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When an acoustic wave travels in a lossy medium such as a liquid, it progressively
transfers its pseudo-momentum to the fluid, which results in a steady flow called
acoustic streaming. This phenomenon involves a balance between sound attenuation
and shear, such that the streaming flow does not vanish in the limit of vanishing
viscosity. Hence, the effect of viscosity has long been ignored in acoustic streaming
experiments. Here, we investigate the acoustic streaming in sessile droplets exposed
to surface acoustic waves. According to experimental data, the flow structure and
velocity magnitude are both strongly influenced by the fluid viscosity. We compute
the sound wave propagation and hydrodynamic flow motion using a numerical
method that reduces memory requirements via a spatial filtering of the acoustic
streaming momentum source terms. These calculations agree qualitatively well with
experiments and reveal how the acoustic field in the droplet, which is dominated by
a few caustics, controls the flow pattern. We evidence that chaotic acoustic fields
in droplets are dominated by a few caustics. It appears that the caustics drive the
flow, which allows for qualitative prediction of the flow structure. Finally, we apply
our numerical method to a broader span of fluids and frequencies. We show that the
canonical case of the acoustic streaming in a hemispherical sessile droplet resting on
a lithium niobate substrate only depends on two dimensionless numbers related to the
surface and bulk wave attenuation. Even in such a baseline configuration, we observe
and characterize four distinct flow regimes.
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1. Introduction
1.1. Outline

Two well-separated time scales are involved when sound waves propagate in a fluid:
the frequency of the sound and the characteristic time of the flow evolution. This
distinction defines the boundary between acoustics and hydrodynamics. It happens in
practice that some physical phenomena overlap this frontier and challenge researchers
from both fields, like shock waves and supersonic hydrodynamics, but also noisy
powerful hydrodynamic turbulence and steady flows induced by intense sound beams:
namely the acoustic streaming.

Since acoustic streaming is generated by sound waves, it is clear that the
hydrodynamic flow pattern depends on a variety of factors influencing the sound
field such as the boundary conditions and the acoustic attenuation coefficient. Both of
these aspects have often been overlooked in recent studies on the acoustic streaming
induced by surface acoustic waves in sessile droplets. On the one hand, the boundary
conditions are commonly reduced to an unbounded liquid medium which fails to
account for the multiple reflections of the wave in the droplet. On the other hand,
the attenuation of the surface wave radiating in the fluid is regularly mistaken as the
streaming source term instead of the acoustic viscous damping. In order to clarify
the physical process that gives rise to acoustic streaming, it is thus essential to
build a model that captures both the acoustic and the hydrodynamic features of the
actual experiment. In this paper, we observe and simulate the acoustic streaming
generated by surface acoustic waves radiating in droplets much larger than the
acoustic wavelength. The numerical model reproduces faithfully the experimental flow
patterns, and unveils the acoustic field in the droplet.

Acoustic streaming induced by surface acoustic waves involves researchers from
a variety of fields ranging from acoustics to hydrodynamics and microelectronics.
In order to keep the paper accessible to the broadest audience, we provide some
elementary background that might seem obvious to the experts of the field. The
following introduction is divided into four sections to allow the reader to skip
whichever field they are already familiar with. The sections deal with nonlinear
acoustics, the applications of micro-acoustofluidics, the hydrodynamics viewpoint on
the streaming in sessile droplets and finally the acoustics viewpoint.

1.2. Foundations of acoustic streaming
Thanks to the pioneering works of Rayleigh (1884) and Eckart (1948), it is now
well established that acoustic streaming reveals the momentum transfer from the
wave to the fluid by sound attenuation. Most authors (Nyborg 1953; Westervelt 1953;
Lighthill 1978; Mitome 1998; Riley 1998, 2001; Wiklund 2012) distinguish two
types of streaming depending on whether the damping arises from shear stress on
the walls (boundary layer-driven streaming) or from viscous dissipation in the bulk
(Eckart streaming). Rayleigh (1915) has proven that the former acts as an effective
slip velocity outside a thin Stokes boundary layer (see Rednikov & Sadhal (2011) for
a generalization to arbitrary surfaces and acoustic fields), while Lighthill (1978) has
provided a convenient body force expression to account for the bulk streaming. In
what follows, we will treat exclusively the case of Eckart (bulk) streaming, which is
relevant for geometries much larger than the acoustic wavelength (Vanneste & Bühler
2011). Quickly following Eckart’s theoretical work (Eckart 1948), Liebermann (1949)
experimentally evidenced that the attenuation of freely propagating sound waves was
mostly due to the bulk viscosity, a physical quantity accounting for both hard sphere
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FIGURE 1. (Colour online) A sessile droplet rests on a piezoelectric substrate. (a)
Acoustics. A SAW propagating at the surface of the solid radiates in the liquid. It is
reflected a great number of times at the liquid–solid and liquid–air interfaces, resulting in a
complex standing wave pattern. (b) Hydrodynamics. As the wave propagates in the liquid,
it dissipates some momentum which generates a steady flow with large-scale eddies.

collision and chemical relaxation. As emphasized by Eckart (1948), the hydrodynamic
forcing term is proportional to the sound attenuation, which itself varies linearly with
the viscosity.

Here appears the great paradox of acoustic streaming: although the momentum
source for the fluid is proportional to the viscosity, it mostly dissipates this momentum
through shear stress, such that the streaming velocity is expected to be independent
of viscosity. Experimentally, it has been confirmed that acoustic streaming occurs for
a wide range of fluids from superfluid Helium (Rooney, Smith & Carey 1982) to
very viscous polymers (Mitome 1998). This assertion must nevertheless be tempered
since acoustic streaming is generated by the acoustic field, which itself depends on
the attenuation coefficient in the medium and thus on the viscosity.

1.3. Applications of nonlinear acoustics to microfluidics
High frequency sound waves and high-viscosity liquids are routinely used in
microfluidics (see e.g. Friend & Yeo 2011; Wiklund 2012). Indeed, contactless
robust fluid actuation for a wide range of liquids is a primary requirement for this
rising field, and miniaturized acoustical sources such as interdigitated transducers
are readily available. Therefore, a problem of considerable interest is the acoustic
streaming induced by surface acoustic waves (SAW) in sessile droplets, as illustrated
in figure 1. An oscillating voltage applied to an interdigitated transducer (IDT)
generates a SAW at the surface of a piezoelectric medium. This wave propagates
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Dependence of acoustic streaming in droplets on caustics and viscosity 387

almost unattenuated until it meets a liquid droplet. As it moves below the liquid,
the surface oscillations are damped by the inertial stress of the fluid and the surface
wave gradually leaks in the liquid, generating bulk acoustic waves.

For increasing SAW power, one can achieve droplet mixing (Sritharan et al.
2006; Frommelt et al. 2008) or centrifugation (Bourquin et al. 2010), displacement
(Wixforth et al. 2004; Alzuaga, Manceau & Bastien 2005; Renaudin et al. 2006;
Brunet et al. 2010; Baudoin et al. 2012; Fukaya & Kondoh 2015), division (Zhang,
Zha & Fu 2013; Collignon, Friend & Yeo 2015; Riaud et al. 2016), heating (Kondoh
et al. 2005; Beyssen et al. 2006; Ito et al. 2007; Kondoh et al. 2009; Reboud et al.
2012; Roux-Marchand et al. 2012, 2015; Shilton et al. 2015) and finally jetting
(Shiokawa, Matsui & Ueda 1990; Tan, Friend & Yeo 2009) or atomization (Qi,
Yeo & Friend 2008, Blamey, Yeo & Friend 2013) depending on the droplet size
(Tan et al. 2009). These phenomena are still only partially understood and the
underlying physics is sometimes subject to some controversy. For instance, most
authors agree that the wave momentum is transferred to the fluid, but some argue
that the momentum transfer happens in the bulk by acoustic streaming (Schindler,
Talkner & Hänggi 2006; Tan et al. 2009; Alghane et al. 2012), while others point out
that sound reflections on a fluid interface also generates a measurable surface stress
(Hertz & Mende 1939) called acoustic radiation pressure (Mitome 1998; Masanori
& Toshitaka 2001; Stanzial, Bonsi & Schiffrer 2003) which could contribute to the
aforementioned effects (Alzuaga et al. 2005; Brunet et al. 2010). However, there
is a general consensus on the droplet mixing which can happen without significant
free-surface deformation and is therefore widely attributed to acoustic streaming.

1.4. Studies of the hydrodynamic flow in droplets exposed to surface acoustic waves
In the hydrodynamic viewpoint, acoustic streaming is of considerable interest since it
allows contactless generation of vorticity and fluid mixing, especially in microfluidics
(Friend & Yeo 2011; Wiklund 2012). It was also proposed by Blamey et al. (2013)
that the transition of acoustic streaming from laminar to turbulent flow (Stuart
streaming) could be responsible for the atomization of droplets exposed to high
power surface acoustic waves. Conversely, the acoustic community dedicated little
work to this specific phenomenon. Consequently, although the propagation of surface
acoustic waves is extremely well understood (see e.g. Royer & Dieulesaint 1996,
1999), the intermediate step between the leaky SAW radiation and the hydrodynamic
flow remains unclear, and the droplet appears essentially as an acoustical black box
where the actual acoustic field is unknown.

