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Abstract 
In the present work, we investigate the unstationary dynamics of sessile droplets subjected to high-frequency surface acoustic 
waves modulated at a lower frequency close to the first inertio-capillary resonance mode of the drop. Under the action of 
both acoustic streaming and radiation pressure, the droplet response combines (i) a directional motion and (ii) oscillations 
of its shape and contact-line position. The droplet oscillations and time-averaged velocity show strong dependency on the 
modulation frequency. While the former dependence is linked to some resonance effects (harmonic and parametric), the 
latter one is still an unsolved issue. To get further insight of the underlying physics, we investigate here the fast oscillating 
dynamics of the drop contact line and of the dynamical contact angles through high-speed and high-resolution measurements 
at various modulation frequency. At odds with what is predicted and measured in stationary moving contact lines, we show 
that the contact-line velocity exhibits complex, non-single-valued dependence with the dynamic contact angles.

Graphical abstract

 *	 P. Brunet 
	 philippe.brunet@univ-paris-diderot.fr

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8487-5362
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-021-03365-7&domain=pdf


	 Experiments in Fluids           (2022) 63:34 

1 3

   34   Page 2 of 14

1  Introduction

The motion of small amounts of liquids on substrates is often 
hindered by natural surface imperfections, which cause pin-
ning force, generally quantified by a hysteresis in the con-
tact angle (CA) adopted by the liquid droplet at the onset 
of advancing or receding motions (Bonn et al. 2009). This 
retention force is generally written as:

where � is the surface tension between the liquid and the 
ambient, R0 is the basal drop radius, a is a geometrical pref-
actor; �R and �A , respectively, stand for the static CA at the 
onset of the receding and the advancing motions, whose 
values are distinct from �Y the CA at thermodynamic equi-
librium given by the Young’s law. Mechanical vibrations 
prescribed to the substrate showed their ability to decrease 
or even cancel this retention force (Johnson and Dettre 1964; 
Andrieu et al. 1994; Decker and Garoff 1996; Della Volpe 
et al. 2002; Brunet et al. 2007), a phenomenon also measured 
in electrowetting (Li and Mugele 2008). The decrease in hys-
teresis could be related to the fact that vibrations make the 
contact line (CL) constantly unpinned (Noblin et al. 2004), 
allowing to jump over energy barriers caused by substrate 
imperfections (Long and Chen 2006). One of the key ingre-
dients is to choose a vibration frequency close to that of the 
lowest modes of resonance of the drop (generally denoted 
as the Rayleigh-Lamb modes Lamb 1932). As the forcing 
frequency increases, the different modes of resonance of 
sessile drops were found to show more complex interplay 
between radial and azimuthal deformations (Bostwick and 
Steen 2014; Chang et al. 2015), offering a rich collection of 
spatial modes (Steen et al. 2019). To additionally induce a 
net directional motion of the drop, another key ingredient 
is to stimulate both the symmetric and asymmetric lower-
frequency modes, which in practice is achieved either by 
combining horizontal and vertical vibrations with a phase 
shift (Noblin et al. 2009), or by prescribing slanted substrate 
vibrations (Brunet et al. 2007; Costalonga and Brunet 2020).

As an alternative to mechanical vibrations, and proba-
bly being a more versatile technique, surface acoustic 
waves (SAWs) of frequency above MHz are proven to be 
efficient in performing internal mixing, free-surface oscil-
lations, jetting, splitting/merging and nebulisation of ses-
sile droplets (Friend and Yeo 2011; Insepov et al. 2021; 
Lei and Hu 2020; Connacher et al. 2020). The droplet 
dynamics mainly results from the combination of two 
effects, namely acoustic streaming and radiation pressure 
(Brunet et al. 2010). While the former effect originates 
from the viscous dissipation of a leaky acoustic wave that 
propagates within the fluid and in turn generates a direc-
tional flow (Riaud et al. 2017), the latter one exerts a stress 

(1)FR = a��R0(cos �R − cos �A)

on the drop free surface (Chu and Apfel 1982; Cinbis et al. 
1993; Elrod et al. 1989; Issenmann et al. 2008). For large 
enough acoustic power, the drop responds with a combina-
tion of large amplitude oscillations and net motion in the 
direction of the wave propagation in the solid (Brunet et al. 
2010). The frequency of oscillations scales as 

fosc ≃ �r

(
�

�V

) 1

2 (Brunet et al. 2010), where � is the liquid 
density, V  the drop volume and �r a prefactor typically 
smaller than unity and whose exact value depends on the 
wetting properties (Tsamopoulos and Brown 1983; Strani 
and Sabetta 1984; Celestini and Kofman 2006; Bostwick 
and Steen 2009; Sharp 2012). For droplets of volume rang-
ing between a few � l and 10 � l, fosc is typically between 
40 and 80 Hz and hence close to the lowest order sym-
metrical resonant mode (Lamb 1932). The discrepancy by 
several orders of magnitude between the high-frequency 
(MHz) excitation and the low-frequency response of the 
drop underlines a strongly nonlinear mechanisms that 
remain to be elucidated (Chastrette et al. 2021). The effect 
of the SAW frequency fac on the drop response, in particu-
lar its inner velocity, was investigated in several studies 
(Insepov et al. 2021; Alghane et al. 2012; Guo et al. 2014; 
Dentry et al. 2014; Shilton et al. 2014). A higher fac pro-
duces a more localised inner flow (Dentry et al. 2014; 
Shilton et al. 2014), but its effect on the drop motion is less 
obvious.

In a previous paper Baudoin et al. (2012), it was shown 
that modulations of the acoustic amplitude with a fre-
quency fm near the drop response frequency fosc and near 
twice this frequency resulted in a strong increase of drop 
velocity (for the same acoustic power), respectively, cor-
responding to harmonic and parametric resonances. This 
strong coupling between free-surface or CL oscillations 
and translational velocity was confirmed in a later study 
for both sessile and pendant drops (Bussonniere et al. 
2016), where a shift of response frequency with the ampli-
tude of oscillations was measured and was found to be 
related to the averaged drop height. However, the dynam-
ics at the CL level, which exhibits oscillations suppos-
edly hindered by the pinning force from Eq. (1), was not 
investigated, although it should contain important clues for 
the understanding of the global (time-averaged) motion. 
Beyond these fundamental questions, to ease the motion 
of sessile droplets on substrates is a key issue in many 
applications, related to bio-fouling, surface cleaning or 
liquid droplet sorting on laboratory on chip (Bussonniere 
et al. 2021).

