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NON-VANISHING FOR GROUP Lp-COHOMOLOGY OF

SOLVABLE AND SEMISIMPLE LIE GROUPS

by Marc Bourdon & Bertrand Rémy

Abstract. — We obtain non-vanishing of group Lp-cohomology of Lie groups for p large and
when the degree is equal to the rank of the group. This applies both to semisimple and to
some suitable solvable groups. In particular, it confirms that Gromov’s question on vanishing
below the rank is formulated optimally. To achieve this, some complementary vanishings are
combined with the use of spectral sequences. To deduce the semisimple case from the solvable
one, we also need comparison results between various theories for Lp-cohomology, allowing the
use of quasi-isometry invariance.

Résumé (Non-annulation de la cohomologie Lp pour les groupes résolubles et semi-simples)
Nous obtenons des résultats de non-annulation de la cohomologie Lp pour des groupes de

Lie lorsque p est grand et quand le degré est égal au rang du groupe. Ces résultats s’appliquent
à la fois aux groupes semi-simples et à certains groupes résolubles. En particulier, ils confirment
que la question de Gromov concernant l’annulation en-dessous du rang est formulée de façon
optimale. Pour obtenir ces résultats, des annulations complémentaires sont combinées à l’usage
de suites spectrales. Afin de déduire le cas semi-simple du cas résoluble, nous utilisons également
des comparaisons entre diverses versions de la cohomologie Lp, et nous appliquons l’invariance
par quasi-isométrie.
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Introduction

This paper deals with several variants of group Lp-cohomology, where p is a real
number in (1,+∞).

The first one, the continuous Lp-cohomology of locally compact second countable
groups G, is the continuous cohomology [BW00, Chap. IX] with coefficients in the
right-regular representation on Lp(G); we denote it by H∗

ct(G,L
p(G)). We also con-

sider the associated reduced continuous Lp-cohomology, denoted by H∗
ct(G,L

p(G))

(it is the largest Hausdorff quotient of the previous one). It is known that both topo-
logical vector spaces H∗

ct(G,L
p(G)) and H∗

ct(G,L
p(G)) are invariant for the equiva-

lence relation given by quasi-isometries between groups G as before when equipped
with a left-invariant proper metric (see [BR20, Th. 1.1] and [SS18]).

One variant of Lp-cohomology makes sense for C∞ manifolds: it is the de Rham
Lp-cohomology, denoted by LpH∗

dR(M) for a C∞ manifold M . It was studied
thoroughly by P. Pansu and, as the name suggests, it is defined by imposing
Lp-integrability conditions on differential forms on the manifold (and on their
differentials). There are also intermediate variants, for instance the asymptotic
Lp-cohomology of suitable metric spaces, which elaborates on simplicial cohomology
by adding Lp-integrability conditions; it is denoted by LpH∗

AS(X) for a suitable
measured metric space (X, d, µ). Reduced quotients are also considered in these
contexts.

When it makes sense, comparison results between these cohomologies are often
available (see for instance [BR20], [SS18] and the appendix in this paper; again, this
part owes a lot to P. Pansu’s work).

Beyond these comparisons, our main goal remains to exhibit some sufficient con-
ditions for vanishing and non-vanishing of Lp-cohomologies for topological groups,
taking into account the degree of the cohomology space and the exponent p.

The topological groups we are considering in the present paper for these (non-
)vanishing questions are connected Lie groups. This enables us to use many differential
geometric and combinatorial tools. The most popular Lie groups are the semisimple
ones, and this is the family about which we present the first results in this introduction,
but we will see that we are quickly led to considering solvable non-unimodular groups.
This is explained by the fact that some contraction arguments are crucial for our
purposes, and this is made possible by the aforementioned quasi-isometric invariance
of group Lp-cohomology combined with Iwasawa decompositions.

0.1. Semisimple groups and quasi-isometry invariance. — Let us start with semi-
simple real Lie groups. Our work is motivated by the following question, asked by
M. Gromov [Gro93, p. 253].

Question 0.1. — Let G be a semisimple real Lie group. We assume that

ℓ = rkR(G) ⩾ 2.

Let k be an integer < ℓ and p be a real number > 1. Do we have: Hk
ct

(
G,Lp(G)

)
= {0}?

J.É.P. — M., 2023, tome 10



Non-vanishing for group Lp-cohomology of solvable and semisimple Lie groups 773

In degree 1, a general result of Pansu [Pan07] and Cornulier-Tessera [CT11] shows
that H1

ct(G,L
p(G)) = {0} for every p > 1 and every connected Lie group G, unless G

is Gromov hyperbolic or amenable unimodular. In a previous paper, we obtained
some partial vanishing results which lead to the latter result when the Lie groups are
semisimple of rank ⩾ 2, and admissible in the sense that the solvable radical of some
(maximal) parabolic subgroup is quasi-isometric to a real hyperbolic space [BR20,
Cor. 1.6]. This result in degree 1 can also be proved via the fixed point property for
continuous affine isometric actions of higher rank semisimple groups on Lp-spaces
[BFGM07]. In general, we show in [BR20] the existence, for any admissible semisim-
ple Lie group G and any p > 1, of an interval of degrees out of which the spaces
Hk

ct(G,L
p(G)) vanish.