Hydrodynamic studies on droplet acoustic streaming at megahertz frequencies
started in 1988 with the Shiokawa, Matsui & Toyosaka (1988), Shiokawa et al.
(1990) seminal papers. They performed several experiments of droplet displacement,
jetting and atomization using surface acoustic waves at 50 MHz. In these papers,
Shiokawa and coworkers lay down a simplified model that will serve as a theoretical
foundation for several subsequent studies. First, Shiokawa et al. assumed that the
acoustic field in water droplets could be reduced to the incident field and proposed
to neglect the internal reflections of the wave. This framework allowed them to use
Nyborg’s expression of the acoustic streaming force in order to compute the order
of magnitude of the acoustic streaming in sessile droplets. Finally, Shiokawa and her
coauthors emphasized that the gigantic attenuation of the leaky SAW beneath the
droplet exceeds by far the viscous attenuation of the same sound wave in the droplet
bulk, see also Cheeke (2002). Thus, their calculations were performed in the inviscid
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approximation for sound waves. Several works were performed in the direct continuity
of Shiokawa’s model (Schindler et al. 2006; Du et al. 2009; Alghane et al. 2011,
2012) until Vanneste & Bühler (2011) pointed out that most numerical studies based
on Shiokawa’s work relied on inviscid formulations of the sound wave equation,
which could not generate vorticity. In other words, Vanneste and Bühler proved
that earlier studies mistakenly relied on the SAW attenuation instead of the viscous
damping to force the acoustic streaming. In order to remedy to the situation, they
developed a rigorous analytical computation of the streaming generated by surface
acoustic waves in a square cavity based on vorticity conservation. In their analysis,
the box was transparent to acoustic waves, which is similar to Shiokawa et al.’s
analysis of neglecting internal reflections. Another important contribution of Vanneste
and Bühler was to prove that the bulk streaming (Eckart streaming) dominates over
the boundary layer streaming and the Stokes drift in the case of cavities much larger
than the wavelength, which is the case for millimetric droplets irradiated by SAW of
frequency larger than 10 MHz.

Thanks to the advance of numerical methods, several models explicitly accounted
for the propagation of the acoustic wave in the droplet, including the viscous damping.
Köster (2007) proposed an algorithm to compute the flow and the surface deformation
of a two-dimensional (2-D) sessile droplet exposed to a surface acoustic wave. Despite
the outstanding nature of the study, Köster’s investigation does not provide any clear
comparison to experimental results and the numerical study is limited to one special
size of droplet excited at one specific frequency. Raghavan, Friend & Yeo (2010)
developed a 2-D model of droplet streaming without fitting parameters. Although
he recovered the correct flow pattern, Raghavan reported fluid velocities an order of
magnitude below what was measured experimentally.

1.5. Studies of the acoustic field in sessile droplets
The acoustic foundations of Shiokawa’s framework were also challenged by Brunet
et al. (2010) and Tan et al. (2010) who tested the validity of the reflection-free
droplet assumption. In these works, the authors simulated the acoustic field in a
two-dimensional droplet both in the frequency domain with a rigid interface (Brunet
et al.) and in the time domain to account for surface deformations (Tan et al.). Both
studies showed that the acoustic field in water droplets exposed to 20 MHz SAW
had a complex spatial structure and showed little coherent pattern. Nevertheless, for
attenuation rates approximately 100 times larger than that of water, the incident wave
accounted for most of the acoustic field (Brunet et al. 2010). Another investigation
performed by Quintero & Simonetti (2013) at 3.5 MHz revealed the acoustic field
in three dimensions in the low frequency range where the wavelength is comparable
to the droplet size. Again, no clear structure was present. In these three studies,
the knowledge of the acoustic field was not used to proceed to the next step
and compute the streaming forcing term. Recently, Rezk, Yeo & Friend (2014)
simulated the acoustic field and the resulting steady poloidal flow in sessile droplets
exposed to focused SAW with a circular symmetry at frequencies up to 250 MHz.
The simulations gave an excellent agreement with experimental observations of the
hydrodynamic flow. Nevertheless, this model was only applied to axisymmetric SAW
excitation, whereas most of the acoustic streaming experiments are conducted with
plane waves and therefore require a fully three-dimensional method which has not
been implemented so far.

At present, our understanding of the acoustic streaming in sessile droplets faces
the three following issues. What is the acoustic field in the droplet? Since we infer
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the field to exhibit spatio-temporal complexity, how does it generates some coherent
flow pattern? How do we compute this flow while ensuring vorticity conservation?
In the continuity of Brunet et al. (2010), we investigate the influence of the liquid
viscosity to understand the discrepancy between Shiokawa et al.’s hypothesis of a non-
reflective free surface and the aforementioned experimental results. In § 2, we present
an experimental study of acoustic streaming in droplets of different viscosities, and
show a transition of flow pattern from four to two eddies for increasing viscosity. This
contradiction with the inviscid droplet hypothesis of Shiokawa appeals for an in-depth
review of the acoustic streaming theoretical foundations, exposed in § 3. We single out
the dominant inviscid term that does not contribute to vorticity creation and extract
Lighthill’s acoustic streaming driving force (Lighthill 1978). We use this expression in
§ 4, where we detail a numerical algorithm to compute the acoustic field in the droplet,
deduce the streaming forcing term and then reproduce the 3-D flow pattern observed
experimentally by spatial filtering of the streaming source term (SSSF). Section 5
opens a discussion on the flow topology by comparing numerical and experimental
results. We show that simple arguments of geometrical acoustics and sound attenuation
can provide a qualitative prediction of the flow topology. Finally, in § 6, we recast the
droplet acoustic streaming as a problem involving only two dimensionless parameters.
Using the similitude principle, we establish an empirical correlation between these
parameters and the average velocity of the flow in the droplet. These dimensionless
numbers allow us to extrapolate our results to many fluids and actuation frequencies.
Provided the wavelength is much shorter than the droplet size, our approach (not
restricted to plane waves) allows simulating droplet streaming at low SAW actuation
frequency and then extrapolation of the results to higher frequencies. This considerably
alleviates memory requirements to simulate acoustic streaming in complex geometries.

2. Experiments
2.1. Experimental set-up

Surface acoustic waves were generated at the surface of an X-cut lithium niobate
piezoelectric substrate in the crystallographic Z-direction by interdigitated electrodes,
with a spatial period of 175 µm corresponding to a resonant frequency of 19.9 MHz
(the sound speed in this direction is 3484 m s�1, see Campbell & Jones (1970)). In
practice, the best actuation efficiency was obtained at 20.37 MHz which was used
as the driving frequency for all experiments. A water–glycerol droplet of 12.5 µl
was placed on the substrate initially treated with OTS (octadecyltrichlorosilane)
self-assembled monolayer (SAM) to obtain hydrophobic wetting properties (see
figure 1). The fraction of glycerol in the mixture modifies the shear and bulk
viscosities with relatively weak variations of the other relevant parameters such as
surface tension and contact angle (physical data are shown in table 1). Spherical
latex beads of 10 µm diameter coated with fluorescent dyes (ThermoScientific) were
dispersed in the droplet prior to experiments to visualize its inner flow. We minimized
the droplet evaporation by deporting the light source with an optical fibre, using the
cold part of the optical spectrum and restraining the experiment duration below
2 min. The images were acquired via an Hamamatsu camera (4 megapixels) and
quantitative velocity magnitude was measured using the particle image velocimetry
(PIV) module of ImageJ (https://sites.google.com/site/qingzongtseng/piv). Additional
details on the PIV experiment are provided in the supplemental material available at
https://doi.org/10.1017/jfm.2017.178. We restricted the power of the SAW to a few
tens of picometres to minimize the droplet deformation, which are observed at much
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wglyc. xglyc. µ (mPa s) c0 (m s�1) ⇢0 (kg m�3) b = 4/3 + ⇠/µ ✓c (deg) ⇤ = D!2⌫b
c3

Reac = ⇢0c2
0

!µb
0.00 0.00 0.892 1510 1000 4.53 88 0.068 4490
0.10 0.02 1.15 1540 1020 4.45 87 0.080 3716
0.20 0.05 1.52 1580 1050 4.34 86 0.095 3162
0.30 0.08 2.12 1630 1070 4.22 85 0.11 2528
0.40 0.11 3.13 1680 1100 4.04 84 0.15 1953
0.50 0.16 5.00 1720 1130 3.75 83 0.20 1418
0.60 0.23 8.85 1780 1150 3.49 82 0.29 938
0.70 0.31 18.1 1830 1180 3.34 81 0.52 520
0.80 0.44 45.4 1880 1210 3.03 80 1.0 247
0.90 0.64 156 1910 1230 2.50 78 2.80 91

cs = 3484 m s�1, ⇢s = 4650 kg m�3, 1.7 < ↵D = 3.7 ⇥ 10�9!⇢0D < 2.3

TABLE 1. Physical properties of lithium niobate and water–glycerol mixtures at 25 �C for different mass fraction wglyc. and thus volume
fraction xglyc. of glycerol. Data for the viscosity µ of the water–glycerol mixture are extracted from Cheng (2008), while the sound speed
c0, the density ⇢0, the bulk viscosity ⇠ (and thus the coefficient b) are extracted from Slie, Donfor & Litovitz (1966). The sound speed cs
of Rayleigh waves in X-cut niobate lithium in the Z-direction is extracted from Campbell & Jones (1970) and the density ⇢s is available
in handbooks. Finally ⇤ is a dimensionless parameter characterizing the transmission efficiency of the Rayleigh wave to the liquid. Droplet
base diameter can be computed as follows: Dbase = 2 sin(✓c)[3V/(p(2 � 3 cos(✓c) + cos3(✓c)))]1/3. Accordingly, all droplet diameters in our
experiments range between 3.7 and 4.0 mm.
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(a) (b) (c)

(d ) (e) ( f )

x
y

FIGURE 2. Flow visualization of a 12.5 µl droplet from below, at various glycerol
concentration. The SAW propagates from left to right with an amplitude u0 = 62 ± 1 pm.
As the viscosity increases, one remarks the progressive transition from a four-vortex to a
two-vortex flow structure. (a) Pure water; (b) 30 wt.% glycerol; (c) 40 wt.% glycerol; (d)
60 wt.% glycerol; (e) 80 wt.% glycerol; ( f ) 90 wt.% glycerol.

higher amplitude (Schindler et al. 2006; Brunet et al. 2010; Alghane et al. 2012;
Baudoin et al. 2012). The substrate vertical amplitude of vibration on the central
finger of the IDT was calibrated for the range of actuation power used in the present
experiments with a laser Doppler vibrometer (SH130, B.M. Industries).

Finally, the droplets inner flow was visualized from below (to avoid optical
aberrations by the drop surface) with a Hamamatsu high resolution camera mounted
on an inverted microscope (Olympus IX71). The depth of field is estimated to be
16 µm for objects of the size of a pixel when using the 4⇥ magnification objective
with this inverted microscope, allowing the visualization of a droplet cross-section.
The vertical position of focus plane was adjusted by eye as close as possible to half
of the drop height, although this condition is achieved within a few per cent accuracy.
After turning on the SAW generator, we waited for the droplet flow pattern to reach
a steady state. This duration varied widely with viscosity, from seconds for water
droplets up to minute for the most viscous mixtures (as expected from theoretical
analysis). Figure 2 reproduces a few examples of such particles trajectories viewed
from below, obtained at increasing viscosities from (a) to ( f ). The streamlines are
obtained by a simple superposition of successive images.