In the present study, we aim at improving the compre-
hension of the mechanisms behind this increase in velocity 
when modulation is prescribed near drop resonances, from 
the fast, local dynamics of the CL in SAW-actuated drops. 
Two possible scenarios are especially investigated: 
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1.	 Can the increase in velocity with amplitude of oscil-
lations be attributed to a phase shift between droplet 
symmetric and asymmetric modes of oscillations ?

2.	 Can the increase in velocity be partly or totally attributed 
to a reduction or a shift of the CA hysteresis �A − �R and 
then of FR ? In other terms, could �A and �R be consid-
ered as velocity- or amplitude-dependent ?

We address these questions by carrying out experiments on 
sessile drops actuated with SAWs with frequency fac ≃ 20 
MHz. The actuation here is modulated at a frequency fm 
lying between 15 and 150 Hz, hence encompassing the first 
inertio-capillary eigenmodes of the drop. The modulation is 
used as a mean to study the influence of the oscillations on 
the drop global motion, as resonances phenomena lead to 
larger drop oscillations for the same injected acoustic power. 
Under the SAWs’ excitation, the drop acquires an average 
velocity ⟨V⟩ and exhibits oscillations of its free-surface and 
basal radius, but not necessarily at the frequency of modula-
tion fm since superharmonic and subharmonic responses are 
observed. We recorded the dynamical contact angles �d and 
the position of the contact line along the substrate x versus 
time, with high-speed imaging and high spatial resolution. 
Related to the two aforementioned possible mechanisms, 
several previous investigations on oscillating CL dynam-
ics reported measurements of �d versus instantaneous CL 
velocity V with non-single-valued dependence (Brunet et al. 
2007; Ting and Perlin 1995; Jiang et al. 2004; Bradshaw 
and Billingham 2018). Such empirical laws clearly depart 
from Voinov’s hydrodynamic theory of dynamical wetting 
(Voinov 1976) supposedly valid for stationary situations 
(Bonn et al. 2009; Dussan 1979; Petrov et al. 2003; Le Grand 
et al. 2005; Snoeijer and Andreotti 2013), or for weakly 
unstationary ones (Sikalo et al. 2005; Hodgson et al. 2021).

The paper is organised as follows: Section II presents the 
experimental setup, section III presents a qualitative descrip-
tion of the phenomena and introduces definitions of quanti-
ties relevant for averaged and fast dynamics analysis, section 
IV presents the quantitative results for both time-averaged 
and fast dynamics, and finally the results are discussed and 
synthesised in section V.

2 � Experimental setup

The setup is similar to the one utilised in previous stud-
ies (Baudoin et al. 2012; Bussonniere et al. 2016): Sessile 
drops of deionised water are insonified by Rayleigh surface 
acoustic waves, generated on a 1.05-mm-thick (X-cut) lith-
ium niobate (LiNbO3 ) piezoelectric substrate. Interdigitated 
transducers (IDTs) are designed by successively sputtering 
a titanium (Ti) layer (20 nm thick) and a gold (Au) layer 
(200 nm thick) on the substrate. The SAWs are excited by 

a high frequency generator (IFR 2023A) and an amplifier 
(Empower RF 1037), see Fig. 1. Both the spacing and width 
of the interdigitated fingers (equal to a = 43.75 � m in the 
present system) determine the optimal frequency of the SAW 
according to the relationship fsaw = cs∕� = cs∕4a where � is 
the wavelength and cs ≈ 3484 m.s−1 is the sound speed of 
Rayleigh waves. A fac=19.7 MHz excitation is used in this 
work as it maximises the drop response, a frequency which 
is close to the value fsaw = 19.91 MHz inferred from the 
acoustic properties of lithium niobate. The amplitude of the 
surface acoustic wave normal displacement d (characteristic 
of the wave magnitude) is measured with a Mach–Zehnder 
interferometer and found to range between 0.8 and 2 nm 
for a power suitable to induce both significant oscillations 
and net displacement of the drop. The signal prescribed on 
the IDT is modulated in amplitude, at a frequency fm ≪ fac 
ranging typically between 15 and 150 Hz, hence close to the 
first droplet inertio-capillary eigenmodes. Hence, fm is the 
main control parameter in our study. The acoustic frequency 
fac is kept at fixed value.

The substrate surface is treated by a self-assembled mon-
olayer (SAM) of OTS (octadecyltricholorisilane) making it 
hydrophobic and with weak CA hysteresis. The advancing 
and receding angles, measured by successively inflating and 
deflating a sessile droplet at very low flow rate, are, respec-
tively, �A = 108◦ and �R = 99◦ . Reflections at the edge of 
the substrate are prevented by placing an acoustic absorber 
(Blu tack, UHU patafix) over the substrate contour and by 
adding a large liquid puddle (several ml) on the SAW path, 
behind the droplet. The droplet is actuated such that its net 
motion is always in the direction of the SAW propagation, 
so that no protection from unwanted liquid contact with the 
IDTs is required. To avoid chemical pollution on the surface, 
which would degrade the OTS treatment and would increase 
hysteresis after a few days, we carried out experiments in a 
class 1000 clean room. A droplet of volume V = 7.5 � l is 
deposited on the substrate. The dynamics is recorded with 
a high-speed camera (Photron SA3). The typical frame rate 
used in our experiments is 2000 fps, in full frame (1 MP). 
We use powerful zoom with extension tubes to access the 
drop dynamics with high enough spatial resolution (4.07 

Fig. 1   Sketch of the experimental setup (see text for details)



	 Experiments in Fluids           (2022) 63:34 

1 3

   34   Page 4 of 14

� m per pixel). The best possible homogeneity in the field of 
the drop, suitable for extracting the drop motion and shape, 
is obtained with a cold continuous light pointed on a white 
screen at the background. Typical sequences are shown in 
Fig. 2, from which the horizontal position of drop CL at 
the left x1 and right x2 ends is extracted, as well as the cor-
responding CAs �1 and �2 . These dynamical angles were 
measured from a linear extrapolation of the drop shape in the 
vicinity of the free-surface, after filtering, binarisation and 
outlining routines applied to the different sequences. This 
extrapolation was determined along a width of 20 pixels 
(corresponding to 82 �m), but we checked that the results 
on the angles were roughly the same if the width was chosen 
up to 50 pixels. Above this width, the drop shape can signifi-
cantly departs from a straight wedge.

