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In this paper, we study experimentally and theoretically the dynamics of liquid plugs in rectangular mi- 

crochannels for both unidirectional and cyclic pressure forcing. In both cases, it is shown that the transi- 

tion between quasi-static and dynamic film deposition behind the liquid plug leads to a dramatic acceler- 

ation of the plug, rapidly leading to its rupture. This behaviour proper to channels with sharp corners is 

recovered from a reduced dimension model based on previous theoretical and numerical developments. 

In addition, it is shown for cyclic periodic forcing that the plug undergoes stable periodic oscillations if 

it remains in the quasi-static film deposition regime during the first cycle, while otherwise it accelerates 

cyclically and ruptures. The transition between these two regimes occurs at a pressure-dependent critical 

initial length, whose value can be predicted theoretically. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Two-phase gas-liquid flow in microfluidic devices is a hydro-

ynamic problem with practical applications in a variety of engi-

eered systems including flows in microreactors ( Song et al., 2003;

unther et al., 2004; Assmann and von Rohr, 2011; Sobieszuk et al.,

012 ), enhanced oil recovery ( Havre et al., 20 0 0 ), flow in porous

edia ( Lenormand et al., 1983; Dias and Payatakes, 1986; Stark

nd Manga, 20 0 0 ), film coating and biomechanical systems as pul-

onary flows ( Kamm and Schroter, 1989; Heil et al., 2008; Grot-

erg, 2011 ). The significant scope of the topic motivated early stud-

es on the dynamics of these interfacial flows, first in cylindri-

al tubes ( Fairbrother and Stubbs, 1935; Taylor, 1961; Bretherton,

961 ) and soon after in polygonal channels ( Saffman and Taylor,

958; Jensen et al., 1987; Ratulowski and Chang, 1989; Wong et al.,

995b; Kolb and Cerro, 1991; Thulasidas et al., 1995; Lozàr et al.,

0 07; 20 08; Han and Shikazono, 20 09; Han et al., 2011 ). In the

ast decades, the interest in segmented gas-liquid flows in polygo-

al, and in particular, rectangular microchannels has further grown

ith the development of soft lithography techniques in microflu-

dics ( Duffy et al., 1998; Quake and Scherer, 20 0 0 ), which enable

imple design of complex microchannels with rectangular cross-

ections ( Anderson et al., 20 0 0 ). 
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A finite volume of liquid (liquid plug or slug) that is displaced

y an air finger at constant flow rate or pressure head (Taylor flow)

n a tube, leaves on the walls a trailing liquid film. Its thickness can

e quantified by the so-called wet fraction, which is the propor-

ion of the tube section occupied by the liquid film. In cylindrical

apillary tubes , this parameter increases monotonically with the di-

ensionless velocity of the meniscus (the so-called capillary num-

er Ca) with a Ca 2/3 law ( Bretherton, 1961 ) at low capillary num-

er. This law can be further extended to larger capillary number

s demonstrated by Aussillous and Quéré (20 0 0) . In polygonal mi-

rochannels however, a transition occurs at a critical capillary num-

er between two radically different regimes: Under this critical pa-

ameter, the shape of the meniscus remains close to the static one

nd most of the fluid deposition occurs in the corners of the tube.

ndeed, the static shape of the meniscus cannot follow the singu-

ar shape of the sharp edges, which leads to significant deposition

n the tube corners, even at vanishingly small capillary number.

hus, the wet fraction is approximatively independent of the plug

ynamics and the relative variation of the wet fraction with the

apillary number remains weak ( Wong et al., 1995a; 1995b ). Above

his critical number, the fluid deposition resulting from the defor-

ation of the rear meniscus induced by the flow overcomes the

tatic one. In this case, the wet fraction becomes again strongly de-

endent on the capillary number, similarly to what is observed in

ylindrical channels. Nevertheless, this process in polygonal chan-

els also depends on the tube geometry ( Jensen et al., 1987; Wong

t al., 1995a; 1995b; Lozàr et al., 2007; 2008 ). Lozàr et al. (2007,
audoin, Pressure-driven dynamics of liquid plugs in rectangular 

amic film deposition regimes, International Journal of Multiphase 
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Fig. 1. Sketch of the experimental set-up. A liquid plug is created inside a rectan- 

gular PDMS microfluidic channel by pushing alternatively some liquid and some air 

at a Y-junction. The liquid is pushed by a syringe pump while the air is pushed by a 

MFCS pressure controller. Then the liquid plug is moved by the pressure controller 

either in one direction (unidirectional driving) or alternatively in both directions 

(cyclic periodic driving). 
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2008) showed that it is possible to extend the laws introduced for

cylindrical tubes to rectangular tubes, providing the introduction

of an aspect-ratio-dependent capillary number. 

This liquid film deposition process induces a dramatic accel-

eration of a liquid plug when it is pushed at constant pressure

head ( Baudoin et al., 2013 ). Indeed the diminution of the plug size

leads to a reduction of the viscous resistance of the plug to mo-

tion, itself leading to an acceleration of the plug and thus more

fluid deposition. More recently, it has been shown experimentally

by Magniez et al. (2016) that the inverse behaviour (progressive

slow down and growth of the liquid plug) might also be observed

in prewetted capillary tubes depending on the value of the driv-

ing pressure and the thickness of the prewetting film. The accel-

eration and rupture of a liquid plug has also been evidenced in

complex tree geometries ( Baudoin et al., 2013; Song et al., 2011 )

and for cyclic pressure forcing ( Signe-Mamba et al., 2018 ). In the

latter case however, both the diminution of the viscous resistance

and interfacial resistance (due to lubrication effects) at each cycle

contribute to the plug acceleration and breaking. 

Nevertheless, all the aforementioned studies were conducted in

cylindrical tubes or at capillary numbers well above the critical

capillary number. In this paper, we study experimentally and the-

oretically the influence of the transition between quasi-static and

dynamic fluid deposition process on the dynamics of liquid plugs

in rectangular channels pushed either with a unidirectional or a

cyclic pressure forcing. In both cases, it is shown that the tran-

sition between these two regimes leads to a dramatic accelera-

tion of the plug eventually leading to its rupture. For cyclic forc-

ing, it is shown that under a critical length the plug dynamics

is unstable and leads to the plug rupture while above it is sta-

ble and periodic; the experimental results are recovered from a

reduced dimension model, inspired from previous theoretical de-

velopments by Baudoin et al. (2013) , Magniez et al. (2016) and

Signe-Mamba et al. (2018) adapted here to take into account (i) the

modifications of the laws in the rectangular geometry, (ii) lubrica-

tion effects resulting from the back and forth motion of the liquid

plug on a prewetted tube, and (iii) the transition between quasi-

static and dynamic film deposition. The first and second sections

provide the experimental and model details. The third and fourth

sections explore respectively the response of liquid plugs to uni-

directional and periodic cyclic pressure forcings and compare the

observed dynamics to results in cylindrical tubes. 

2. Method 

The experimental setup is represented on Fig. 1 . The experi-

ments are conducted in rectangular polydimethylsiloxane (PDMS)

microfluidic channels of high aspect ratio obtained by standard

photolithography technics: A mold is etched by depositing a layer

of photoresist resin (Microchem, SU8-2035) on a silicon wafer. This

layer is spin-coated and patterned by standard photolithography.

