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Introduction

These notes are issued from a mini-course that occurred during the
”Summer School on Rigidity on Discrete Groups”, at Mohali, the first
week of July 2025. They are motivated by the following Gromov type
problem:

Question 0.1. Classify the (connected) Lie groups up to quasi-isometry.

They are organized as follows. Section 1 is a presentation of the
most classical quasi-isometric invariant: the volume growth. Gromov’s
Theorem on polynomial volume growth and Bass-Guivarc’h’s formula
are stated.

We focus in Section 2 on solvable Lie group, and present two of their
invariants: the exponential radical and the rank.

Section 3 is about to the so-called completely solvable Lie groups,
a class of groups introduced by Cornulier to approach Question 0.1.
Some of their (nice) properties are discussed

Among the completely solvable Lie groups, the simplest ones are
probably the so-called Abelian-by-Abelian Lie groups. They are de-
fined in Section 4. We discuss their geometry, especially the existence
of a left-invariant Riemannian metric of negative or non-positive cur-
vature. Finally we present some results about their quasi-isometric
classification.

These notes contain no original result, and they do not compose an
exhaustive presentation of the quasi-isometric invariants of Lie groups.
In particular, asymptotic cones, Dehn functions and other filling in-
variants are not discussed1. The aim here is more to provide an gentle
introduction to the large scale geometry of Lie groups.

The reader is assumed to be familiar with some basic topics in geo-
metric group theory, Lie groups and Riemannian geometry. References
include [DK18, Chapter 8], [FH91, Chapters 7 to 9] and [GHL04, Chap-
ters 2 and 3].

1Asymptotic invariants appears in the seminar work [Gro93], the book [DK18]
contains detailed presentation of some of them, and [Cor14, Chapters 1 to 3] focus
on the Lie groups case.
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Notation. The following classical notions and notation will serve re-
peatedly in the sequel:

• Two real valued functions f, g defined on a space X are said
to be comparable, and then we write f � g, if there exists a
constant C > 0 such that C−1f ≤ g ≤ Cf . We write f . g if
there exists a constant C > 0 such that f ≤ Cg.
• Let G be an abstract group. Its identity element will be denoted

by 1G or more simply by 1.
For g ∈ G, we denote respectively by Lg, Rg, Cg = Lg ◦Rg−1 ,

the left multiplication by g, the right one, and the conjugacy
by g.

For g, h ∈ G, let [g, h] = ghg−1h−1 be their commutator.
Given subgroups H,K ≤ G, we denote by [H,K] the subgroup
of G generated by the [h, k], where h ∈ H, k ∈ K.

The central series of G is

G = C1G ≥ C2G ≥ C3G ≥ · · · ≥ CiG ≥ . . . ,

where C2G = [G,G], Ci+1G = [G,CiG]. One has [CiG,CjG] ≤
Ci+jG. Since Ck[g, h] = [Ckg, Ckh], the subgroups CiG are
normal in G. Moreover [CiG,CiG] ≤ Ci+1G, thus the quotient
groups CiG/Ci+1G are abelian.

The derived series of G is

G = D0G ≥ D1G ≥ D2G ≥ · · · ≥ DiG ≥ . . . ,

where D1G = [G,G], Di+1G = [DiG,DiG]. Again the sub-
groups DiG are normal in G, and the quotients DiG/Di+1G
are abelian.

Recall that G is said to be nilpotent (resp. solvable) if CiG
(resp. DiG) is trivial for i large enough.
• Let G be a Lie group and let g be its Lie algebra. We denote

by exp : g → G the exponential map, and we recall that for
X ∈ g, the 1-parameter subgroup (exp tX)t∈R ≤ G, is so that
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the 1-parameter subgroup (Rexp tX)t∈R ≤ Diff(G) is the flow of
the left-invariant vector field on G generated by X.

The adjoint representation of G is Ad : G→ Aut(g), defined
by Ad(g) := d1GCg, for every g ∈ G – where d1G denotes the
differential at the identity. The adjoint representation of g is
ad : g→ End(g), defined by ad := d1GAd.

Recall that for every X ∈ g and g ∈ G, one has:

adX = [X, ·], Cg(expX) = exp(Ad(g)X), Ad expX = eadX .

1. Growth

1.1. Generalities and examples. We consider a group G that we
assume to be either a finitely generated group, or a connected Lie
group.

In the first case, we fix a finite set of generators S, and we equip G
with the associated word length | · |S.

In the second case, we equip G with the Riemannian distance d
associated to a given left-invariant Riemannian metric on G. We also
denote by H a left-invariant Haar measure on G.

Definition 1.1. (1) If G is a finitely generated group, the growth
function of (G,S) is ρ = ρG,S : R+ → R+, defined by ρ(R) =
cardBS(1G, R) = card{g ∈ G ; |g|S ≤ R}.

(2) If G is a connected Lie group, the growth function of (G, d,H)
is ρ = ρG,d,H : R+ → R+, defined by ρ(R) = H(Bd(1G, R)).

Example 1.2. For G = Rn, ρG(R) = CRn with C = Vol(Bd(0, 1)).

Example 1.3. Let X be a bouquet of two circles, and let G be its
fundamental group. Each of two circles induces a group element; and
together they form a set of generators S of G. The group G is called
the free non-abelian group of two generators. It acts simplicially on the
universal cover ofX denoted by T . The latter is a regular tree of valence
4. The action is simply transitive on the set of vertices of T (since X
admits only one vertex). Therefore there is a bijective correspondence
between the group elements of G and the vertices of T . The word length
of (G,S) corresponds to the simplicial distance between the vertices of
T . Thus, for n ∈ N, one has ρG,S(n) = 1 + 4

∑n
k=1 3k−1.

Definition 1.4. (Equivalence of functions) Let ρ1, ρ2 : R+ → R+ be
arbitrary functions.
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(1) We write ρ1 - ρ2, if there exists constants a, b > 0 and c, d ≥ 0,
such that for every R > 0, one has ρ1(R) ≤ aρ2(bR + c) + d.