3 � Definitions and phenomenological 
description

A first observation of the drop dynamics (see a typical exam-
ple in Fig. 2) shows that the drop experiences a succession 
of stretching and spreading phases, where xi and �i vary in a 
non-monotonous way and in many situations in a complex 
manner. Furthermore, during one cycle of oscillations, the 
values of both �i are comprised between �R and �A , in which 
the contact line is supposed to be pinned but also further 
below and beyond these values. It is important to under-
stand what are the main forces that govern such an unstation-
ary dynamics. In the classical stationary situation (see eg. 
Dussan 1979; Petrov et al. 2003; Le Grand et al. 2005), the 
spreading and dewetting of liquids on substrates are ruled by 
a balance between surface tension forces and viscous shear. 
The retention force due to substrate imperfections (eq. (1)) 
is generally considered as a constant in static and dynamical 
situations, and ruling the onset of motion (Bonn et al. 2009; 
Snoeijer and Andreotti 2013). The classical situations are 
those of a drop sliding on an incline plane, an immersed 
plate drawn out or dipped in a bath (“dip-coating”) or a 

liquid plug moving along a capillary tube. The inner flow 
and free-surface shape generally reach a steady state, leading 
to a selection of dynamical contact angles �d given by the 
Cox–Voinov’s law (Bonn et al. 2009; Snoeijer and Andreotti 
2013):

where U is the contact-line velocity and � the dynamical 
viscosity. This relationship reflects the so-called viscous 
bending effect, occurring when Ca = �U∕� is large enough 
(typically ≥ 10−5 ) (Petrov et al. 2003; Le Grand et al. 2005). 
The dynamical angle �d is considered either at the front or 
the back of the drop, depending on the sign of U. The static 
angle �s is within the range of hysteresis [�R, �A] , and it was 
shown that �s should be equal, respectively, to �R or �A for 
receding or advancing contact lines (Petrov et al. 2003; Le 
Grand et al. 2005). Finally, LM and lm are, respectively, the 
macroscopic and microscopic (molecular) length scales. The 
model, that assumes a liquid free-surface of slowly vary-
ing slope, can be refined by including local variations of 
the slope or by combining it with other effects including 
mesoscopic slip length, the existence of a precursor film 
due to disjoining pressure or thermally activated jumps at 
molecular scale (Bonn et al. 2009; Snoeijer and Andreotti 
2013). The latter effect has recently received specific atten-
tion, and its relevance was evidenced for very-low-hysteresis 
substrates ( < 2◦ ) (Perrin et al. 2016, 2018).

To what extent Eq. (2) remains valid if fluid inertia is not 
negligible anymore? This situation can occur in various situ-
ations, like during the first steps of wetting (Sikalo et al. 
2005; Eddi et al. 2013), in a drop sliding on an inclined plate 
at high enough velocity (Hodgson et al. 2021; Puthenveettil 
et al. 2013), in interaction with a wake in a boundary-layer 
flow (Burgmann et al. 2021) or in liquid menisci or droplets 
subjected to oscillating forces from a vibrating substrate 
(Brunet et al. 2007; Ting and Perlin 1995; Jiang et al. 2004; 
Bradshaw and Billingham 2018; Hocking 1987; Miles 

(2)�3
d
− �3

s
= 9

�U

�
log

(
LM

lm

)
,

Fig. 2   Successive shapes taken by a sessile drop excited by fac = 
19.7 MHz surface acoustic waves (SAWs) modulated at fm = 50 Hz. 
The drop response combines both directional motion to the right (the 
direction of SAWs propagation) and free-surface oscillations. From 

high-resolution images, both the positions of the rear (left) and front 
(right) of the contact line are extracted ( x

1
 and x

2
 ) as well as the cor-

responding dynamical contact-angles �
1
 and �

2
 , indicated on one of 

the frames
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1990). Our study comes with the scope of this latter situa-
tion. Historically, the influence of periodic shaking on drops 
or menisci has been partly motivated by the potentiality to 
induce a directional motion and to overcome the pinning 
forces due to substrate imperfections (Brunet et al. 2007; 
Noblin et al. 2009; Costalonga and Brunet 2020; Ting and 
Perlin 1995). Indeed, it was shown that such vibrations could 
partly or fully remove the pinning forces (Johnson and Dettre 
1964; Andrieu et al. 1994; Decker and Garoff 1996; Della 
Volpe et al. 2002; Brunet et al. 2007; Li and Mugele 2008) 
on a rough and chemically inhomogeneous substrate. The 
decrease of hysteresis is related to that vibrations make the 
contact line constantly unpinned (Noblin et al. 2004) and 
susceptible to jump over energy barriers caused by the sub-
strate imperfections (Long and Chen 2006). One generally 
obtains a hysteretic behaviour with a non-single-valued CL 
velocity U(t) = ẋi versus �d , here = �i , which clearly departs 
from Eq. (2) (Brunet et al. 2007; Ting and Perlin 1995; Brad-
shaw and Billingham 2018). Therefore, a question arising is 
how to explain and quantify this hysteretic behaviour and 
which ingredients have to be added in the dynamics to 
include the influence of fluid inertia ? Various studies have 
tried to address this question. One of the approaches consists 
in prescribing ad hoc conditions, which relate the instantane-
ous contact-line velocity and the macroscopic deformation 
at the vicinity of the contact line, as stated, for instance, in 
Hocking (1987), Fayzrakhmanova and Straube (2009). 
Another experimental study proposed a macroscopic effec-
tive slip length, which increases with the amplitude of oscil-
lations (Ting and Perlin 1995). Other approaches attempt to 
solve the full hydrodynamics, which lead to a contribution 
of inertia involving Reynolds number-dependent terms (Cox 
1998, Hocking and Davis (2002)). Without entering into 
such complexities here, the main reason why Voinov’s 
framework and Eq. (2) fail in predicting the fast dynamics 
of oscillating CLs, should be that the corresponding inner 
visco-capillary flow does not reach a stationary regime. 
Instead, an unstationary boundary layer develops, with typi-
cal thickness � =

(
2�

�fosc

)1∕2

 , where fosc is the typical fre-
quency of the drop oscillations, and this layer can be signifi-
cantly thinner than the drop height. Still, experiments on 
drops subjected to mechanical vibrations on a substrate 
showed that a relationship similar to eq. (2) could exist 
between the time-averaged dynamical angles and velocities, 
at least at an empirical level (Brunet et al. 2007, Costalonga 
and Brunet 2020).