The velocity field in the representative cut was extracted from the pictures of the
flow streams presented above by using the PIV ImageJ plugin (see figure 3). The
analysis was further refined by discarding the 5 % least reliable velocity vectors. (The
reliability criteria was the magnitude of the Laplacian of the velocity field.) We made
sure that the system had reached steady state by waiting until the space-averaged
magnitude of the velocity field did not vary by more than 10 % between two different
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(a) (b)

(c) (d)

x

y

FIGURE 3. (Colour online) Experimental velocity field from below, at various viscosities.
The SAWs propagate from left to right with an amplitude u0 ' 62 pm.Vdroplet = 12.5 µl.
As the viscosity increases, one remarks the progressive transition from a four-vortex to
a two-vortex flow structure. (a) 10 wt.% glycerol (Umax ' 180 µm s�1); (b) 30 wt.%
glycerol (Umax ' 100 µm s�1); (c) 40 wt.% glycerol (Umax ' 70 µm s�1); (d) 90 wt.%
glycerol (Umax ' 10 µm s�1). The arrow length is indicative of the velocity magnitude
for each experiment.

time intervals. Each couple of images provides a flow map, and each plot in figure 3
is the average of three different flow maps obtained with the same droplet at steady
state. Then the average velocity was determined by averaging spatially the flow field
in the drop. The streaming pattern being inhomogeneous in space, this space-averaged
flow velocity over one cross-section only gives an order of magnitude of the volume-
averaged velocity. The resulting trend is presented in the discussion section together
with numerical results (see figure 13).

2.2. Results
These experimental results (see figure 2) show unambiguously that the streaming
flow pattern in a droplet excited by SAWs depends on the fluid viscosity. Fluids
of increasing viscosity lead to progressive loss of front/back symmetry (the front
being the side to which the SAW is incident, and the back the opposite side).
The situation at low viscosity (up to 30 wt.% glycerol – figure 2a,b) shows two
pairs of vortices, both at the rear and the front of the drop (with respect to the
direction of wave propagation). As the viscosity increases beyond a few times that
of water (figure 2c,d) the front vortices start shrinking, while at even higher viscosity
(above 80 wt.% glycerol, figure 2e, f ) the front vortices have completely disappeared.
Counterintuitively, complex eddies are observed at the opposite side of the excitation
at the highest viscosity (corresponding to very low Reynolds numbers) (figure 2e, f ).
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The PIV measurements (figure 3, magnitudes are indicated in the caption) show that
larger viscosities (from 1.15 mPa s to 156 mPa s) are associated with a decreasing
velocity magnitude (from 180 µm s�1 to 10 µm s�1).

In order to unveil the underlying physics, we performed a systematic comparison
between models, simulations and experiments of the flow pattern and average velocity
in the drop for different viscosities. In the next sections, we therefore describe an
adequate theory, introduce a numerical method allowing the computation of the 3-D
streaming flow in the drop with dramatically reduced numerical cost and perform a
comparison with experiments to achieve a comprehensive understanding of the whole
process behind the acoustic streaming in sessile droplets.

3. Theory
In this section, we re-establish acoustic streaming governing equations. At first we

introduce a relevant field decomposition into periodic fluctuations (corresponding to
the acoustic wave) and time-averaged terms (corresponding to the acoustic streaming).
Then, from the compressible Navier–Stokes equations, we derive a governing nonlinear
equation for each of these contributions. In the latter a force appears in the form of
a nonlinear combination of acoustic terms, which drives the acoustic streaming and
the acoustic radiation pressure (Gusev & Rudenko 1979; Mitome 1998). This driving
force is recast in the last section as a convenient expression based on the sum of a
conservative force plus a quantity proportional to the Poynting vector.

3.1. Field decomposition
As stated in the introduction, we can resolve each physical quantity f into three
contributions: hydrostatic f0, acoustic f̃1 and hydrodynamic f̄2. They represent
respectively the system at rest (without acoustic field), the oscillating part of
the perturbation induced by sound waves and the time-averaged part of the
perturbation over an acoustic period. In our experiments, acoustic and hydrodynamic
Mach numbers are small. Moreover, solid displacements hardly exceed 0.5 nm,
which restricts acoustic perturbation velocity magnitude to below 10 mm s�1 and
consequently streaming velocities below 1 mm s�1. According to this slow streaming
approximation (Lighthill 1978), the fluid density ⇢ the pressure p and the Eulerian
velocity v, can be expressed as follows:

⇢ = ⇢0 + ⇢̃1 + ⇢̄2, (3.1)
p = p0 + p̃1 + p̄2, (3.2)
vi = ṽ1,i + v̄2,i, (3.3)

v0,i = 0, (3.4)

with i 2 {x, y, z}, f̄2 = h f � f0i, hi the time average, f̃1 = f � f0 � f̄2, h f̃1i = 0, and f̄2 ⌧
f̃1 ⌧ f0. The low Mach numbers assumption gives ṽ1, v̄2 ⌧ c0, with c0 the sound speed
in the fluid at hand. To simplify the notations, the indices 1 and 2 will be omitted in
the following.

3.2. Fundamental equations
The starting point of the derivation is the compressible isentropic Navier–Stokes
equations. These equations are relevant to compute acoustic streaming in liquids since,
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in this case, thermal effects (wave thermal damping, fluid heating) can be neglected
compared to their viscous counterparts (viscous damping, acoustic streaming). Indeed,
thermal effects are proportional to (� � 1), with � the adiabatic index and thus are
very weak in liquids (see e.g. Coulouvrat 1992).

In this case, the mass conservation equation for a fluid reads:

@t⇢ + @i⇢vi = 0, (3.5)

and the momentum conservation equation:

@t⇢vi + @j(⇢vivj) = �@ip + µ@2
jjvi +

⇣µ

3
+ ⇠

⌘
@2

ijvj. (3.6)

In these equations, µ stands for the dynamic viscosity, ⇠ for the bulk viscosity, t for
the time and the indices i and j follow the Einstein summation convention. The second-
order isotropic Taylor expansion of the equation of state reads:

dp = c2
0 d⇢ + 1

2
� d⇢2, (3.7)

with � = @2p/@⇢2|s = Bc2
0/A⇢0. A and B are the first- and second-order coefficients of

the Taylor expansion relating the material pressure to its density. These nonlinearity
coefficients are classically introduced in nonlinear acoustics.

3.3. Time-averaged equations at second order: acoustic steady streaming
If we take the time average of the mass and momentum conservation equations (3.5)
and (3.6) up to second order, and introduce the Poynting vector (also called intensity
vector in the field of acoustics) ⇧i = p̃ṽi, we obtain:

@t⇢̄ + ⇢0@iv̄i +
1
c2

0
@ih⇧ii = 0, (3.8)

and:
@t(⇢0v̄i + 1/c2

0h⇧ii) + ⇢0@jhṽiṽji = �@ip̄ + µ@2
jj v̄i +

⇣µ

3
+ ⇠

⌘
@2

ij v̄j, (3.9)

since ⇧i = c2
0⇢̃ṽi at leading order.

These two equations can be simplified for a large span of fluids and systems using
the following assumptions. First, if we consider the acoustic streaming produced by
bulk acoustic wave (away from boundaries), the third term of the mass conservation
equation (3.8) is proportional at leading order to the bulk viscous dissipation of
the wave energy, which remains weak in most media. This is quantified by the
acoustical Reynolds number Reac which compares the viscous dissipation to inertia or
equivalently the wave attenuation length La = ⇢c3

0/!
2µ(4/3 + ⇠/µ) to the wavelength

�:

Reac = La

�
= ⇢0c2

0

!µ

✓
4/3 + ⇠

µ

◆ .

Except at very high frequency (>1 GHz) or for extremely viscous fluids and high
driving frequencies, the acoustical Reynolds number is generally high (Reac � 1). It
is worth to mention that a quite different Reynolds number could be defined for the
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solenoidal part of the velocity field that results from the high shear rate in the Stokes
boundary layer (Rayleigh 1915; Vanneste & Bühler 2011). In this case, the attenuation
length should be the boundary layer thickness. Although this region represents a tiny
fraction of the droplet size at the acoustical frequencies considered here (thickness
�S = p

2⌫/! ' 0.12 µm for water at 20 MHz up to 1.8 µm for 90 wt.% glycerol
mixture), it may be argued that the boundary layer streaming extends much further
than the Stokes boundary layer itself. However, according to Vanneste & Bühler
(2011) comprehensive calculations in a simplified 2-D geometry, the boundary layer
streaming is negligible compared to the bulk streaming as long as the fluid vessel
size and the SAW attenuation length both greatly exceed the SAW wavelength, which
is the case here. We will therefore only consider the bulk waves which yields a
high acoustical Reynolds number as estimated for the frequency and liquids used in
the present experiments and simulations in table 1. Finally, since the boundary layer
streaming is unimportant here, we also neglect the tangential displacement associated
with the surface acoustic wave (see Vanneste & Bühler (2011) for a comprehensive
analysis).

Moreover, if we consider only steady streaming (stationary flow produced by
acoustic waves), the time derivatives in (3.8) and (3.9) can be cancelled out. We
obtain in this case:

@iv̄i = 0, (3.10)
which amounts to saying that the steady streaming flow is incompressible. Then the
time-averaged momentum conservation equation becomes:

�@ip̄ + µ@2
jj v̄i +Fi = 0, (3.11)

with Fi the Reynolds stress imbalance of the sound wave:

Fi = �h⇢0@j(ṽiṽj)i = �⇢0hṽj@jṽi + ṽi@jṽji. (3.12)

This equation is simply the steady-state Stokes equation driven by a forcing term Fi
resulting from average nonlinear interactions of the acoustic field.