The spin-coating speed combined with the choice of the photore-

sist set the height h = 45 ± 2 μm of the microfluidic channels,

while the width w = 785 μm is controlled by the design of the

patterned masks which is used during the UV exposure. These val-

ues of the channel size and height were measured afterwards with

a profilometer (Dektak XTL). After exposure, the film is developed

in an organic solvent solution (SU-8 developer) to yield the nega-

tive of the channel design. This SU8 mold was used to pour PDMS

(Dow Corming, Sylgard 184) whose polymerisation was obtained

by curing it at 100 °C. The microfluidic channel is then cut out and

bonded on a glass microscope slide by passing the two surfaces

in an oxygen plasma. The microscope slides are covered by a thin

PDMS membrane in order to guarantee identical boundary condi-

tions to the four channel walls. 
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B
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Then, perfluorodecalin (PFD) liquid plugs are created in the

hannel by pushing alternatively some liquid and some air at a Y-

unction with a syringe pump and a MFCS Fluigent pressure con-

roller respectively, connected to both entrances of the microflu-

dic device. Perfluorodecalin was used for its hydrophilic proper-

ies with PDMS (static contact angle θs = 23 ± 1 ◦) and since it does

ot swell PDMS ( Lee et al., 2003 ). This fluorocarbon has a dynamic

iscosity μ = 5 . 1 × 10 −3 Pa.s, surface tension σ = 19 . 3 × 10 −3 N/m

nd density ρ = 1 . 9 × 10 3 kg/m 

3 . Then, air is blown in the chan-

el at low pressure to bring the liquid plug to the center of the

icrofluidic channel and stopped manually when the target po-

ition is reached. Finally, the plug motion is forced with either

 unidirectional or cyclic periodic pressure forcing with the MFCS

rogrammable pressure controller. For cyclic forcing one entrance

nd the exit of the channel are connected to two channels of the

FCS pressure controller. Then an overpressure (compared to at-

ospheric pressure) is applied alternatively to each end of the

hannel while the other is set to atmospheric pressure. The re-

ulting shapes of the pressure forcing measured with an internal

ressure sensors in these two cases are represented on Fig. 2 . For

yclic forcing the period was fixed to 2 T = 4 s or 2 T = 6 s, with T

he duration of a half cycle. The measured unidirectional pressure

riving can be approximated by the following analytical expression

ased on Gompertz functions: 

 t = 900 e −3 e −10 t 

, (1)

hile the cyclic forcing can be approximated by the expression: 

�P t = 1200 e −6 e −3 t 

Pa for t ∈ [0 ; T ] (2)

�P t = (−1) 
n 
(P c − P d ) for t ∈ [ nT ; (n + 1) T ] (3)

with P c = 1200 e −2 . 5 e −3(t−nT ) 

Pa (4)

and P d = 1200 e −1 . 2(t−nT ) e −0 . 02 e −1 . 2(t−nT ) 

Pa (5)

Initially the microfluidic channel is dry. Hence, the liquid plug

oves on a dry portion of the channel for unidirectional forcing.

evertheless, the motion of the liquid plug leaves a trailing liquid

lm on the walls and in the corners of the channel. Thus, for cyclic

orcing the liquid plug moves on a prewetted channel after the first
audoin, Pressure-driven dynamics of liquid plugs in rectangular 

amic film deposition regimes, International Journal of Multiphase 
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Fig. 2. (a) Unidirectional pressure forcing measured experimentally (blue solid line) and approximated by the formula (red dotted line): �P t = P 0 e 
−ae −bt 

with P 0 = 900 Pa, 

a = 3 and the growth rate b = 10 . (b) Cyclic pressure forcing imposed by the MFCS pressure controller measured experimentally (blue solid line) and approximated by the 

analytical formula �P t = 1200 e −6 e −3 t 
Pa for t ∈ [0; T ], and �P t = (−1) 

n 
(P c − P d ) for t ∈ [ nT ; (n + 1) T ] with P c = 1200 e −2 . 5 e −3(t−nT ) 

Pa and P d = 1200 e −1 . 2(t−nT ) e −0 . 02 e −1 . 2(t−nT ) 
Pa (red 

dotted line) and T = 2 . 12 is the half period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Values of the key dimensionless parameters asso- 

ciated with the mean characteristic velocity U = 

1 cm/s. 

Dimensionless number Formula Estimation 

τ c / τ exp l c / U 1 . 8 × 10 −2 

τ d / τ exp ρl c 
2 / μ 1 . 3 × 10 −2 

Re τ d / τ c 0.7 

We ρU 2 l c / σ 1 . 9 × 10 −3 

Ca μU / σ 2 . 6 × 10 −3 

Bo ρgh 2 / σ 2 × 10 −3 
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ycle as long as it is moves on a portion of the channel already

isited by the liquid plug in the previous back and forth motions. 

Experiments are recorded with a Photron SA3 high speed cam-

ra mounted on a Z16 Leica Microscope. The resolution of the cam-

ra used in the experiments is 1024 × 64 pixels, the acquisition

rame rate 125 images/s and the shutter time 1/30 0 0 s. The im-

ge analysis is then performed using ImageJ software and Matlab.

he plug evolution is characterised by monitoring the positions of

he rear meniscus x r and front meniscus x f (see Fig. 1 ), and deduc-

ng the evolution of the plug length L p (t) = x f (t) − x r (t) and the

peed of the rear meniscus of the plug U r = d x r /d t . 

. Model of a plug flow in dry and prewetted rectangular 

icrofluidic channels 

The model derived in this paper to describe the dynamics of

iquid plugs under pressure forcing combines previous theoretical

evelopments by Baudoin et al. (2013) , Magniez et al. (2016) and

igne-Mamba et al. (2018) , and integrates additional elements to

nclude the transition between quasi-static and dynamic liquid film

eposition. 

.1. Dimensional analysis and characterisation of the regime 

In this problem, we consider a single liquid plug of initial

ength L 0 set into motion in a rectangular microfluidic channel un-

er the unidirectional or periodic forcings represented on Fig. 2 . 

The characteristic parameters in this problem are the width of

he microfluidic channel w , its height h , the viscosity of the liq-

id plug μ, the surface tension σ , the speed of the liquid plug U

nd the characteristic time associated with the plug evolution in

he experiments τ exp . For cyclic forcing, this time is simply the

alf period of the signal τexp = T , while for unidirectional forc-

ng, it is the time required for the plug to rupture. In the fol-

owing, the geometry will be characterised by the aspect ratio

= w/h and the characteristic length scale l c = 

√ 

wh . From these

arameters, we can construct the characteristic convection time

c = l c /U, and the characteristic viscous diffusion time τd = ρl c 
2 
/μ.

hen we can characterise the flow regime by introducing the fol-

owing dimensionless numbers: the Reynolds number (Re = τd /τc )

hich compares convection to viscous diffusion, the Weber num-

er (W e = ρU 

2 l c /σ ) which compares inertia to surface tension, the

apillary number (Ca = μU/σ ) which compares viscous effects to

urface tension effects, the Bond number which compare gravity

o surface tension ( Bo = ρgh 2 /σ ), and finally the ratio of the ex-

erimental characteristic time τ exp to the convective and diffusion
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B
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imes τ exp / τ c and τ exp / τ d . In the experiments the average veloc-

ty is typically U mean = 1 cm/s and the maximal velocity U max = 4 . 5

m/s. The time required for the plug to rupture varies between 0.5

 and 5 s for unidirectional forcing and the half period of peri-

dic forcing is T = 2 s or T = 3 s. These values enable the esti-

ation of the dimensionless numbers introduced previously and

ummarised in Table 1 (for these estimations, we take τexp = 1 s

nd U = 1 cm/s). 