(2) We say that ρ1 and ρ2 are equivalent, and we write ρ1 ' ρ2, if
ρ1 - ρ2 and ρ2 - ρ1.

It can be shown that ' is an equivalence relation on the set of func-
tions from R+ to R+.

Remark 1.5. (1) For d,D > 0, Rd ' RD if, and only if, d = D.
(2) A contrario, one has eaR ' ebR for every a, b > 0.
(3) It is an exercise to show that ρG(R) - eR, for every finitely

generated group or connected Lie group G.

This equivalence relation is relevant in geometric group theory, be-
cause of the following result:

Theorem 1.6. Let G, H be finitely generated or connected Lie groups.
If G is quasi-isometric to H, then ρG ' ρH .

Idea of proof. The case where both groups G and H are finitely gener-
ated is straightforward. This case generalizes easily to quasi-isometric
simplicial graphs of bounded valence. When one of the groups, say
G, is a Lie group, then one can discretize it, as follow. Let V ⊂ G
be a maximum 1-separated subset, and let X be the incidence graph
of the cover {BG(x, 2)}x∈V of G. Then G and the simplicial graph
X are quasi-isometric, and their growth functions can be shown to be
equivalent. This completes the proof. �

Proposition 1.7. Let G be a finitely generated group.

(1) If H ≤ G is a finitely generated subgroup, then ρH - ρG.
(2) If N CG, then ρG/H - ρG.

Proof. (1). Let T ⊂ H be a finite generating set of H, and let S ⊂ G be
a finite generating set of G containing T . Then for every h ∈ H, one has
|h|S ≤ |h|T . Therefore for R > 0, one has BH,T (1H , R) ⊂ BG,S(1G, R);
which implies that ρH,T (R) ≤ ρG,S(R).

(2). Let S ⊂ G be a finite generating set, and set S := {sN | s ∈
S, s /∈ N}. Then |gN |S ≤ |g|S, thus the quotient map G→ G/N maps
the ball BG,S(1, R) onto the ball BG/N,S(1, R). Therefore ρG/N,S(R) ≤
ρG,S(R). �

The following terminology is well-defined thanks to Theorem 1.6 and
Remark 1.5.
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Definition 1.8. Let G be a finitely generated or a connected Lie group.
It is said to be of polynomial volume growth if ρG(R) - Rd for some
d ∈ N, and of exponential volume growth if ρG(R) ' eR.

Proposition 1.9. Let G be a connected Lie group.

(1) G is either of polynomial volume growth or of exponential vol-
ume growth.

(2) (Frank’s lemma) Suppose G admits an expanding automorphism,
i.e. an automorphism h, for which there is a constant λ > 1,
such that for every g, g′ ∈ G, one has d(h(g), h(g′)) ≥ λd(g, g′).
Then G has polynomial volume growth.

(3) [Gui73, Lemme I.3] Suppose that G is non-unimodular, then G
has exponential volume growth.

Proof. (1). See e.g. [Je73, Corollary 2.1].

(2). For every k ∈ N, one has d(1G, h
−k(g)) ≤ λ−kd(1G, g). Thus

h−k(B(1G, λ
k)) ⊂ B(1G, 1), and so B(1G, λ

k) ⊂ hk(B(1G, 1)). There-
fore one has H(B(1G, λ

k) ≤ (hk)∗H(B(1G, 1)).

In another hand, for every g ∈ G, one has

L∗g(h
∗H) = (h ◦ Lg)∗H = (Lh(g) ◦ h)∗H = h∗(L∗h(g)H) = h∗H.

Thus h∗H is a Haar measure on G, and so there is a constant C >
0 such that h∗H = CH. One gets that (hk)∗H = CkH, and so
H(B(1G, λ

k)) ≤ CkH(B(1G, 1)), ie ρG(λk) ≤ CkH(B(1G, 1)). This
implies that ρG(R) - Rd.

(3). Let g ∈ B(1G, 1) be such that R∗gH = CH, with C > 1. For

every h ∈ B(1G, 1), one has d(1G, g
khg−k) ≤ 2k+ 1, which implies that

gkB(1G, 1)g−k ⊂ B(1G, 2k + 1). By letting Cg be the conjugacy by g,
we obtain

(Ck
g )∗H

(
B(1G, 1)

)
≤ H

(
B(1G, 2k + 1)

)
= ρG(2k + 1).

In another hand, by the choice of g, we have (Ck
g )∗H = CkH. Therefore

ρG(2k+1) ≥ CkH(B(1G, 1)), which implies that ρG(R) % eR, and then
ρG(R) ' eR, thanks to Remark 1.5(3). �

Example 1.10. The group of unipotent real n× n matrices

Nn := {


1 ∗ . . . ∗
0 1

. . .
...

...
. . . . . . ∗

0 . . . 0 1

} ⊂ SLn(R),



LIE GROUPS AND QUASI-ISOMETRY 7

admits the following automorphism: ht(aij) = (bij), with bij = et(j−i)aij.
When t > 0, ht is expanding. Therefore Nn has polynomial volume
growth.

Example 1.11. Let G = SLn(R), and let G = KAN be its Iwazawa
decomposition, where K = SOn is compact, and AN is the real upper
triangular group

AN = {


a11 ∗ . . . ∗
0 a22

. . .
...

...
. . . . . . ∗

0 . . . 0 ann

 : aii > 0,Πiaii = 1}.

SinceK is compact, G is quasi-isometric toAN , which is non-unimodular.
Thus G has exponential volume growth.

Remark 1.12. According to Proposition 1.9(1) every connected Lie
group is either of polynomial or exponential volume growth. This di-
chotomy holds also for finitely generated linear groups i.e. for finitely
generated subgroups of a GLn(R); this phenomenon is called the Tits’
alternative – see [DK18, Chapter 15] for details. In 1968, Milnor asked
whether there exists a finitely generated group G of intermediate vol-
ume growth i.e. whose growth function is larger than any polynomial
and smaller than exponential. The first example of such a group has
been given by Grigorchuk in 1983 –see [Gri14] for a survey on Milnor’s
problem.

