liquid film on the walls. From a theoretical point of view,
Bretherton (1961) was the first to provide an estimation of the pressure jump and the
thickness of the liquid layer at asymptotically low capillary numbers. Bretherton’s
analysis was later formalised in the framework of matched asymptotic expansions by
Park & Homsy (1984) who extended this work to higher-order developments. Later
on, the dynamics of a meniscus moving on a dry capillary tube was studied both
experimentally and theoretically by Hoffman (1975) and Tanner (1979).

These pioneering results were later extended to unfold the effects of wall elasticity
(Howell, Waters & Grotberg 2000), the behaviour at larger capillary numbers
(Aussillous & Quéré 2000; Klaseboer, Gupta & Manica 2014), the effects of
surfactants (Waters & Grotberg 2002), the role of a microscopic or macroscopic
precursor film (Jensen 2000; Chebbi 2003), the influence of more complex tube
geometries (Wong, Radke & Morris 1995a,b; Hazel & Heil 2002), the influence
of gravity (Suresh & Grotberg 2005; Zheng, Fujioka & Grotberg 2007) or the
influence of non-Newtonian properties of the liquid (Guttfinger & Tallmadge 1965;
Hewson, Kapur & Gaskell 2009; Jalaal & Balmforth 2016; Laborie et al. 2017).
These key ingredients have then been combined with conservation laws determining
the evolution of plug size and estimation of the pressure jump in the bulk of the plug
to provide analytical models of the unsteady dynamics of liquid plugs in capillary
tubes (Baudoin et al. 2013; Fujioka et al. 2016; Magniez et al. 2016). In particular,
Baudoin et al. (2013) introduced the long range and short range interactions between
plugs to simulate the collective behaviour of a train of liquid plugs. These models
were in turn used to determine the critical pressure head required to rupture a liquid
plug in a compliant (Howell et al. 2000) or rigid prewetted capillary tube (Magniez
et al. 2016), or determine the maximum stresses exerted on the walls (Fujioka et al.
2016), a fundamental problem for lung injury produced by the presence of liquid
plugs in the lung.

It is interesting to note that the dynamics of bubbles (Bretherton 1961; Ratulowski
& Chang 1989; Fries, Trachsel & von Rohr 2008; Warnier et al. 2010) and liquid
plugs in capillary tubes looks similar from a theoretical point of view, since the
interfacial pressure jumps and the deposition of a liquid film on the walls induced by
the dynamical deformation of the interfaces can be calculated with the same formula.
Nevertheless, there are also fundamental differences, which lead to very different
dynamics: trains of bubble are pushed by a liquid finger whose viscous resistance to
the flow is generally higher than the resistance induced by the presence of the bubble.
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In this case, a pressure driven flow is stable and the flow rate remains essentially
constant over time. In the case of liquid plugs, the resistance of the plugs to motion
is higher than that of the air in front of and behind the plug. This leads to an unstable
behaviour with an acceleration and rupture of the plugs (Baudoin et al. 2013) or a
deceleration and the obstruction of the airways (Magniez et al. 2016).

From an experimental point of view, Bretherton’s interfacial laws have been exten-
sively verified for different systems (bubbles, liquid fingers, foams, . . .). Nevertheless,
there have been few attempts to compare the unstable dynamics of single or multiple
plugs in capillary tubes to models accounting for the interface and bulk pressure
jumps along with mass balance. Baudoin et al. (2013) showed that their model was
able to qualitatively predict the collective accelerative dynamics of multiple plugs in
rectangular microfluidic channels. More recently, Magniez et al. (2016) were able
to quantitatively reproduce the acceleration and deceleration of a single liquid plug
in a prewetted capillary tube. Their model further provided the critical pressure
below which the plug slows down and thickens whereas above it accelerates and
ruptures. These experiments were particularly challenging owing to the complexity of
controlling the prewetting film thickness and performing the experiments before the
occurrence of Rayleigh–Plateau instability. Huh et al. (2007) measured in realistic
experiments the injury caused by the motion of liquid plugs on human airway epithelia
deposited at the surface of an engineered microfluidic airway. Later on, Zheng et al.
(2009) quantified the deformation of the walls induced by the propagation of a liquid
plug in a flexible microchannel. Song et al. (2011) employed microfluidic techniques
to investigate single liquid plug flow in a tree geometry and evidenced the role of the
forcing condition on the flow pattern. Finally, Hu et al. (2015) studied the rupture of
a mucus-like liquid plug in a small microfluidic channel.

From a numerical point of view, simulations of liquid plugs in capillary tubes are
highly challenging. Indeed, the thin layer of liquid left on the walls requires either
adaptive mesh or the use of boundary integral methods to reduce the computational
costs. Moreover, the unstable dynamics of the plugs pushed at constant pressure head
leads to high variability in the associated characteristic times. Fujioka & Grotberg
(2004) were the first to provide numerical simulations of the steady dynamics of
a liquid plug in a two-dimensional channel. Later on, they studied the effects of
surfactants (Fujioka & Grotberg 2005), the unsteady propagation (Fujioka, Takayama
& Grotberg 2008) in an axisymmetric tube, the effects of gravity (Zheng et al.
2007), the role played by the tube’s flexibility (Zheng et al. 2009) and the motion of
Bingham liquid plugs (Zamankhan et al. 2012). More recently, Vaughan & Grotberg
(2016) studied numerically the splitting of a two-dimensional liquid plug at an airway
bifurcation.

In all of the aforementioned theoretical, experimental and numerical studies, the
liquid plugs are pushed either at constant flow rate or at constant pressure head in a
single direction. These driving conditions substantially differ from those in the lung
where a liquid plug will experience periodic forcing. In this paper, we investigate
both experimentally and theoretically the response of liquid plugs to cyclic and
periodic pressure or flow rate forcing. The experiments are conducted in straight
cylindrical glass capillary tubes and compared to an extended theoretical model based
on previous developments by Baudoin et al. (2013) and Magniez et al. (2016). It
is shown that, depending on the type of forcing (flow rate or pressure cycle), the
dynamics of the liquid plug can either be periodic with the reproduction of the
same cyclic motion over time, or accelerative, eventually leading to plug rupture. In
particular, this study discloses the central hysteretic role played by the liquid film
deposition on the plug dynamics.
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FIGURE 1. (Colour online) (a) Sketch of the experimental set-up. (b) First half-cycle: the
liquid plug moves on a dry capillary tube. (c) Following back and forth motions: the liquid
plug moves on a prewetted capillary tube.

The paper is organised as follows. In § 2 we describe the experimental set-up and
the mathematical model. Section 3 is dedicated to the comparison of different type of
forcings: pressure head and flow rate. In § 4, we compare the efficiency of cyclic and
unidirectional forcings for obstructed airways reopening. Finally, concluding remarks
and future prospects are provided in § 5.

2. Methods
2.1. Experimental set-up

A schematic of the experimental set-up is provided in figure 1(a). A perfluorodecalin
liquid plug of controlled volume is injected through a needle inside a rigid horizontal
cylindrical glass capillary tube (inner radius R = 470 µm). Then, air is blown at a
low flow rate (Q= 10 µl min−1) to bring the liquid plug to the centre of the channel
and stopped manually when the plug reaches the target position. Thus, depending
on the size of the liquid plug, the creation step can take up to 10 s. Finally, liquid
plugs are moved back and forth with either pressure or flow rate cyclic forcings
enforced respectively with a MFCS Fluigent pressure controller or a KdScientific
210 programmable syringe pump. For both pressure driven and flow rate driven
experiments, the period of oscillation is fixed at 2T = 4 s, with T the duration of
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the motion in one direction. It is important to note that during the first half-cycle,
t ∈ [0, T], the liquid plug moves along a dry capillary tube (figure 1b). The motion
of the plug leads to the deposition of a trailing film on the walls of thickness hr

behind the rear meniscus at position Xr(t). Thus, in the subsequent back and forth
motion, the front interface of the liquid plug moves on walls prewetted by a layer
of thickness hf (Xf ) (with Xf (t) = Xr(t) + Lp(t) the position of the front meniscus
and Lp(t) the plug length) as long as it remains on a portion of the channel already
visited by the liquid plug (figure 1c) in a previous half-cycle.