The instantaneous unbalanced Young force per unit 
length of contact line (Bonn et al. 2009) is usually expressed 
as �(cos �i − cos �e) , where i = 1 or 2 depending whether the 
left or the right side of the drop is considered, and �e = �A 
or �R depending whether the contact line is in advancing or 
receding situation. When considering the whole drop, one 

should add the contribution of the whole contour, which can 
have a complex tridimensional shape. This issue is some-
what avoided if one considers that the spatial distribution of 
the CA can be simplified by taking two distinct values at the 
rear and the front sides (Dimitrakopoulos and Higdon 1998). 
Therefore, the problem finds a two-dimensional equivalent, 
and the resulting motile force on the drop at a time t is:

where the term (x2 − x1) accounts for the variations of the 
basal radius. The values of this radius R(t) range between 
Rmin and Rmax over one period. Another important quantity 
is the width of this range ΔR:

which then quantifies the amplitude of CL oscillations. 
When integrated over a period of modulation Tm =

1

fm
 , it 

reads (Brunet et al. 2007):

Therefore, FM is expected to be related to the averaged 
velocity ⟨V⟩ and possibly to ΔR . In practice, ⟨V⟩ is extracted 
from the mean displacement of the back-and-forth CL posi-
tion over several (between 2 and 10) periods of oscillations. 
The equivalent dimensionless instantaneous velocity is the 
time derivative of the left and right CL positions:

which are expected be related to �i . In what follows, we 
present results for both time-averaged and fast dynamics of 
CLs. We exploit that ⟨V⟩ and ΔR are strongly dependent 
on fm (Baudoin et al. 2012) to extract xi and �i for different 
values of fm . From analysis of the fast dynamics, we expect 
to better understand the mechanisms behind this strong 
dependence. Since positive values for Cai  correspond to an 
advancing situation, one takes the opposite of ẋ1 in Eq. (6).

4 � Results

4.1 � Averaged dynamics: oscillations and directional 
motion

We first present results extracted from time-averaged quanti-
ties. The averaged velocity ⟨V⟩ and the maximal difference 
of basal radius ΔR are extracted for all values of fm from 
15 to 150 Hz, keeping the acoustic displacement constant, 
d = 1.38 nm. Figure 3-a presents the quantity ΔR × fm , as a 
characteristic oscillation velocity for the contact line, versus 

(3)FM(t) = 2��(cos �1 − cos �2)(x2 − x1)

(4)ΔR = Rmax − Rmin

(5)FM =
1

Tm ∫
Tm

0

��(cos �2 − cos �1)(x2 − x1)dt

(6)Cai =
𝜂ẋi

𝛾
,
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fm , together with the frequency domains of the different 
responses of the drop contact line. These regimes are cat-
egorised into: aperiodic, quasi-harmonic, harmonic (with or 
without resonance), period-doubling, period-doubling with 
parametric instability. In practice, due to the variety in the 
drop responses, the averaging is done over several periods 
of the drop response, and not over periods of excitation. 
Figure 3-b shows ΔR versus fm . Both these plots confirm 
the trends already reported in Baudoin et al. (2012). A clear 
maximum of amplitude of the CL oscillations is observed 
for fmax ≃ 50 Hz, while another local maximum appears at 
∼ 2fmax.

Figure  3-c plots ⟨V⟩ versus ΔR , showing a global 
increase, consistent with previous measurements (Baudoin 
et al. 2012; Bussonniere et al. 2016), except for the highest 
values of ΔR where a saturation phenomenon appears. The 
two data points at ΔR ≃ 1.8 mm correspond to fm = 47.5 
Hz and 50 Hz, for which the drop does enter in resonance.

Following the results of previous studies (Brunet et al. 
2007; Costalonga and Brunet 2020), where the averaged 
velocity of vibrating droplets was linearly dependent to the 
time integration of the motile force FM , we plot the time-
averaged value of FM (see Eq. (5)) versus the dimension-
less-averaged velocity ⟨Ca⟩ = �⟨V⟩

�
 , see Fig. 4-a. However, 

(a)

0 50 100 150
f
m

 (Hz)
0

0.5

1

1.5

2

2.5

 R
 (

m
)

10-3

0 50 100 150fm (Hz)
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

<
V

>
 (

m
/s

)

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 R (m) 10-3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

<
V

>
(m

/s
)

(c)

Fig. 3   Time-averaged dynamics of a SAW-driven droplet with vari-
ous modulation frequencies fm for an acoustic amplitude d = 1.38 
nm. a Characteristic contact-line oscillation velocity ΔR × fm ver-
sus modulation frequency fm . Coloured domains indicate the differ-
ent regimes of response: aperiodic, harmonic (with or without reso-

nance), period-doubling, period-doubling with parametric instability. 
b Basal radius difference ΔR = Rmax − Rmin versus fm . Insert: corre-
sponding averaged drop velocity ⟨V⟩ . c Averaged drop velocity ⟨V⟩ 
versus ΔR
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the averaged motile force does not show any clear trend 
with Ca: it remains bounded in a range between 45 and 70 
� N. As a comparison, the retention force based on CA 
hysteresis calculated from Eq. (1) roughly equals FR = 40 
�N.

We also examine whether or not a significant decrease 
in CA hysteresis can be evidenced, as it was observed for 
drops on mechanically vibrating substrates (Andrieu et al. 
1994; Decker and Garoff 1996; Brunet et al. 2007), where 
the dynamics of CLs was shown to oscillate without any 
stop-and-go in the range of CA 𝜃R < 𝜃i < 𝜃A . A first coarse 
attempt to address this point quantitatively is to determine 
the ratio of time (determined over a few periods) during 
which the contact line remains static: pCL . The criterion to 
remain static is taken such as the positions xi (i=1,2) vary by 
less than 1 pixel (about 4 microns) during the time interval 
between two frames 0.5 ms, leading to a velocity ẋi smaller 
than 8 mm/s or a Cai  roughly inferior to 10−4 . For the same 
measurements, we also determine the ratio of time pCA dur-
ing which �i is bounded between �R and �A . The results are 
plotted versus a characteristic CL oscillation velocity, here 
taken equal to ΔR ∗ fm , see Fig. 4-b. While the calculation 
of these ratios is carried out on both �1 and �2 , both the front 
and back sides show roughly the same trend. One notices a 
global decrease of pCA and pCL with ΔR ∗ fm , but with some 
significant dispersion.

4.2 � Local contact‑line dynamics

We now focus on the fast, local CL dynamics. We com-
puted the dimensionless velocities of the rear (left) and front 

(right) CLs over several periods of oscillations: Ca1 and Ca2 
correspond, respectively, to the dimensionless velocity of 
horizontal coordinates x1 and x2 , following the definition 
given in Eq. (6). We first prescribe fm = 50 Hz, for which 
the drop response is close to the harmonic resonance and 
corresponds to a relatively large velocity. We prescribe vari-
ous levels of acoustic power, quantified by the amplitude 
d. Figures 5-a–c present Cai  versus �i (i = 1 and 2, respec-
tively, for left and right CLs), at different values of d. Fig-
ure 5-d gathers all data for the three values of d for the sake 
of comparison.