Our main result in the present paper is complementary to Gromov’s question; it is
the following.

Theorem A. — Let G be a semisimple real Lie group with finite center and let ℓ =
rkR(G).

(i) We have: Hℓ
ct

(
G,Lp(G)

)
̸= {0} for any large enough p > 1.

(ii) For every k > ℓ, we have: Hk
ct

(
G,Lp(G)

)
= {0} for any large enough p > 1.

This result is proved thanks to the following line of arguments. We introduce an
Iwasawa decomposition G = KAN . Geometrically, if X denotes the symmetric space
of G and if F denotes the maximal flat attached to the maximal R-split torus A
in G, then the subgroup K can be chosen to be the stabilizer of a point in F ; the
subgroup N consists of the unipotent elements in a parabolic subgroup defined by a
regular element in the boundary ∂∞F of F . Since G has finite center, the group K

is compact (it is in fact a maximal compact subgroup in G). We have the following
identifications:

H∗
ct

(
G,Lp(G)

)
≃ H∗

ct

(
AN,Lp(AN)

)
≃ LpH∗

AS(AN) ≃ LpH∗
dR(AN),

and similar ones for reduced cohomology. The first identification comes from quasi-
isometric invariance [BR20, Th. 1.1], the second one is a comparison between contin-
uous Lp-cohomology and asymptotic Lp-cohomology proved in [BR20, Th. 3.6] and
the last one is given here by Theorem A.1 (proved in the appendix). This reduction
explains why the main part of the paper focuses on solvable Lie groups. The latter
situation is investigated in the remaining two subsections of this introduction and it
leads to the desired vanishing and non-vanishing results above. See Theorem D below
for the conclusion of the argument.

Since the proof of our main result on semisimple groups is spread all over our
paper, here is a summary of the strategy.

Step 1: quasi-isometry invariance and Iwasawa decomposition. — The decomposition
G = KAN implies that G is quasi-isometric to the solvable group A ⋉ N . Invari-
ance of Lp-cohomology under quasi-isometric invariance then gives H∗

ct

(
G,Lp(G)

)
=

H∗
ct

(
AN,Lp(AN)

)
and H∗

ct

(
G,Lp(G)

)
= H∗

ct

(
AN,Lp(AN)

)
. We denote R = AN =

J.É.P. — M., 2023, tome 10



774 M. Bourdon & B. Rémy

A ⋉N so that we have R ≃ RD where D is the dimension of the Riemannian sym-
metric space G/K, as well as A ≃ Rℓ where ℓ is the real rank of G.

Step 2: Poincaré duality and vanishing (after Pansu). — Poincaré duality reduces the
proof of Theorem A to showing that for p close enough to 1, we have LpHk

dR(R) = {0}
for every k < D − ℓ and that LpHD−ℓ

dR (R) is Hausdorff and non-zero. Arguments due
to Pansu show that a certain contraction condition on the A-action on N (called (nC)
in Theorem 0.2 below) implies the assertions about vanishing and Hausdorff property
(see Corollary 2.4).

We concentrate now on the non-vanishing LpHD−ℓ
dR (R) ̸= {0}.

Step 3: Actions of abelian groups on Heintze groups and spectral sequences. — We pass
now from the decomposition R = A⋉N to the decomposition R = B⋉({etξ}t∈R⋉N)

where ξ is given by condition (nC) as before, H = {etξ}t∈R ⋉ N is a Heintze group
and B is a suitable (abelian) complement of {etξ}t∈R in A. The motivation for the
decomposition R = B⋉H is the possibility to use a spectral sequences and the already
proved vanishings to obtain the identification: LpHD−ℓ

dR (R) ≃ Lp
(
B,LpHD−ℓ

dR (H)
)B .

We conclude by exhibiting Lp de Rham cohomology classes c on H such that the map
b 7→ ∥b ·c∥p belongs to Lp(B) for the B-action on c given by (pull-back of) conjugation
by B on H. This is the content of the (technical) Proposition 3.2, which uses condition
(nT), a condition of non-triviality required for the action of all elements in the Lie
algebra of A (see Question 0.3 below).