The glass tubes were cleaned prior to the experiments with acetone, isopropanol,
dichloromethane and piranha solutions (a mixture of sulphuric acid (H2SO4) and
hydrogen peroxide (H2O2)) successively to obtain a perfectly wetting surface and
prevent dewetting induced by the presence of dust or organic contaminants on the
surface. Perfluorodecalin (dynamic viscosity µ = 5.1 × 10−3 Pa s, surface tension
σ = 19.3× 10−3 N m−1 and density ρ = 1.9× 10−3 kg m−3) was chosen for its good
wetting properties and inertness. Experiments are recorded using a Photron SA3 high
speed camera mounted on a Z16 Leica microscope at a frame rate of 125 images per
second, a trigger time of 1/3000 s and a resolution of 1024× 64 pixels. To prevent
image deformation due to the cylindrical shape of the capillary tube, it is immersed
in an index-matching liquid. The image analysis is then performed using ImageJ
software and MATLAB.

2.2. Dimensional analysis of the problem
The characteristic parameters in this problem are the radius of the tube R, the surface
tension σ , the liquid density ρ and viscosity µ and the characteristic speed U of
the liquid plug. From these parameters, one can derive the characteristic convection
time τc = R/U, the characteristic viscous diffusion time τv = ρR2/µ, the Reynolds
number Re = ρUR/µ (comparing inertia to viscous diffusion), the capillary number
Ca = µU/σ (comparing viscous diffusion to surface tension), the Bond number
Bo = 1ρgR2/σ (comparing gravity effects to surface tension) and finally the Weber
number We = 1ρU2R/σ (comparing inertia to surface tension). Table 1 summarises
the maximum values of these key dimensionless parameters based on the maximal
velocity of the liquid plug Um = 28 mm s−1 observed in the present experiments.

Based on the order of magnitude of these dimensionless parameters, a few primary
insights can be drawn. The low Bond number and the horizontal position of the
tube suggest weak effect of gravity in this problem. The flow in the bulk of the
plug remains laminar owing to the moderate values of the Reynolds number. In
addition, Aussillous & Quéré (2000) studied the impact of inertia on the deposition
of a trailing liquid film behind a moving liquid plug. From dimensional analysis and
experiments, they introduced a critical capillary number Cac (equal to 3.6 × 10−1

in the present case) above which the effect of inertia becomes significant. In the
present experiments, the capillary number is two orders of magnitude smaller than
this critical value and thus inertia can be neglected in the film deposition process.
Finally, Kreutzer et al. (2005) studied numerically the influence of inertia on pressure
drops at liquid/air interfaces. They showed that inertia plays no role for Re < 10 at
capillary numbers comparable to the present study. Thus, inertial effects can safely
be neglected here. Furthermore, the weak capillary and Weber numbers indicate that
surface tension is globally dominant over viscous stresses and inertia. Nevertheless,
it is to be emphasised that viscous effects must still be accounted for close to the
walls, in the so-called ‘dynamic meniscus’ that is the part of the meniscus deformed
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Parameters Formula Maximum value

τc R/U 1.7× 10−2 s
τv ρR2/µ 8.2× 10−2 s
Re τd/τc 4.9
Ca µU/σ 7.4× 10−3

Bo 1ρgR2/σ 2.1× 10−1

We 1ρU2R/σ 3.6× 10−2

TABLE 1. Values of the key parameters associated with the maximal velocity Um.

by viscous stresses. Finally, since the convection and viscous diffusion times τc and
τv are two orders of magnitude smaller than the duration of the pressure or flow rate
cycles, the unsteady term in Navier–Stokes equation can be neglected and the flow
can be considered as quasi-static.

Another phenomenon that may occur during the plug motion is the destabilisation
of the trailing liquid film due to a Rayleigh–Plateau instability. The characteristic
time associated with the most unstable mode is given by the following formula
(Chandrasekhar 1961; Eggers 1997):

τRP =
12µR4

σh3
. (2.1)

The smallest destabilisation times are thus obtained for the thickest fluid layer. In the
experiments conducted in this paper, the thickness of the liquid film remains typically
smaller than 5 % of the tube radius leading to τRP = 13 s, whose value remains
significantly larger than the period of the plug motion (2T = 4 s). In addition, this
time grows rapidly (∝ 1/h3) when the thickness of the layer is decreased (τRP = 58 s
for h/R = 3 %) and thick films are only deposited close to the plug rupture in the
pressure driven experiments so that the destabilisation of the trailing film is expected
to play a minor role in the following experiments.

2.3. Model: pressure driven forcing
In the above context, the liquid plug dynamics can be predicted from a quasi-static
pressure balance and a mass balance. We thus adapted a visco-capillary quasi-static
model previously introduced by Magniez et al. (2016) to include the motion on both
dry and prewetted portions of the tube and also the memory effects resulting from a
trailing liquid film deposition. Assuming that the pressure losses in the gas phase are
negligible compared to that induced by the liquid plug, the total pressure jump 1Pt
across a liquid plug can be decomposed into the sum of the pressure jump induced
by the presence of the rear interface 1Pint

rear, the front interface 1Pint
front and the flow

in the bulk of the plug 1Pbulk
visc :

1Pt =1Pbulk
visc +1Pint

rear +1Pint
front. (2.2)

In the experiments, 1Pt corresponds to the driving pressure head.
Since the flow is laminar, the viscous pressure drop in the bulk of the plug can be

estimated from Poiseuille’s law:

1Pbulk
visc =

8µLpU
R2

, (2.3)
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with Lp, the plug length, that is to say the distance between the front and rear
meniscus Lp(t)=Xf (t)−Xr(t) as described in figure 1 and U= dXr/dt the liquid plug
velocity. This expression relies on two approximations: (i) it assumes a Poiseuille flow
structure and thus neglects the fluid recirculation occurring close to the menisci and
(ii) it assumes the same speed for the rear and front interfaces. The validity of the
first approximation has been tested with direct numerical simulations performed with
a volume of fluid (VOF) method (see appendix B). As expected, the accuracy of this
approximated formula decreases with the size of the plug. Nevertheless, the difference
between approximated and computed values remains below 4.5 % for plugs larger
than the tube diameter and below 25 % for plugs larger than 1/4 of the tube diameter.
The approximation is therefore consistent for a large plug. The larger discrepancy
observed for smaller plugs is not critical since in this case the interfacial pressure
drops at the rear and front interfaces are largely dominant over the viscous one. We
verified the consistency of the second approximation experimentally by measuring
the difference between the front and rear interface speeds. These measurements show
that the speed of the two menisci only differ by a few per cent. The reason is that
the evolution of the plug size dLp/dt remains much smaller than the plug velocity
dXr/dt for the essential part of the plug dynamics. In the following, we keep this
assumption (front and rear interfaces velocities approximatively equal) to evaluate the
interfacial pressure jump).

Since the capillary, Bond and Reynolds numbers are small and the flow is quasi-
static (see § 2.2), the pressure drop across the rear interface of the moving liquid plug
can be estimated from Bretherton’s formula (Bretherton 1961):

1Pint
rear =

2σ
R
(1+ 1.79(3Ca)2/3). (2.4)

Finally, the Laplace pressure drop across the front meniscus depends on the apparent
dynamic contact angle θ a

d according to the formula (in the limit of low capillary
number and thus θ a

d ):

1Pint
front =−

2σ cos θ a
d

R
≈−

2σ(1− θ a
d

2/2)
R

. (2.5)

Choosing the Laplace pressure jump 2σ/R as the characteristic pressure scale, and
the tube radius R as the characteristic length scale, the dimensionless pressure jump
across the liquid plug becomes

1P̃t = 4L̃pCa+ 1.79(3Ca)2/3 +
θ a

d
2

2
. (2.6)

A tilde indicates dimensionless functions.
In order to achieve a closed set of equation, two additional equations must be

derived. They are (i) the relation between the apparent dynamic contact angle of the
front meniscus θ a

d and the capillary number Ca and (ii) an equation determining the
evolution of the plug length L̃p. The first relation depends on the wetting state of the
tube walls ahead of the liquid plug, as follows.