The evolution of Cai  with �i shows a non-trivial depend-
ence, which clearly departs from the classical Cox–Voinov 
equation. Instead, and consistently with previous experi-
ments in oscillating CLs (Ting and Perlin 1995; Jiang et al. 
2004; Brunet et al. 2007; Bradshaw and Billingham 2018), 
Cai is not a single-valued function of �i and seems to depend 
on which phase of oscillation is considered. To further inves-
tigate the CL/CA dynamics in a more quantitative way, we 
opted to operate at fixed d = 1.38 nm and to vary fm from 15 
to 150 Hz. The choice for an intermediate value of acoustic 
amplitude d is motivated by that for too small values of d; 
the range of Cai  is too narrow (roughly between −1.5×10−3 
and 2.5×10−3 , see Fig. 5-a), while for too high values of d 
the dynamics of CLs becomes too much erratic.

Based on previous investigations on drops on mechani-
cally vibrated substrates (Brunet et al. 2007; Noblin et al. 
2009; Costalonga and Brunet 2020; Sartori et al. 2015, 
2019), we focus on the relative contribution and phase shift 
between symmetric and asymmetric modes. The pumping 
(symmetric) mode can be quantified by the basal radius 
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R(t) = x2 − x1 , and the rocking (asymmetric) mode by the 
difference ( cos �2 − cos �1 ). Figures 6-a–f show these quanti-
ties over several periods with increasing fm from (a) to (f). 
They illustrate in more detail the CL dynamics correspond-
ing to the regimes mentioned in Fig. 3-a. One of the interest-
ing behaviours is that the basal radius responds harmonically 
with the modulation fm only within a reduced range of fm 
(here roughly between 42 and 75 Hz) and that this situation 

corresponds to the largest amplitude ΔR (subfigure c), see 
also Fig. 3-b.

Below this range, R(t) responds with a more complex 
behaviour, which actually depends whether fm is compat-
ible with the range of natural frequencies fosc that the drop 
adopts. For instance, at fm=30 Hz (subfigure (a)), the drop 
responds at a frequency fosc slightly smaller than fm (as 
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Fig. 5   Relationship between dynamical CA and dimensionless CL 
velocity at the rear/left (index 1, open symbols) and front/right (index 
2, filled symbols) for a 7.5 � l drop excited by 19.7 MHz SAWs modu-
lated at fm = 50 Hz, at different acoustic powers. a d = 1.08 nm, b d 

= 1.38 nm, c d = 1.74 nm, d gathering of the three sets of data of (a, 
b, c). The horizontal dash-dotted line indicates static CLs, while the 
two vertical dashed lines show the values of static �R and �A
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shown by the double-arrow representing 1∕fm , shorter than 
the natural period the drop tries to adopt), with a combina-
tion of modes resulting in a non-periodic dynamics. At fm 
= 25 Hz (non-represented), the drop responds almost har-
monically, probably because it is near half the resonance 
frequency. At fm=40 Hz (subfigure (b)), the response of the 
drop, although seemingly resulting from a combination of at 
least two modes, becomes closer and closer from a harmonic 
one, and slightly higher 40 Hz, the dynamics becomes pro-
gressively periodic. Just above 60 Hz, the basal radius shows 
the lowest amplitude of oscillations. When one increases 
fm further, the drop still keeps low-amplitude response and 
exhibits period-doubling (subfigure (d)), which is identi-
fied as a progressive appearance of a parametric response 
(Baudoin et al. 2012). As fm reaches roughly 100 Hz and 
above, the parametric response becomes dominant over the 
harmonic one, and the amplitude of drop oscillations experi-
ences a sudden increase (see Fig. 3-a,b), which corresponds 
to subfigures (e,f).

It is important to check whether the maxima of the unbal-
anced capillary force, proportional to ( cos �2 − cos �1 ), cor-
respond to minimal values of R(t). In this prospect, the 
trends are less clear, especially at fm < 45 Hz (a,b), where 
( cos �2 − cos �1 ) can take strongly fluctuating values alter-
natively negative and positive. The net motion of the drop 
is somewhat limited by this. However, the dynamics for fm 
= 55 Hz (subfigure (c)) clearly shows that the occurrences 
of high ( cos �2 − cos �1 ) correspond to the smallest values 
of R(t), which promotes a net motion to the right direction. 
This feature is also observed to a certain degree for fm = 105 
and 107.5 Hz (e,f). For fm = 80 Hz, the relatively slow net 
motion can be explained by the fact that ( cos �2 − cos �1 ) 
remains small : the drop left-right asymmetry remains weak. 
Therefore, at least some cases with relatively high ⟨V⟩ could 
find an explanation through the occurrence of phase opposi-
tion between ( cos �2 − cos �1 ) and x2 − x1 , consistent with 
recent evidences on the role of phase shift in the motion of 
vibrating droplets on slippery substrates (Sartori et al. 2019), 
as well as with previous ones on surfaces with larger friction 
(Noblin et al. 2009).

However, the lack of trend of FM with Ca in the deter-
mination of the time-averaged dynamics (Fig. 4-a) casts 
some doubts on a mechanism that would simply rely on the 
phase shift between ( cos �2 − cos �1 ) and x2 − x1 . This point 
remains to be understood in detail.

From Fig. 5, we deduce that the relationship between 
instantaneous CL dimensionless velocities Cai  and cor-
responding dynamical angles �i would reflect an unsteady 
dynamics. We now investigate the influence of fm on this 
empirical relationship, at fixed amplitude d = 1.38 nm. 
The results are depicted in Fig. 7-a–d for four main differ-
ent situations: (a) fm = 30 Hz (aperiodic, erratic response 

with dominant fosc close to fm ), (b) fm = 50 Hz (resonant 
harmonic response, with the largest amplitude), (c) fm = 
95 Hz (small amplitude response with period-doubling, and 
(d) fm = 105 Hz (large amplitude response with parametric 
instability and period-doubling). All the four plots show a 
certain degree of departure from classical stationary situa-
tions generally captured by Eq. (2): (i) in the sense that Cai 
takes at least two distinct values for the same �i , in either 
advancing or receding phases of the CL, (ii) in the sense 
that Ca1(�1) and Ca2(�2) take values which are shifted from 
each other. At 30 Hz, the left CL (open symbols) and right 
CL (filled symbols) describe distinct range of values. That 
for (�1 , Ca1 ) is clearly shifted compared to that for (�2 , Ca2 ). 
From direct visualisations of the sequences, we attribute this 
behaviour to a significant asymmetry of the drop over the 
whole period of oscillation, which could be enhanced by 
the influence of gravity, given that the drop height can be 
significantly larger than the initial one h0 ≃ R0 (see also Bus-
sonniere et al. 2016). At 50 Hz, Ca1 , Ca2 and �1 , �2 roughly 
describe the same range of values. A remarkable feature is 
that the relationship Cai(�i) follows a wide single loop, cor-
responding to the advancing and receding phases, which is 
observed in the whole range of harmonic resonance (47 to 
55 Hz). At 95 Hz, the trend seems comparable to the previ-
ous one, but with a lesser extent for the range of values, and 
multiple and lesser defined loops with narrower width in the 
region of high CA. At 105 Hz, a shift between (�1 , Ca1 ) and 
(�2 , Ca2 ) is again noticed in the range of high CA and also 
with multiple narrow loops for each (�i , Cai).