1.2. Nilpotent groups and Gromov’s theorem. As we saw in Ex-
ample 1.10, the group Nn of n× n real unipotent matrices, is of poly-
nomial growth. This result generalizes to every nilpotent group:

Theorem 1.13. (Wolf 1968) Let G be a nilpotent group (finitely gen-
erated or Lie). Then G has polynomial volume growth.

The proof follows from Proposition 1.7 (and from its variant for Lie
groups), in combination with the following two classical theorems.

Theorem 1.14. (Malcev 1949) Every finitely generated nilpotent group
admits a finite index subgroup, which is isomorphic to a cocompact
lattice in a simply connected nilpotent Lie group.

Theorem 1.15. (Ado-Engel) Every simply connected nilpotent Lie
group is isomorphic to a closed subgroup of an Nn.

Gromov’s theorem is a converse of Theorem 1.13 for finitely gener-
ated nilpotent groups:



8 MARC BOURDON

Theorem 1.16. [Gro81] If G is a finitely generated group of polynomial
volume growth, then it is virtually nilpotent, i.e. it admits a finite index
nilpotent subgroup.

There exists nowadays 3 different proofs of Gromov’s theorem: the
original one that uses Montgomery-Zippin’s deep theorem (see also
[DK18, Chapiter 16]), a cohomology/harmonic proof by Kleiner [Kl10],
and a functional analysis proof by Ozawa [O18]. Gromov’s theorem
admits the following consequence.

Corollary 1.17. A finitely generated group is quasi-isometric to a
nilpotent group (finitely generated or Lie) if, and only if, it is virtu-
ally nilpotent.

Remark 1.18. Gromov’s theorem is false for Lie groups. For example2,

let G = Rnϕ C2, with ϕ(t) =

(
eit 0
0 eiαt

)
and α ∈ R \Q. This means

that the group law of G is (t, v) · (s, w) = (t + s, v + ϕ(t)w). Then
ρG(R) ' R5, (in fact G is quasi-isometric to R5), but G is not nilpotent
(since CkG = C2 for every k ≥ 1), nor admits a cocompact nilpotent
subgroup.

Remark 1.19. It is known that a Lie group G has polynomial volume
growth if, and only if, it is of type R, which means that for every
X ∈ g := Lie(G), the spectrum of ad(X) is contained in iR – see [Je73].
Among them, the nilpotent ones are those for which the operators
ad(X) are nilpotent (Engel’s Theorem).

We also notice that every Lie group of polynomial volume growth is
quasi-isometric to a nilpotent Lie group – see Theorem 3.2 and Propo-
sition 3.7(2).

1.3. Bass-Guivarc’h formula and abelian groups. The following
theorem of Bass and Guivarc’h provides the exact polynomial growth
of nilpotent Lie groups.

Theorem 1.20. [Ba72, Theorem 2] [Gui73, Théorème II.1] Let G be a
simply connected nilpotent Lie group. Let N be the smallest i ≥ 1 such
that Ci+1G = {1}. For i ≤ N , set di := dim(CiG/Ci+1G). Then one

has ρG(R) ' Rd with d =
∑N

i=1 idi.

In combination with Gromov’s theorem, it can be used to classify
the finitely generated groups which are quasi-isometric to an abelian
one:

2I learned this example from Cornulier.
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Corollary 1.21. Let Γ be finitely generated group. Suppose it is quasi-
isometric to Zn. Then Γ is virtually isomorphic to Zn.

Proof. By Gromov’s theorem Γ is virtually nilpotent, so we can assume
it is nilpotent. By Malcev’s theorem (Theorem 1.14), Γ is a cocompact
lattice in a simply connected nilpotent Lie group G. Therefore it is
enough to prove that G is isomorphic to Rn.

By assumption, Γ is quasi-isometric to Zn, thus so is G, this in turn
implies that ρG(R) ' Rn.

In another hand, one knows that for abstract connected Lie groups
G1, G2, the following holds – see Remark 2.15: if G1 and G2 are quasi-
isometric, then one has dimG1/K1 = dimG2/K2, where K1 and K2 are
maximal compact subgroups of G1 and G2 respectively. By applying
this result to the simply connected nilpotent Lie group G (for which
K = {1}) and to Rn, one gets that dimG = n.

Now the Bass-Guivarc’h formula implies that C2G = {1}, which
means that G is abelian. Thus G is isomorphic to Rn. �

An alternative proof of Corollary 1.21 (without using Gromov’s the-
orem) was given by Shalom [Sh04].

Remark 1.22. We saw that finitely nilpotent groups enjoy two funda-
mental properties: they are quasi-isometrically rigid (Corollary 1.17),
and linear (by Theorems 1.14 and 1.15, they virtually embed in a
GLn(R)). These properties do not extend to the larger class of finitely
generated solvable groups. Indeed:

• Dyubina-Erschler [Dy00] has given an example of two quasi-
isometric finitely generated groups, such that one of them is
solvable, while the other is non-virtually solvable.
• The lamplighter group G := Z nϕ

⊕
i∈Z Z/2Z, where ϕ : Z →

Aut(
⊕

i∈Z Z/2Z) is the shift ϕt((xi)) = (xi + t), is finitely gen-
erated (by S = {(1, 0), (0, δ0)}), and is solvable (since [G,G] =⊕

i∈Z Z/2Z is abelian). It is non-linear; indeed every finitely
generated subgroup of GLn(R) is virtually torsion-free (by a
theorem of Malcev).

2. Distortion, exponential radical, rank

We keep the same notations as in the previous section. For simplicity,
we assume by convention that every Lie group is connected.
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2.1. Distortion. The following definition appears in [Gro93, Chapter
3].