When the liquid plug moves on a dry substrate, this relation is given by Hoffman–
Tanner’s law valid at low capillary numbers:

θ a
d = ECa1/3, (2.7)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

IB
M

AT
H

 L
ill

e,
 o

n 
15

 Ja
n 

20
18

 a
t 0

8:
52

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
82

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.828


172 S. S. Mamba, J. C. Magniez, F. Zoueshtiagh and M. Baudoin

with E a numerical constant of the order of 4–5 for a dry cylindrical capillary tube
as reported by Hoffman (1975) and Tanner (1979). For a liquid plug moving on a
prewetted substrate, θ a

d can be calculated from Chebbi’s law (Chebbi 2003), which
can be simplified at low capillary number through a second-order Taylor expansion
(Magniez et al. 2016):

θ a
d =
−1+

√
1+ 4CD

2C
, (2.8)

with

A= (3Ca)−2/3h̃f , (2.9)

B= (3Ca)1/3, (2.10)

C=
1

log(10)

(
b1

2
+ b2 log10(A)+

3b3

2
[log10 A]2

)
B, (2.11)

D= (b0 + b1 log10(A)+ b2[log10(A)]
2
+ b3[log10(A)]

3)B, (2.12)

b0 ≈ 1.4, b1 ≈−0.59, b2 ≈−3.2× 10−2 and b3 ≈ 3.1× 10−3. (2.13a−d)

Since CD� 1 at low capillary number (in the present experiments CD < 5 × 10−2),
this equation can further be simplified into

θ d
a =D= FCa1/3, (2.14)

with F= 31/3(b0 + b1 log10(A)+ b2[log10(A)]
2
+ b3[log10(A)]

3).
The next step is to determine the dimensionless plug length L̃p. A simple mass

balance between the fluid collected from the fluid layer lying ahead the plug (of
thickness hf ) and the trailing liquid film (of thickness hr) deposited behind the plug
gives

dV = (πR2
−π(R− hf )

2) dXf − (πR2
−π(R− hr)

2) dXr, (2.15)

with V = πR2Lp the volume of the plug. Finally, with dXr = U dt and dXf =

((R− hr)
2/(R− hf )

2) dXr, we obtain

dLp

dt
=

[
(R− hr)

2

(R− hf )2
− 1
]

U. (2.16)

Using the capillary time scale, µR/σ , as the characteristic time scale, this equation
can be rewritten in the dimensionless form

dL̃p

dt̃
=

[
(1− h̃r)

2

(1− h̃f )2
− 1

]
Ca. (2.17)

The last essential point is to determine the thicknesses of the liquid film lying in
front of and left behind the liquid plug hr and hf respectively. The thickness of the
trailing film can be calculated from an extension of Bretherthon’s law introduced by
Aussillous & Quéré (2000). This thickness only depends on the velocity of the plug
U, that is to say in dimensionless form only on the capillary number Ca:

h̃r =
1.34Ca2/3

1+ 2.5× 1.34Ca2/3 . (2.18)
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Finally, the thickness h̃f depends on the history of the plug motion. Indeed, the
capillary tube is initially dry. Thus, for a cyclic motion, the liquid film lying ahead
of the plug at position XN

f during the half-cycle N comes from the deposition of a
trailing film behind the plug at the same position XN−1

r = XN
f during the half-cycle

N − 1. In order to determine h̃f , the thickness of the liquid film deposited on the
walls must therefore be kept in memory and then taken as an entry when the plug
moves back to the same location. If the plug moves to a location never visited before,
then the tube is dry, h̃f = 0, and the pressure jump for the front interface corresponds
to the dry version. This analysis shows that the liquid film acts as a memory of
the liquid plug motion. Nevertheless, each back and forth motion of the liquid plug
prescribes new values of the liquid film thickness. This means that this memory is a
short term memory whose lifetime is a half-cycle.

To summarise, the complete nonlinear system of equations that need to be solved
to determine the evolution of the plug is

1P̃t =


4L̃pCa+

(
3.72+

E2

2

)
Ca2/3, if dry,

4L̃pCa+
(

3.72+
F2

2

)
Ca2/3, if prewetted,

(2.19)

F= 31/3(b0 + b1 log10(A)+ b2[log10(A)]
2
+ b3[log10(A)]

3), (2.20)

A= (3Ca)−2/3h̃f , (2.21)

dX̃r

dt̃
=Ca, X̃f = X̃r + L̃p, (2.22a,b)

dL̃p

dt̃
=

[
(1− h̃r)

2

(1− h̃f )2
− 1

]
Ca, (2.23)

h̃r =
1.34Ca2/3

1+ 2.5× 1.34Ca2/3 , (2.24)

h̃f (X̃f ) is obtained from the memory of the liquid film deposition. (2.25)

At each change of flow direction, the front meniscus becomes the rear meniscus and
vice versa. The pressure balance in the dry and prewetted tubes share a relatively
similar expression, but the coefficient E remains constant while F depends both on Ca
and h̃r. This system of equations is solved numerically with a first-order Euler explicit
method. Since the dynamics is accelerative, an adaptive time step refinement is used.
It consists in keeping the spatial displacement over a time step constant: 1t̃=1x̃/Ca
with 1x̃ constant. Convergence analysis on 1x̃ was performed for the calculations
presented in this paper.

2.4. Validation of the model for unidirectional pressure forcing in a dry
capillary tube

Magniez et al. (2016) validated the constitutive laws summarised in the previous
section through careful comparison with experiments of the motion of liquid plugs
in prewetted capillary tubes driven by a constant pressure head. This section is
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FIGURE 2. (Colour online) Unidirectional pressure forcing imposed by the pressure
controller. Blue solid line: pressure magnitude measured with an integrated pressure sensor.
Red dashed line: approximation of the pressure driving by the so-called Gompertz function
1Pt = 78 exp(−6 exp(−3t)) used in the simulations as the driving pressure head since
it fits well with the experimental signal. Black dash-dotted line: asymptote 1Pt = 80 Pa
when t→∞.

dedicated to the validation of the constitutive laws for the motion of liquid plugs
in dry capillary tubes driven by an unidirectional pressure driving (represented in
figure 2) and in particular the determination of the Hoffman–Tanner constant E (an
essential parameter in the analytical model).

In such configuration (figure 3), the deposition of a trailing film behind the plug
leads to the reduction of the plug length (figure 3b) and eventually its rupture
when the front and rear interfaces meet (see figure 3a at time t = 3 s). This
process is unsteady and highly accelerative as seen in figure 3(c). From t = 0 to
t = 2 s this acceleration is mostly related to the increase in the pressure head (see
figure 2). After t = 2 s, the acceleration goes on and is even exacerbated close to
the plug rupture, while the pressure head reaches a plateau. This behaviour can be
understood by rewriting (2.19) in a form reminiscent of Ohm’s law, 1P̃t = R̃tCa,
with R̃t = (R̃v + R̃r

i + R̃f
i ) the dimensionless global resistance to the flow, R̃v = 4L̃p,

R̃f
i = E2/2Ca−1/3 and R̃r

i = 3.72Ca−1/3 the viscous, front and rear interface resistances
respectively. From this form of the pressure balance, we see that the reduction of
the plug length L̃p leads to a reduction of the viscous resistance R̃v and thus, at
constant pressure driving 1P̃t, to an increase of the capillary number. This increase
in the capillary number is strengthened by a decrease of the interfacial resistance
R̃i = R̃f

i + R̃r
i , since R̃i is proportional to Ca−1/3. Finally, the increase of the trailing

film thickness with the capillary number (2.24) implies that the whole process (fluid
deposition and plug motion) accelerates progressively as can be seen in figure 3.
It is important to note that in these experiments the acceleration of the plug does
not rely on inertial effects (which can be neglected according to the dimensional
analysis provided in § 2.2) but rather on the intimate relation between the plug size
and velocity.

Many experiments have been performed for different initial plug lengths and
compared with the numerical solutions of (2.19) to (2.25) (dry version with h̃f = 0).
In the simulations, a Gompertz function 1Pt = 78 exp(−6 exp(−3t)) was used as the
driving pressure head due to its excellent match with the pressure head measured
experimentally at the exit of the the pressure controller with an integrated pressure
sensor (see figure 2 where the blue line corresponds to experimental signal and the
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FIGURE 3. (Colour online) Temporal evolution of a liquid plug of initial length L0 =

2.5 mm pushed with a unidirectional driving pressure (represented in figure 2) in a dry
capillary tube. (a) Position of the rear and front meniscus. (b) Evolution of the plug length.
(c) Evolution of the plug dimensionless speed, i.e. the capillary number Ca. Blue curves
correspond to experiments and the black dashed curves are obtained from simulations of
(2.19) to (2.25).

red line to best fit with Gompertz function). The complex shape of the pressure head
is the result of the pressure controller response time (the command is a constant
pressure Po = 80 Pa starting at t= 0). The only adjustable parameter in the model is
the Hoffman–Tanner constant E appearing in (2.19). The best fit between experiments
and theory was achieved for E = 4.4, a value close to the coefficient 4.3 obtained
by Bico & Quéré (2001) in their experiments on falling of liquid slugs in vertical
dry capillary tubes. With this value, an excellent prediction of the plug dynamics is
achieved for all experiments (see e.g. figure 3 where blue solid lines correspond to
experiments and red dashed lines to simulations). In particular, this model enables
a quantitative prediction of the rupture length, defined as the portion of the tube
Ld = max(Xf ) − min(Xr) visited by the liquid plug before its rupture (figure 4a),
and the rupture time, which is the total time elapsed between the beginning of the
experiment and the plug rupture (figure 4b).

