Devoir surveillé du cours Mécanique et Ingénierie

Samedi 14 novembre 2020

Durée : 2 heures. Sans document ni calculatrice

- Un formulaire vous rappelant un certain nombre d'équations est disponible à la fin de l'énoncé.
- Le barème est donné à titre indicatif, il pourra être modifié.
- Si vous rencontrez une erreur dans l'énoncé, mentionnez le sur votre copie et poursuivez l'exercice.
- Le devoir est un peu long. Il est donc noté sur 24.
- Bon courage!

1 Questions de cours (3 points)

- Q1) En quel point est-il le plus simple d'exprimer le torseur cinématique d'un solide S_1 en mouvement par rapport à un solide S_0 (i) dans le cas où S_1 est en translation par rapport à S_0 , (ii) dans le cas où S_1 est en rotation par rapport à S_0 et enfin (iii) dans le cas où S_1 décrit un mouvement de translation et de rotation par rapport à S_0 ? (1,5 points)
- Q2) En partant de la définition, redémontrer la formule du gradient en coordonnées cylindriques. (1,5 points)

2 Exercice (4 points)

On considère une éolienne représentée sur la figure 1. Soit $R = (O, \vec{x}, \vec{y}, \vec{z})$ un repère lié au support 0. La girouette 1 est en liaison pivot d'axe (O, \vec{z}) avec le support 0. Soit $R_1 = (O, \vec{x_1}, \vec{y_1}, \vec{z})$ un repère lié à la girouette 1, on pose $\alpha = (\vec{x}, \vec{x_1})$. L'hélice 2 est en liaison pivot d'axe $(C, \vec{x_1})$ avec la girouette 1, tel que $\vec{OC} = a\vec{x_1}$ (a est une constante positive). Soit $R_2 = (O, \vec{x_1}, \vec{y_2}, \vec{z_2})$ un repère lié à l'hélice 2, de telle façon que l'axe $(C, \vec{z_2})$ soit confondu avec l'axe AB de la pale de l'hélice. On pose $\vec{CA} = b\vec{z_2}$ (b est une constante positive) et $\beta = (\vec{z}, \vec{z_2})$.

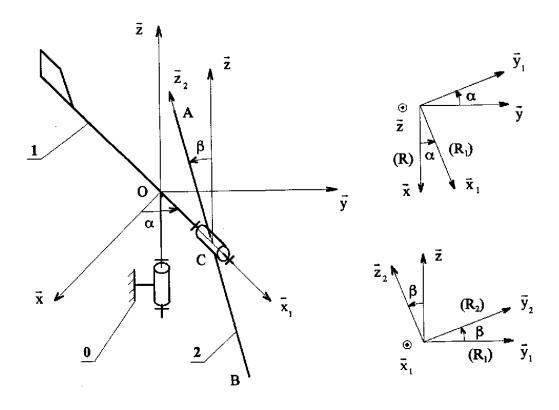


FIGURE 1 – Schéma cinématique d'une éolienne.

Q3) En utilisant la mécanique du point (composition des vitesses et des accélérations et/ou formule de Bour), déterminer la vitesse du point A dans le référentiel R $\vec{V}(A/R)$ puis l'accélération $\vec{\gamma}(A/R)$ dans ce même référentiel (4 points).

3 Problème : Système masse-ressort en rotation (17 points)

On considère dans ce problème un pendule constitué d'un système masse-ressort de masse m et de raideur k en rotation autour d'un axe $(O, \vec{z_o})$ (voir figure 1). On introduit dans ce problème deux référentiels : le référentiel $R_0 = (O, \vec{x_o}, \vec{y_o}, \vec{z_o})$ supposé Galiléen et le référentiel $R_1 = (O, \vec{x_1}, \vec{y_1}, \vec{z_o})$ lié au pendule. On supposera que le centre de gravité M de la masse est tel que $O\vec{M} = x_1(t)\vec{x_1}$. La masse est soumise à la force de rappel du ressort $\vec{F_r}$ et à son poid \vec{P} . Dans ce problème, $\theta(t)$ désigne l'angle $(\vec{x_o}, \vec{x_1})$ et x_v la distance $O\vec{M}$ lorsque le ressort n'est pas étiré (longueur à vide du ressort). L'accélération de pesanteur sera notée g.