These values of the dimensionless numbers indicate that, glob-

lly, surface tension effects are dominant over viscous effects,

hemselves being dominant over inertial effects. This means that

way from the walls, the shape of the meniscus is mainly dic-

ated by the minimisation of the interfacial capillary energy. This

ndeformed part of the meniscus is called the static meniscus.

evertheless, as demonstrated first by ( Bretherton, 1961 ) in cylin-

rical tubes, viscous effects still play an important role close to

he walls due to the incompatibility between the no-slip condi-

ion (null velocity at the walls) and the homogeneous motion of

n undeformed meniscus. Indeed, an undeformed rear meniscus

ould lead to the existence of a moving triple line and thus a flow

ingularity (in the sense of continuum fluid mechanics).This sin-

ularity is removed by the deformation of the rear meniscus and

he deposition of a thin trailing film, whose thickness is dictated

y the equilibrium between viscous stresses and capillary forces

 Aussillous and Quéré, 20 0 0 ). Thus viscous effects still play an im-

ortant role close to the walls despite the low value of the capil-

ary number. Then, the relative importance of unsteady effects can

e estimated from the ratios τ c / τ exp and τ d / τ exp . Since, these two

atios are small, the unsteady terms can be neglected in Navier–

tokes equations even if the plug evolves over time: the flow is

uasi-static. Finally, the small value of the Bond number indicates

hat gravity effects can be neglected. Based on this analysis, we ex-

ect the liquid plugs dynamics in the present problem to be con-
audoin, Pressure-driven dynamics of liquid plugs in rectangular 

amic film deposition regimes, International Journal of Multiphase 
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sidered as a quasi-static visco-capillary flow governed by steady

Stokes equation. 

3.2. Model of the plug dynamics 

The model describing the pressure drop in the microfluidic

channel is obtained by equalizing the driving pressure head �P t 
( Fig. 2 ) to the sum of the pressure drop resulting from viscous dis-

sipation in the bulk of the liquid plug �P bulk 
v isc 

, the pressure drops

at the front and rear meniscus of the plug �P men 
f ront 

, �P men 
rear and the

pressure drop �P bubble inside the air. Simple estimation of these

pressure drops show that this latest contribution can be ignored

compared to the other ones (see e.g. Kreutzer et al. (2005b) ). Thus,

the steady state balance of pressure across the liquid plug be-

comes: 

�P t = �P bulk 
v isc + �P men 

f ront + �P men 
rear (6)

3.2.1. Viscous pressure drop 

The pressure drop resulting from a laminar flow of a fluid in a

rectangular geometry is given by ( White, 2003 ): 

�P bulk 
v isc = 

aμQL 

wh 

3 
(7)

with a = 12 

[ 
1 − 192 

π5 α
tanh 

(
πα

2 

)−1 ] 
, L the portion of the tube

considered and Q the flow rate. In the limit α � 1 considered here

( α = 17 . 5 in the experiments) and for a liquid plug of length L p ,

this expression becomes: 

�P bulk 
v isc = 

12 μQL p 

wh 

3 
(8)

where Q = U r S r is the flow rate, S r is the the cross sectional area

open to air behind the liquid plug and U r the speed of the rear

meniscus. This expression relies on two assumptions: (i) it assumes

that the pressure drop inside the plug follows a Hagen–Poiseuille

law despite the finite size of the plug and the recirculation occur-

ring close to the menisci and (ii) it assumes the same speed for

the front and rear meniscus. The validity of the first approximation

has been tested numerically with the OpenFoam Volume of Fluid

code ( Signe-Mamba et al., 2018 ) in 2D. These 2D simulations show

that Eq. (8) is an excellent approximation of the viscous pressure

drop (error < 4.5%) as long as the length of the plug remains larger

than the height of the channel. For smaller plugs the discrepancy

increases progressively but, in this case, the pressure drops at the

menisci strongly dominate over bulk viscous pressure drop lead-

ing to minor effects of the error on the overall plug dynamics.

The second approximation amounts to neglect the evolution speed

of the plug length dL p / dt compared to the translational speed of

rear meniscus dx r / dt , since d x f /d t = d x r /d t + d L p /d t . Experimental

measurements of the speed of the front and rear meniscus show

that this approximation holds within a few percent of accuracy. In

the remaining part of the manuscript, we will therefore neglect the

difference between the front and rear menisci in the estimation of

the pressure drops, and the capillary number Ca will therefore be

constructed on the rear meniscus velocity: Ca = μU r /σ . 

3.2.2. Front meniscus pressure drop 

When a liquid plug is at rest (no pressure head) in a rectangu-

lar tube, its front and rear menisci adopt complex shapes minimis-

ing the interfacial energy. This minimisation problem can be solved

with the method of Lagrange multipliers. The solution is a constant

mean curvature (CMC) surface verifying the wetting conditions at

the walls. In a rectangular geometry, this shape is rather complex

( Wong et al., 1995a ) and there is no analytical expression of these

surfaces geometry. Nevertheless, what matters when we consider
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B
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he motion of a liquid plug is not the static shape of the meniscus

ut the departure from this static shape when the plug moves. In-

eed the Laplace pressure jumps resulting from the curvatures of

he front and rear meniscus at rest compensate one another lead-

ng to a zero contribution. Therefore we will only consider in the

ollowing the dynamic pressure jumps at the meniscus, that is to

ay the Young-Laplace pressure jumps when the plug is moving

inus their value at rest. 

The computation of the dynamic pressure jumps at the front

eniscus can be greatly simplified in a rectangular geometry with

igh aspect ratio α � 1. In this case, the principal curvature in one

irection κh ≈ 2 cos (θ a 
d 
) /h is strongly dominant over the curvature

n the other direction κw 

≈ 2 cos (θ a 
d 
) /w, where θ a 

d 
is the advancing

ynamic apparent contact angle. Based on Young–Laplace equation,

he dynamic pressure jump at the front meniscus can thus be es-

imated from the formula: 

P men 
f ront ≈ −σ (κh − κ s 

h ) , with κh ≈ 2 cos (θ a 
d ) /h (9)

nd κ s 
h 

≈ 2 /h the principal curvature in the vertical direction at

est. In the limit of low capillary numbers, asymptotic expansion

eads to: cos θ a 
d 

∼ (1 − θ a 
d 

2 
/ 2) , and the dynamic pressure drop be-

omes: 

P men 
f ront = 

2 σ

h 

(θ a 
d 

2 

2 

)
(10)

f course, this expression is an approximation since (i) it neglects

he horizontal curvature compared to the vertical one and (ii) it

eglects the thickness of the prewetting film (if the plug is moving

n a prewetted capillary tube). This expression is therefore only

alid for high aspects ratios h / w , low capillary numbers and thin

rewetting films. 