For all values of fm , the instantaneous velocities taken 
within the range [�R, �A]—indicated by the interval between 
the two vertical dashed lines—strongly depart from a sta-
tionary situation, for which [�R, �A] is defined as the range of 
static CL. The range of static hysteresis clearly does not hold 
in our experiments, since Ca i  takes significantly positive 
values within this range, and also as Ca i can remain close to 
zero below this range.

5 � Discussion and conclusions

Originating from an interplay between internal acoustic 
streaming and radiation pressure at the free surface, drops 
subjected to SAWs exhibit a combination of left–right 
asymmetry on their free surface with periodic oscilla-
tions of the basal radius, providing the acoustic ampli-
tude d is large enough. This leads to a time-averaged net 
motion, with large-amplitude oscillations which enable 
the constant depinning of the CL. This dynamics can be 
enhanced by a modulation of the forcing acoustic ampli-
tude at frequency fm , taken in the same range as fosc , the 
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natural frequency of oscillations exhibited by the drop in 
the absence of modulation. In particular, when fm is taken 
close to the harmonic or parametric resonances of the drop 
(here, respectively, near 50 and 100 Hz), one measures a 
significant increase of the amplitude of CL oscillations and 
of the averaged velocity, which can find its origin in the 
time evolution of the CLs velocity and CAs.

Our results show oscillating CLs with Cai(�i) which 
does not follow the classical Cox–Voinov hydrodynamics 
theory of wetting. This is reminiscent of measurements on 
vibrating drops or menisci (Brunet et al. 2007; Costalonga 
and Brunet 2020; Ting and Perlin 1995; Jiang et al. 2004) 
and suggests that there is a missing ingredient to be added 
to the classical hydrodynamic theory. Some of these theo-
ries include inertia in dynamical wetting equations (Cox 
1998; Hocking and Davis 2002), but are non-adapted to 
our situation, where the inner flow is rather complex and 
which details remain unknown. Previous experiments on 
drops or menisci subjected to slanted vibrations (Brunet 
et al. 2007; Costalonga and Brunet 2020; Ting and Perlin 
1995; Jiang et al. 2004) already pointed out this indeter-
mination in the relation Cai(�i) . Some attempts to better 
quantify this behaviour were proposed either by extracting 
a phase shift between symmetric and asymmetric modes 
(Costalonga and Brunet 2020; Sartori et al. 2015, 2019), or 
by prescribing ad hoc relationships with non-single-valued 
Cai(�i) in a more global model (Bradshaw and Billingham 
2018; Miles 1990). Our own attempts to treat our data 
by quantifying this phase shift remain partly conclusive. 
From time series of ( cos �2 − cos �1 ) and x2 − x1 , we were 
able to explain the most obvious situations, i.e. where the 
most pronounced asymmetry occurs at the same phase as 
the smallest basal radius and corresponds to the largest 

values of averaged velocity (see Fig. 6). But some impor-
tant points remain ill-explained. In particular, a significant 
difference of our results with aforementioned experiments 
on mechanically vibrated drops is that the averaged veloc-
ity is not related to the averaged motile force given by 
Eq.(5), see Fig. 4-(a). From plots of Ca i  versus �i (Fig-
ures 7), the optimum of the drop mobility (maximal aver-
aged Ca) corresponds either to the occurrence of a large 
loop in the advancing phase (harmonic resonance near 50 
Hz), either by multiple narrower and less defined loops, or 
by a shift of values between the left and right sides of the 
drop (aperiodic responses or parametric resonance near 
100 Hz). What can be stated in a qualitative level is that 
a relatively simple dynamics of the drop CL (harmonic 
response) corresponds to a single loop in Cai(�i) plots and 
that a more complex response (for instance aperiodic or 
period-doubling) tends to create narrower and more com-
plex sets of loops in the corresponding plots.

A possible framework to better quantify the relationship 
between dynamical angle and velocity in oscillating CLs was 
recently proposed by Xia and Steen (2018, 2020). However, 
it requires a reference (fixed) position for the contact line, 
which in our situation is hard to define due to the net motion 
of the drop. Our attempts to apply this framework with a 
time-drifting reference position did not give any convinc-
ing trends.

What also remains to be quantified is the range of dynam-
ical CA �i in which the CL remains pinned. Although some 
qualitative trends can be extracted from plots Cai  versus �i 
too (Fig. 7), which would suggest that the range of hyster-
esis is velocity-dependent similarly to previous vibrating CL 
experiments (Johnson and Dettre 1964; Andrieu et al. 1994; 
Decker and Garoff 1996; Della Volpe et al. 2002), there is 
no neat dependence of the effective onset of CL motion or 
in CA hysteresis on ΔR (see Fig. 4-(b)). Still, this hypothesis 
can be based on physical grounds, as it was recently shown 
by thorough experiments on low-hysteresis substrates that 
both the macroscopic and microscopic equilibrium angles 
should be velocity-dependent (Perrin et al. 2016).

Fig. 6   Basal radius (x
2
− x

1
) (blue circles, plain line, left axis) and 

cosine difference (cos �
2
− cos �

1
 ) (red circles, dashed line, right axis) 

versus time for different modulation frequencies and d = 1.38 nm. a 
fm = 30 Hz, b fm = 40 Hz, c fm = 55 Hz, d fm = 80 Hz, e fm = 105 
Hz, f fm = 107.5 Hz. The double arrows show the time interval 1∕fm 
and evidence a drop response with period-doubling for (d, e, f), har-
monic for (c), quasi-harmonic for (b) and aperiodic for (a)

◂
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In more applied prospectives, the low-frequency-mod-
ulated SAWs have proven to be an efficient way to move 
droplets on inclines (Bussonniere et al. 2021). This encour-
aging result could be extended on substrates with stronger 
CA hysteresis.

Acknowledgements  We thank Maxime Costalonga for his help in data 
treatment.