Definition 2.1. Let G be finitely generated group or a Lie group.

An element g ∈ G is said to be distorted if limn→+∞
dG(1,g

n)
n

= 0.
It is said to be exponentially distorted if for every n ∈ N one has
dG(1, gn) . log(1 + n); and infinitely distorted if for every n ∈ N one
has dG(1, gn) . 1.

By triangular inequality and left-invariance, one sees that the se-

quence {dG(1, gn)}n∈N is subadditive; and so limn→+∞
dG(1,g

n)
n

always
exists thanks to the subadditive theorem. Therefore, g non-distorted is
equivalent to: dG(1, gn) � n.

As a first example, we have:

Proposition 2.2. Let G = SLn(R). Let ‖ · ‖ be an arbitrary norm on
Mn(R), and define ` : G→ R+ by letting `(g) = log max{‖g‖, ‖g−1‖}.
Then there exists constant C ≥ 1 and D ≥ 0, such that for every g ∈ G,
one has

C−1`(g)−D ≤ dG(1, g) ≤ C`(g) +D.

In particular semisimple elements are non-distorted, unipotent ones
are exponentially distorted, and the elements of SOn(R) are infinitely
distorted.

To prove the proposition, we will use the following lemma whose
proof is left to the reader.

Lemma 2.3. (1) Let ϕ : G → H be a group morphism. Then for
every g ∈ G, one has dH(1, ϕ(g)) . dG(1, g).

(2) Suppose that H is a subgroup of G and that there exists a group

morphism ϕ : G → H such that ϕ|
H

= id. Then for every
h ∈ H, one has dH(1, h) � dG(1, h).

Proof of the Proposition. Let g ∈ G. By using the Cartan decom-
position, one can write g = kak′, with k, k′ ∈ K := SOn(R) and
a ∈ A := {diag(aii) | aii > 0,Πiaii = 1}.

Since dG(1, k) . 1 and since dG(ka, g) = dG(1, k′) . 1, one has
|dG(1, g)− dG(k, ka)| . 1, and thus:

|dG(1, g)− dG(1, a)| . 1.

Since K is compact, the Iwasawa decomposition G = KAN – where
N is the group of unipotent real n× n matrices – yields to:

dG(1, a) � dAN(1, a) � dA(1, a),
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where the last relation comes from Lemma 2.3(2). Since A is isomorphic
to (R∗+)n−1, one gets that

dA(1, a) � max
i
| log aii| � log max{‖a‖, ‖a−1‖} = `(a).

Finally, ‖·‖ is Lipschitz equivalent to a submultiplicative norm, thus
one has: ‖g‖ = ‖kak′‖ � ‖a‖. This in turn implies that |`(g)− `(a)| .
1. The statement follows. �

More generally one has

Proposition 2.4. A Lie group G admits an exponentially non-infinitely
distorted element if, and only if, G has exponential volume growth.

Proof. Suppose that G has polynomial volume growth. Then G is
of type R (see Remark 1.19); and so every element in G is at most
polynomially distorted (a claim by Gromov later proved by Varopoulos
[Va99], see also [Os02] for the exact distortion formula in nilpotent
groups).

Conversely, suppose G is not of polynomial volume growth. Then,
by Proposition 1.9(1) and Remark 1.19, G is of exponential volume
growth, and that there exists H ∈ g := Lie(G) such that adH ∈ End(g)
admits an eigenvalue with non-zero real part. The following lemma
concludes the proof. �

Lemma 2.5. Let H ∈ g := Lie(G) be such that adH ∈ End(g) admits
an eigenvalue with non-zero real part. Let X ∈ g be the real part of a
generalized eigenvector for this eigenvalue. Then expX is exponentially
non-infinitely distorted in G.

Proof. For simplicity, we assume that the eigenvalue is real (and non-
zero). By considering a multiple of H, if necessary, we can suppose
that the eigenvalue of X is log 2. Set h := expH, and for m,n ∈ N
consider the group elements h−mg2

n
hm. We claim that for m = 2n and

n large enough, one has dG(1, h−mg2
n
hm) . 1. This implies that

d(1, g2
n

) ≤ d(1, hm) + d(hm, g2
n

hm) + d(g2
n

hm, g2
n

)

= 2d(1, hm) + d(1, h−mg2
n

hm)

. 4n+ 1,

which means that g is exponentially distorted.
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To establish the claim, we compute:

h−mg2
n

hm = h−m(exp 2nX)hm = exp
(
Ad(h−m) · 2nX

)
= exp

(
e−madH · 2nX

)
.

The vector X is a generalized eigenvector of e−adH of eigenvalue 1/2.
Therefore one has

‖e−madH · 2nX‖ = 2n‖e−madH ·X‖ ≤ 2n|P (m)|2−m‖X‖,

where P is a polynomial function. The claim follows. �

2.2. Exponential radical, rank.

Definition 2.6. ([Os02]) Let G be Lie group. Its exponential radical,
denoted by RexpG, is the set of exponentially distorted elements in G.

Theorem 2.7. (Guivarc’h [Gui80], Osin [Os02]) Suppose G is a simply
connected solvable Lie group. Then RexpG is a characteristic subgroup
of G. Moreover, it is the smallest closed normal subgroup H of G such
that G/H has polynomial volume growth.

Remark 2.8. The condition G solvable cannot be removed; e.g. in

SL2(R) the group elements g1 =

(
1 1
0 1

)
and g2 =

(
1 0
1 1

)
are expo-

nentially distorted, but g1g2 =

(
2 1
1 1

)
is not, since semisimple.