It is worth noting that the derivation of acoustic streaming constitutive equations
follows a similar procedure as the one used for the derivation of the Reynolds-
averaged Navier–Stokes equation in the field of turbulence. It describes how some
strong fluctuating nonlinear terms influence the steady flow (Bühler 2009; Vanneste
& Bühler 2011). Nevertheless, the fundamental differences between the derivation of
the constitutive equations of acoustic streaming and turbulence are (i) that owing to
the weak amplitude of the acoustic field, a perturbation analysis is possible and (ii)
that the source term in the average equations emanates in the former case from the
first-order compressible field, namely the acoustic wave.

3.4. Periodic fluctuations up to second order: nonlinear acoustics

The mass and momentum equations for the periodic fluctuations f̃ up to second order
can be obtained by subtracting the time-averaged equations (3.8) and (3.9) from the
initial Navier–Stokes isentropic equations (3.5) and (3.6):

@t⇢̃ + ⇢0@iṽi = �@ihh⇢̃ṽiii, (3.13)

and:
⇢0@tṽi + @ip̃ � µ@2

jj ṽi �
⇣µ

3
+ ⇠

⌘
@2

ij ṽj = �@thh⇢̃ṽiii � ⇢0@jhh ṽiṽjii, (3.14)

with hh f̃ g̃ii = f̃ g̃ � h f̃ g̃i.
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The left-hand sides of (3.13) and (3.14), along with the equation of state (3.7) at
first order, constitute the linear equations of damped acoustic waves. The right-hand
sides of these equations correspond to nonlinear terms, which modify the propagation
of acoustic waves through energy transfers to harmonic frequencies (2!, 3!, . . .).

If we assume (see previous section) that the acoustical Reynolds number is high
and the acoustical Mach number is small, these equations become at leading order:

@t⇢̃ + ⇢0@iṽi = 0, (3.15)
⇢0@tṽi + @ip̃ = 0, (3.16)

with p̃ = c2
0⇢̃, (3.17)

which amounts to discarding all nonlinear and dissipative effects. From (3.16), we can
infer that the oscillating flow is potential at leading order (ṽi = �@i(�̃), with �̃ the
velocity potential). A simple combination of (3.15) and (3.17): [c2

0 @i (3.15) � @t (3.16)]
with (3.17) yields the celebrated d’Alembert equation:

@2
tt �̃ � c2

0@
2
ii �̃ = 0, (3.18)

with p̃ = ⇢0@t�̃ and ⇢̃ = ⇢0/c2
0@t�̃.

Now, if we do the same combination of equations (3.13), (3.14) and (3.7) but up
to next order in M and 1/Reac, we obtain the Kuznetsov equation (Kuznetsov 1970)
(see e.g. Coulouvrat (1992) for a detailed demonstration with asymptotic analysis):

@2
tt �̃ � c2

0@
2
ii �̃ � µb

⇢0
@t@

2
jj �̃ = @t

✓
B

2Ac2
0
hh(@t�̃)2ii + hh(@i�̃)2ii

◆
, (3.19)

with b = 4/3 + ⇠/µ. Finally in the paraxial approximation (weak diffraction of the
beam), we have the Lighthill–Westervelt equation (@i�̃)2 = (1/c2

0)(@t�̃)2, leading to:

@2
tt �̃ � c2

0@
2
ii �̃ � µb

⇢0
@t@

2
jj �̃ = �

c2
0
@thh(@t�̃)2ii, (3.20)

with � = 1 + B/2A the so-called nonlinear parameter. This equation allows us to
compute the damped nonlinear propagation of acoustic waves.

The question then arises as to whether the nonlinear propagation of the acoustic
wave must be considered to compute the acoustic streaming sources in (3.11)? An
elementary analysis solely based on the order of the nonlinear terms might lead
to the misleading premature conclusion that since acoustic nonlinear terms on the
right-hand side of (3.19) are of second order, their quadratic combination in (3.12)
is of fourth order and thus could be safely neglected when computing the acoustic
streaming. In fact these nonlinear terms are weak but nevertheless cumulative, so they
can play a significant role over a distance called the ‘shock distance’ Ls = c2

0/!�Uac,
which depends on the first-order velocity magnitude Uac. To answer this question
correctly, it must thus be recalled that acoustic streaming is a consequence of the
attenuation of the acoustic wave. This attenuation is proportional to the square of the
acoustic wave frequency !2. Since nonlinear terms in (3.20) induce energy transfers
from the driving frequency to higher harmonics, they promote the dissipation and
thus the acoustic streaming. In an unbounded medium, the streaming enhancement by
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harmonics generation can be quantified by the ratio of the wave attenuation length
La = ⇢0c3

0/!
2µb to the shock distance Ls:

La

Ls
= ⇢0c0�Uac

!µb
. (3.21)

Nonlinear terms in (3.20) can thus be neglected when La/Ls ⌧ 1. In the present
situation, since Uac < 10 mm s�1, the maximum value of this ratio is 10�1 for water
and goes down to 10�3 for water–glycerol mixtures. Moreover, in cavities with
water/air interfaces such as drops, the shock distance must also be compared to the
size of the cavity Lc. Indeed, nonlinear effects are only significant when they are
cumulative. Since it was shown by Tanter et al. (2001) that each wave reflection at
an air–water interface results in the deconstruction of these nonlinear effects, these
latter can only be significant if the characteristic size of the cavity Lc is larger than
the shock distance. Here Lc ⇠ 1 mm while Ls ⇠ 1 m. Consequently, nonlinear terms
can be safely discarded in (3.20) for the analysis and simulation of the present
experiments, leading to the equation of damped acoustic waves:

@2
tt �̃ � c2

0@
2
ii �̃ � µb

⇢0
@t@

2
jj �̃ = 0. (3.22)

3.5. Streaming source term: the hydrodynamic Reynolds stress tensor
In this section we follow the Eckart (1948) and Vanneste & Bühler (2011) guidelines
to analyse the different contributions of the streaming source (3.12). We discard all the
gradient terms that are balanced by a change of static pressure and therefore to do not
contribute to acoustic streaming. This simplification is essential since the magnitude
of the neglected terms is much larger than that of the relevant terms and can lead to
significant numerical error when calculating the flow produced by the acoustic wave.

Since the wave perturbation is irrotational, the first term of the force in (3.12) is
easily integrated and identified as the kinetic energy K= (1/2)⇢0ṽ

2:

⇢0hṽj@jṽii = @ihKi. (3.23)

The second term is computed from the mass conservation equation (3.13) at leading
order:

h⇢0ṽi@jṽji = �hṽi@t⇢̃i = h⇢̃@tṽii, (3.24)

where we used integration by parts to move from the second expression to the third.
Then, if we use the classical vector identity rr · ũ = r2ũ + r ⇥ r ⇥ ũ, the wave
momentum equation (3.14) yields:

h⇢0ṽi@jṽji = �
⌧

⇢̃

⇢0
@ip̃

�
+
✓

4
3
µ + ⇠

◆⌧
⇢̃

⇢0
@2

jj ṽi

�
. (3.25)

Finally, the equation of state (3.7) yields: h(⇢̃/⇢0)@ip̃i = h(c2/2⇢0)@i⇢̃
2i. Consequently,

this term is the gradient of the potential energy of the wave in a linear medium:
⌧

⇢̃

⇢0
@ip̃

�
= @ihVi. (3.26)
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If we combine (3.23), (3.25) and (3.26), we obtain the following expression of the
force Fi (see e.g. Gusev & Rudenko 1979):

Fi = �@ihLi �
✓

4
3
µ + ⇠

◆⌧
⇢̃

⇢0
@2

jj ṽi

�
, (3.27)

with the acoustic Lagrangian L=K�V . We can work out a more practical equation
by substituting the linear undamped wave equation in the viscous term and assuming
an harmonic wave motion:

Fi = �@ihLi + !2⌫b
c4

h⇧ii, (3.28)

with ⌫ = µ/⇢0. The first term derives from a potential and is independent of the bulk
and shear viscosities, and thus of the wave attenuation. Since acoustic streaming relies
on the momentum transfer from the wave mode (irrotational, compressible) to the
viscous mode (solenoidal), through the wave attenuation, this term does not contribute
to the steady flow; it is simply balanced by a hydrostatic pressure gradient. This can
be easily verified by recasting equation (3.11) in the form:

�@ip̄⇤ + µ@2
jj v̄i +F⇤

i = 0, (3.29)

with p̄⇤ = p̄ + hLi and F⇤
i = (!2⌫b/c4)h⇧ii. F⇤

i is related to the wave dissipation
and has a much smaller magnitude than its counterpart hLi. Nevertheless, it is not
potential and hence is the sole source term of acoustic bulk streaming, as emphasized
in Lighthill (1978) and Eckart (1948) studies.

3.6. Final simplified system of equations
We recall briefly here the optimized expressions to simulate the experimentally
observed acoustic streaming in droplets:

acoustic wave: @2
tt �̃ � c2

0@
2
ii �̃ � µb

⇢0
@t@

2
jj �̃ = 0, (3.30)

streaming Stokes flow:

(
@iv̄i = 0,

�@ip̄⇤ + µ@2
jj v̄i +F⇤

i = 0,
(3.31)

acoustic streaming source term: F⇤
i = !2⌫b

c4
h⇧ii. (3.32)

4. Numerical model

As stated in the experimental section, when a highly viscous droplet is exposed to
megahertz surface acoustic wave excitation, the hydrodynamic flow may take up to
tens of seconds to reach steady state. This colossal difference of time scales between
acoustics and hydrodynamics prevents any attempt to compute dynamically the
acoustic streaming in complex 3-D geometries. Instead, we first simulate the acoustic
field and then the hydrodynamic flow, as shown in figure 4. The computation is not
straightforward due to the large discrepancy between the droplet size and the acoustic
wavelength. The acoustic problem is solved in cylindrical geometry to minimize
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Superposition of
the acoustics

Compute the 
incident field

Fourier
transform

Solve the
acoustics

Compute the 
forcing term

Filter our higher
harmonics

Compute the
fluid dynamics

FIGURE 4. Computational method flowchart. White steps were performed with Matlab and
grey steps with Comsol.

memory usage, the incident field being resolved as a sum of the cylindrical functions
by spatial Fourier transform. This allows to compute the three-dimensional acoustic
field through several elementary calculations of acoustic fields in a two-dimensional
geometry with reduced memory requirements. Then, the hydrodynamic flow is
computed with a simplified forcing term reminiscent of large eddy simulation (LES)
which mimics the effect of viscosity to minimize complex momentum source terms.