The next step is to determine the value of the dynamic appar-

nt contact angle θ a 
d 

as a function of the capillary number. On a

ry substrate , the dynamic contact angle can be estimated from

offman-Tanner’s law: 

a 
d = E Ca 1 / 3 (11)

ith E a constant of order (4 − 5) for a cylindrical dry tube as

eported by Hoffman (1975) and Tanner (1979) . Bico and Quéré

2001) measured the value of E for a wetting silicon oil liquid

lug and Signe-Mamba et al. (2018) for a perfluorodecalin liq-

id plug in cylindrical glass capillary tube and obtained consis-

ent values of this parameter: E = 4 . 3 and E = 4 . 4 respectively.

dy et al. (2007) and Baudoin et al. (2013) measured a value of

 = 4 . 9 for a perfluorodecalin liquid plug moving in PDMS rectan-

ular capillary tubes with high aspect ratio. This value is in good

greement with the experiments performed in this paper. 

A theoretical expression of the dynamic contact angle on a

rewetted surface was proposed theoretically by Chebbi (2003) and

alidated experimentally by Magniez et al. (2016) for the motion

f a liquid plug in a prewetted cylindrical capillary tube: 

an θ a 
d = (3 Ca ) 

1 / 3 
f ( ( 3 Ca ) 

−2 / 3 
cos θ a 

d h f /R ) (12)

ith h f / R the thickness of the liquid film ahead of the liquid plug,

f (y ) = 

∑ 3 
j=0 b n [ log 10 y ] 

n 
and the coefficients b n are tabulated in

hebbi (2003) . This expression enables to integrate a lubrication

ffect induced by the presence of a prewetting film, which facili-

ates the displacement of the front meniscus and thus reduces the

ressure jump. To the best of our knowledge, no rigorous deriva-

ion of an analytical formula exists for rectangular geometries.

evertheless, a similar expression as Eq. (12) is expected in rect-

ngular geometries with high aspect ratios α � 1. Indeed, Chebbi

similarly to Bretherton) derived the above theoretical expression

n the approximation of thin prewetting liquid film h f compared to

he radius of the tube ( h f / R 	 1). In this approximation, the radial
audoin, Pressure-driven dynamics of liquid plugs in rectangular 

amic film deposition regimes, International Journal of Multiphase 
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Fig. 3. Sketch of the cross-section behind the liquid plug (a) when Ca → 0 (quasi-static film deposition regime) and when (b) Ca � Ca c (dynamic film deposition regime). 

Black: liquid, white: air. 
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urvature of the tube is locally neglected and the problem solved

s identical to a 2D planar problem. 

In the rectangular configuration, an estimation of the thick-

ess of the prewetting film in the vertical direction is never-

heless missing. To adapt this formula to rectangular geometries,

audoin et al. (2013) proposed to estimate the relative thickness of

he prewetting film by the formula 

√ 

1 − ˜ S f with 

˜ S f = S f / (h w ) the

imensionless cross sectional area open to air in front of the plug.

or rectangular channel with large aspect ratios, it is expected that

his expression slightly overestimates lubrication effects since the

rewetting film is always thicker on the lateral walls than in the

entral ones. 

Finally, as demonstrated by Signe-Mamba et al. (2018) , a good

pproximation of the implicit formula (12) in the limit of low cap-

llary numbers is: 

a 
d = F Ca −1 / 3 (13) 

ith F = 3 1 / 3 (b 0 + b 1 log 10 (A ) + b 2 [ log 10 (A ) ] 
2 + b 3 [ log 10 (A ) ] 

3 ) and

 = (3 Ca ) −2 / 3 
√ 

1 − ˜ S f . This expression shares some similarities

ith Hoffman-Tanner’s law but this time the coefficient F depends

n the capillary number, underlining the lubrication effect. 

.2.3. Rear meniscus pressure drop 

The dynamical pressure drop at the rear meniscus was calcu-

ated theoretically by Bretherton (1961) in cylindrical geometries,

ong et al. (1995a,b) for polygonal channels, and later on numer-

cally by Hazel and Heil (2002) for rectangular microfluidic chan-

els of different aspect ratios at finite capillary numbers. Based on

he results of Hazel and Heil (2002) , it is possible to infer the fol-

owing formula for the dynamic pressure jump at the rear menis-

us ( Baudoin et al., 2013 ): 

P men 
rear = 

2 σ

h 

D f (α) Ca 2 / 3 (14) 

ith f (α) = (0 . 52 + 0 . 48 /α) and D = 4 . 1 , a constant obtained by

audoin et al. (2013) from least square fit of the numerical data

oints of Fig. 8 of Hazel and Heil (2002) in the range Ca ∈
10 −3 , 0 . 3] , with Broyden–Fletcher–Goldfarb - Shanno (BFGS) mini-

ization algorithm. 

.2.4. Total pressure drop 

If we combine Eqs. (8), (10), (11), (13) and (14) , the total pres-

ure drop across the liquid plug becomes: 

Dry tube: �P t = 

12 σ S r L p 

wh 

3 
Ca + 

σ

h 

[
E 2 + 2 D f (α) 

]
Ca 2 / 3 

et tube: �P t = 

12 σ S r L p 

wh 

3 
Ca + 

σ

h 

[
F 2 + 2 D f (α) 

]
Ca 2 / 3 (15) 

ith E = 4 . 9 , F = 3 1 / 3 (b 0 + b 1 log 10 (A ) + b 2 [ log 10 (A ) ] 
2 +

 3 [ log 10 (A ) ] 
3 ) and A = (3 Ca ) −2 / 3 

√ 

1 − ˜ S f . These equations can
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B
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e written under dimensionless form by introducing the charac-

eristic length l c = 

√ 

wh and the characteristic pressure variation

/ h : 

Dry tube: � ˜ P t = 12 

√ 

α ˜ S r ̃  L p Ca + 

[
E 2 + 2 D f (α) 

]
Ca 2 / 3 

et tube: � ˜ P t = 12 

√ 

α ˜ S r ̃  L p Ca + 

[
F 2 + 2 D f (α) 

]
Ca 2 / 3 (16) 

here the tildes indicate dimensionless functions. To achieve a

losed set of equations, two equations are missing: one determin-

ng the evolution of the plug length 

˜ L p and one determining the

uid deposition process on the walls and consequently ˜ S r and 

˜ S f . 

.2.5. Evolution of the plug length 

The first equation is simply obtained from a mass balance be-

ween the amount of liquid that the plug collects and loses. Let

 0 = wh be the cross section of channel, and S r and S f the sections

f the tube open to air behind and in front of the plug respectively.

he mass balance becomes: 

 0 d L p = ( S 0 − S f ) d x f − ( S 0 − S r ) dx r (17)

ith dx r and dL p the displacement of the rear interface and the

ariation of the plug length during an infinitesimal time step dt

nd d x f = d L p + d x r . Therefore, the equation giving the evolution

f the length of the liquid plug takes the form: 

dL p 

dt 
= 

[ 
S r 

S f 
− 1 

] 
U = 

σ

μ

[ 
S r 

S f 
− 1 

] 
Ca (18)

here S r depends only on the dimensionless speed of the rear

eniscus S r = S r (Ca ) and S f depends on the history of the liquid

eposition on the walls and the position of the front meniscus

 f = S f (x f , t) . If we introduce the characteristic length l c and the

iscocapillary time scale τ = μl c /σ, we obtain the dimensionless

quation: 

d ̃ L p 

d ̃ t 
= 

[ ˜ S r (Ca ) 

˜ S f ( ̃  x r , ̃  t ) 
− 1 

] 
Ca (19) 

hen the plug moves on a dry surface, then 

˜ S f = 1 . Otherwise the

alue of ˜ S f is either inferred from the initial condition if the plug

oves on a prewetted tube or from a memory of the liquid depo-

ition by the liquid plug when the plug undergoes cyclic motion

see Signe-Mamba et al. (2018) for cylindrical tubes). In many pa-

ers, the wet fraction m is introduced instead of the air fraction

 r . The wet fraction is the relative portion of the tube section oc-

upied by the liquid. These two parameters are linked by the for-

ula: m = 1 − ˜ S r . 