3. Cyclic forcing of liquid plugs
This section is dedicated to the dynamics of liquid plugs under cyclic forcing. In

§ 3.1, the influence of the forcing configuration (pressure of flow rate) is examined;
§ 3.2 elucidates the fundamental role played by hysteretic effects resulting from fluid
deposition on the walls.

3.1. Influence of the driving condition: pressure head versus flow rate
In this first subsection, the responses of liquid plugs to two types of forcing are
compared: (i) a cyclic flow rate imposed by a syringe pump (represented in figure 5a,
blue line) and (ii) a pressure cycle imposed by a pressure controller (represented
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FIGURE 4. (Colour online) Evolution of (a) the rupture length and (b) the rupture
time of a liquid plug pushed with a unidirectional pressure head of the form 1Pt =

60 exp(−6 exp(−3.5t)) in a dry capillary tube as a function of the initial plug length L0.
The blue stars represent experiments. The red curve is obtained numerically by simulating
the evolution for 107 initial plug lengths.
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FIGURE 5. (Colour online) (a) Flow rate and (b) pressure cyclic forcing imposed
experimentally with a syringe pump and a pressure controller respectively. Blue solid line:
experimental values measured with sensors. Red dashed line: fit of the pressure cyclic
forcing measured experimentally with the analytical expression 1Pt= 78 exp(−6 exp(−3t))
for t ∈ [0, T], 1Pt = (−1)n(Pc−Pd) for t ∈ [nT, (n+ 1)T] with Pc= 78 exp(−3 exp(−3(t−
nT))) and Pd = 78 exp(−1.4(t − nT)) exp(−0.02 exp(−1.4 ∗ (t − nT))), T = 2.15 s the
half-period and n ∈N∗.

in figure 5b, blue line). These forcings have a complex temporal shape owing to
the response time of the syringe pump and pressure controller. In appendix A, we
describe precisely how these forcing conditions are obtained. The pressure forcing is
well approximated by the following analytical expression, which is a combination of
Gompertz functions (see figure 5b, red dashed line):

1Pt = 78 exp(−6 exp(−3t)) for t ∈ [0, T],
1Pt = (−1)n(Pc − Pd) for t ∈ [n, (n+ 1)T],

Pc = 78 exp(−3 exp(−3(t− nT))),
Pd = 78 exp(−1.4(t− nT)) exp(−0.02 ∗ exp(−1.4 ∗ (t− nT))),

 (3.1)

with T = 2.15 s the half-period and n ∈N∗ for cyclic forcing.
Two extremely different behaviours are evidenced in these two cases: for a

cyclic flow rate forcing (figure 6a–c and supplementary movie S1, available at
https://doi.org/10.1017/jfm.2017.828), the liquid plug dynamics is periodic and stable
(see phase portrait in figure 7a). Indeed, the plug velocity and positions are directly
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FIGURE 6. (Colour online) (a–c) Temporal evolution of a single liquid plug of initial
length L0 = 1.05 mm pushed with the cyclic flow rate forcing represented in figure 5(a);
see also supplementary movie S1. (a) Positions of the menisci. (b) Evolution of the
dimensionless velocity of the left meniscus (capillary number). (c) Evolution of the plug
length. (d–f ) Temporal evolution of a single liquid plug of initial length L0 = 3.3 mm
pushed with the pressure cyclic forcing represented in figure 5(b); see also supplementary
movie S2. (d) Position of the menisci. (e) Evolution of the dimensionless velocity of the
left meniscus (capillary number). ( f ) Evolution of the plug length. In all these figures
blue lines represent experiments and red dashed lines simulations obtained from (2.19) to
(2.25).

imposed by the motion of the syringe pump, thus U(t + 2T) = U(t) (figure 6b) and
Xr(t + 2T)= Xr(t) (figure 6a). Moreover, since (i) the film deposition process solely
depends on the plug velocity and (ii) the fluid recovery at half-cycle N depends on
the fluid deposition at half-cycle N − 1, the mass balance is null over each cycle
and the evolution of the plug size is also periodic: Lp(t + 2T) = Lp(t) (figure 6c).
It is interesting to note that the initial wall wetting condition plays little role in
this process; it only affects the mass balance during the first half-cycle and thus
determines the plug size Lp((2n+ 1)T) with n ∈ N. This wetting condition is indeed
erased by the backward motion during the second half-cycle and the plug evolution
is then only dictated by the temporal shape of the flow rate cycle.

The liquid plug undergoes a very different evolution for a periodic pressure forcing
(figure 6d–f and supplementary movie S2). In this case, the plug velocity and position
are no longer enforced by the driving condition and depend only on the evolution
of the resistance of the plug to motion. For the forcing condition represented in
figure 5(b), it is observed that (i) the plug travels on a longer portion of the tube
at each cycle (figure 6d), (ii) the dimensionless velocity of the plug (the capillary
number) is no longer cyclic but increases progressively at each cycle, U(t+2T)>U(t)
(figure 6e), and (iii) the size of the plug diminishes (Lp(t + 2T) < Lp(t)), eventually
leading to its rupture (figure 6f ). These phenomena are of course related since a
larger plug velocity leads to more liquid deposition and thus a diminution of the
plug size. Conversely, the cyclic diminution of the plug size leads to a decrease in
the viscous resistance (the same process as described in § 2.4). Nevertheless this sole
mechanism is not sufficient to explain the cyclic acceleration of the plug evidenced
in the phase portrait (figure 7b) as demonstrated in the next sections.
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FIGURE 7. (Colour online) Phase portrait showing the evolution of the position of the
left meniscus as a function of the capillary number Ca. (a) Cyclic flow rate forcing and
(b) cyclic pressure forcing. The blue curves correspond to experiments and the red dashed
line to simulations.

3.2. Memory effects and hysteretic behaviour
In this section, the model introduced in § 2.3 (2.19) to (2.25) is used to analyse
the origin of the departure from a periodic evolution for a pressure forcing and
in particular analyse the contributions of the different terms. Indeed, this model
quantitatively reproduces the liquid plug dynamics (see figure 6d, f, red dashed lines,
and figures 13 and 21 for comparisons of the simulations and experiments for a large
set of initial conditions).

The response of a liquid plug to a cyclic forcing is periodic since (i) the plug
velocity is enforced and does not rely on the evolution of the plug resistance to
motion, and (ii) the liquid deposition on the walls, and thus the size of the plug,
solely depends on the plug velocity. This leads to a zero mass balance at each cycle.

For pressure driven cyclic forcing, the departure from this periodic behaviour thus
relies on the evolution of the plug resistance at each cycle due to the existence of
flow memories since the flow is quasi-static. A first memory, which is already at hand
in unidirectional pressure forcing, is simply the evolution of the plug length. Indeed,
the plug size at a given time t depends on the history of the plug velocity at times
t∗ < t. In turn, the plug length modifies the viscous resistance R̃v = 4L̃p and thus
the plug velocity. The mass balance, which is relatively simple for a unidirectional
driving in a dry tube (the liquid left at time t on the walls only depends on the
velocity of the plug at time t), becomes much more complex for a cyclic forcing.
Indeed, at each back and forth motion, the liquid plug leaves on the walls a film
layer whose thickness keeps a memory of the plug velocity during the corresponding
half-cycle (since h̃r depends on Ca). Thus, the mass balance depends on both the
velocity of the plug at time t and its velocity at the same position in the previous
cycle. The progressive transfer of mass from the liquid plug to the liquid film is
clearly evidenced in figure 9. This graph shows that both the portion of the tube
covered by the liquid film and the film thickness increase at each cycle. This graph
also exhibits the complexity of the mass transfer observed in supplementary movie
S2: while the size of the plug gradually decreases at each cycle, its evolution is not
monotonic during a half-cycle. Indeed, when the flow direction is changed the plug
moves at first slowly (due to the response time of the pressure controller) and thus the
thickness of the liquid film deposited on the walls behind the plug is smaller than that
in front of the plug, leading to growth of the liquid plug. Then the plug accelerates
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FIGURE 8. (Colour online) Solid lines: dimensionless front interface resistance R̃f
i at

different capillary numbers Ca as a function of the prewetting film thickness h̃f . Dashed
lines: dimensionless front interface resistance for dry capillary tubes. These curves show
(i) that the interfacial resistance is systematically lower for prewetted capillary tubes than
for dry capillary tubes and (ii) that for prewetted capillary tubes, the interfacial resistance
decreases with the thickness of the prewetting film h̃f .
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FIGURE 9. (Colour online) Spatio-temporal diagram showing the evolution of the
thickness of the liquid film deposited on the walls obtained from simulations of (2.19)
to (2.25) with the same initial and forcing conditions as figure 6. The dimensionless film
thickness h̃= h/R is represented in colour at each time and position in the tube.

and progressively the tendency is inverted leading to a reduction of the plug size. The
transition between the growing and decreasing phases correspond on the graph to the
times when the thickness (colour) on each side of the plug is the same.