Remark 2.9. In any Lie group G, there is a unique smallest closed
normal subgroup H such that G/H has polynomial volume growth.
Indeed let H1, H2 C G with G/H1 and G/H2 of polynomial volume
growth. Set H3 = H1 ∩ H2 C H. Then G/H3 is still of polynomial
volume growth, since one has

1→ H1/H3 → G/H3 → G/H1 → 1,

with G/H1 of polynomial volume growth, and with

H1/H3 = H1/H1 ∩H2 ≤ G/H2

of polynomial volume growth too. When G is simply connected, the
subgroup H belongs to the stable term of the central serie of G, i.e. to
S :=

⋂
i≥1C

iG. Indeed S is a closed normal subgroup of G such that
G/S is nilpotent – see the end of proof of Proposition 3.7(3) for details.
In particular: H ≤ [G,G].
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Elements of Proof. The fact that RexpG is a closed normal subgroup
is proved in [Os02, Theorem 1.1]. We notice that Osin’s definition3 of
RexpG differs a little bit from ours, however they coincide when G is
a simply connected solvable Lie group, see the discussion right before
[Os02, Lemma 3.1].

The smallest close normal subgroup H < G such that G/H is of
polynomial growth appears in [Gui80, Définition 8 and Proposition 5].
The equality between RexpG and H is noticed in [Cor08, Theorem 6.1].
It can be established as follows:

• To show that RexpG < H, one notices from Lemma 2.3 that the
image of every g ∈ RexpG is exponentially distorted in G/H.
Since G/H is of polynomial growth, its exponentially distorted
elements are infinitely distorted (by Proposition 2.4). The min-
imality of H implies that G/H is simply connected. In a simply
connected solvable Lie group S, every infinitely distorted ele-
ment is trivial4; therefore the image of RexpG in G/H is trivial.
• For the reverse inclusion, [Os02, Theorem 1.1(4)] implies that no

element in G/RexpG is strictly exponentially distorted. There-
fore, by [Os02, Proposition 3.2] (which is a refinement of Propo-
sition 2.4), G/RexpG is of polynomial growth. Thus H < RexpG.

�

Corollary 2.10. Let G = A n N be a simply connected Lie group
with A abelian and N nilpotent. Denote by a and n their Lie algebra.
Suppose that there exists ξ ∈ a, such that the generalized eigenspaces of

adξ|
n
∈ End(n), associated to the eigenvalues with non-zero real parts,

generate n as a Lie algebra. Then RexpG = [G,G] = N .

3In [Os02, Definition 3.2], RexpG is defined as the union of {1G} with the set of
strictly exponentially distorted element of G, i.e. the g ∈ G such that d(1, gn) �
log(1 + n).

4Indeed the image in S/[S, S] of an infinitely distorted element of S is again
infinitely distorted. But, since S is simply connected, S/[S, S] is isomorphic to
Rn. (To see this, note that the projection map π : S → S/[S, S] factorises as
π = π̃ ◦ p, where p : Rn → S/[S, S] is the universal cover. Ker π̃ is a subgroup
of [S, S] such that S/Ker π̃ is abelian; therefore it contains [S, S], which in turn
implies that p = id). Now Rn contains no non-trivial infinitely distorted element,
thus every infinitely distorted element of S is contained in [S, S]. But the latter is a
simply connected nilpotent Lie group, which again contains no non-trivial infinitely
distorted element (by Theorem 1.15)
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Proof. The assumptions, in combination with Lemma 2.5 and Theorem
2.7, show that N ≤ RexpG. Moreover one has RexpG ≤ [G,G] ≤ N
since G/N is abelian. The statement follows. �

Example 2.11. Let Heis3 be the group of unipotent real 3×3 matrices
(as in Example 1.10). Let G = R nϕ Heis3, with

ϕt

1 x z
0 1 y
0 0 1

 =

1 etx z
0 1 e−ty
0 0 1

 .

By applying the above corollary to any generator ξ of the R factor,

and to the vectors

0 1 0
0 0 0
0 0 0

 and

0 0 0
0 0 1
0 0 0

 that generates the Lie

algebra of Heis3, we get that RexpG = Heis3.

Definition 2.12. (Cornulier) The rank of a simply connected solvable
Lie group G is rank(G) := dim(G/RexpG).

Theorem 2.13. (Cornulier [Cor08]) Among simply connected solvable
Lie groups G, the rank of G is a quasi-isometric invariant.

Example 2.14. Let G = KAN be the Iwasawa decomposition of a
semisimple Lie group with finite center. Then Corollary 2.10, applied
with a vector ξ ∈ a that lies in the interior a Weyl chamber, shows that
Rexp(AN) = N . Thus one has:

rank(AN) = dimA = rankR(G).

More generally, the rank of a simply connected solvable Lie group that
admits a left-invariant Riemannian metric of non-positive curvature, is
equal to the maximal dimension of a totally geodesic Euclidean sub-
space [AW76].

Remark 2.15 (Another quasi-isometric invariant). For every Lie
group G and every maximal compact subgroup K ⊂ G, one knows
that the homogeneous space G/K is diffeomorphic to Rd, and that
its dimension is a quasi-isometric invariant of the Lie group G [Roe93,
Proposition 3.33 and Corollary 3.35]. More precisely, if G1, G2 are
quasi-isometric Lie groups, and Ki ⊂ Gi are maximal compact sub-
groups, then dimG1/K1 = dimG2/K2.

3. Completely solvable Lie groups

Again, by convention, any Lie group is assumed to be connected.
For n ∈ N, let Tn be the group of real upper triangular n×n matrices,



LIE GROUPS AND QUASI-ISOMETRY 15

with positive diagonal coefficients, that is

Tn = {


a11 ∗ . . . ∗
0 a22

. . .
...

...
. . . . . . ∗

0 . . . 0 ann

 : aii > 0} ⊂ GLn(R).

3.1. Definition and motivation. The following definition appears in
[Cor14].

Definition 3.1. A Lie group is said to be completely solvable if it
isomorphic to a closed subgroup of a Tn.

Theorem 3.2. ([Cor08, Lemmata 2.4 and 6.7]) Any Lie group is
quasi-isometric to a completely solvable Lie group. Moreover the quasi-
isometric equivalence can be obtained by a finite number of the following
algebraic operations:

• extract a cocompact Lie subgroup,
• embed cocompactly into a Lie group,
• quotient by compact normal subgroup.