.2.6. Quasi-static and dynamic wet fraction 

An air finger pushing a liquid plug in a cylindrical tube adopts

 cylindrical shape closely fitting the shape of the cylindrical tube.

uch close fitting is not possible in rectangular channels due to

he presence of sharp corners. In the low Bond number ( Bo 	 1)

nd low capillary number limit ( Ca 	 1), the section of the bub-

le far behind the rear meniscus can adopt two configurations
audoin, Pressure-driven dynamics of liquid plugs in rectangular 
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Fig. 4. Dynamics of a liquid plug of initial length L 0 = 3 . 55 mm pushed in a dry rectangular microfluidic channel with a unidirectional pressure head �P t = 10 0 0 e −3 e −10 t 

Pa. (a) Stack showing the evolution of the plug below and above the critical capillary number Ca c . Liquid (air) appears light (dark) grey. (b) Position of the rear and front 

meniscus as a function of time. (c) Evolution of the capillary number as a function of time. (d) Evolution of the plug length as a function of time. Blue solid curves correspond 

to experimental measurements and red dashed curves to simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

( Lozàr et al., 2008 ) schematically represented on Fig. 3 depending

on the value of the capillary number: 

• (i) When Ca → 0, in the quasi-static limit, the liquid only cov-

ers the corners of the tube and the limit between the liquid

and the air are four quarter circles. In this case the wet fraction
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B

microchannels: Influence of the transition between quasi-static and dyn

Flow, https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.019 
tends to an asymptotic value called the quasi-static wet fraction

m s , which depends only on the aspect ratio of the channel α:

m s = m s (α) . Indeed, the liquid deposition in the corners of the

tube in this regime mostly relies on the static shape of the rear

meniscus, and thus the evolution of the wet fraction with the

capillary number is weak. 
audoin, Pressure-driven dynamics of liquid plugs in rectangular 

amic film deposition regimes, International Journal of Multiphase 

https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.019


S. Signe Mamba, F. Zoueshtiagh and M. Baudoin / International Journal of Multiphase Flow xxx (xxxx) xxx 7 

ARTICLE IN PRESS 

JID: IJMF [m5G; November 3, 2018;2:41 ] 

Fig. 5. Rupture lengths (a-a1) and rupture times (b-b1) of a set of liquid plugs as a function their initial lengths when they move on a dry rectangular microfluidic channel 

under two driving pressure �P t = 900 e −3 e −10 t 
Pa (a-b-c) and �P t = 10 0 0 e −3 e −10 t 

Pa (a1-b1-c1). The rupture lengths as a function of the rupture times are given in figures 

(c-c1). The blue stars correspond to experiments and the red lines to simulations with the model developed in Section 3 . Error bars quantify the error in the determination 

of the plug initial length owing to the large field of view and the limited resolution of the camera (1024 × 64 pixels). A circle surrounds three data which are out of the 

global tendency. The most likely reason of this dispersion is that the microfluidic channel was not dried properly and there were some liquid remaining at the front meniscus 

that lubricated the channel and thus accelerated the plug motion leading to reduced rupture time and length. To substantiate this hypothesis, we performed a sensitivity 

analysis by performing simulations of the plug dynamics when the tube is initially prewetted with wet fractions ranging between 2 and 6%. This analysis shows that a liquid 

film layer of m = 6% leads to a decrease of the rupture length and rupture time by a factor of ∼ 2 similarly to the experimental observations (”out of tendency” points). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Rupture lengths (a1) and rupture times (b1) of a set of liquid plugs moving in a rectangular microfluidic channel under the pressure driving �P t = 10 0 0 e −3 e −10 t 
Pa 

compared to the rupture lengths (a2) and rupture times (b2) of a set of liquid plugs moving in a cylindrical capillary tube of diameter D = 470 μm under the pressure 

driving �P t = 80 e −6 e −3 t 
Pa (a2-b2). The blue stars correspond to experiments and red curves to simulations. Error bars quantify the error in the determination of the plug 

initial length owing to the large field of view and the limited resolution of the camera (1024 × 64 pixels). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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• (ii) when Ca � Ca c , the limit between the liquid and the air be-

comes two half circle on the side and a liquid film covers the

walls in the center of the channel ( Lozàr et al., 2008 ). In this

case, the wet fraction more strongly depends on the dynamics

of the plug and hence on the capillary number. We will call it

the dynamic wet fraction m d = m d (Ca, α) . 

The transition between these two configurations is progressive

(see Lozàr et al. (2007) ) and occurs at a critical capillary num-

ber Ca c whose value was found in our experiments to lie around

a c = (2 ± 0 . 1) × 10 −3 , a value consistent with the measurements

of Lozàr et al. (2007) at similar aspect ratio ( α = 15 ): Ca c ∼ 10 −3 . 

The quasi-static wet fraction m s in the absence of gravity (Bo =
0) was theoretically predicted in Wong et al. (1995a) : 

m s = (4 − π) ̃  r s 
2 (20)

with ˜ r s = r s /l c the dimensionless radius of curvature of the four

quarter circles delimiting the liquid and the air in the corners of

the tube and 

˜ r s = 

√ 

α

α + 1 + (( α − 1 ) 2 + πα) 
1 / 2 

(21)
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or an aspect ratio α = 17 . 5 such as in our experiments, this for-

ula gives the value m s = 0 . 012 . The wet fraction can be esti-

ated experimentally by monitoring the evolution of the plug size

s a function of the rear meniscus velocity when Ca 	 Ca c . We

ound the average estimate of this parameter (over all the ex-

eriments performed and described in the next section) to be:

 s = 0 . 03 . This value is larger than the theoretical value predicted

y Wong et al. (1995a) . Nevertheless the theoretical value derived

y this author was obtained with zero influence of gravity ( Bo = 0 ).

or finite values of the Bond number, it was shown experimen-

ally by Lozàr et al. (2008) (see their figure 4) that gravity tends to

ignificantly increase the static wet fraction (these authors found

 s ≈ 0.065 for Bo ∼ 1 and α = 15 ). In our case, though small the

ond number ( Table 1 ) is not null, which might explain the larger

alue of the static wet fraction measured experimentally than ex-

ected theoretically. Another tentative explanation would be that,

wing to the finite length of the tube, we did not reached the final

quilibrium value. For the simulations, we will therefore adopt the

onstant value: 

 s = 1 − ˜ S r = 0 . 03 for C a < C a c (22)
audoin, Pressure-driven dynamics of liquid plugs in rectangular 
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nder the critical capillary number. 