A second memory originates from the lubrication of the plug motion by the liquid
film, i.e. the reduction of the front interface resistance R̃f

i = (F2/2)Ca−1/3 as the
thickness of the prewetting film h̃f is increased (see (2.21) and (figure 8)). Indeed,
during the first half-cycle the liquid plug moves on a dry capillary tube and leaves
a liquid film behind it on the walls whose thickness increases with the speed of
the liquid plug (see figure 9). This liquid film lubricates the passage of the plug
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FIGURE 10. (Colour online) Simulations with (2.19) to (2.25) of the positions of the
menisci of a liquid plug of initial of size L0 = 3.3 mm pushed with the cyclic pressure
driving represented in figure 5(b). (a) Complete models (2.20) and (2.21). (b) The viscous
resistance interface is kept constant, R̃v = const. (c) The front interface resistance is kept
constant (F= E).

during the back motion, leading to a drastic reduction of the front interface resistance
(figure 8) and thus, a higher plug speed. Then the same mechanism is reproduced
during the following cycles: since the speed is increased at each cycle, the plug leaves
more liquid on the walls, leading again to a reduction of the interfacial resistance
through a lubrication effect.

Of course, these two memory effects are coupled. To quantify the relative
contribution of these two effects, we simulated the plug behaviour when the viscous
resistance R̃v is kept constant (figure 10b) and when the front interface resistance R̃f

i
is kept constant (figure 10c). The simulations show that in these two cases the plug
acceleration and rupture still occur but that the rupture time is substantially increased.
This tendency is confirmed in figure 11 where we compared the time necessary for
the plug to rupture (called the ‘rupture time’) to simulations for a large number of
initial plug sizes when the whole model is considered (red solid line), when the first
memory effect (length effect) is discarded (purple dashed line) and when the second
memory effect (lubrication effect) is discarded (green dash-dotted line). While the
complete model quantitatively reproduces the tendencies, the other two simulations
largely overestimate the rupture time.

This analysis also shows the central role played by the initial wetting condition: the
successive accelerations at each half-cycle all originate from the transition between
a dry and a prewetted capillary tube during the first cycle, which led to a massive
acceleration of the plug in the back motion. In theory, the opposite behaviour
(plug cyclic slowdown and growth) might be observed in a prewetted capillary tube
depending on the thickness of the prewetting film and the amplitude of the pressure
driving, as was already observed by Magniez et al. (2016) for unidirectional constant
pressure forcing.

4. Cyclic motion vs direct rupture of the plug under pressure forcing
In this last section, we compare experimentally and theoretically the time and space

required to break a liquid plug with either a unidirectional or a cyclic pressure forcing
with the same magnitude. The two driving conditions used for this comparison are
represented respectively in figure 2 and figure 5(b). As previously mentioned, their
temporal evolution can be approximated respectively by the Gompertz function 1Pt=

78 exp(−6 exp(−3t)) and (3.1).
Figure 12 compares theoretically the dynamics of liquid plugs of increasing sizes for

unidirectional and cyclic pressure driving. This figure shows (i) that plug rupture and
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FIGURE 11. (Colour online) Rupture time of liquid plugs pushed with a cyclic pressure
driving given by (3.1) as a function of their initial lengths L0. Blue stars correspond to
experiments, the red solid curve to simulations with the complete model, the purple dash-
dotted line to simulations when the viscous resistance R̃v is kept constant and the green
dash-dotted line to simulations when the front interface resistance R̃f

i is kept constant and
thus lubrication effects are discarded.
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FIGURE 12. (Colour online) Spatio-temporal evolution of plugs of initial lengths L1 =

2.2 mm (a,b), L2 = 2.8 mm (c,d) and L3 = 3.2 mm (e, f ) pushed either with a
unidirectional pressure driving (black dotted line) or with a cyclic pressure driving (red
solid line). (a,c,e) Position of the rear and front menisci. (b,d, f ) Evolution of the plug
size.

thus reopening of airways is obtained in a longer time but in a more confined space
with a cyclic forcing compared to a unidirectional pressure forcing, and (ii) that the
difference between these two driving conditions increases with the number of cycles
and hence with the initial size of the liquid plug. This tendency has been verified
experimentally and theoretically on a large number of initial plug lengths. The results
are summarised in figure 13. Figure 13(a,b) shows respectively the rupture length (the
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FIGURE 13. (Colour online) (a) Rupture length and (b) rupture time of liquid plugs
pushed with a cyclic pressure driving given by (3.1) as a function of their initial lengths
L0. Blue stars correspond to cyclic experiments and the red solid curve to simulations.
The black dashed line and the blue square dots correspond respectively to simulations
and experiments for a unidirectional pressure driving.

portion of the tube visited by the liquid plug before its rupture) and the rupture time
(the time required for the plug to rupture) as a function of the plug’s initial length,
L0. In these two figures, the blue stars and the solid red line correspond respectively
to experiments and simulations for a cyclic pressure driving, while the black dots
correspond to simulations with a unidirectional pressure driving. The successive cycles
are highlighted with different colours. This figure again shows excellent agreement
between experimental data and numerical predictions for up to five cycles (figure 13),
confirming that the model summarised in (2.19) to (2.25) captures the main physics.

As long as the liquid plug breaks during the first half-cycle, the cyclic forcing (red
solid line) and the unidirectional forcing (black dotted line) are of course equivalent.
When the plug starts going back (for initial length L0 ≈ 1.7 mm), brutal changes in
the tendencies are observed: the rupture length starts decreasing (figure 13a), while
the increase in the rupture time is on the contrary exacerbated (figure 13b). For larger
plug lengths, the number of cycles required to achieve plug rupture increases rapidly.
Since each change in the plug flow direction is associated with some sharp fluctuations
of the rupture length, this increase in the number of cycles leads to a saturation of
the rupture length (figure 13a). This is very different from the relatively linear trend
predicted by our simulations (black dots) and observed experimentally in figure 4 for
a unidirectional forcing. This saturation means that there is a maximal distance that
a liquid plug can travel regardless of its size for a prescribed pressure cycle. An
interesting point is that, despite this confinement, the plug rupture remains possible
due to the hysteretic effects that enable a progressive acceleration of the liquid plug
at each cycle, even if the liquid plug moves on the same portion of the tube.

To understand the decrease in the rupture length observed when the flow direction
is changed, we plotted the experimentally observed (figure 14a) and numerically
predicted (figure 14b) spatio-temporal diagrams of the evolution of two plugs
with initial lengths L1 = 2.5 mm (supplementary movie S3) and L2 = 2.85 mm
(supplementary movie S4) in a region where the rupture length is decreasing when
the initial plug length is increased. The experiments were performed with a pressure
driving magnitude Po = 60 Pa different from that for figure 13. So the positions of
these two points in the rupture length graph are represented in figure 21 in appendix C
(circled points). In figure 14 the dashed lines corresponds to L1 = 2.5 mm and the
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FIGURE 14. (Colour online) (a) Experimental investigation and (b) numerical investigation
of the rupture length of two liquid plugs of close initial lengths. The initial length of the
plug in dashed lines, L1 = 2.5 mm, is smaller than the initial length of the plug in solid
line, L2 = 2.85 mm, but nevertheless travels on a larger distance, Ld1 > Ld2, before its
rupture. The evolution of these two plugs can also be seen in supplementary movies S3
and S4.

solid lines to L2= 2.85 mm. The experimental (figure 14a, blue line) and numerical
trends (figure 14b, red line) are similar. These figures show that the largest plug
requires less space to break than the smallest plug Ld1 > Ld2. The origin of this
rather counterintuitive behaviour again lies in memory effects. Since these two plugs
are pushed with the same pressure head, the smallest plug with the lowest bulk
resistance moves faster, leaves more liquid on the walls than the bigger one and
thus goes further during the first half-cycle. When the sign of the pressure head is
inverted, the smallest liquid plug will move on a more prewetted channel and thus
(i) it will travel faster (since lubrication effects reduce its resistance to motion) and
(ii) it will recover more liquid, thus slowing down the plug size decrease through
the mass balance. The combination of these two effects enables the plug to reach a
deeper location in the tube.