Before we definitely move to the framework of solvable groups, let us mention the
case when p = 2 for semisimple groups. This situation is more directly relevant to
representation theory and was considered by A. Borel decades ago [Bor85]. The main
results are:

– Hk
ct

(
G,L2(G)

)
= 0 unless k = D/2,

– Hk
ct

(
G,L2(G)

)
̸= 0 at least for k ∈

(
D/2− ℓ0/2, D/2 + ℓ0/2

]
,

where D is the dimension of the Riemannian symmetric space G/K and ℓ0 is the
difference between the complex rank of G and the complex rank of K. In the case
G = SLn(R), one has D = (n2 + n− 2)/2 and ℓ0 = ⌊(n− 1)/2⌋. See also [BFS14] for
related results about vanishing of the reduced L2-cohomology. Since the dimension D
is a quadratic polynomial in the rank of the group G, A. Borel’s results show that the
assumption that p should be large enough in our results is necessary.

0.2. Solvable groups and contractions. — As explained above, we are henceforth
dealing with solvable Lie groups until the end of the introduction. The following result
on cohomology vanishing is a consequence of [Pan99, Cor. 53]:

Theorem 0.2. — Let R be a connected Lie group of the form A ⋉ N with A ≃ Rℓ

and ℓ ⩾ 1. Let a and n be the Lie algebras of A and N , respectively. Suppose that the
group R satisfies the following contraction property:

(nC) there exists an element ξ ∈ a such that all the eigenvalues of ad ξ
∣∣
n

have
negative real parts.

J.É.P. — M., 2023, tome 10
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Then for p > 1 large enough and for all k > ℓ, we have the vanishings:

LpHk
dR(R) = {0}.

Note that the assumptions force N to be nilpotent and contractible, and R to be
solvable, non-unimodular and diffeomorphic to RD, where D = dim(R) (the nota-
tion D is consistent with the previous one on dimensions of symmetric spaces by Iwa-
sawa decomposition). We also mention the fact that condition (nC) already appears
in N. Varopoulos’ paper [Var96, OV.3 p. 799].

We address here the following question:

Question 0.3. — Let R be a solvable connected Lie group as in the previous theo-
rem, satisfying in particular condition (nC). Suppose additionally that R satisfies the
following non-triviality condition:

(nT) for every non-trivial X ∈ a, the operator adX
∣∣
n

admits an eigenvalue with
non-zero real part.
Do we have LpHℓ

dR(R) ̸= {0} for p > 1 large enough?

If we denote by sp(u) the spectrum (in the field of complex numbers) of an en-
domorphism u of a finite-dimensional real vector space, the above conditions can be
reformulated as follows:

(nC) there exists ξ ∈ a such that sp(ad ξ
∣∣
n
) ⊂ R×

− ⊕ iR,
(nT) for every X ∈ a∖ {0}, we have: sp(adX

∣∣
n
) ∩ (R× ⊕ iR) ̸= ∅.

Condition (nC)+(nT) forces N to be the nilpotent radical of R. When ℓ = 1,
condition (nC) implies trivially condition (nT); moreover the groups R that satisfy
(nC) form precisely the class of connected Lie groups that carry a left-invariant Rie-
mannian metric of negative curvature [Hei74]. For them, it is known that Question 0.3
admits a positive answer [Pan07, CT11]. The goal of the paper is to enlarge the family
of groups for which Question 0.3 is known to have a positive answer. In Section 4,
we prove two non-vanishing results described below. Note that at least since we are
using spectral sequences techniques, vanishing results are also useful in the proof of
non-vanishing ones; this explains why condition (nC) is made before condition (nT).

The first positive result makes a commutativity assumption on the nilpotent radical
of the solvable group.

Theorem B. — The answer to Question 0.3 is yes, if one assumes in addition that
N ≃ Rn with n ⩾ 1.

The second positive result makes a rank assumption on the solvable group, i.e., a
dimension assumption on the quotient of the group by its nilpotent radical.

Theorem C. — The answer to Question 0.3 is yes, if one assumes in addition that
ℓ = 2, i.e., if A ≃ R2.

J.É.P. — M., 2023, tome 10



776 M. Bourdon & B. Rémy

Fundamental examples of groups satisfying conditions (nC) and (nT) are provided
by the groups AN that appear in the Iwasawa decompositions KAN of the semisimple
Lie groups with finite center.

Theorem D. — The answer to Question 0.3 is yes for the groups AN that appear in
the Iwasawa decompositions KAN of the semisimple Lie groups with finite center.

Together with the reduction contained in Section 0.1, the latter result proves The-
orem A on semisimple groups.

0.3. Sketch of proof of the non-vanishing theorems. — Recall that D = dim(R).
By Poincaré duality (see Proposition 1.11), proving vanishing and non-vanishing as
stated in Theorem 0.2 and Question 0.3, is equivalent to showing that for p > 1 close
enough to 1:

(1) LpHk
dR(R) = {0} for every k < D − ℓ,

(2) LpHD−ℓ
dR (R) is Hausdorff and non-zero.