References

Alghane M, Fu YQ, Chen BX, Li Y, Desmulliez MPY, Walton AJ 
(2012) Frequency effect on streaming phenomenon induced by 
Rayleigh surface acoustic wave in microdroplets. J Appl Phys 
112:084902

Andrieu C, Sykes C, Brochard F (1994) Average spreading parameter 
on heterogeneous surfaces. Langmuir 10:2077–2080

Baudoin M, Brunet P, Bou Matar O, Herth E (2012) Low power sessile 
droplets actuation via modulated surface acoustic waves. Appl 
Phys Lett 100:154102

Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and 
spreading. Rev Mod Phys 81:739–805

80 85 90 95 100 105 110 115 120

1,2
 (deg)

-3

-2

-1

0

1

2

3

4

5

6
C

a 1,
2

10-3

Ca
1
 (

1
) ; f

m
=30 Hz

Ca
2
 (

2
) ; f

m
=30 Hz

(a)

80 85 90 95 100 105 110 115 120

1,2
 (deg)

-3

-2

-1

0

1

2

3

4

5

6

C
a 1,

2

10-3

Ca
1
 (

1
) ; f

m
=50 Hz

Ca
1
 (

2
) ; f

m
=50 Hz

(b)

80 85 90 95 100 105 110 115 120

1,2
 (deg)

-3

-2

-1

0

1

2

3

4

5

6

C
a 1,

2

10-3

Ca
1
 (

1
) ; f

m
=95 Hz

Ca
2
 (

2
) ; f

m
=95 Hz

(c)

80 85 90 95 100 105 110 115 120

1,2
 (deg)

-3

-2

-1

0

1

2

3

4

5

6

C
a 1,

2

10-3

Ca
1
 (

1
) ; f

m
=105 Hz

Ca
2
 (

2
) ; f

m
=105 Hz

(d)

Fig. 7   Relationship between dynamical CA and dimensionless CL 
velocity at the rear/left (index 1, open symbols) and front/right (index 
2, filled symbols) for a 7.5 � l drop excited by 19.7 MHz SAWs, with 

d = 1.38 nm and modulated at a fm = 30 Hz, b fm = 50 Hz, c fm = 95 
Hz, d fm = 105 Hz. The dashed line indicates Ca = 0, while the two 
dashed-dotted lines indicate �R and �A



Experiments in Fluids           (2022) 63:34 	

1 3

Page 13 of 14     34 

Bostwick JB, Steen PH (2009) Capillary oscillations of a constrained 
liquid drop. Phys Fluids 21:032108

Bostwick J. B, Steen PH (2014) Dynamics of sessile drops. Part 1. 
Inviscid theory. J Fluid Mech 760:5–38

Bradshaw JT, Billingham J (2018) Thick drops climbing uphill on an 
oscillating substrate. J Fluid Mech 840:131–153

Brunet P, Eggers J, Deegan RD (2007) Vibration-induced climbing of 
drops. Phys Rev Lett 99:144501

Brunet P, Baudoin M, Bou-Matar O, Zouesthiagh F (2010) Droplets 
displacement and oscillations induced by ultrasonic surface acous-
tic waves: a quantitative study. Phys Rev E 81:036315

Burgmann S, Dues M, Barwari B, Steinbock J, Bttner L, Czarske J, 
Janoske U (2021) Flow measurements in the wake of an adhering 
and oscillating droplet using laser Doppler velocity profile sensor. 
Exp Fluids 62:47

Bussonniere A, Baudoin M, Brunet P, Bou Matar O (2016) Dynamics 
of sessile and pendant drops excited by surface acoustic waves: 
gravity effects and correlation between oscillatory and transla-
tional motions. Phys Rev E 93:053106

Bussonniere A, Bou Matar-Lacaze O, Baudoin M, Brunet P (2021) 
Method for increasing the ability of at least one droplet to slide 
over a medium, US Patent 11,090,698

Celestini F, Kofman R (2006) Vibration of submillimeter-size sup-
ported droplets Phys. Rev E 73:041602

Chang CT, Bostwick JB, Daniel S, Steen PH (2015) Dynamics of ses-
sile drops. Part 2. Experiment. J Fluid Mech 768:442–467

Chastrette N, Baudoin M, Brunet P, Royon L, Wunenburger R (2021) 
Elucidating the oscillation instability of sessile drops triggered by 
surface acoustic waves, Submitted

Chu B-T, Apfel RE (1982) Acoustic radiation pressure produced by 
a beam of sound. J Acoust Soc Am 72:1673–1687

Cinbis C, Mansour NN, Khuri-Yakub BT (1993) Effect of surface 
tension on the acoustic radiation pressure-induced motion of the 
water-air interface. J Acoust Soc Am 94:2365–2372

Connacher W, Orosco J, Friend JR (2020) Droplet ejection at 
controlled angles via acoustofluidic jetting. Phys Rev Lett 
125:184504

Costalonga M, Brunet P (2020) Directional motion of vibrated ses-
sile drops: a quantitative study. Phys Rev Fluids 5:023601

Cox RG (1998) Inertial and viscous effects on dynamic contact 
angles. J Fluid Mech 357:249–278

Decker EL, Garoff S (1996) Using vibrational noise to probe 
energy barriers producing contact angle hysteresis. Langmuir 
12:2100–2110

Della Volpe C, Maniglio D, Morra M, Soboni S (2002) The determina-
tion of a Ôstable-equilibriumÕ contact angle on heterogeneous 
and rough surfaces. Colloids Surf A 206:47–67

Dentry MB, Yeo LY, Friend JR (2014) Frequency effects on the scale 
and behavior of acoustic streaming. Phys Rev E 89:013203

Dimitrakopoulos P, Higdon JJL (1998) On the displacement of three-
dimensional fluid droplets from solid surfaces in low-Reynolds-
number shear flows. J Fluid Mech 377:189–222

Dussan VEB (1979) On the spreading of liquids on solid surfaces: static 
and dynamic contact lines. Annu Rev Fluid Mech 11:371–400

Eddi A, Winkels KG, Snoeijer JH (2013) Influence of droplet geom-
etry on the coalescence of low viscosity drops. Phys Rev Lett 
111:144502

Elrod SA, Hadimioglu B, Khuri-Yakub BT, Rawson EG, Richley 
E, Quate CF, Mansour NN, Lundgren TS (1989) Nozzleless 
droplet formation with focused acoustic beams. J Appl Phys 
65:3441–3447

Fayzrakhmanova IS, Straube AV (2009) Stick-slip dynamics of an 
oscillated sessile drop. Phys Fluids 21:072104