On the other hand, a comparison between unidirectional and cyclic forcing indicates
that more time is required to break liquid plugs for cyclic motion than straight motion
(figure 13b). This is simply the result of the mass balance. As the liquid plug moves
back and forth on prewetted capillary tubes it recovers some liquid, whereas it does
not when it moves only on a dry capillary tube. This slows down the plug size
evolution.

Finally, a comparison of the evolution of the rupture time and rupture length in
figure 13 shows that the rupture time undergoes an exponential-like growth when the
rupture length approaches the saturation zone (for length Lo > Ls) with Ls ≈ 2.4 mm.
To confirm this trend, we performed numerical simulations of the rupture time and
rupture length for three different time periods (see figure 15). For each period, the
evolution is relatively similar and the semi-log graph (figure 15b) indeed confirms that
the rupture time follows an exponential growth (rupture time ∝ ex/Lc) for initial plug
lengths larger than a critical length Ls. We calculated both the critical saturation length
Ls and the characteristic length Lc for the three time periods T = 2, 4 and 6 s and
found the following values:

critical saturation lengths Ls2 ≈ 1.6 mm, Ls4 ≈ 2.4 mm, Ls6 ≈ 3.4 mm, (4.1)
characteristic lengths Lc2 ≈ 0.6 mm, Lc4 ≈ 0.7 mm, Lc6 ≈ 0.8 mm. (4.2)
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FIGURE 15. (Colour online) (a) Rupture length and (b) rupture time of liquid plugs
pushed with a cyclic pressure driving given by (3.1) as a function of their initial lengths
L0 for three different time periods, T = 2, 4 and 6 s.

These two factors depend on the time period T . This means that for each time period
and pressure forcing, the rupture time becomes exponentially long when Lo− Ls� Lc

and the pressure driven plug dynamics asymptotes to a stable periodic propagation.
As a conclusion of this section, large liquid plug breaking is achieved in a more

confined space but in longer time with a cyclic forcing than with a unidirectional
pressure forcing. Moreover, the rupture times grow exponentially when the plug initial
length exceeds a critical length Ls, whose value depends on the cycle period. In this
regime, the liquid plug dynamics becomes quasi-periodic.

5. Conclusion

Despite its occurrence in practical situations such as pulmonary flows in pathological
conditions, the specificity of the response of liquid plugs to cyclic driving has not
been studied so far experimentally and theoretically. The present results show that
the dynamics and rupture of a liquid plug strongly depend on the type of forcing.
A flow rate cyclic forcing results in periodic oscillations of the plug and no rupture.
In contrast, a pressure cyclic forcing enables airway reopening through a progressive
acceleration of the liquid plug dynamics and reduction of its size. This departure
from a periodic response originates from two memory effects which decrease the
resistance of the plug to motion at each cycle: (i) the cyclic reduction of the plug
size which reduces the viscous resistance and (ii) a lubrication effect which reduces
the front interface resistance. These two coupled effects are strongly connected to the
thickness of the liquid film lying on the walls, which keeps a memory of previous
plug displacements. In addition, this study shows that the rupture of a liquid plug
with a prescribed pressure cycle is a spatially bounded phenomenon regardless of
the initial plug length. In other words, large plug can be ruptured in a limited
space with a cyclic forcing, while more and more space is required to break plugs
of increasing size with a unidirectional forcing. The trade-off is that more time is
nevertheless required and that this time grows exponentially above a critical length,
which depends on the cycle period and the applied pressure.

The analysis of the underlying physics was achieved through a comparison of
extensive experimental data to a reduced dimension model. This model quantitatively
predicts the plug behaviour for the numerous pressure cycles studied in this paper.
Moreover it is in principle valid for any pressure cycle in the visco-capillary regime
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(low capillary, Reynolds and Bond numbers). Combined with constitutive laws for
the plug divisions at bifurcation, it might serve as a basis to simulate cyclic plug
dynamics in more complex geometries, or even the dynamics of mucus plugs in
distal pulmonary airways. In this last case, however, complementary elements such as
the influence of wall elasticity, the non-Newtonian fluid properties of mucus or the
presence of an initial mucus layer on the walls should be implemented to achieve
realistic simulations. In particular, it is envisioned that the presence of a prewetting
film on the walls might lead to either plug ruptures or persistent occlusions, as was
demonstrated by Magniez et al. (2016) for unidirectional driving. Complete models
of plug dynamics would open tremendous perspectives, such as the ‘virtual testing’
of new strategies to improve airways clearance for patients suffering from chronic
obstructive pulmonary disease or cystic fibrosis. But it might also open perspectives
to design robust pressure controllers that enable stable control of liquid plugs. Indeed,
the instability to breaking is a major drawback to manipulate plugs with pressure
controllers.
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Appendix A. Method
In the two following sections, we describe how the flow rate and pressure cyclic

drivings are enforced.

A.1. Flow rate cyclic driving
The flow rate forcing represented in figure 5(a) is obtained by connecting only one
end (left side) of the capillary tube to a programmable syringe pump KdScientific
210. The command flow rate is a square signal with alternative motion in the right
and left directions: see figure 16(a). Owing to the response time of the syringe pump
and compressibility effects, the actual flow rate imposed on the liquid plug may differ
strongly. Thus, the imposed flow rate is monitored directly by measuring the motion
of the left interface of the liquid plug. This signal is represented in figure 16(b).

A.2. Pressure cyclic driving
The pressure driving represented in figure 5(b) is obtained by connecting two channels
of the MFCS programmable pressure controller to both ends of the capillary tube.
This pressure controller based on valve and sensors enables automated control of the
driving pressure. We impose alternatively a constant command overpressure (compared
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FIGURE 16. (Colour online) (a) Command flow rate ordered to the programmable syringe
pump. Positive values correspond to a motion from left to right. (b) Actual flow rate
forcing measured by monitoring the motion of the left interface of the plug.
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FIGURE 17. (Colour online) (a) Command pressures Pc
1 and Pc

2 imposed via the
software Maesflow to each channel of the MFCS Fluigent pressure controller, connected
respectively to each extremity of the capillary tube. (b) Resulting output pressure signals
effectively imposed on each end of the capillary tube, measured with an integrated
sensor. The pressure represented in these figures correspond to overpressures compared
to atmospheric pressure. (c) Pressure driving 1Pt = P1 − P2 imposed on the liquid plug.

to atmospheric pressure) Pc
1 and Pc

2 to each channel of the pressure controller while
the pressure of the other channel goes down to atmospheric pressure, as represented
in figure 17(a). Due to the response time of the pressure controller (resulting from the
response time of the valve, and the feedback loop, the actual overpressure imposed
on each side of the pressure controller, measured by an integrated pressure sensor,
is represented in figure 17(b). The final pressure forcing thus corresponds to the
difference of pressure 1Pt = Pc

1 − Pc
2 between the two ends of the channel (see

figure 17c).

A.3. Note on compressibility effects
Compressibility effects are critical for flow rate driven experiments since they increase
the response time of the syringe pump (difference between the piston motion and
the actual motion of the fluid in the capillary). To reduce this response time, the
syringes are filled with water. Moreover, since the imposed flow rate is measured
directly by monitoring the displacement of the left interface, compressibility effects
are accounted for in the forcing condition represented in figure 5(a). For pressure
driven experiments however, the pressure is homogenised at the speed of sound
(extremely rapidly) and the response time is mainly due to the valve and sensor
response time. Thus, the pressure measured at the exit of the pressure controller with
integrated pressure sensors is almost identical to the pressure imposed at both sides
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FIGURE 18. (Colour online) Configuration simulated with the VOF code Openfoam: a
liquid plug is pushed at constant flow rate with an air finger inside a prewetted capillary
tube. (a) Phase volume fraction α. The air is represented in blue (α = 0) and the liquid
in blue (α = 1). (b) Zoom of the edge of the liquid plug to show the precision of the
mesh.

of the capillary tube (if we neglect the pressure losses due to the air flow in the
tubes compared to the pressure losses due to the presence of the liquid plug).