The assumption on the existence of ξ ∈ a satisfying condition (nC), in combination
with Pansu’s results on Lp-cohomology [Pan99, Pan08, Pan09], imply that item (1)
holds, as well as the Hausdorff property in item (2) (see Corollary 2.4 for a proof).

It remains to establish that LpHD−ℓ
dR (R) ̸= {0}. For that, we use ξ as in condition

(nC) in order to decompose R as follows. Write a = Rξ⊕b, where the second factor is
b := {X ∈ a : trace(adX) = 0}, the Lie algebra of a connected Lie subgroup B < A

isomorphic to RD−1. Then R can be expressed as R = B⋉H, with H = {etξ}t∈R⋉N .
Again the assumption on ξ and Pansu’s results on Lp-cohomology, give a precise rather
simple description of the Lp-cohomology of H for p > 1 close to 1 – see Corollaries 2.4
and 2.5. In particular the above items (1) and (2) hold forH, in other words LpHk

dR(H)

vanishes for k < dim(H)− 1 = D − ℓ, and LpHD−ℓ
dR (H) is Hausdorff and non-zero.

Now, by using a spectral sequence argument taken from [BR20] – see Corollary 6.10,
we obtain a linear isomorphism:

(0.4) LpHD−ℓ
dR (R) ≃ Lp

(
B,LpHD−ℓ

dR (H)
)B
,

where B acts by translations on itself and by conjugacy on LpHD−ℓ
dR (H). The

B-invariance implies that the right hand side space is isomorphic to{
ψ ∈ LpHD−ℓ

dR (H) :

∫
B

∥∥C∗
b (ψ)

∥∥pdb < +∞
}
,

where Cb denotes the conjugation by b ∈ B. Under the assumptions (nC) and (nT),
we give a criterion to ensure that the latter space is non-zero (see Proposition 3.2).
Finally we show that the groups in Theorems B, C and D satisfy the criterion.

It is worth mentioning that the above strategy would answer affirmatively Ques-
tion 0.3 in full generality, if the following question admitted a positive answer:

J.É.P. — M., 2023, tome 10
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Question 0.5. — Let N be a connected simply connected nilpotent Lie group. Let
X1, X2, . . . , Xk be non-trivial left-invariant vector fields on N . Does N admit a non-
zero, compactly supported, C1 function f : N → R, whose integral along every orbit
of Xi (i = 1, . . . , k) is null?

When the fields commute or when k = 2, we answer affirmatively Question 0.5 –
see Lemmas 4.2 and 4.1.

0.4. Remarks and questions

(1) We suspect that Condition (nT) in Question 0.3 is a necessary condition. For
example if a contains a non-trivial vector X0 such that adX0

∣∣
n

is semisimple with
imaginary eigenvalues, then one has LpHk

dR(R) = {0} for every k ⩾ 0 and p > 1.
To see this, observe that for such an X0 the operator adX0 acting on Lie(R) is
skew-symmetric. Therefore, the left-invariant vector field associated to X0 is a Killing
vector field on R. Moreover, its flow acts properly on R (since it does on A). These
properties, in combination with Poincaré duality, imply vanishing of LpHk

dR(R) in
every degree – see [Pan08, Proof of Prop. 15].

(2) Cornulier told us that conditions (nC) and (nT) should admit geometric char-
acterizations. He claims that a simply connected solvable Lie group satisfies condition
(nC) if and and only if its asymptotic cone (one or every) is bi-Lipschitz homeomor-
phic to a CAT(0)-space. Moreover, he thinks that condition (nT) should be equiva-
lent to the non-existence of direct R-factor in the asymptotic cone. In the same vein,
we notice that the rank ℓ of a condition (nC) group is equal to the dimension of its
asymptotic cone, see [Cor08, Th. 1.1].

(3) Nice examples of groups satisfying condition (nC) are provided by Lie groups
that carry a left-invariant non-positively curved Riemannian metric; although these
two classes of groups do not exactly coincide (see [AW76, Th. 7.6]).

(4) Cornulier advertised us of the following potentially interesting quasi-isometric
invariant:

p(R) := inf
{
p > 1 | LpHℓ

dR(R) ̸= {0}
}
,

for groups R of rank ℓ that satisfy conditions (nC) and (nT). (In case the right side
set is void we set p(R) = +∞). Similarly is defined the invariant p(R) associated to
the reduced Lp-cohomology. When ℓ = 1, these invariants have been considered and
computed by Pansu [Pan07] (see also [CT11] for related results).