Friend JR, Yeo LY (2011) Microscale acoustofluidics: microfluidics 
driven via acoustics and ultrasonics. Rev Modern Phys 83:647

Guo YJ, Lv HB, Li YF et al (2014) High frequency microfluidic per-
formance of LiNbO3 and ZnO surface acoustic wave devices. J 
Appl Phys 116:024501

Hocking LM (1987) Waves produced by a vertically oscillating plate. 
J Fluid Mech 179:267–281

Hocking LM, Davis SH (2002) Inertial effects in time-dependent 
motion of thin films. J Fluid Mech 467:1–17

Hodgson G, Passmore M, Skarysz M, Garmory A, Paolillo F (2021) 
Contact angle measurements for automotive exterior water man-
agement. Exp Fluids 62:119

Insepov Z, Ramazanova Z, Zhakiyev N, Tynyshtykbayev K (2021) 
Water droplet motion under the influence of Surface Acoustic 
Waves (SAW). J Phys Commun 5:035009

Issenmann B, Nicolas A, Wunenburger R, Manneville S, Delville J-P 
(2008) Deformation of acoustically transparent fluid interfaces by 
the acoustic radiation pressure. Europhys Lett 83:34002

Jiang L, Perlin M, Schultz WW (2004) Contact-line dynamics 
and damping for oscillatory free surface flows. Phys Fluids 
16:748–758

Johnson RE, Dettre RH (1964) Contact angle hysteresis. Adv Chem 
Ser 43:112–135

Lamb H (1932) Hydrodynamics. Cambridge University Press, Cam-
bridge, England

Le Grand N, Daerr A, Limat L (2005) Shape and motion of drops slid-
ing down an inclined plane. J Fluid Mech 541:293

Lei Y, Hu H (2020) SAW-driven droplet jetting technology in micro-
fluidic: a review. Biomicrofluidics 14:061505

Li F, Mugele F (2008) How to make sticky surfaces slippery: contact 
angle hysteresis in electrowetting with alternating voltage. Appl 
Phys Lett 92:244108

Long J, Chen P (2006) On the role of energy barriers in determining 
contact angle hysteresis. Adv Coll Interf Sci 127:55–66

Miles JW (1990) Capillary-viscous forcing of surface waves. J Fluid 
Mech 219:635–646

Noblin X, Buguin A, Brochard-Wyart F (2004) Vibrated sessile drops: 
transition between pinned and mobile contact line oscillations. Eur 
Phys J E 14:395–404

Noblin X, Kofman R, Celestini F (2009) Ratchetlike Motion of a 
Shaken Dro. Phys Rev Lett 102:194504

Perrin H, Lhermerout R, Davitt K, Rolley E, Andreotti B (2016) 
Defects at the nanoscale impact contact line motion at all scales. 
Phys Rev Lett 116:184502

Perrin H, Lhermerout R, Davitt K, Rolley E, Andreotti B (2018) Ther-
mally activated motion of a contact line over defects. Soft Matter 
14:1581–1595

Petrov J. G, Ralston J, Schneemilch M, Hayes RA (2003) Dynamics of 
Partial Wetting and Dewetting in Well-Defined Systems. J Phys 
Chem B 107:1634–1645

Puthenveettil BA, Senthilkumar VK, Hopfinger EJ (2013) Motion of 
drops on inclined surfaces in the inertial regime. J Fluid Mech 
726:26–61

Riaud A, Baudoin M, Bou Matar O, Thomas J.-L., Brunet P (2017) 
On the influence of viscosity and caustics on acoustic streaming 
in sessile droplets: an experimental and a numerical study with a 
cost-effective method. J Fluid Mech 821:384–420

Sartori P, Quagliati D, Varagnolo S, Pierno M, Mistura G, Magaletti F, 
Casciola CM (2015) Drop motion induced by vertical vibrations. 
New J Phys 17:113017

Sartori P, Guglielmin E, Ferraro D, Filippi D, Zaltron A, Pierno M, 
Mistura G (2019) Motion of Newtonian drops deposited on liquid-
impregnated surfaces induced by vertical vibrations. J Fluid Mech 
876:R4



	 Experiments in Fluids           (2022) 63:34 

1 3

   34   Page 14 of 14

Sharp JS (2012) Resonant properties of sessile droplets; contact angle 
dependence of the resonant frequency and width in glycerol/water 
mixtures. Soft Matter 8:399–407

Shilton RJ, Travagliati M, Beltram F, Cecchini M (2014) Nanoliter-
Droplet acoustic streaming via ultra high surface acoustic waves. 
Adv Mat 26:4941–4946

Sikalo S, Tropea C, Ganic EN (2005) Dynamic wetting angle of a 
spreading droplet. Exp Thermal Fluid Sci 29:795–802

Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes 
and dynamical transitions. Ann Rev Fluid Mech 45:269–292

Steen PH, Chang CT, Bostwick JB (2019) Droplet motions fill a peri-
odic table. Proc Natl Acad Sci 116:4849–4854

Strani M, Sabetta F (1984) Free vibrations of a drop in partial contact 
with a solid support. J Fluid Mech 141:233

Ting C-L, Perlin M (1995) Boundary conditions in the vicinity of the 
contact line at a vertically oscillating upright plate: an experimen-
tal investigation. J Fluid Mech 295:263–300

Tsamopoulos J, Brown R (1983) Nonlinear oscillations of inviscid 
drops and bubbles. J Fluid Mech 127:519

Voinov OV (1976) Hydrodynamics of wetting. Fluid Dyn 11:714–721
Xia Y, Steen PH (2018) Moving contact-line mobility measured. J. 

Fluid Mech. 841:767–783
Xia Y, Steen P. H (2020) Dissipation of oscillatory contact lines using 

resonant mode scanning. NPJ Microgravity

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

P. Brunet1   · M. Baudoin2

1	 Laboratoire Matière et Systèmes Complexes, UMR CNRS 
7057, Université Paris Diderot, 10 rue Alice Domon et 
Léonie Duquet, 75205 Paris cedex 13, France

2	 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique 
Hauts-de-France, UMR 8520 - IEMN - Institut d’Electronique 
de Microélectronique et de Nanotechnologie, F‑59000 Lille, 
France

http://orcid.org/0000-0001-8487-5362

	Unstationary dynamics of drops subjected to MHz-surface acoustic waves modulated at low frequency
	Abstract 
	Graphical abstract
	1 Introduction
	2 Experimental setup
	3 Definitions and phenomenological description
	4 Results
	4.1 Averaged dynamics: oscillations and directional motion
	4.2 Local contact-line dynamics

	5 Discussion and conclusions
	Acknowledgements 
	References