Appendix B. Direct numerical simulations of the viscous pressure drop inside the
liquid plug

Equation (2.3) relies on the assumption that the flow inside the liquid plug is a
Poiseuille flow. In a Poiseuille flow, the liquid velocity is maximum at the centre of
the tube and decreases down to zero at the walls. This flow structure is not compatible
with the boundary conditions imposed by the two menisci: a constant velocity all
over the liquid/air interface (in the absence of interfacial deformation). Therefore, fluid
recirculation will occur at the edges of the plug to match this boundary condition.
For long plugs this recirculation is expected to play a minor role. Thus (2.3) should
give a correct approximation of the pressure drop inside long plugs. However the
accuracy of this approximation should decrease as the length of the plug drops. To
test the validity of (2.3), we performed two-dimensional direct numerical simulations
of a flow rate driven liquid plug in a capillary tube with the Openfoam VOF code
(see figure 18). This code was modified to include a regularisation technique (Hoang
et al. 2013), which reduces parasitic currents. The evolution of the viscous pressure
drop as a function of the plug size was evaluated by pushing a liquid plug at a
constant flow rate corresponding to Re = 2 and Ca = 5 × 10−2 in a prewetted tube
(layer of thickness corresponding to 4 % of the tube width w). The properties of the
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FIGURE 19. (Colour online) Pressure variation (in Pa) inside the plug and the air in the
configuration represented in figure 18.
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FIGURE 20. (Colour online) Comparison of the simulated pressure drop 1Pbulk
visc (blue dots)

and Poiseuille law (red dashed line) as a function of the dimensionless plug length Lp/D,
with D the tube diameter. (a) Evolution for large plug. (b) Zoom for small plugs.

liquid are the same as those used in the experiments. A 825 000 point structured mesh
was used with a refinement close to the walls (see figure 18). Figure 19 shows the
computed pressure drop inside the liquid plug and the air. Since the input flow rate
leads to a deposition of a trailing film thicker than the prewetting film, the length of
the plug shrinks, which enables the evaluation of the pressure drop for various plug
lengths with a single numerical simulation. The comparison between Poiseuille’s law
1Pbulk

visc = (12µLp/w2)U and simulations is shown in figure 20(a) with a zoom of small
values of the plug length in figure 20(b). This comparison shows that the discrepancy
between the formula remains weak (below 4.5 % for plugs with sizes Lp > w) but
increases up to 25 % for plugs whose size lies between 1/4w and w. This larger
discrepancy observed for small plugs is nevertheless not critical since, in this case,
the viscous pressure drop is significantly smaller than the interfacial pressure drop.
Thus this discrepancy will have a minor effect on the plug dynamics.

Appendix C. Supplementary figure

The additional figure 21 compares simulations and experiments of the rupture length
for a different driving pressure from that used in figure 13.
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Experimental cyclic forcing 

Model cyclic forcing 
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FIGURE 21. (Colour online) Rupture length of a liquid plug pushed with a cyclic pressure
driving given by the analytical function 1Pt= 59 exp(−6 exp(−3.5t)) for t∈ [0,T], 1Pt=

(−1)n(Pc − Pd) for t ∈ [nT, (n+ 1)T] with Pc = 59 exp(−2.2 exp(−3.5(t− nT))) and Pd =

59 exp(−1.1(t− nT)) exp(−0.06 exp(−1.1∗ (t− nT))), T= 2.1 s the half-period and n∈N∗.
Blue stars correspond to experiments; the red curve is the result from our simulations.
The circled experimental points correspond to plugs of initial lengths L1 = 2.5 mm and
L2 = 2.85 mm, whose evolutions are compared in figure 14.

REFERENCES

ASSMANN, N. & VON ROHR, P. R. 2011 Extraction in microreactors: intensification by adding an
inert gas phase. Chem. Engng Process 50 (8), 822–827.

AUSSILLOUS, P. & QUÉRÉ, D. 2000 Quick deposition of a fluid on the wall of a tube. Phys. Fluids
12 (10), 2367–2371.

BARBER, M. & BLAISDELL, C. J. 2010 Respiratory causes of infant mortality: progress and challenges.
Am. J. Perinat. 27 (7), 549–558.

BAUDOIN, M., SONG, Y., MANNEVILLE, P. & BAROUD, C. N. 2013 Airway reopening through
catastrophic events in a hierarchical network. Proc. Natl Acad. Sci. USA 110 (3), 859–864.

BICO, J. & QUÉRÉ, D. 2001 Falling slugs. J. Colloid Interface Sci. 243 (1), 262–264.
BRETHERTON 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166–188.
BURGER, E. J. & MACKLEM, P. 1968 Airway closure: demonstration by breathing 100 percent O2

at low lung volumes and by N2 washout. J. Appl. Phys. 25 (2), 139–148.
CHANDRASEKHAR, S. 1961 Hydrodynamics and Hydromagnetic Stability. Dover.
CHEBBI, R. 2003 Deformation of advancing gas–liquid interfaces in capillary tubes. J. Colloid

Interface Sci. 265 (1), 166–173.
DI MEGLIO, F. 2011 Dynamics and control of slugging in oil production. PhD thesis, Ecole Nationale

Supérieure des Mines de Paris.
DIAS, M. M. & PAYATAKES, A. C. 1986 Network models for two-phase flow in porous media. Part

1. Immiscible microdisplacement of non-wetting fluids. J. Fluid Mech. 164, 305–336.
DIETZE, G. F. & RUYER-QUIL, C. 2015 Films in narrow tubes. J. Fluid Mech. 762, 68–109.
DUCLAUX, V., CLANET, C. & QUÉRÉ, D. 2006 The effects of gravity on the capillary instability in

tubes. J. Fluid Mech. 556, 217–226.
EGGERS, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–930.
ENGLE, W. A. & THE AMERICAN ACADEMY OF PEDIATRICS COMMITTEE ON FETUS AND

NEWBORN 2008 Surfactant-replacement therapy for respiratory distress in the preterm and
term neonate. Pediatrics 121 (2), 419–432.

FAIRBROTHER, F. & STUBBS, A. E. 1935 Studies in electro-endosmosis. J. Chem. Soc. 0, 527–529.
FRIES, D. M., TRACHSEL, F. & VON ROHR, P. R. 2008 Segmented gas–liquid flow characterization

in rectangular microchannels. Intl J. Multiphase Flow 34 (12), 1108–1118.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

IB
M

AT
H

 L
ill

e,
 o

n 
15

 Ja
n 

20
18

 a
t 0

8:
52

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
82

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.828


190 S. S. Mamba, J. C. Magniez, F. Zoueshtiagh and M. Baudoin

FUJIOKA, H. & GROTBERG, J. B. 2004 Steady propagation of a liquid plug in a two-dimensional
channel. J. Biomed. Engng 126 (5), 567–577.

FUJIOKA, H. & GROTBERG, J. B. 2005 The steady propagation of a surfactant-laden liquid plug in
a two-dimensional channel. Phys. Fluids 17 (8), 082102.

FUJIOKA, H., HALPERN, D., RYANS, J. & GAVER, D. P. III 2016 Reduced-dimension model of
liquid plug propagation in tubes. Phys. Rev. Fluids 1 (5), 053201.

FUJIOKA, H., TAKAYAMA, S. & GROTBERG, J. B. 2008 Unsteady propagation of a liquid plug in a
liquid-lined straight tube. Phys. Fluids 20 (6), 062104.

GRIESE, M., BIRRER, P. & DEMIRSOY, A. 1997 Pulmonary surfactant in cystic fibrosis. Eur. Respir.
J. 10 (9), 1983–1988.

GROTBERG, J. B. 2011 Respiratory fluid mechanics. Phys. Fluids 23 (2), 021301.
GUNTHER, A., KHAN, S. A., THALMANN, M., TRACHSEL, F. & JENSEN, K. F. 2004 Transport

and reaction in microscale segmented gas–liquid flow. Lab on a Chip 4 (4), 278–286.
GUTTFINGER, C. & TALLMADGE, J. A. 1965 Films of non-Newtonian fluids adhering to flat plates.

AIChe 11 (3), 403–413.
HAVRE, K., STORNES, K. O. & STRAY, H. 2000 Taming slug flow in pipelines. ABB Rev. 4, 55–63.
HAZEL, A. L. & HEIL, M. 2002 The steady propagation of a semi-infinite bubble into a tube of

elliptical or rectangular cross-section. J. Fluid Mech. 470, 91–114.
HEIL, M., HAZEL, A. L. & SMITH, J. A. 2008 The mechanics of airway closure. Respir. Physiol.

Neurobiol. 163 (1), 214–221.
HEWSON, R. W., KAPUR, N. & GASKELL, P. 2009 A model for film-forming with Newtonian and

shear-thinning fluids. J. Fluid Mech. 162, 21–28.
HIRASAKI, G. J. & LAWSON, J. B. 1985 Mechanisms of foam flow in porous media: apparent

viscosity in smooth capillaries. Soc. Petrol. Engng J. 25 (2), 176–190.
HOANG, D. A., STEIJN, V. V., PORTELA, L. M., KREUTZER, M. T. & KLEIJN, C. R. 2013

Benchmark numerical simulations of segmented two-phase flows in microchannels using the
volume of fluid method. Comput. Fluids 86, 28–36.