Organization of the paper. — Section 1 is a brief presentation of results on de Rham
Lp-cohomology of manifolds mainly due to P. Pansu. Section 2 applies these results
to the case of Lie groups, and Section 3 provides a general non-vanishing criterion
in terms of spectra of adjoint actions on solvable groups. Section 4 then applies the
criterion to prove our first two non-vanishing results, namely Theorems B and C
above. Section 5 is dedicated to semisimple Lie groups: it shows, by combinatorial
arguments using Cartan’s classification of Riemannian symmetric spaces, that the

J.É.P. — M., 2023, tome 10



778 M. Bourdon & B. Rémy

solvable subgroups arising from Iwasawa decompositions do satisfy the previous cri-
terion; Theorem D follows. Section 6 deals with semi-direct products and allows the
use of spectral sequences, modulo a comparison result between cohomologies, avail-
able when the involved groups are diffeomorphic to RD and which is proved in the
appendix.

Acknowledgements. — We thank Pierre Pansu: the present paper elaborates on sev-
eral of his ideas and results. We thank Yves Cornulier for useful remarks and questions.

1. de Rham Lp-cohomology

Pansu’s work on de Rham Lp-cohomology is dense and subtle. In this section,
we extract from his papers [Pan08, Pan09] the ideas and results that are needed in
the sequel. Since [Pan09] is not published yet, and because we only need special cases
which require simpler arguments, we include full proofs of the statements. We hope
that this section could also serve as a gentle introduction to the subject.

1.1. Definitions. — Let M be a C∞ Riemannian manifold. We denote by d vol its
Riemannian measure, and by |v| the Riemannian length of a vector v ∈ TM . For
k ∈ N, let Ωk(M) be the space of C∞ differential k-forms on M .

Let p ∈ (1,+∞). The Lp-norm of ω ∈ Ωk(M) is

∥ω∥LpΩk =

(∫
M

|ω|pm d vol(m)

)1/p

,

where |ω|m := sup{|ω(m; v1, . . . , vk)| : v1, . . . , vk ∈ TmM, |vi| = 1}.

We denote by LpΩk(M) the norm completion of the normed space {ω ∈ Ωk(M) :

∥ω∥LpΩk < +∞}, i.e., the Banach space of k-differential forms with measurable Lp

coefficients.
Let also

∥ω∥Ωp,k := ∥ω∥LpΩk + ∥dω∥LpΩk+1 .

One defines Ωp,k(M) to be equal to the norm completion of the normed space

{ω ∈ Ωk(M) : ∥ω∥Ωp,k < +∞}.

By construction Ωp,k(M) is a Banach space and the standard differential operator
extends to a bounded operator

dk : Ωp,k(M) −→ Ωp,k+1(M),

which satisfies d ◦ d = 0.

Definition 1.1. — The de Rham Lp-cohomology of M is the cohomology of the com-
plex Ωp,0(M)

d0−→ Ωp,1(M)
d1−→ Ωp,2(M)

d2−→ · · · . It will be denoted by LpH∗
dR(M).

Its largest Hausdorff quotient is denoted by LpH∗
dR(M) and is called the reduced de

Rham Lp-cohomology of M .

J.É.P. — M., 2023, tome 10
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Remark 1.2. — According to [GT06, Th. 12.8], the inclusion map

{ω ∈ Ω∗(M) : ∥ω∥Ωp,∗ < +∞} ⊂ Ωp,∗(M)

induces a topological isomorphism in cohomology. Therefore, every element in
LpH∗

dR(M) can be represented by a smooth form. In particular, when M is a com-
pact manifold, its de Rham Lp-cohomology coincides with the standard de Rham
cohomology.

1.2. Vanishing. — Let φ : M → M be a C∞ map and k ∈ N. We denote by
φ∗ : Ωk(M) → Ωk(M), ω 7→ φ∗(ω), the associated linear map. In case it induces
a bounded operator φ∗ : LpΩk(M) → LpΩk(M), we denote its operator norm
by ∥φ∗∥LpΩk→LpΩk . Otherwise we set ∥φ∗∥LpΩk→LpΩk = +∞. We define similarly
∥φ∗∥Ωp,k→Ωp,k .

Let ξ be a C∞ unit complete vector field on M , and let (φt)t∈R be its flow.
We assume that φ∗

t : LpΩk(M) → LpΩk(M) is bounded for every t ∈ R and k ∈ N.
For k ∈ N∗, let ιξ : Ωk(M) → Ωk−1(M) be the inner product with ξ. We observe that
φ∗
t ◦ ιξ = ιξ ◦ φ∗

t . Moreover, ιξ contracts the norms ∥·∥LpΩ∗ ; indeed |ιξω|m ⩽ |ω|m,
since |ξ|m = 1 by assumption.

Lemma 1.3. — For t ⩾ 0 and k ∈ N∗, the linear map: Bk
t : Ωk(M) → Ωk−1(M)

defined by

Bk
t (ω) =

∫ t

0

φ∗
s(ιξω) ds,

induces a bounded linear operator from Ωp,k(M) to Ωp,k−1(M), still denoted by Bk
t ,

that satisfies the following homotopy relation

d ◦Bk
t +Bk+1

t ◦ d = φ∗
t − id,

and whose operator norm satisfies

∥Bk
t ∥Ωp,k→Ωp,k−1 ⩽ ∥φ∗

t − id ∥LpΩk→LpΩk +

∫ t

0

∥φ∗
s∥LpΩk→LpΩk ds.