4.1. Computation of the acoustic field
The acoustic field is computed in the frequency domain. In this case, equation (3.30)
becomes:

@2
ii �̃ + k2�̃ = 0, (4.1)

with:

k2 = k2
0

1 + i/Reac
. (4.2)

Here, k0 =!/c0 is the wavenumber of the unattenuated wave and Reac is the acoustical
Reynolds number (Reac � 1).

The large discrepancy between the droplet size and the acoustic wavelength yields
very large and intensive simulations. For instance, direct 3-D simulation of the
acoustic field on a 32 GB RAM computer with the finite element method only
allows us to simulate 2 mm diameter droplets up to 8 MHz. As shown in the
supplemental material, RAM requirements sharply increase with increasing frequency,
and extrapolation to 20 MHz culminates at 1.0 TB, thus preventing any direct
computation of the acoustic field.

To minimize memory requirements, we took advantage of the droplet rotational
symmetry to reduce the problem to a two-dimensional one. The protocol described in
the following uses Fourier transform to resolve the incident field as a sum of circular

�#
# 

"

��

2�
7 �

!�
��

� 
��

��
�8�

:
 �

��
� 

��
	

�
�C

��
�/

2�
2�

�!
�:

��
##

 "

�C

C
C

 1
/:

0!
72

��
 �

!�
�1

�!
� 

�.
�7

%�
!"

7#)
�2

�"
��

17
��

1�
"�

�#
�#�

1�
��

��
�7

��
2�

��
7��

��

��

��
��

��
,

/D
��

��
��

/#
��

�

��


�
��

�"
$0

8�
1#

�#�
�#�

��
�/

:
0!

72
��

��
�!

��
#�

!:
"�

��
�$

"�
��/

%/
7�/

0�
��

/#
��

##
 "


�C
C

C
 1

/:
0!

72
��

 �
!�

�1
�!

��
#�

!:
" 

https://doi.org/10.1017/jfm.2017.178
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


400 A. Riaud, M. Baudoin, O. Bou Matar, J.-L. Thomas and P. Brunet

harmonics, solves each of them separately and then reconstructs the field thanks to
the superposition principle. In this way, the complete problem is decomposed into
subproblems with low memory requirements which can be computed in parallel. This
method thus ensures an optimal matching with the capacity of the computer (number
of cores, memory).

4.1.1. Method: spatial Fourier transform
Working in cylindrical coordinates, Fourier transform allows resolving of any

function into a convenient weighted sum of complex exponentials:

f (r, ✓) =
+1X

l=�1
fl(r)eil✓ , (4.3)

with

fl(r) = 1
2p

Z +p

�p

f (r, ✓)e�il✓ d✓ . (4.4)

Here, the only non-axisymmetric boundary condition is the normal displacement ũ of
the substrate due to the incident SAW. It is projected into Fourier harmonics:

ũl(r) = 1
2p

Z +p

�p

ũ(r, ✓)e�il✓ d✓ . (4.5)

In practice, the value of l can be restricted. Indeed, lmax ' pD/�s corresponds to
the maximum number of wavelengths �s the input surface acoustic wave can travel
along the perimeter of the droplet, where D is the droplet diameter. We computed
this integral for l 2 [0, 2lmax], l being an integer. The value of ũ depends on the
incident wave. Neglecting diffraction, the SAW magnitude decreases exponentially as
soon as it meets the droplet interface at a given point x0. The attenuation rate ↵ is
provided for instance by Campbell & Jones (1970). For a given point M(x, y), the
propagation length beneath the droplet is given by x � x0(y) (see figure 5). The vertical
displacement field ũ at the droplet base is then given by Shiokawa et al. (1990):

ũ = u0 exp(�iksx) exp(�↵(x � x0(y))), (4.6)

x0(y) = �
p

R2 � y2, (4.7)
↵ = ↵0 ln(10)F/20, (4.8)

where F is the SAW frequency in Hz, u0 is the magnitude of the acoustic perturbation
displacement and ↵0 the attenuation coefficient (in s m�1) ↵0 ' 2.0 ⇥ 10�7 ⇥ ⇢0. We
computed ↵0 from the value given by Campbell & Jones (1970) in the case of water
loading (0.2 dB MHz�1 cm�1).

We then solve all variables in the form: p̃(r, ✓ , z)= p̃l(r, z)eil✓ , ṽj(r, ✓ , z)= ṽj,l(r, z)eil✓

with j either r, ✓ , z. Equation (4.1) becomes:

k2p̃ = �1
r
@r(r@rp̃) � 1

r2
@2

✓✓ p̃ � @2
zzp̃, (4.9)

which can be re-cast using the axisymmetric variables:
✓

k2 � l2

r2

◆
p̃l = �@2

rrp̃l � @2
zzp̃l �

1
r
@rp̃l. (4.10)
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0.22R

Incident SAW

 0.3

0.4

 0.6

0.8

 0.5

0.7

 0.9

1.0

x

y

FIGURE 5. (Colour online) Model of the incident leaky SAW. Colours are indicative of
the SAW magnitude. At 20 MHz and for a 12.5 µl water droplet (2R = 3.7 mm), the
incident SAW vertical displacement ũ drops by 80 % as it propagates beneath the droplet.

This equation is solved with a finite element method by the commercial solver
COMSOL 4.3b. (The default partial differential equation interface for axisymmetric
systems does not include the last right-hand term of (4.10).) The boundary condition
at the liquid–air interface reads:

p̃l = 0. (4.11)

At the solid liquid interface, we enforce an impedance boundary condition with the
source term computed from (4.5):

@zp̃l = ⇢0!
2ũl � i

!⇢0

Zs
p̃l, (4.12)

where Zs = ⇢scs is the acoustic impedance of the solid. (This expression is exact
only for plane waves with normal incidence falling on an isotropic unbounded solid
medium. Nevertheless, the agreement of our simulations with experimental results was
equally good at low attenuation (where this boundary condition might have played a
role) and at high enough viscosity (where this boundary condition is irrelevant since
the wave is attenuated even before bouncing back to the solid).) The solution p̃ can
then be reconstructed thanks to the linearity of the equations:

p̃(r, ✓ , z) =
+1X

�1
p̃leil✓ , (4.13)

and the velocity field can be reconstructed in a similar fashion described in
appendix A. Thus, the acoustic field calculation can be summed up as follows:
we start by computing the incident wave using (4.6)–(4.8), then its Fourier transform
as given by (4.5). We combine these data and boundary conditions (4.11), (4.12) with
the wave equation (4.10) to obtain the acoustic field for each individual harmonic.
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Finally, the total field is reconstructed using (A 7), (A 8). The algorithms ensuring the
azimuthal Fourier transform were validated carefully by comparing the acoustic field
in droplets exposed to 6 MHz SAWs as computed by a direct finite element model
and by the Fourier method (figures available in supplemental material).

4.1.2. Resulting acoustical field in the droplet
To the best of our knowledge, the current computation of the acoustic field in a

3-D sessile droplet involves frequencies an order of magnitude above the only other
work published so far by Quintero & Simonetti (2013). As a result, it is significantly
different and we will dedicate a few lines to detail the key features of this field.

In figure 6, we show the acoustic field in a sessile water droplet excited by a
20 MHz SAW. The acoustic pressure (6a) appears with two caustics superimposed on
a quasi-random background field. The incident wave is overwhelmed by the numerous
reflections on the droplet surface. The two caustics are much more pronounced than
what is found in the two-dimensional analogue shown in Brunet et al. (2010),
probably due to the increased ray convergence in three dimensions. These caustics
show no symmetry axis within the x–z plane and are therefore structurally stable
under the assumption that the droplet contact line is not pinned (Berry 1976).
This legitimates a posteriori the validity of using hemispherical geometry to model
droplets slightly flattened by gravity (De Gennes, Brochard-Wyart & Quéré 2013).
The Lagrangian of the acoustic field (figure 6b) is mostly focused along the two
caustics. Its large magnitude indicates that the acoustic field is not even remotely
related to plane waves. The energy of the acoustic field (figure 6c) clearly shows
the predominance of the caustics. The angle of this concentration of energy matches
the Rayleigh refraction angle and the symmetry shows the stability of this particular
acoustic ray. Finally, the Poynting vector (figure 6d) is similar to the energy density
and the Lagrangian, except that its divergence is almost zero in weakly attenuating
media, and it gives some orientation to the flow forcing that is consistent with the
experiment.

In figure 7, we display the radiation patterns obtained in 90 wt.% glycerol droplets.
At such high viscosity, the pressure field becomes less symmetrical. Indeed, the
incident wave is attenuated faster and hence undergoes less reflections at the droplet
surface. Similarly to the low viscosity case, the acoustic power flow is concentrated
in the meridian x–z plane as shown in figure 8. The ray diameter is approximately the
diffraction limit �/2 (figure 7). The Rayleigh radiation angle appears more clearly at
higher dissipation, and the wave pattern loses its front–back symmetry. Remarkably,
the Poynting vector becomes completely asymmetrical and forces the flow only on
the right side of the droplet. We will detail the consequences of this change on the
resulting flow pattern in the next section.