HOFFMAN, R. L. 1975 A study of the advancing interface. Part I. Interface shape in liquid–gas
systems. J. Colloid Interface Sci. 50 (2), 228–241.

HOHLFELD, J. M. 2001 The role of surfactant in asthma. Resp. Res. 3 (1), 4–8.
HOWELL, P. D., WATERS, S. L. & GROTBERG, J. B. 2000 The propagation of a liquid bolus along

a liquid-lined flexible tube. J. Fluid Mech. 406, 309–335.
HU, Y., BIAN, S., GROTBERG, J., FILOCHE, M., WHITE, J., TAKAYAMA, S. & GROTBERG, J. B.

2015 A microfluidic model to study fluid dynamics of mucus plug rupture in small lung
airways. Biomicrofluidics 9 (4), 044119.

HUGHES, J. M., ROSENZWEIG, D. Y. & KIVITZ, P. B. 1970 Site of airway closure in excised dog
lungs: histologic demonstration. J. Appl. Phys. 29 (3), 340–344.

HUH, D., FUJIOKA, H., TUNG, Y., FUTAI, N., PAINE, R., GROTBERG, J. B. & TAKAYAMA, S.
2007 Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in
microfluidic airway systems. Proc. Natl Acad. Sci. USA 104 (48), 18886–18891.

JALAAL, M. & BALMFORTH, N. J. 2016 Long bubbles in tubes filled with viscoplastic fluid. J. Non-
Newtonian Fluid Mech. 238, 100–106.

JENSEN, O. E. 2000 Draining collars and lenses in liquid-lined vertical tubes. J. Colloid Interface
Sci. 221, 38–49.

KAMM, R. D. & SCHROTER, R. C. 1989 Is airway closure caused by a liquid film instability?
Respir. Physiol. 75 (2), 141–156.

KLASEBOER, E., GUPTA, R. & MANICA, R. 2014 An extended bretherton model for long Taylor
bubbles at moderate capillary numbers. Phys. Fluids 26 (3), 032107.

KREUTZER, M. T., KAPTEIJN, F., MOULIJN, J. A., KLEIJN, C. R. & HEISZWOLF, J. J. 2005
Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J. 51 (9),
2428–2440.

LABORIE, B., ROUYER, F., ANGELESCU, D. E. & LORENCEAU, E. 2017 Yield-stress fluid deposition
in circular channels. J. Fluid Mech. 818, 838–851.

LADOSZ, A., RIGGER, E. & VON ROHR, P. R. 2016 Pressure drop of three-phase liquid–liquid–gas
slug flow in round microchannels. Microfluid Nanofluid 20 (3), 1–14.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

IB
M

AT
H

 L
ill

e,
 o

n 
15

 Ja
n 

20
18

 a
t 0

8:
52

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
82

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.828


Dynamics of a liquid plug in a capillary tube under periodic forcings 191

LENORMAND, R., ZARCONE, C. & SARR, A. 1983 Mechanisms of the displacement of one fluid by
another in a network of capillary ducts. J. Fluid Mech. 135, 337–353.

MAGNIEZ, J. C., BAUDOIN, M., LIU, C. & ZOUESHTIAGH, F. 2016 Dynamics of liquid plugs in
prewetted capillary tubes: from acceleration and rupture to deceleration and airway obstruction.
Soft Matt. 12 (42), 8710–8717.

NIMMO, A. J., CARSTAIRS, J. R., PATOLE, S. K., WHITEHALL, J., DAVIDSON, K. & VINK, R.
2002 Intratracheal administration of glucocorticoids using surfactant as a vehicle. Clin. Exp.
Pharmacol. P. 29 (8), 661–665.

PARK, C. W. & HOMSY, G. M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid
Mech. 139, 291–308.

RATULOWSKI, J. & CHANG, H.-C. 1989 Transport of gas bubbles in capillaries. Phys. Fluids A 1
(10), 1642–1655.

SONG, Y., BAUDOIN, M., MANNEVILLE, P. & BAROUD, C. N. 2011 The air–liquid flow in a
microfluidic airway tree. Med. Engng Phys. 33 (7), 849–856.

STARK, J. & MANGA, M. 2000 The motion of long bubbles in a network of tubes. Trans. Porous
Med. 40 (2), 201–218.

SURESH, V. & GROTBERG, J. B. 2005 The effect of gravity on liquid plug propagation in a
two-dimensional channel. Phys. Fluids 17 (3), 031507.

TANNER, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12 (9),
1473.

TAYLOR 1961 Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10 (2), 161–165.
VAN’T VEEN, A., WOLLMER, P., NILSSON, L. E., GOMMERS, D., MOUTON, J. W.,

KOOIJ, P. P. M. & LACHMANN, B. 1998 Lung distribution of intratracheally instilled
Tc-99m-tobramycin-surfactant mixture in rats with a Klebsiella pneumoniae lung infection.
ACP-Appl. Cardiopul. P. 7 (2), 87–94.

VAUGHAN, B. L. & GROTBERG, J. B. 2016 Splitting of a two-dimensional liquid plug at an airway
bifurcation. J. Fluid Mech. 793, 1–20.

WARNIER, M. J. F., DE CROON, M. H. J. M., REBROV, E. V. & SCHOUTEN, J. C. 2010 Pressure
drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds
numbers. Microfluid Nanofluid 8 (1), 33–45.

WATERS, S. L. & GROTBERG, J. B. 2002 The propagation of a surfactant laden liquid plug in a
capillary tube. Phys. Fluids 14 (2), 471–480.

WEISS, E. B., FALING, L. J., MINTZ, S., BROOKS, S. M., CHODOSH, S. & SEGAL, M. S. 1969
Acute respiratory failure in chronic obstructive pulmonary disease. Part I. Pathology. Dm-Dis.
Mon. 15 (11), 1–58.

WHITE, J. P. & HEIL, M. 2005 Three-dimensional instabilities of liquid-lined elastic tubes: a thin-film
fluid–structure interaction model. Phys. Fluids 17 (3), 031506.

WONG, H., RADKE, C. J. & MORRIS, S. 1995a The motion of long bubbles in polygonal capillaries.
Part 1. Thin films. J. Fluid Mech. 292, 71–94.

WONG, H., RADKE, C. J. & MORRIS, S. 1995b The motion of long bubbles in polygonal capillaries.
Part 2. Drag, fluid pressure and fluid flow. J. Fluid Mech. 292, 95–110.

WRIGHT, S. M., HOCKEY, P. M., ENHORNING, G., STRONG, P., REID, K. B. M., HOLGATE, S. T.,
DJUKANOVIC, R. & POSTLE, A. D. 2000 Altered airway surfactant phospholipid composition
and reduced lung function in asthma. J. Appl. Phys. 89 (4), 1283–1292.

ZAMANKHAN, P., HELENBROOK, B. T., TAKAYAMA, S. & GROTBERG, J. B. 2012 Steady motion
of Bingham liquid plugs in two-dimensional channels. J. Fluid Mech. 705, 258–279.

ZHENG, Y., FUJIOKA, H., BIAN, S., TORISAWA, Y., HUH, D., TAKAYAMA, S. & GROTBERG, J. B.
2009 Liquid plug propagation in flexible microchannels: a small airway model. Phys. Fluids
21 (7), 071903.

ZHENG, Y., FUJIOKA, H. & GROTBERG, J. B. 2007 Effects of gravity, inertia, and surfactant on
steady plug propagation in a two-dimensional channel. Phys. Fluids 19 (8), 082107.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

IB
M

AT
H

 L
ill

e,
 o

n 
15

 Ja
n 

20
18

 a
t 0

8:
52

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
82

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.828

	Dynamics of a liquid plug in a capillary tube under cyclic forcing: memory effects andairway reopening
	Introduction
	Methods
	Experimental set-up
	Dimensional analysis of the problem
	Model: pressure driven forcing
	Validation of the model for unidirectional pressure forcing in a dry capillary tube

	Cyclic forcing of liquid plugs
	Influence of the driving condition: pressure head versus flow rate
	Memory effects and hysteretic behaviour

	Cyclic motion vs direct rupture of the plug under pressure forcing
	Conclusion
	Acknowledgements
	Appendix A. Method
	Flow rate cyclic driving
	Pressure cyclic driving
	Note on compressibility effects

	Appendix B. Direct numerical simulations of the viscous pressure drop inside the liquid plug
	Appendix C. Supplementary figure
	References