Proof. — For smooth forms the homotopy relation holds as a standard application of
the classical Cartan formula

Lξ = d ◦ ιξ + ιξ ◦ d
(see e.g. [GHL04, Prop. 1.121] for this formula). Indeed for ω ∈ Ωk(M) one has

φ∗
t (ω)− ω =

∫ t

0

d

ds
(φ∗

sω) ds =

∫ t

0

φ∗
s(Lξω) ds = dBk

t (ω) +Bk+1
t (dω).

We will prove that Bk
t is a bounded linear operator from Ωp,k(M) to Ωp,k−1(M).

Since smooth forms are dense in Ωp,∗(M) the homotopy formula will remain valid in
Ωp,∗(M).

For ω ∈ Ωk(M), one has by definition

∥Bk
t (ω)∥Ωp,k−1 = ∥Bk

t (ω)∥LpΩk−1 + ∥dBk
t (ω)∥LpΩk .
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From the homotopy relations we get that

∥Bk
t (ω)∥Ωp,k−1 ⩽ ∥Bk

t ∥LpΩk→LpΩk−1 · ∥ω∥LpΩk

+ ∥φ∗
t − id ∥LpΩk→LpΩk · ∥ω∥LpΩk

+ ∥Bk+1
t ∥LpΩk+1→LpΩk · ∥dω∥LpΩk+1 .

Since φ∗
s◦ιξ = ιξ◦φ∗

s, and since the maps ιξ : LpΩ∗(M) → LpΩ∗−1(M) are contracting,
one has

∥B∗
t ∥LpΩ∗→LpΩ∗−1 ⩽

∫ t

0

min{∥φ∗
s∥LpΩ∗−1→LpΩ∗−1 , ∥φ∗

s∥LpΩ∗→LpΩ∗} ds.

The expected upper bound for ∥Bk
t ∥Ωp,k→Ωp,k−1 follows easily. □

We now establish a vanishing result.

Proposition 1.4 ([Pan08, Prop. 10]). — Let p ∈ (1,+∞) and k ∈ N∗. Suppose that
there exists C, η > 0, such that for every t ⩾ 0:

max
i=k−1,k

∥φ∗
t ∥LpΩi→LpΩi ⩽ Ce−ηt.

Then LpHk
dR(M) = {0}.

Proof. — First, the assumption (with i = k) and the previous lemma imply that the
operators Bk

t : Ωp,k(M) → Ωp,k−1(M) are bounded independently of t ⩾ 0. Secondly,
the assumption (with i = k − 1) implies that ∥φ∗

t ∥Ωp,k−1→Ωp,k−1 → 0, when t→ +∞.
We claim that these two observations imply that Bk

t converges in norm to an operator
Bk

∞ : Ωp,k(M) → Ωp,k−1(M), when t → +∞. Indeed, by using a change of variable,
one has for 0 ⩽ t1 ⩽ t2:

Bk
t2 −Bk

t1 =

∫ t2

t1

φ∗
s ◦ ιξ ds = φ∗

t1 ◦B
k
t2−t1 .

Thus the above observations yield:

∥Bk
t2 −Bk

t1∥Ωp,k→Ωp,k−1 ⩽ ∥φ∗
t1∥Ωp,k−1→Ωp,k−1 · ∥Bk

t2−t1∥Ωp,k→Ωp,k−1 −→ 0

when t1, t2 tend to +∞. Thus the claim follows from completeness.
Now let ω ∈ Ωp,k(M)∩ ker d. From the homotopy relations in the previous lemma,

we have for every t ⩾ 0

dBk
t (ω) = φ∗

t (ω)− ω.

By letting t→ +∞, we obtain the following relation in Ωp,k(M)

dBk
∞(ω) = −ω.

Therefore, ω ∈ dΩp,k−1 and thus LpHk
dR(M) = {0}. □

1.3. Identification. — We relate the Lp-cohomology of M with the cohomology of
certain complexes of currents (Proposition 1.9). In some cases, this will lead to non-
vanishing cohomology. See [DS05] for a nice introduction to the theory of currents.

J.É.P. — M., 2023, tome 10



Non-vanishing for group Lp-cohomology of solvable and semisimple Lie groups 781

Another point of view for Ωp,∗(M). — Let D = dim(M). Let Ωk
c (M) be the space

of compactly supported C∞ differential k-forms, endowed with the C∞ topology.
A k-current on M is by definition a continuous real valued linear form on ΩD−k

c (M).
We denote by D′k(M) the space of k-currents on M endowed with the weak*-topology.