Since the caustics play a major role in driving the droplet internal flow, we used
geometrical acoustics to trace their origin. We simulated the propagation of multiple
rays originating from the solid surface and propagating along the Rayleigh angle.
These rays travel freely in the liquid volume but are reflected at the air–liquid and
solid–liquid interfaces. We can then distinguish two types of rays depending on
their mean free path. The rays with the shortest mean free path (figure 9a,c,e) are
guided by the droplet surface, whereas the rays with the longest mean free path
(b,d, f ) propagate in the droplet volume. The snapshots in figure 9(a,b) represent
the wave after traveling approximately 1.6 droplet radii. At this stage, surface rays
form a surface caustic tangential to the air–liquid interface, whereas volume rays
form a volume caustic normal to the interface. As suggested by one referee, we
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FIGURE 6. (Colour online) Meridian cross-section of the acoustic field in a water droplet
excited by a 20 MHz acoustic field. (a) Acoustic pressure p̃. p̃max = 40 kPa. (b) Average
Lagrangian density hLi. �0.27 J < hLi < 0.020 J m�3. (c) Average energy density hEi =
hK + Vi. hEimax = 0.31 J m�3. (d) Poynting vector. kh⇧ikmax = 300 W m�2. Droplet
volume is 12.5 µl, base diameter is 3.7 mm. The incident wave comes from the left with
a vertical displacement of 10 pm.

allowed the wave to travel up to 40 times the droplet radius. Unexpectedly, the
surface rays follow stable paths along the droplet surface (see figure 9c,d) and
maintain the same two caustics over a large number of periodic trajectories (orbits).
Contrasting with the clean and periodic pattern of the surface rays, the volume rays
yield a more chaotic arrangement. Interestingly, periodic echoes from sessile droplets
have been observed before by Quintero & Simonetti (2013), but were attributed to
pseudo-Scholte waves propagating along the droplet contact line. The orbits observed
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FIGURE 7. (Colour online) Meridian cross-section of the acoustic field in a 90 wt.%
glycerol droplet excited by a 20 MHz acoustic field. (a) Acoustic pressure p̃max = 16.5 kPa.
(b) Poynting vector. kh⇧ikmax = 25 W m�2 Droplet volume is 12.5 µl, base diameter is
4.0 mm. The incident wave comes from the left with an amplitude of 10 pm.

xy

z

0

12.5

25.0

FIGURE 8. (Colour online) Poynting vector in a 90 wt.% glycerol droplet excited by a
20 MHz acoustic field. kh⇧ikmax = 25 W m�2 Droplet volume is 12.5 µl, base diameter
is 4.0 mm. The incident wave propagates along the x axis (from left to right) with an
amplitude of 10 pm.

here were not considered in Quintero et al. investigation and have a period compatible
with the experimental echo. In figure 9(g,h), the density of rays faithfully reproduces
the patterns observed in low-viscosity droplets. In the high-viscosity case, the acoustic
rays attenuate before reaching the caustics at the back, which leads to the observed
loss of symmetry.

4.2. Computation of the resulting flow
4.2.1. Direct numerical simulation (DNS)

The flow is computed with (3.31) and (3.32). These equations are combined with
the no-slip boundary conditions at the solid–liquid interface and shear-free boundary
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FIGURE 9. (Colour online) Surface (a,c,e,g) and volume (b,d,e,h) caustics deduced from
geometrical acoustics. Surface caustics focus tangentially to the droplet surface whereas
volume caustics focus orthogonally to the surface. The snapshots are taken after different
acoustic path length: (a,b) 1.6 droplet radii, (c–h) 40 droplet radii; (g,h) depict the beam
density. One unit volume is r3/106. The small mean free path caustics (a,c,e,g) follow
periodical orbits along the droplet surface whereas large mean free path caustics (b,d,e,h)
quickly show a more erratic behaviour. Animations of these trajectories are available in
supplemental material.

condition at the air–liquid interface to perform the direct numerical simulation (DNS)
of droplet acoustic streaming. DNS is a simulation from first principles and easy to
implement.
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The major shortcoming of DNS is the extensive use of memory. Indeed, the
Poynting vector is a second-order quantity and has a typical variation length scale of
�/2. Consequently, DNS becomes computationally prohibitive for frequencies above
6 MHz. In the supplemental material, we report the memory required to simulate
droplets exposed to SAW radiations with frequencies up to 8 MHz. Extrapolation to
20 MHz indicates that up to 580 GB of RAM would be necessary to perform the
DNS simulation of our experiments.

4.2.2. Streaming source spatial filtering
In the field of turbulence, energy is accumulated and transported by large flow

patterns but is dissipated only by the smallest eddies. The gigantic difference of
length scale all along this energy cascade is a major issue. A well-established method
called LES allows computation of turbulence on relatively coarse grids that account
for subgrid-scale (SGS) dynamics through a SGS model (see e.g. Deardorff 1970;
Pope 2004; Bou-Zeid 2015). The case of acoustic streaming appears as a reverse
situation wherein a large-scale flow (the acoustic streaming) emerges from small-scale
fluctuations (the acoustic wave). The SSSF method presented in this section relies
on the fact that the small-scale variations of the streaming source term F⇤ do not
contribute to the flow since they are filtered by the fluid viscosity. Indeed, the acoustic
streaming under investigation is slow and laminar, yielding a linear equation with a
momentum source term. It is then interesting to consider the Fourier transform of the
velocity field. We can match each wavenumber of the flow field with a (possibly null)
forcing term in order to solve each equation independently. It is then straightforward
to notice that higher wavenumbers are filtered out by the Laplacian operator of the
viscosity (decreasing in 1/k2). In this regard, this SSSF model differs significantly
from LES: in the former, smaller scales are sources of momentum and dissipation
happens at larger scales, whereas in the latter, smaller scales act as momentum sinks
because large-scale flows dissipate little energy.

Such filtering enables us to use grid cell sizes for the flow computation larger than
the acoustic wavelength and thus considerably reduces the computational requirements
for the resolution of the flow problem. It is important to note that since we work in the
small Reynolds number regime, the characteristic length scale of the flow is entirely
dictated by the streaming source term and the boundary conditions (no additional scale
emerges from the flow itself like in the case of turbulent flows). The filtered source
term F⇤ is obtained in the real space from the convolution product with the filtering
function H(x, y, z):

F⇤ = f ⇤H, (4.14)

where the filtering function H(x, y, z) is defined from the filter transfer function
H(kx, ky, kz) according to the formula:

H(x, y, z) =
Z

S
H(kx, ky, kz)eikxx+ikyy+ikzz dS, (4.15)

with S the reciprocal space, H(kx, ky, kz)= 1 when k2
x + k2

y + k2
z < k2

c and zero otherwise,
and kc is the critical wavenumber of the filtered flow structures. We choose the critical
wavenumber kc as half the acoustical wavenumber in the fluid at working frequency.
Indeed, the acoustic forcing term is the product of two acoustic quantities, which
halves the spatial period. The exact choice of kc = k/2 is somewhat arbitrary provided
kc is below 2k and larger than 2p/L, where L is the typical scale of the feature to
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be observed. This assertion was validated for various 0 < L < D/40, and results are
provided in supplemental material.

Consequently, the equations solved with the SSSF method are simply:

@iv̄i = 0, (4.16)
�@ip̄⇤ + µ@2

jj v̄i +F⇤
i = 0. (4.17)

In the next section, we will show that the flow patterns computed from the DNS and
the SSSF method agree qualitatively and quantitatively. Hence, in the remaining part
of the paper all the simulations at 20 MHz will be performed with the SSSF method
to overcome hardware limitations.

4.3. Results
The results of the simulation are presented from the most technical aspects to the
most physical ones. First, we compare the flow pattern as given by the DNS and
the SSSF method, and then we show the physical results relevant to the experimental
study. More technical details are given in the supplemental material where we expose
the memory requirements of direct methods versus the numerical recipes introduced
previously.

4.3.1. Comparison of DNS and SSSF
SSSF reduces memory requirements by discarding the high spatial harmonics of

the streaming source term. In this section, we evaluate the accuracy of this approach
by comparing the flow field given by the DNS and the SSSF. The test case is the
acoustic streaming in a 2 mm diameter sessile water droplet exposed to 6 MHz SAW
radiations with an amplitude of 10 nm.

In figure 10, we display the flow fields computed by DNS and SSSF in the
meridian plane of the droplet. The flow patterns are very similar, despite the large
difference of memory requirements (2 GB for the SSSF, 10 GB for the DNS). This
illustrates the ability of SSSF to show a convergent behaviour even for very rough
grids. In order to be more quantitative, we computed the average flow speed in the
droplet with DNS and SSSF for 9 degrees of grid refinements (minimum element
size l = �/n, n 2 {1 . . . 9}). Results shown in figure 11 were analysed by nonlinear
curve fitting. Accordingly, the DNS (SSSF) converges towards hV1i = 3.1 mm s�1

(hV1i= 2.6 mm s�1) at a rate in O(N1/3) (O(N1/4)). (We attribute the slight difference
of asymptotic value of hVi (approximately 17 %) between DNS and SSSF to minor
differences (8 %) in the acoustic field depending on whether they were computed by
DNS or circular Fourier transform decomposition as described in § 4.1.1.) Importantly,
DNS starts converging only after the number of grid elements has exceeded 10 000 as
testified by the outlier on the left of the graph in figure 11, whereas SSSF consistently
follows its convergence trend even for a such a rough grid.

4.3.2. Comparison with experiments
In the previous sections, we have developed and characterized a numerical algorithm

to compute the acoustic streaming in large cavities compared to the wavelength. We
now apply it to sessile droplets of various viscosities exposed to 20 MHz SAW
radiation and compare the results to experiments presented in § 2. Results are shown
in figure 12.

Similarly to figure 2, the droplet flow pattern progressively switches from four
eddies to two eddies. The agreement is not only qualitative but also quantitative as
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0 0.5 1.0

x

z

(a)

(b)

DNS

SSSF

FIGURE 10. (Colour online) Meridian cross-section of the hydrodynamic flow pattern in
a water droplet excited by a 6 MHz acoustic field. (a) DNS on a fine grid (311 000
elements). (b) Simulation with the SSSF method on a much coarser grid (11 090
elements). The velocity magnitude is indicated in grey scale, darker greys represent
larger velocities. The flow patterns agree qualitatively well despite some mismatch on
the velocity magnitude (Umax = 30 mm s�1 for DNS versus 19 mm s�1 for SSSF). This
discrepancy is discussed later in the text. Droplet contact angle ✓c is 100�, and its base
radius is 0.98 mm (↵D = 0.27, ⇤ = 0.004).

shown in figure 13 where we plot the average flow speed in the droplet versus the
liquid viscosity. In this curve, the adjustable parameter was the solid displacement
magnitude. Linear regression gives 44 pm which compares well to the 62 pm
measured with a Doppler-shift interferometer (SH130, B.M. Industries). In order to
segregate viscosity as the dominant factor for the change of velocity, we compare the
experiment to two scenarios. In the first one, we implement all real values of physical
quantities in the numerical model for the different water–glycerol mixtures (table 1)
whereas the second one keeps the physical properties of water for all quantities
(contact angle, density, sound speed) except for the viscosity which is set to the real
water–glycerol system, yielding to idealized comparative situations where only the
viscosity varies. The excellent agreement between the experiment and the realistic
simulation validates our numerical model. More importantly, the good agreement
between the idealized model and the experiments evidence unambiguously the strong
dependence of Eckart acoustic streaming on the fluid viscosity.
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1.0
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0.2

0.4

0.6

0.8

104 106105
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SSSF

Fit DNS
Fit SSSF

Number of grid elements

FIGURE 11. (Colour online) Comparison of the convergence speed of DNS and SSSF
methods versus the number of grid elements. The average flow speeds hVi returned by the
numerical simulations were normalized by an estimation of their asymptotic value hV1i.
Nonlinear curve fitting returns hVDNSi (mm s�1) ' 3.1–16.4N�0.33 and hVSSSFi (mm s�1) '
2.6–5.8N�0.25. The simulation point computed from the coarsest grid was excluded during
the fitting of the DNS since it appears no asymptotic convergence regime was reached at
this point.