Example 3.3. Let G be a semisimple Lie group with finite center.
Consider its Iwazawa decomposition G = KAN . Then G is quasi-
isometric to its cocompact subgroup AN which is completely solvable.

Example 3.4. Let G = R nϕ R2, with ϕ(t) =

(
cos t − sin t
sin t cos t

)
. Let

H = (R × S1) nρ R2, with ρ(t, eiθ) =

(
cos θ − sin θ
sin θ cos θ

)
. Then G em-

beds cocompactly in H, and H contains R3 as a cocompact subgroup.
Therefore G is quasi-isometric to R3 which is completely solvable.

Example 3.5. Let Heis3 be the Heisenberg group as defined in Ex-
ample 2.11, and let G := Heis3/Γ, where Γ is a discrete subgroup of
Z(Heis3) ' R. Then the center ofG is Z(G) ' R/Γ ' S1. ThereforeG
is quasi-isometric to G/Z(G) = Heis3/Z(Heis3), which is a completely
solvable Lie group isomorphic to R2.

A motivation for studying completely solvable groups comes from
the previous theorem in combination with the following conjecture of
Cornulier.

Conjecture 3.6. [Cor18, Conjecture 19.113] Any two completely solv-
able Lie groups are quasi-isomorphic if, and only if, they are isomor-
phic.
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3.2. Basic properties of completely solvable Lie groups. Com-
pletely solvable Lie groups enjoy nice properties:

Proposition 3.7. Let G be a completely solvable Lie group and g be
its Lie algebra. Then:

(1) The exponential map exp : g → G is a diffeomorphism. In
particular G is diffeomorphic to Rd, and all its Lie subgroups
are closed.

(2) G is nilpotent if, and only if, it has polynomial volume growth.
(3) RexpG is equal to the stable term in the central serie of G, that

is RexpG =
⋂
i≥1C

iG.
(4) Among completely solvable Lie groups G, the dimension of G is

a quasi-isometric invariant.

Proof. By definition there exists an n ∈ N, such that G is isomorphic
to a closed subgroup of Tn. For simplicity we will identify G with its
image in Tn, and will denote Tn and its Lie algebra by T and t.

(1). First it is enough to show that exp : t→ T is a diffeomorphism.
Indeed, if it is the case, then exp : g → G is an injective open proper
map. Therefore its image is open and closed in G. Since G is connected,
exp : g → G is onto and equal to the restriction of a diffeomorphism
to a linear subspace of t; it is thus a diffeomorphism from g to G.

Now, the fact that exp : t → T is a diffeomorphism, follows from a
general result of Dixmier and Saito, which states that the exponential
map of a solvable simply connected Lie group, is a diffeomorphism if,
and only if, the adjoint representation of its Lie algebra has no non-
trivial purely imaginary roots5. The group T satisfies this last condition
– see the argument in item (2) just below.

(2). Assume G is of polynomial growth. Then by Remark 1.19,
it is of type R, and thus the eigenvalues of operators adX (X ∈ g)
belong to iR. In another hand, adX ∈ End(g) is the restriction to
g of adX ∈ End(t). It is an exercice to show that in the canonical
basis (Eij)i≤j of t – suitably ordered so that the diagonals j − i = k,
k ∈ {0, . . . , n−1}, appears successively – the matrix of adX ∈ End(t) is
triangular. In particular its eigenvalues are real. Therefore, for X ∈ g

5Elements of proof: According to [MS03, Theorem 5.1], the differential of exp :

g → G at X ∈ g is equal to dLexpX ◦
∫ 1

0
e−tadXdt. Thus the above condition

on the adjoint representation is equivalent to the fact that the exponential map is
everywhere a local diffeomorphism. When the target space is simply connected, a
local diffeomorphism is a global one iff it is a proper map. In the special case of
exp : t→ T , properness is a consequence of the Dunford decomposition.
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the operators adX ∈ End(g) are nilpotent. Thus G is nilpotent, thanks
to Engel’s Theorem.

(3). Let H = G/RexpG and let h be its Lie algebra. By Theorem 2.7,
H has polynomial volume growth. As we saw in item (2) above, for
every X ∈ g, the spectrum of the operator adX ∈ End(g) is contained
in R. Thus the same holds for every operator adY ∈ End(h), with
Y ∈ h. Therefore, by arguing as in item (2) above, we get that H is a
nilpotent group. This implies that Ci(G/RexpG) = Ci(H) = {1} for i
large enough. But for every K CG, one has

(3.8) Ci(G/K) = CiG/CiG ∩K,
– to see this, consider CiG � Ci(G/K) ≤ G/K. Therefore, for i
large enough, we have Ci(G)∩RexpG = CiG, which means that RexpG
contains the stable term of the central serie of G.

Conversely, let S be the stable term in the central serie of G. Then
S is closed (by item (1) or by using a general result6 ); moreover the
relation 3.8 implies that G/S is nilpotent, thus of polynomial volume
growth. Since RexpG is the smallest closed normal subgroup K of G
such that G/K is of polynomial growth, we finally obtain: RexpG = S.

(4). This follows from Remark 2.15, since here we have K = {1}
thanks to item (1). �

4. Abelian-by-Abelian Lie groups

4.1. Definition and first properties. In these notes, Abelian-by-
Abelian Lie group7 will designate a group of the form Sα = Rr nα Rn,
where α : Rr → Diag(Rn) is a Lie group morphism with values into
the diagonal subgroup of GLn(R). Its multiplication law is thus

(u, x) · (v, y) = (u+ v, x+ α(u)y).

We can (and will) write α = diag(e$1 , . . . , e$n), with $i ∈ (Rr)∗.

6In a simply connected Lie group G, every normal Lie subgroup H is closed.
This follows from Lie’s third Theorem: indeed with the obvious notations, the Lie
algebra morphism g→ g/h is induced by a group morphism ϕ : G→ K, where K
is the simply connected Lie group whose Lie algebra is g/h; and thus H is equal to
the identity component of Kerϕ.