The differential of a k-current T is the (k + 1)-current dT defined by dT (α) :=

(−1)k+1T (dα), for every α ∈ ΩD−k−1
c (M). It defines a map d satisfying d ◦ d = 0.

To every ω ∈ LpΩk(M), one associates the k-current Tω defined by Tω(α) :=∫
M
ω∧α. The differential in the sense of currents of ω ∈ LpΩk(M) is the (k+1)-current

dω := dTω. One says that dω belongs to LpΩk+1(M) if there exits θ ∈ LpΩk+1(M)

such dω = Tθ. These definitions are consistent with the Stokes formula:∫
M

dω ∧ α = (−1)k+1

∫
M

ω ∧ dα.

We will use the following characterization of the space Ωp,∗(M):

Lemma 1.5. — The space Ωp,k(M) is equal to the subspace of LpΩk(M) consisting
of the Lp k-forms whose differentials in the sense of currents belong to LpΩk+1(M).
Moreover, the differential operator d on Ωp,∗(M) agrees with the differential in the
sense of currents.

Proof. — Since convergence in Lp implies convergence in the sense of currents,
Ωp,k(M) is contained in space of Lp k-forms whose differentials in the sense of
currents belong to Lp. The proof of the reverse inclusion is based on a regularization
process: according to [GT06, Th. 12.5] there exists a family of operators Rε, such
that for every Lp k-form ω whose differential in the sense of currents belongs to Lp,
one has:

(1) Rεω is a C∞ k-form on M ,
(2) dRεω = Rεdω,
(3) ∥Rεω − ω∥LpΩk and ∥Rεdω − dω∥LpΩk+1 tends to 0 when ε→ 0.

Theses properties imply that ω belongs to Ωp,k(M). □

The complexes Ψp,∗(M) and Ψp,∗(M, ξ). Following [Pan09], we introduce two com-
plexes of currents.

Definition 1.6. — For p ∈ (1,+∞) and k ∈ N, let Ψp,k(M) be the space of k-currents
ψ ∈ D′k(M) that can be written ψ = β+dγ, with β ∈ LpΩk(M) and γ ∈ LpΩk−1(M).
In particular Ψp,0(M) = Lp(M). For ψ ∈ Ψp,k(M), let

∥ψ∥Ψp,k = inf
{
∥β∥LpΩk + ∥γ∥LpΩk−1 : ψ = β + dγ,

with β ∈ LpΩk(M) and γ ∈ LpΩk−1(M)
}
.

Lemma 1.7. — ∥·∥Ψp,k is a norm on Ψp,k(M). With this norm Ψp,k(M) is a Banach
space. The inclusion maps LpΩk(M) ⊂ Ψp,k(M) ⊂ D′k(M) are continuous. The
differentials in the sense of currents induce continuous operators dk : Ψp,k(M) →
Ψp,k+1(M), that satisfy d ◦ d = 0.
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Proof. — To see that ∥·∥Ψp,k is a norm, we only need to check that ∥ψ∥Ψp,k = 0 implies
ψ = 0. This is a consequence of the following inequality. Let ψ = β + dγ ∈ Ψp,k(M),
then by Hölder inequality one has for every α ∈ ΩD−k−1

c (M):

|ψ(α)| =
∣∣∣∫

M

β ∧ α+ (−1)k+1

∫
M

γ ∧ dα
∣∣∣

⩽ ∥β∥LpΩk · ∥α∥LqΩD−k + ∥γ∥LpΩk−1 · ∥dα∥LqΩD−k+1 ,

where 1/p+1/q = 1. It also shows that the inclusion map Ψp,k(M) ⊂ D′k(M) is con-
tinuous. The continuity of LpΩk(M) ⊂ Ψp,k(M) is obvious. To show the completeness,
one notices that Ψp,k(M) is isometric to LpΩk(M)× LpΩk−1(M)/E, where E is the
subspace

E := {(β, γ) | β + dγ = 0}.

Since ∥·∥Ψp,k is a norm, E is a closed subspace. Since LpΩk(M) × LpΩk−1(M) is a
Banach space, the quotient space is Banach too. Finally the last statement in the
lemma is obvious. □

Let ξ be a C∞ unitary complete vector field on M , and denote its flow by φt.
We suppose that it induces a bounded linear operator φ∗

t : LpΩk(M) → LpΩk(M),
for every t ∈ R and k ∈ N. Then it induces an automorphism of the complex Ψp,∗(M)

whose operator norm satisfies

∥φ∗
t ∥Ψp,k→Ψp,k ⩽ max

i=k−1,k
∥φ∗

t ∥LpΩi→LpΩi .

Definition 1.8. — For p ∈ (1,+∞) and k ∈ N, we set

Ψp,k(M, ξ) = {ψ ∈ Ψp,k(M) : φ∗
t (ψ) = ψ for every t ∈ R}.