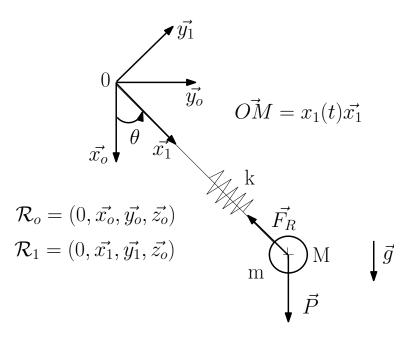


Figure 2 –

3.1 Première partie : équation générale

3.1.1 Calcul dans le référentiel \mathcal{R}_1 (6 points)

- Q4) Le référentiel \mathcal{R}_1 est-il Galiléen? Justifiez. (0,5 point)
- Q5) Calculer la vitesse et l'accélération du point M dans le référentiel \mathcal{R}_1 . (0,5 point)
- Q6) Ecrire le Principe Fondamental de la Dynamique au point M dans le référentiel \mathcal{R}_1 en fonction des paramètres et variables de l'énoncé $(m, k, g, \theta, x_1, x_v)$, de leurs dérivées temporelles et des vecteurs de base. (3 points)
- Q7) Exprimer le vecteur $\vec{x_o}$ en fonction des vecteurs $\vec{x_1}$, et $\vec{y_1}$ et de l'angle θ . (1 point)
- Q8) Projeter l'équation obtenue à la question 3) sur les directions $\vec{x_1}$ et $\vec{y_1}$ et montrer que l'on obtient deux équations d'oscillateurs couplées.(1 point)

3.1.2 Calcul dans le référentiel \mathcal{R}_0 (5 points)

- Q9) Calculer la vitesse et l'accélération du point M dans le référentiel \mathcal{R}_o en utilisant la formule de Bour. (2,5 points)
- Q10) Ecrire le Principe Fondamental de la Dynamique au point M dans le référentiel \mathcal{R}_0 en fonction des paramètres et variables de l'énoncé. (2 points)
- Q11) Montrer que l'on obtient la même équation qu'à la question 3). (0,5 points)

3.2 Deuxième partie : cas simplifiés

3.2.1 Cas du ressort de raideur "infinie" (4 points)

Dans les 2 questions suivantes, on supposera (i) que la raideur du ressort est très grande (quasiment infinie) et (ii) que l'angle θ reste très petit : $\theta \ll 1$.

Q12) Montrer dans ce cas que la projection du PFD suivant $\vec{x_1}$ obtenue à la question 5 se réduit à l'équation $x_1 = x_v$ et que la projection du PFD suivant $\vec{y_1}$ se réduit à :

$$\ddot{\theta} + \omega_0^2 \theta = 0$$

Préciser la valeur de ω_o , et vérifier que l'expression obtenue est bien homogène à une pulsation (fréquence). (3 points)

Q13) Résoudre cette équation différentielle. (1 point)

3.2.2 Cas du pendule sans oscillation (3 points)

Dans les 2 questions suivantes, on supposera $\theta = 0$.

Q14) Montrer dans ce cas que l'équation projetée suivant $\vec{x_1}$ se réduit à : (1,5 point)

$$m\ddot{x_1} + k(x_1 - x_v) = mg$$

Q15) En posant $X_1 = x_1 - x_v - \frac{mg}{k}$, montrer que l'équation devient : (1,5 point)

$$\ddot{X}_1 + \omega_1^2 X_1 = 0$$

On précisera l'expression de ω_1 et on vérifiera que ω_1 est bien homogène à une pulsation (fréquence).

3.3 Troisième partie : calcul énergétique (5 points)

Q16) En applicant le théorème de l'énergie cinétique déterminer une relation entre les paramètres et variables de l'énoncé $(m, k, g, \theta, x_1, x_v)$ et leurs dérivées temporelles. (2,5 points)

Q17) Retrouver la relation obtenue à la question 13, en partant des deux équations obtenues à la question 5. (2,5 points)

Formulaire

On rappelle ici l'expression des forces d'inertie d'entrainement $\vec{F_{ie}}$ et de la force de coriolis $\vec{F_{co}}$:

$$\vec{F_{ie}} = -m\vec{\gamma}_{ie} = -m \left[\vec{\gamma}_{O'/R_g} + \frac{d_{R_G}}{dt} \left(\vec{\Omega}_{R'/R_G} \right) \wedge \overrightarrow{O'M} + \vec{\Omega}_{R'/R_g} \wedge (\vec{\Omega}_{R'/R_g} \wedge \overrightarrow{O'M}) \right]$$

$$\vec{F_{co}} = -m\vec{\gamma}_{co} = -2m\vec{\Omega}_{R'/R_g} \wedge \vec{v}(M/R')$$
(1)

Dans cette formule, R_g désigne ici un référentiel Galiléen, R' un autre référentiel dont O' est le centre, et M est le point considéré.

On rappelle aussi que pour $\theta \ll 1$, $\sin \theta \approx \theta$.