7In [Pen11a, Pen11b] a more general definition of Abelian-by-Abelian Lie group
is considered: the morphism α is allowed to take its values into the group Tn.
Thefore the right terminology for the groups studied in this section is diagonal
Abelian-by-Abelian Lie group; but for briefty we have choosen to omit the term
”diagonal”.
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Some groups Sα can be written with several couples of exponents r, n
(e.g. when they are abelian). In the sequel we will always assume that
the dimension n of the second factor is minimal and non-zero. This
assumption is equivalent to require every weight $i to be non-zero.

When α is injective, Sα is isomorphic to the following subgroup of
Tn+1:

{


e$1(u) 0 . . . 0 x1

. . . . . .
...

...
e$n−1(u) 0 xn−1

e$n(u) xn
1

 : u ∈ Rr, (x1, . . . xn) ∈ Rn}.

It is thus a completely solvable group. When α is non-injective, Sα
decomposes as a product Sα = R` × Sβ, with ` = dim(Kerα) and β :
Rr−` → Diag(Rn) injective. Therefore, in any cases, Sα is completely
solvable.

With Corollary 2.10 and Definition 2.12, we get:

Proposition 4.1. One has: RexpSα = [Sα, Sα] = Rn and rankSα = r.

It follows from the definition of RexpSα, that every element in the
subgroup Rn is exponentially distorted. A contrario, the subgroup Rr

is totally geodesic in Sα. Indeed, it is an exercice to show that the
projection map (u, x) 7→ (u, 0) is a contracting map.

Example 4.2. In rank one, i.e. when r = 1, every $i belongs to (R)∗,
thus α can be written α(t) = diag(eλ1t, . . . , eλnt) for some λi ∈ R \ {0}
(recall that by assumption: $i 6= 0 for every i ∈ {1, . . . n}).

When λ1 = λ2 = · · · = λn, then Sα is isomorphic to R netidRn Rn

which is – as a Riemannian manifold – isometric to Hn+1
R the real

hyperbolic space (of constant negative curvature) of dimension n+ 1.

When n = 2 and λ1 = −λ2, then Sα is isomorphic to Rnβ R2, with

β(t) =

(
et 0
0 e−t

)
, i.e. to the group Sol – which is the unique simply

connected solvable unimodular Lie group of dimension 3, of exponential
volume growth.

4.2. Curvature. The Lie groups that admit a left-invariant Riemann-
ian metric of negative (resp. non-positive) curvature, have been de-
scribed algebraically by Heintze [He74] (resp. Azencott-Wilson [AW76]).
This justifies the following terminology:
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Definition 4.3. A Lie group that admits a left-invariant Riemannian
metric of negative (resp. non-positive) curvature, is called a Heintze
group (resp. an Azencott-Wilson group).

The next proposition complements the geometric description of the
Sα’s:

Proposition 4.4. Let Sα be an Abelian-by-Abelian group.

(1) Sα is a Heintze group if, and only if, it is of rank 1 and the
expression of α is α(t) = diag(eλ1t, . . . , eλnt) with all the λi’s of
the same sign.

(2) Sα is an Azencott-Wilson group if, and only if, 0 does not be-
long to the convex hull of {$1, . . . , $n} in (Rr)∗.

Proof. (1). According to [He74], a Lie group S admits a left-invariant
negatively curved Riemannian metric if, and only if, its Lie algebra s
enjoys the following properties:

(i) One can be write s = R n n, with n a nilpotent ideal.
(ii) There exists an element ξ in the factor R, such that all the

eigenvalues of adξ|
n

have negative real parts.

Clearly, if r = 1 and the λi’s are all of the same sign, then Sα satisfies
the conditions (i) and (ii); thus it admits a left-invariant negatively
curved Riemannian metric.

Conversely, if Sα satisfies the above conditions, then by Proposition
2.10, n is the Lie algebra of RexpSα and rank(Sα) = 1. It is now an
exercice to finish the proof of (1).

(2). According to [AW76], a Lie group S admits a left-invariant non-
positively curved Riemannian metric if, and only if, its Lie algebra s is
an NC algebra. This means that s enjoys the following properties:

(i) n := [s, s] is a nilpotent ideal that is complemented in s by an
abelian subalgebra a.

(ii) There exists an element ξ ∈ a, such that all the eigenvalues of

adξ|
n

have negative real parts.
(iii) The action of a on n satisfies 3 additional conditions, which

are automatically fulfilled when n is abelian and the a-action is
semisimple with real eigenvalues.

We refer to [AW76, Definition 6.2] for the precise definition of NC
algebra, and to the paragraph right after it for a discussion of the
special cases.
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Clearly the Lie algebra of Sα satisfies Items (i) and (iii). It satisfies
(ii) if, and only if, there exists an u ∈ Rr so that $i(u) 6 −1 for all
i ∈ I. Let vi ∈ Rr be such that $i = 〈·, vi〉, where 〈·, ·〉 is a scalar
product on Rr. One has $i(u) 6 −1 for every i ∈ I if, and only if,
every vi belongs to the subset defined by the inequality 〈u, ·〉 6 −1;
i.e. to the affine half-space of Rr, disjoint from 0, and delimited by the
hyperplane orthogonal to u passing through −u

‖u‖2 . The proof of Item

(2) is now complete. �

Observe (from their algebraic description recalled in the proof just
above) that the Heintze groups coincide with the rank 1 Azencott-
Wilson groups. In addition, except the Abelian ones, Azencott-Wilson
groups are never unimodular.

4.3. Quasi-isometric rigidity. In this section we present several re-
sults about the quasi-isometric classification of the Abelian-by-Abelian
groups.