The evolution of the dynamic wet fraction in square and rect-

ngular microfluidic channels was investigated experimentally by

olb and Cerro (1991) , Thulasidas et al. (1995) , Lozàr et al. (2007) ,

ries et al. (2008) , Han and Shikazono (2009) , Han et al. (2011) and

umerically by Hazel and Heil (2002) , Lozàr et al. (2008) and

reutzer et al. (2005a) . In particular, Lozàr et al. (2007,

008) found that the measured and simulated evolution of the

ynamic wet fraction m d as a function of the capillary num-

er collapse for all aspect ratio α providing the introduction of

n effective capillary number ˆ Ca = 

[
1 + α2 /α2 

t 

]
Ca with αt = 6 . 4 .

hus, the dynamic wet fraction in a rectangular channel with

ny aspect ratio can be inferred from the behaviour in a square

ube. This scaling subsist even for finite Bond numbers as demon-

trated both theoretically and numerically by Lozàr et al. (2007,

008) . Of course this scaling is only valid for Ca > Ca c since oth-

rwise, the fluid deposition does not depend on Ca but strongly

epends on α. Thus, combining (i) the scaling law proposed by

ozàr et al. (2008) for the effective capillary number, (ii) Aussilous

 Quéré law ( Aussillous and Quéré, 20 0 0 ) for the evolution of the

et fraction as a function of the capillary number and (iii) the

atching condition at the critical capillary number between the

uasi-static and dynamic behaviour gives: 

 d = 1 − ˜ S r = 

m s + G 

[
( ˆ Ca / ˆ Ca c ) 2 / 3 − 1 

]
[
1 + H(( ˆ Ca / ˆ Ca c ) 2 / 3 − 1) 

] for C a > C a c (23)

here the coefficients G = 1 . 05 and H = 1 . 75 are obtained from

est fit with Lozàr et al. (2007) experimental data. 

Finally, ˜ S r is taken as ˜ S r = m s − 1 when the plug moves at a

apillary number lower than Ca c and 

˜ S r = m d − 1 above. This is of

ourse an approximation since the experimentally observed tran-

ition between the dynamic and quasi-static regime at Ca ∼ Ca c is

ore progressive ( Lozàr et al., 2007 ). 

.3. Numerical resolution of the equations 

The closed set of Eqs. (16) , (19), (22) and (23) are solved using

 first order Euler explicit scheme to predict the speed and the

volution of the length of the liquid plug. To cope with the strong

cceleration of the liquid plug, an adaptive time step refinement

s used: the spatial displacement � ˜ x = x n +1 
r − x n r is kept constant

nd thus the time step �˜ t n at iteration n is calculated from the

ormula: �˜ t n = � ˜ x Ca n −1 . Convergence on � ˜ x has been verified for

ll the simulations provided in this paper. 

. Effect of the transition between quasi-static and dynamic 

lm deposition on the dynamics of a liquid plug driven by a 

nidirectional forcing 

.1. Direct experimental evidence of the transition 

The transition between the quasi-static and dynamic liquid film

eposition and the associated changes in the plug dynamics are

videnced on Fig. 4 a–d. These figures illustrate the evolution of a

iquid plug of initial size L o = 3 . 5 mm driven by a unidirectional

ressure head �P t = 10 0 0 e −3 e −10 t 
Pa. Blue curves correspond to ex-

erimental measurements while red curves correspond to simula-

ions with the model developed in the previous section. Fig. 4 a is

btained by stacking snapshots of the plug evolution every 8 ms

hen the capillary number lies below its critical value Ca c and

hen later on when Ca exceeds Ca c . When Ca < Ca c no liquid film

s visible on the tube lateral sides since liquid deposition only oc-

urs in the corners of the channel, while this film is clearly visi-

le when Ca exceeds Ca c . Fig. 4 b shows the position of the front

nd rear menisci as a function of time. Fig. 4 c shows the evolution
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B
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f the capillary number. The black dashed line (also reported on

ig. 4 d) marks the transition (at time t c ≈ 2.8 s) between the quasi-

tatic and dynamic film deposition regimes. It corresponds to the

ime when Ca reaches the critical value Ca c = 2 ± 0 . 1 × 10 −3 . Be-

ore t c and after the end of the transient regime ( t > t t = 0 . 3 s)

corresponding to the time required for the pressure controller to

chieve a constant value), the increase in the capillary number is

ery slow. This leads to a quasi-linear variation of the plug size

s a function of time as can be seen on Fig. 4 d since the wet frac-

ion m is quasi-constant in the quasi-static regime. Then, when the

alue of the capillary number overcomes the critical value Ca c , the

lug undergoes a strong acceleration leading to more and more

uid deposition and eventually to the plug rupture. 

Excellent agreement between the simulations (red) and exper-

ments (blue) is achieved for the evolutions of (i) the position of

he menisci ( Fig. 4 b), (ii) the plug dimensionless speed ( Fig. 4 c)

nd (iii) the plug length ( Fig. 4 d). Our reduced dimension model

hus properly captures the main physical ingredients. This model

an be used to rationalise the observed tendencies: In the quasi-

tatic film deposition regime , the value of the pressure head pre-

cribes an initial value of the capillary number and the size of the

lug diminishes quasi-linearly due to film deposition in the corners

f the tube. This regular diminution of the plug size leads to a re-

uction of the viscous resistance of the plug to motion since the

iscous pressure drop depends linearly on L p . This induces a slow

ncrease in the liquid plug speed (since the viscous resistance is

eak compared to interfacial resistances). Nevertheless, since the

et fraction m does not depend on Ca , there is no retroaction of

he evolution of the plug speed on the liquid film deposition and

hus the evolution remains relatively stable. In the dynamic film de-

osition regime however, the increase in the plug speed leads to

ore film deposition according to Eq. (23) , itself leading to an ac-

eleration of the plug speed. This retroaction is at the origin of

he massive acceleration of the plug and rapid decrease in its size

hen Ca exceeds Ca c . This behaviour is reminiscent of what is

bserved in cylindrical tubes ( Magniez et al., 2016; Signe-Mamba

t al., 2018 ), while the quasi-static film deposition regime only oc-

urs when there is the presence of sharp corners. 

.2. Influence of this transition on the plugs rupture time and 

upture length 

We performed numerous experiments (represented on Fig. 5 )

or different initial plug lengths L o and two different driving pres-

ures ( �P t = 900 e −3 e −10 t 
Pa and �P t = 10 0 0 e −3 e −10 t 

Pa) to analyse

he evolution of the plug rupture time and rupture length in rect-

ngular microchannels. The rupture time is the time elapsed be-

ween the start of the pressure head and the plug rupture (L p = 0) ,

hat is to say when the front and rear menisci come into contact at

he centerline of the channel and the plug breaks, leaving the air

ow freely in the channel. The rupture length is the distance trav-

lled by the liquid plug (D l = max (x f ) − min (x r )) before its rup-

ure. These two parameters quantify the stability of a liquid plug to

reaking. The quantitative agreement between experiments (blue

tars) and simulations (red lines) enables to validate our model on

n an extensive set of experimental data. 

Again a transition between two distinct regimes is clearly evi-

enced on Fig. 5 (for both the rupture time and the rupture length)

t a driving pressure-dependent critical initial plug length L c o ( L 
c 
o ≈

 . 6 mm for �P t = 900 Pa and L c o ≈ 3 . 1 mm for �P t = 10 0 0 Pa). Un-

er this critical value of the initial plug length L o < L c o , the initial

imensionless plug speed lies above the critical capillary number

nd thus the dynamics of the liquid plug is only in the dynamic

lm deposition regime. Thus the plug accelerates rapidly leading

o rapid rupture of the plug on a short propagation length scale.

bove, this critical initial length L o > L c o , the initial capillary num-
audoin, Pressure-driven dynamics of liquid plugs in rectangular 
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Fig. 7. Spatiotemporal evolution of three liquid plugs of initial lengths (a-b) L 1 = 3 . 85 mm, (c-d) L 2 = 4 . 1 mm and (e-f) L 3 = 4 . 5 mm driven by the cyclic pressure forcing 

represented on Fig. 2 (b). (a-c-e) Positions of the left and right menisci as a function of time. (b-d-f) Evolution of the length of the plug as a function of time. 
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ber lies under the critical number Ca c and thus the plug dynamics

is initially in the quasi-static film deposition regime. This regime

leads to larger plug rupture time and thus propagation distance.