5. Flow topology and caustics
In the previous sections, we have presented the Eckart bulk streaming as the main

contribution to the total flow observed in sessile droplets exposed to SAW radiation.
We have developed a numerical model based on first principles to compute the
acoustic streaming in three dimensions, and the results agree remarkably well with
experimental data. In both cases, the flow pattern in the droplet shows a gradual
transition from four to two eddies which has not been reported nor explained so
far in the literature. In this section, we discuss these results based on our numerical
model. Indeed, it unveils the acoustic field which generates the forcing term of the
flow. This allows a qualitative and quantitative analysis of the flow development and
enables us to single out the most influential parameters, which are the caustics and
the surface wave attenuation.

5.1. Acoustic forcing term and flow pattern
The acoustic forcing term, given by (3.32) is proportional to the Poynting vector. This
means that the knowledge of the acoustic power flow is tantamount to the knowledge
of the forcing term. The Poynting vector in water and glycerol droplet is shown in
figures 6 and 7. As stated in § 4.1.2, it is focused on small regions of the droplets
corresponding to the caustics, illustrated in figure 9. As we compare the resulting
flow pattern in figure 12 to the forcing term shown in figures 6 and 7, we notice
that these caustics act as momentum source points to generate the flow. For instance,
in the glycerol droplet, the forcing terms act on only one side of the droplet and push
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(a) (b) (c)

(d ) (e) ( f )

0 0.5 1.0 x

y

FIGURE 12. (Colour online) Streamlines from SSSF flow field computations for various
glycerol concentrations. The visualization is from below. The SAW propagates from left
to right. The droplet volume is Vdroplet = 12.5 µl and the magnitude of the acoustic
perturbation displacement u0 = 44 pm. As the viscosity increases, one remarks the
progressive transition from a four-vortex to a two-vortex flow structure. (a) Pure water
(Umax = 173 µm s�1); (b) 30 wt.% glycerol (Umax = 170 µm s�1); (c) 40 wt.% glycerol
(Umax = 137 µm s�1); (d) 60 wt.% glycerol (Umax = 61 µm s�1); (e) 80 wt.% glycerol
(Umax = 23 µm s�1); ( f ) 90 wt.% glycerol (Umax = 3.8 µm s�1).

the flow towards the rear of the droplet. In the case of water, the momentum source
terms are more symmetrical and push the fluid in the two opposite directions. Each
individual momentum source term results in two eddies, forming the four-swirl pattern.
This is particularly visible in figure 3.

Interestingly, these caustics can be easily constructed from geometrical acoustics.
This means that the flow can be, at least qualitatively, predicted from simple
geometrical arguments. This assertion must be mitigated by the important role played
by the viscosity and the attenuation of sound in the system.

5.2. The four-to-two eddies transition
Since the flow pattern heavily relies on the formation of caustics, it is strongly
influenced by the ratio between the droplet diameter and the acoustic wave attenuation
length in the fluid:

⇤ = D
La

= D!2⌫b
c3

0
. (5.1)
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Water−glycerol (th.)
Water−glycerol (exp.)
Best fit
Only    (th.)

FIGURE 13. (Colour online) Averaged velocity of the droplet internal flow versus viscosity.
The stars correspond to numerical simulations performed with water–glycerol physical
properties summarized in table 1, the circles to experimental data, the squares to numerical
simulations performed by varying only the viscosity of the water–glycerol mixture and
keeping all other parameters equal to those of water, and the dashed line to the best fit
with a power law (hVi / ⌫�3/4). The only fitting parameter is the SAW amplitude, which
is estimated to be 44 pm according to the simulations compared to 62 pm given by our
measurements with the laser interferometer.

For water sessile droplets with a 3.7 mm diameter, ⇤ ' 0.07 whereas for 90 %
glycerol droplets ⇤ ' 2.80. According to the numerical and experimental results, the
progressive transition from two to four eddies is located within 0.29 < ⇤ < 1.0. In
this regard, we understand why a transition of flow pattern happens for this range of
viscosity. In glycerol droplets, the sound wave experiences very few reflections before
fading whereas in water it should bounce at least sixteen times at the droplet interface.
Hence, three regimes naturally emerge: ⇤ ⌧ 1, ⇤ ' 1 and ⇤ � 1. In the first one, the
stable nature of the surface caustics favours the four eddies flow pattern as observed
in water droplets. The intermediate regime happens for large glycerol concentrations.
In this case, both surface and volume caustics are present as attested by figure 7(b).
Thus, the flow in very viscous droplets is dominated by both the volume and surface
caustics. Due to the large attenuation level, the surface caustic does not complete an
orbit and the forcing is limited to only one side of the droplet, resulting in the two
eddies flow pattern. Decreasing further ⇤ was achieved previously by Beyssen et al.
(2006) who worked at 40 MHz frequency with 90 wt.% glycerol mixtures. At such
extreme regime, even the volume caustic vanishes and the flow pattern turns into a
single vortex with a horizontal vorticity axis.

6. Dimensional analysis
The previous analysis can be transposed to other frequencies and viscosities by

using the Buckingham p-theorem. At moderate actuation power (low hydrodynamic
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Reynolds number), equation (3.31) yields the following scaling for the velocity:

hVi = f1
FD2

µ
, (6.1)

with ✓c the contact angle, F the magnitude of the force, D the droplet diameter and
f1 a function of dimensionless parameters. At low Reynolds number, the prefactor
f1 depends solely on the droplet geometry, which here can be mainly quantified
by the contact angle ✓c only: f1 = f1(✓c). The force magnitude F depends on the
acoustic field with input parameters p̃ and ṽ, whose magnitudes are proportional
to u0 (the magnitude of the acoustic perturbation displacement) by linearity and
whose topologies are determined by the shape of the droplet (✓c), the dimensionless
wavenumber kD, the wave radiation angle ✓R from the substrate to the liquid given
by the Snell–Descartes law sin(✓R) = cl/cs, the characteristic parameter of the wave
attenuation in the bulk ⇤ and the characteristic parameter for the surface wave
attenuation due to its absorption by the liquid D↵, with ↵ the attenuation rate
introduced in paragraph 4.1.1. In practice, ✓c is often chosen near 90� and kD ⌧ 1
to optimize streaming efficiency. Consequently, the wave propagation mainly depends
on ⇤, ✓R and D↵. Most liquid sound speeds range between 1200 m s�1 (organic
compounds) and 1500 m s�1, and SAW are mostly generated on lithium niobate with
a phase velocity close to 3650 m s�1 (median velocity of SAW propagating on a
lithium niobate X-cut over all the directions). This narrows considerably the range of
possible Rayleigh angles (19� < ✓R < 24�). Hence, the sound propagation in sessile
droplets on lithium niobate chiefly depends on ↵D and ⇤. The force magnitude is
then given by:

F = f2(⇤, ↵D)
⇢0!

2u0
2⇤

D
= f2(⇤, ↵D)

⇢0!
4⌫bu0

2

c3
, (6.2)

where f2(⇤, ↵D) accounts for the geometrical distribution of the acoustic field.
Combining equations (6.1) and (6.2), and neglecting the influence of the contact
angle for the practical reasons detailed previously, we obtain:

hVi = V0f (⇤, ↵D), (6.3)

with V0 = !4u0
2bD2

c3
and f (⇤, ↵D) = f1(✓c = 90�)f2(⇤, ↵D). (6.4)

We notice that although the viscosity has no explicit influence on the value of V0,
it does appear in the expression of ⇤ which represents the bulk attenuation of the
acoustic wave in the droplet, and thus contributes to the final expression of hVi.