According to Cornulier’s Conjecture 3.6, any two quasi-isometric
Abelian-by-Abelian Lie groups are isomorphic. However, even in the
class of Abelian-by-Abelian Lie groups, Cornulier’s conjecture is largely
open. The only known results concern some few subclasses. Before we
present them, let us make some few remarks:

• If Sα = RrnαRn and Sβ = Rsnβ Rm are quasi-isometric, then
their ranks are equal, and also their dimensions – by Theorem
2.13 and Proposition 3.7(4). Therefore r = s and n = m by
Proposition 4.1.
• It is an exercice8 to show that Sα = Rr nα Rn and Sβ = Rsnβ

Rm are isomorphic if, and only if, r = s, n = m, and there
exists a linear isomorphism ϕ : Rr → Rs and a permutation σ
of the diagonal entries of Diag(Rm), such that σ ◦ α2 = α1 ◦ ϕ.
• In rank one, one has α(t) = diag(eλ1t, . . . , eλnt) and β(t) =

diag(eµ1t, . . . , eµnt) for some λi, µi ∈ R \ {0}. Thus, the above
item implies that Sα = RnαRn and Sβ = RnβRm are isomor-
phic if, and only if, there exists a constant C 6= 0 such that – up
to a permutation of the indices of the µi’s – one has µi = Cλi
for all i.

8Hints: the second factor of Sα is equal to its exponential radical, and the first
factor is an undistorted abelian subgroup of maximal dimension.
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Theorem 4.5. Let S1 and S2 be Abelian-by-Abelian Lie groups. In
each of the following disjoint situations, S1 and S2 are quasi-isometric
if, and only if, they are isomorphic:

(1) (Pansu [Pan99, Corollaire 2], [Pan08]) S1 and S2 are Heintze
groups.

(2) (Eskin-Fisher-Whyte [EFW12]) S1 and S2 belong to the family
of the so-called Solλ groups; i.e. to the groups Solλ =: Rnαλ R2

with αλ(t) :=

(
et 0
0 e−λt

)
and λ > 0.

(3) (Peng [Pen11a, Pen11b]) S1 and S2 are unimodular, (this is
equivalent to require that the weights satisfy

∑
i$i = 0), with

no non-trivial Abelian direct factor.
(4) (Bourdon-Rémy [BR25]) S1 and S2 are of the form R2 nα R3

and their weights $1, $2, $3 enjoy the following two properties:
• they generate (R2)∗,
• they are aligned (on a line necessarily disjoint from 0).

These groups are, in some sense, the most simple irreducible
Azencott-Wilson groups of rank 2.

We notice that the groups in Items (2) and (3) are neither Heintze
nor Azencott-Wilson (see Proposition 4.4).

About the proofs. The proof of Items (1) and (4) rely on Lp-cohomology,
that is the cohomology of differential forms which, together with their
differential, satisfy an Lp integrability condition with respect to the
Riemannian metric. Lp-cohomology is a quasi-isometric invariant of
contractible Lie groups – which is equivalent to be diffeomorphic to
Rd – and more generally of uniformly contractible Riemannian mani-
folds. We denote the Lp-cohomology of a contractible Lie group G by
LpH∗dR(G).

In the proof of Items (1) and (4), the main objects of investigation are
the so-called critical exponents: a number γ > 1 is a critical exponent in
degree k if there exists ε > 0 such that LpHk

dR(G) = 0 for p ∈ (γ,+∞),
and 6= 0 for p ∈ (γ − ε, γ) – or vice versa. Critical exponents (when
they exist) provide numerical quasi-isometric invariants of G.

Let now G be as in Item (1). Up to isomorphism, we can (and will)
assume that the λi’s satisfy

(4.6) 1 = λ1 ≤ λ2 ≤ · · · ≤ λn.
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Pansu uses contraction and negative curvature to show that for every
k ∈ {2, . . . , n}, the number

γk :=

∑n
i=1 λi∑k−1
i=1 λi

is a critical exponent in degree k. From that, one sees easily that the
λi’s (reorganized to satisfied 4.6) are quasi-isometric invariants of G.
Item (1) follows.

In the proof of Item (4), we show the existence of a critical exponent
in degree 2, and we compute it. Since the isomorphism classes of the
groups appearing in Item (4) form a 1-parameter family, this invariant
is enough to distinguish them up to quasi-isometry.

It must be mention that Lp-cohomology of solvable Lie groups –
apart from the Heintze groups and in a smaller extent the Azencott-
Wilson groups – is badly understood. For example there is no known
Lp-cohomology proof of Item (2).

The proofs of Items (2) and (3) rely on a coarse differentiation
method, see [EF10] for a survey and related results. �

Remark 4.7. Xie [Xie14] gave a different proof of Item (1) and also
generalizations to other Heintze groups, by using a more geometric
approach based on Gromov hyperbolic spaces and quasi-conformal ge-
ometry on their Gromov boundary.

Since Pansu’s and Hamenstädt’s pioneer works [Pan99, Ha87], the
large scale geometry of Heintze groups has generated a lot of activi-
ties; see e.g. [Bo18, §7.4.3] for an (incomplete) list of conjectures and
references.

A contrario, the large scale geometry of Azencott-Wilson groups has
attracted much less attention so far (except in the case of Heintze
groups and Riemannian symmetric spaces). To study them, it would be
desirable to combine some geometric methods, like the simplicial struc-
ture of their Tits boundary [Heb93] – which should be a quasi-isometry
invariant by [KL20] – with some analytic tools like Lp-cohomology or
other functional spaces.

Remark 4.8. In [GP24], Grayevsky and Pallier ask for the quasi-
isometric classification of all the 5-dim simply connected indecompos-
able solvable Lie groups of exponential volume growth. They provide
the complete list of them and also of those which are in addition com-
pletely solvable. For each of them, the Lie algebra, the exponential
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radical, the rank, and the behaviour of the Dehn function, are deter-
mined. They also indicate those which are Heintze or Azencott-Wilson.
In combination with some other methods, they obtain a partial quasi-
isometric classification.
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