Moreover, since in this regime the acceleration is weak, the rup-

ture time and rupture length remain relatively linear function of

the plug initial length (see Fig. 5 ). From this analysis, we can infer

a theoretical evaluation of the critical initial length L c o , which de-

limits the transition between these two regimes. Indeed, L c o corre-

sponds to the plug initial length when the initial capillary number

is equal to the critical capillary number Ca c . From Eq. (15) and by

approximating S r by wh at first order, we obtain: 

L c o = 

h 

12 Ca c 

[
�P t h 

σ
− (E 2 + 2 D f (α)) Ca 2 / 3 c 

]

This formula gives L c o = 3 . 1 ± 0 . 2 mm and L c o = 3 . 5 ± 0 . 2 mm for

�P t = 900 Pa and �P t = 10 0 0 Pa respectively. It overestimates by

19% and 16% respectively the critical length but nevertheless re-

mains in good agreement with the experimentally measured val-

ues. This formula is also consistent with the increase in L c o as a

function of �P t observed experimentally. This theoretical predic-
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B
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ion of the critical initial length L c o is of the upmost practical inter-

st since it enables to predict in which regime will mainly evolve

 liquid plug depending on its initial length. An interesting point

s also that despite the regime change, the rupture length and rup-

ure time remain relatively proportional to each other ( Fig. 5 c and

1). 

.3. Comparison with the dynamics in cylindrical tubes 

Fig. 6 compares the rupture times and lengths obtained in rect-

ngular and cylindrical tubes in the same range of capillary num-

ers ( 5 . 5 × 10 −5 � Ca � 1 . 2 × 10 −2 ). This comparison is not meant

o be quantitative since the dimensions of the channels (rectangu-

ar: h = 45 μm, w = 785 μm, cylindrical: diameter D = 470 μm) and

he driving pressure magnitude (10 0 0 Pa for rectangular channels

0 Pa for cylindrical channels) are different. The purpose of this

gure is only to show that in the same range of capillary numbers,

o transition is observed in the case of a cylindrical channel, while

 transition is clearly evidenced in a rectangular channel. 
audoin, Pressure-driven dynamics of liquid plugs in rectangular 
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Fig. 8. (a-b-c) Spatiotemporal evolution of a liquid plug of initial length L 1 = 4 . 5 mm moving in a rectangular microfluidic channel under the driving pressure represented on 

Fig. 2 b. (a) Position of the left and right meniscus. (b) Evolution of the capillary number. (c) Evolution of the plug length. (d-e-f) Spatiotemporal evolution of a liquid plug 

of initial length L 2 = 3 . 35 mm moving in a cylindrical capillary tube of diameter D = 470 μm driven by a cyclic forcing: �P t = 78 e −6 e −3 t 
Pa for t ∈ [0, T ], �P t = (−1) n (P c − P d ) 

for t ∈ [ nT, (n + 1) T ] with P c = 78 e −3 e −3(t−nT ) 
Pa and P d = 78 e −1 . 4(t−nT ) e −0 . 02 e −1 . 4 ∗(t−nT ) 

Pa, T = 2 . 15 s with 2 T = 4 s. (d) Position of the left and right meniscus. (e) Evolution of 

the capillary number. (f) Evolution of the plug length. For all experiments, the blue curves correspond to experiments and the red curves to simulations with the model 

presented in this paper for the experiments (a-b-c) in a rectangular tube and the model presented in Signe-Mamba et al. (2018) for the experiments (d-e-f) in a cylindrical 

tube. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. (a) Evolution of the positions of the left and right menisci of a liquid plug of initial length L 4 = 5 mm driven by the cyclic forcing represented on Fig. 2 b. We stopped 

the acquisition after 6 cycles since no significant evolution of the plug length and speed from one cycle to the next was observed. (b) Simulations showing the predicted 

spatiotemporal evolution of the amount of liquid lying on the walls (wet fraction). 

Fig. 10. Spatiotemporal evolution of the wet fraction for a liquid plug of initial 

length L 3 = 4 . 5 mm driven by the cyclic pressure forcing Fig. 2 (b). This figure cor- 

respond to the same experiment as Fig. 7 (e–f) and Fig. 8 (a-b-c). 
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5. Response of liquid plugs to periodic pressure forcings in 

rectangular microfluidic channels 

5.1. Detailed analysis of single plug ruptures 

We further investigated the response of liquid plugs to cyclic

forcing. For this purpose, liquid plugs are inserted at the center

of a rectangular microfluidic channel and a cyclic pressure forc-

ing (represented on Fig. 2 ) is applied. Fig. 7 illustrates the po-

sitions of the rear and front menisci (a-c-e) and the evolution

of the plug length (b-d-f) for three different initial plug lengths:

L 1 = 3 . 8 mm (a,b), L 2 = 4 . 1 mm (c,d) and L 3 = 4 . 5 mm (e,f). The

blue curves correspond to experiments and the red curves to sim-

ulations. For these three initial lengths, the plugs undergo oscilla-

tions eventually leading to their rupture. The experimental results

show that the evolution of the plug length is not monotonous: the

plug size first increases and then decreases during each back and

forth motion. This is a consequence of the progressive increase in
Please cite this article as: S. Signe Mamba, F. Zoueshtiagh and M. B
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he driving pressure ( Fig. 2 b): at the beginning the driving pres-

ure is low, the plug moves slowly and leaves less liquid behind

t than it recovers from the liquid film lying in front of it. Then,

hen the driving pressure reaches a critical pressure (derived in

agniez et al. (2016) in the case of cylindrical tubes), the tendency

s inverted. 

The number of oscillations before the plug rupture increases

ith the initial length of the plug. For the longest plug ( L 3 = 4 . 5

m), a clear transition can be seen between a first phase where

he plug undergoes relatively stable oscillations with weak net evo-

ution of its length from one cycle to another (see Fig. 7 f before

ime t = 15 s) and a second phase with a brutal acceleration of the

lug rapidly leading to its rupture ( t ≥ 15 s). 

.2. Specificity of the cyclic dynamics of liquid plugs in rectangular 

hannels compared to cylindrical channels 

Such transition is not observed in cylindrical tubes wherein the

et variation of the plug size is more regular (see Fig. 8 f). Signe-

amba et al. (2018) demonstrated that in cylindrical channels, the

wo sources of the plug instability leading to its rupture are (i)

he cyclic diminution of the plug viscous resistance to motion due

o the diminution of its length and (ii) a cyclic reduction of the

lug interfacial resistance due to the deposition of a liquid film of

ncreasing thickness at each cycle and lubrication effects. A very

nteresting point is that these two instability sources rely on the

mount of liquid deposited on the walls. If the amount of liquid

eft on the walls behind the liquid plug would remain constant,

here would be no cyclic evolution of the plug size and no insta-

ility related to lubrication effects. Thus the plug would undergo

table periodic motion with no remarkable evolution of its size and

o rupture. 