In order to gain a broader picture of the streaming induced by a progressive surface
acoustic wave in a sessile droplet, we performed 100 simulations with ↵D and ⇤
ranging from 0.1 to 10, spanning two orders of magnitude. Depending on the value
of these parameters, we observed four distinct streaming flow regimes (see the left
column of figure 14). At low SAW attenuation and high bulk acoustic wave (BAW)
dissipation (small droplet, viscous liquid – figure 14a), the flow is driven by two
eddies at the front of the droplet. Keeping constant the BAW dissipation but increasing
the SAW attenuation (large droplet, viscous liquid – figure 14b), the eddies migrate
to the droplet rear. At low SAW attenuation and bulk dissipation (small droplet, low-
viscosity liquid – figure 14c), the flow forms a toroidal vortex which cross-section is
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FIGURE 14. (Colour online) Numerical simulation of the four main types of acoustic
streaming generated by a plane SAW propagating from left to right. (a) ↵D = 0.17,
⇤ = 5.0 (A), (b) ↵D = 6.0, ⇤ = 5.0 (E), (c) ↵D = 0.17, ⇤ = 0.27 (C), (d) ↵D = 6.0,
⇤ = 0.27 (@). The symbols correspond to table 2. Velocity field is depicted on the left,
and the forcing term is on the right. Numerical values are computed for an incident SAW
of frequency f = 20 MHz and amplitude 10 pm. The droplet diameter is 3.7 mm, fluid
properties are those of water, except for the dynamic viscosity µ which was used to set ⇤.
The other parameter ↵D was set by tuning the SAW attenuation coefficient in the solid.
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Region k ⇥ 103 a d

E (↵D > 1, ⇤ > 1) 2.06 �0.54 �1.60
@ (↵D > 1, ⇤ < 1) 1.83 �0.56 �0.19
A (↵D < 1, ⇤ > 1) 0.75 �0.27 �0.87
C (↵D < 1, ⇤ < 1) 1.50 +0.18 �0.14

TABLE 2. Regression coefficients for the average streaming velocity in
(6.4): f (⇤, ↵D) = k(↵D)a⇤d.

shown in figure 14(c). Finally, for strong SAW dissipation (large droplet, low-viscosity
liquid – figure 14d), this yields a four eddies flow field. We related the transition
to a switch of relative importance between the incident wave, the surface and the
volume caustics (see the right column of figure 14). Two topological caustics were
deduced from ray acoustics in § 4.1.2. These caustics are powered by the radiation
of surface acoustic waves in the bulk. For a weak SAW attenuation and a strong
BAW absorption (figure 14a), the force is mainly exerted by the volume caustic of
the acoustic field, and the surface waves radiating from the front of the droplet are
attenuated before reaching the caustic, resulting in a force imbalance that creates the
two eddies. Increasing the SAW attenuation, the caustics are less prevalent and the
flow is solely driven by the incident SAW (figure 14b) which is stronger close to
the droplet edge. Decreasing the BAW absorption, the surface caustics overrun the
volume caustic. Indeed, this focus is powered by the SAW radiating close to the
droplet contact line and is therefore quite insensitive to the SAW attenuation. At very
low BAW absorption like in water at the megahertz range, the waves guided along
the droplet surface may bounce multiple times from the front to the back of the
droplet, a phenomenon reminiscent of whispering gallery mode guided by the droplet
free surface. This results in the symmetrization of the secondary focus and yields a
quadripolar flow (figure 14d). Finally, decreasing the SAW attenuation, the volume
caustic dominates again, forming a toroidal flow (figure 14c).

Under the guidance of the numerical results, we looked for a simple expression of
the average velocity of the droplet inner flow. This amounts to finding the value of
f depending on the two parameters ↵D, ⇤. We assumed f takes the form of a power
law: f (↵D, ⇤) = k(↵D)a⇤d with a set of coefficients (a,d) specific to each of the
four flow regimes identified previously. The values of the coefficients a and d indicate
the relative importance of the SAW attenuation and the BAW absorption respectively.
These coefficients were regressed using multilinear curve fitting, with the resulting
values given in table 2. These regression coefficients (table 2) yield fairly accurate
average flow velocity as shown in figure 15. Interestingly, the average velocity of the
flow patterns depicted in figure 14(c,d) shows little dependence on the magnitude of
⇤ (d ' 0.1) whereas the average flow velocity at higher BAW attenuation is adversely
affected by ⇤ and thus by the viscosity. This is in good agreement with Eckart’s and
Nyborg’s view on acoustic streaming. In the former, the wave is assumed to be weakly
attenuated over the reservoir extent so the flow velocity is independent of the viscosity.
In the latter, the BAW is strongly attenuated within the reservoir length, so the wave
momentum is integrally transferred to the fluid. This bounded amount of momentum is
in turn dissipated by viscous shear such that increasing viscosity yields lower average
velocity with a nearly linear relationship for small droplets.

We also provide a comparison with experimental data in table 3. These correlations
are not limited to 20 MHz. For instance, in the 6 MHz simulation of § 4.2, ↵D = 0.27,

�#
# 

"

��

2�
7 �

!�
��

� 
��

��
�8�

:
 �

��
� 

��
	

�
�C

��
�/

2�
2�

�!
�:

��
##

 "

�C

C
C

 1
/:

0!
72

��
 �

!�
�1

�!
� 

�.
�7

%�
!"

7#)
�2

�"
��

17
��

1�
"�

�#
�#�

1�
��

��
�7

��
2�

��
7��

��

��

��
��

��
,

/D
��

��
��

/#
��

�

��


�
��

�"
$0

8�
1#

�#�
�#�

��
�/

:
0!

72
��

��
�!

��
#�

!:
"�

��
�$

"�
��/

%/
7�/

0�
��

/#
��

##
 "


�C
C

C
 1

/:
0!

72
��

 �
!�

�1
�!

��
#�

!:
" 

https://doi.org/10.1017/jfm.2017.178
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


Dependence of acoustic streaming in droplets on caustics and viscosity 415

10–4

10–5

10–2

10–3

10–210–310–410–5

FIGURE 15. (Colour online) Comparison of the average velocity of the droplet internal
flow computed from numerical simulations (SSSF) and from the power law given in (6.3)
with the coefficients in table 2.

wglyc. ⇤ ↵D V0 (mm s�1) hVexpi hVcorri
D!2⌫b

c3
3.7

!⇢0D
109

!4u2
0bD2

c3
(µm s�1) (µm s�1)

0.00 0.068 1.7 17 49 39
0.10 0.080 1.8 16 43 35
0.20 0.095 1.8 15 24 31
0.30 0.11 1.9 13 25 26
0.40 0.15 1.9 12 20 22
0.50 0.20 2.0 10 11 17
0.60 0.29 2.1 9.0 7.4 14
0.70 0.52 2.1 8.0 2.7 11
0.80 1.0 2.2 6.8 2.6 8.4
0.90 2.80 2.3 5.4 0.94 1.4

TABLE 3. Non-dimensional parameters extracted from table 1. hVexpi is the average
velocity in the droplet measured from the experiments described in § 2, and hVcorri is
computed from (6.3) with the coefficients given in table 2.

⇤ = 0.004 and V0 = 1.0 m s�1, yielding hVi = 2.6 mm s�1 compared to 2.86 and
1.92 mm s�1 obtained numerically depending on the model. This indicates that full
similitude requirements (especially the non-dimensional acoustic wavelength kD) are
not mandatory to obtain quantitative results of acoustic streaming. Instead, our analysis
provides some guidelines for the study of more complex acoustic fields: the most
relevant parameters for a partial similitude computation of sessile droplet streaming
are the BAW and SAW attenuation ⇤ and ↵D. Consequently, high frequency acoustic
SAW induced streaming can be conveniently simulated at a few megahertz with
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a direct numerical simulation method, and then extrapolated to other cases with
identical ↵D and ⇤ while at higher frequencies or droplet sizes.

7. Conclusion
In this paper, we investigated thoroughly the phenomenon of bulk (Eckart) acoustic

streaming in hemispherical cavities much larger than the acoustic wavelength. This
study is especially relevant for the MHz actuation of sessile drops with SAW, which
served as case study and experimental check.

The main issues addressed by this study are the measurement of the acoustic
and hydrodynamic fields in the drop and the simulation of systems with large
characteristic size compared to the wavelength, which may lead to prohibitive
memory requirements. In this paper, we presented a numerical method that reduces
considerably the computational cost and thus enables such complex simulations on
a desktop computer. From a physical perspective, we have shown that contrarily to
a widespread belief, the viscosity plays a major role on the acoustic streaming in
cavities. This effect is demonstrated both numerically and experimentally in sessile
droplets excited by surface acoustic waves. Our numerical scheme not only faithfully
reproduces the experimental hydrodynamic flow pattern and average droplet flow
velocity, but also offers an accurate and up to now unreported view of the acoustic
field in the drop, which in turn unveils the spatial distribution of the forcing term.
It turns out that the streaming force is mainly concentrated in some caustics whose
position can be obtained easily from geometrical acoustics. This guidance helps to
predict qualitatively the flow pattern in large objects from geometrical acoustics.
On a more applied perspective, we reduced the computation of acoustic streaming
in sessile droplets to two non-dimensional parameters. This allows to study high
frequency SAW droplet actuation (not restricted to plane waves) based on a partial
similitude approach, simply by extrapolating the quantitative flow pattern obtained at
lower SAW frequency simulations. Such an approach allows using direct numerical
simulation strategies for convenient code development while keeping reasonable
memory requirements.

A natural continuation to this work would include the boundary layer streaming in
the simulations in order to model droplets commensurate with the acoustic wavelength.
The resulting flow pattern is difficult to guess because the solenoidal flow in the
boundary layer is due to the difference of speed between the solid and the bulk wave.
On the one hand, the displacement of the solid is damped due to the leaky nature of
the surface wave, which therefore should generate patterns similar to what is shown
in Vanneste & Bühler (2011). But on the other hand, we observed that even for large
(water) droplets the incident wave field was negligible due to the multiple reflections
of the wave. Therefore, the bulk wave may be a dominant and non-trivial factor to
determine the streaming flow. Another prospect is to implement a fast ray–acoustic
model and use the tremendous progress recently accomplished in the field of caustics
to get explicitly the force terms acting on the fluid. This would preserve much time
to perform ambitious simulations with moving boundaries as observed in experiments
involving high acoustic power, including droplet deformation, displacement, mixing,
heating and atomization.
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Appendix A. Reconstruction of the acoustic velocity field
The 3-D acoustic field quantities x are reconstructed from the individual axisymmetric

projections xl as follows:

ṽr(r, ✓ , z) = �1
⇢0i!

@rp̃ =
+1X

�1
ṽr,leil✓ , (A 1)

ṽ✓(r, ✓ , z) = �1
⇢0ir!

@✓ p̃ =
+1X

�1
ṽ✓ ,leil✓ , (A 2)

ṽz(r, ✓ , z) = �1
⇢0i!

@zp̃ =
+1X

�1
ṽz,leil✓ , (A 3)

with:

ṽr,l =
�1
⇢0i!

@rp̃l, (A 4)

ṽ✓ ,l =
�l
⇢0!

p̃l, (A 5)

ṽz,l =
�1
⇢0i!

@zp̃l. (A 6)

If the incident field is symmetric about the x–z plane, we have:

f (r, ✓ , z) = f0 + 2
+1X

1

fl cos(l✓), (A 7)

where f stands for either p̃, ṽr or ṽz; ṽ✓ ,l is odd due to the factor l:

ṽ✓(r, ✓ , z) = 2i
+1X

1

ṽ✓ ,l sin(l✓). (A 8)
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