This behaviour is indeed observed for plugs of initial length

arger than L c o = 4 . 7 mm (see Fig. 9 a). In this case the plug always

oves at a dimensionless speed smaller than the critical capillary

umber Ca c . The simulations are able (i) to quantitatively repro-

uce the statistical trends of the evolution of the rupture length

nd rupture time (80% of the experimental data match with the

imulations within the error bar on the determination of the initial

lug length, see Fig. 5 ) and (ii) to qualitatively reproduce individ-

al dynamics of liquid plugs (see Fig. 8 ). Thus, we use them below

o analyse the evolution of the amount of liquid covering the walls
audoin, Pressure-driven dynamics of liquid plugs in rectangular 
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Fig. 11. (a1-a2) Rupture lengths and (b1-b2) rupture times for a cyclic or unidirectional pressure forcing in a rectangular (a1-b1) or cylindrical (a2-b2) channel. For rect- 

angular channels, the pressure driving corresponds to the one represented on Fig. 2 and for the cyclic pressure driving, it correspond to the one described in Fig. 8 . Blue 

stars correspond to experiments with the cyclic forcing, black squares to experiments with the unidirectional pressure forcing, red solid lines to simulations for the cyclic 

pressure forcing and black dashed lines to simulations with the unidirectional pressure driving. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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wet fraction) as a function of time. On Fig. 9 b, we indeed see that

he plug leaves a film of constant thickness (constant wet fraction

 s ), thus leading to a zero cyclic mass balance. 

To understand the transition occurring for liquid plugs smaller

han L c o we also plotted the evolution of the wet fraction as a func-

ion of time for the initial size L 3 = 4 . 5 mm (see Fig. 10 ). In this

ase, the plug moves initially at a capillary number lying under

he critical capillary number Ca c thus leading to the deposition of

 liquid film of constant thickness behind the plug. The plug speed

ncreases progressively (see Fig. 8 b) due to the increase in the driv-

ng pressure (see Fig. 2 ). At time t ≈ 1.5 s (see Fig. 10 ) the plug di-

ensionless speed overcomes Ca c and the wet fractions starts in-

reasing until the direction of motion changes ( Fig. 10 ). During the

ext cycles, the same behaviour is observed with, at first, the de-

osition of a film of constant thickness and then the deposition of

 film of increasing thickness ( Fig. 10 ). Nevertheless, at each cy-

le, (i) the plug travels further away, (ii) the plug size decreases,

iii) more and more liquid is left on the walls and (iv) the propor-

ion of the motion above Ca c increases. For time t > 15 s the plug

imensionless speed exceeds Ca c for the most part of the motion
 d  
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nd this leads to a rapid evolution of the plug size and speed and

ventually its rupture. This second phase is similar to the evolution

f liquid plugs in cylindrical tubes. 

This analysis enables to set a criterion on the stability of a liq-

id plug driven by a pressure periodic cyclic forcing in a dry rect-

ngular microchannel: If the plug dimensionless speed remains be-

ow Ca c during the first cycle, then the plug dynamics will remain

table during the next cycles, while if the plug reaches Ca c during

his first cycle, it will accelerate cyclically and eventually rupture. 

.3. Evolution of the rupture time and rupture length and 

omparison between cyclic and unidirectional forcing 

To get a parametric overview of the liquid plugs dynamics in

ectangular microchannels, we performed hundreds experiments 

ith different plug initial lengths and either unidirectional or

yclic pressure drivings (of same maximal amplitude). The mea-

ured values of the rupture time and rupture length are repre-

ented on Fig. 11 (a1-b1) and compared to the evolutions in cylin-

rical tubes (a2-b2). As previously reported in cylindrical channels,
audoin, Pressure-driven dynamics of liquid plugs in rectangular 
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we observe a saturation of the rupture length when the plug starts

undergoing cycles. Nevertheless a major difference with cylindri-

cal tubes is that the rupture time increases to infinity for a finite

value of the critical initial length L c o ≈ 4 . 7 mm while the increase

in the rupture time was shown to follow a more ”gradual” expo-

nential trend in Signe-Mamba et al. (2018) . This is again a con-

sequence of the existence of the quasi-static deposition regime in

rectangular channels which does not exist in cylindrical tubes. Of

course, in any case, the rupture time is never really infinite owing

to evaporation of the plug occurring in the channel and the weak

dependence on the capillary number. 

6. Critical assessment of the experimental dispersion and the 

model validity 

The experiments presented in this paper were extremely sensi-

tive on the contamination of the channels. To avoid pollution, (i)

the channels were fabricated in the clean room and stored in a

sealed box until their use, (ii) the air injected in the channels by

the pressure controller was filtered by several filters, and (iii) we

were extremely cautious in the liquid sampling to avoid pollution

of Perfluorodecalin. Nevertheless, even with all these precautions,

we had to change the channels regularly when contamination was

observed to avoid deviation in the results. We believe that this pol-

lution is the main source of discrepancy in the experiments. From

the theoretical side, the main shortcomings of the model are: 

1. The approximation of the progressive transition between the

quasi-static and dynamic deposition regimes (observed in

Lozàr et al. (2007) ) by a sharp transition between a constant

value behind a critical capillary number and Eq. (23) above. 

2. The omission of all the unsteady and convective terms from

Stokes equation, even in the most accelerative phase and the

approximation of the viscous pressure drop by a Poiseuille law.

3. The 2D (high aspect ratio) approximation for the estimation of

the front interface pressure drop. 

4. The approximation of the tube prewetting film by the formula√ 

1 − ˜ S f . 

With that said, it is difficult to determine the exact origin of

discrepancies between experiments and theory. In particular we

are unable at the present state to determine whether observed de-

viations mostly originate from experimental imperfections or ap-

proximations in the theory. 

7. Conclusion 

In this work, we studied the dynamics of single liquid plugs in

rectangular microfluidic channels under unidirectional and cyclic

pressure forcings. First we showed that the transition between a

quasi-static and dynamic film deposition regimes leads to a dra-

matic acceleration of the plug rapidly leading to its rupture. A

pressure-dependent critical size for the transition between these

two regimes is derived analytically. For cyclic periodic pressure

forcing, we showed that two regimes can occur depending on

the initial size of the plug: the plug can either undergo stable

periodic oscillations or cyclically accelerate and eventually rup-

ture. The stable regime is observed when the plug dimension-

less speed remains below a critical capillary number during the

first cycle, while the second is observed as soon as the plug

overcomes this value during the first cycle. We were able to

quantitatively reproduce the evolution with a reduced dimension

model obtained from the combination of previous elements intro-

duced by Baudoin et al. (2013) , Magniez et al. (2016) and Signe-

Mamba et al. (2018) with additional elements to consider the

transition between the quasi-static and dynamic film deposition

regimes. 
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These results are of primary interest since microfluidic chan-

els with rectangular cross sections are widely used in the field of

icrofluidics owing to their easy fabrication. In particular, for the

tudy of liquid plugs dynamics in complex geometries, such as air-

ay tree, it is extremely difficult to design trees with cylindrical

ections. Thus this work also enables to analyse and transpose re-

ults obtained in rectangular channels to cylindrical channels and

nderstand the pertinence and limit of such comparison. 
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