The complex Ψp,∗(M, ξ) is a closed subcomplex of Ψp,∗(M). Let

Zp,k(M, ξ) = Ker
(
d : Ψp,k(M, ξ) −→ Ψp,k+1(M, ξ)

)
be the space of k-cocycles.

The next proposition elaborates on [Pan08, Prop. 10]. It is also a special case of
[Pan09, Cor. 12].

Proposition 1.9. — Let p ∈ (1,+∞) and k ∈ N. Suppose that there exists C, η > 0

such that for every t ⩾ 0, one has

max
i=k−1,k

∥φ∗
t ∥LpΩi→LpΩi ⩽ Ce−ηt.

(When i = −1, we set LpΩ−1 := {0}.) Then there is a canonical Banach isomorphism

LpHk+1
dR (M) ≃ Zp,k+1(M, ξ),

in particular LpHk+1
dR (M) is Hausdorff.

Proof. — The proof is divided into several steps.
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(1) We define a bounded linear map

P : Ωp,k+1(M) ∩Ker d −→ Zp,k+1(M, ξ)

as follows. Consider the operators B∗
t defined in Lemma 1.3. We claim that the oper-

ators Bk+1
t : LpΩk+1(M) → LpΩk(M) converge in norm to an operator Bk+1

∞ , when t
tends to +∞. Indeed from its definition one has

∥Bk+1
t ∥LpΩk+1→LpΩk ⩽

∫ t

0

∥φ∗
s∥LpΩk→LpΩkds.

Thus our assumption implies that Bk+1
t is bounded independently of t ⩾ 0. Moreover,

one has Bk+1
t2 − Bk+1

t1 = φ∗
t1 ◦ Bk+1

t2−t1 for 0 ⩽ t1 ⩽ t2. With our assumption we get
that:

∥Bk+1
t2 −Bk+1

t1 ∥LpΩk+1→LpΩk ⩽ ∥φ∗
t1∥LpΩk→LpΩk · ∥Bk+1

t2−t1∥LpΩk+1→LpΩk −→ 0

when t1, t2 → +∞. The claim follows from completeness.
Let ω ∈ Ωp,k+1(M) ∩Ker d. For t ⩾ 0 one has thanks to Lemma 1.3:

φ∗
t (ω) = ω + dBk+1

t (ω).

By letting t→ +∞, and by using the fact that Ωp,k+1(M)∩Ker d ⊂ LpΩk+1(M), the
claim implies that φ∗

t (ω) converges in Ψp,k+1(M) to the current ω∞ := ω+dBk+1
∞ (ω).

We set P (ω) := ω∞. Since the maps d and φ∗ are continuous on Ψp,k+1(M), one
has dω∞ = 0 and φ∗

t (ω∞) = ω∞. Therefore, P (ω) belongs to Zp,k+1(M, ξ). Moreover,
P is continuous; indeed

∥P∥ ⩽ 1 + ∥Bp,k+1
∞ ∥LpΩk+1→LpΩk .

(2) P (ω) = 0 implies [ω] = 0 in LpHk+1
dR (M): If ω∞ = 0, one has ω = −dBk+1

∞ (ω)

with Bk+1
∞ (ω) ∈ LpΩk(M). Therefore, by Lemma 1.5 one has [ω] = 0.

(3) P is surjective: Let ψ ∈ Zp,k+1(M, ξ). Then there exists β ∈ LpΩk+1(M)

and γ ∈ LpΩk(M) such that ψ = β + dγ and dβ = 0. By Lemma 1.5, one has
β ∈ Ωp,k+1(M) ∩Ker d, and:

β∞ = β + dBk+1
∞ (β) = ψ + d

(
Bk+1

∞ (β)− γ
)
.

Since ψ and β∞ are both φ∗
t -invariant, so is d(Bk+1

∞ (β)− γ). But by our assumption,
one has ∥φ∗

t ∥Ψp,k→Ψp,k ⩽ Ce−ηt, and thus:

φ∗
t

(
d(Bk+1

∞ (β)− γ)
)
= d

(
φ∗
t (B

k+1
∞ (β)− γ)

)
−→ 0

when t→ +∞. Therefore, we get that d(Bk+1
∞ (β)− γ) = 0, and so ψ = β∞ ∈ ImP .

(4) [ω] = 0 implies P (ω) = 0: Suppose that ω = dα with α ∈ Ωp,k(M). Then

ω∞ = dα+ dBk+1
∞ (ω) = d

(
α+Bk+1

∞ (ω)
)
,

with α+Bk+1
∞ (ω)∈Ψp,k(M). The argument in point (3) yields that d(α+Bk+1

∞ (ω))=0.
Thus ω∞ = 0.
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(5) Conclusion: Items (1) and (4) show that P induces a continuous homomorphism
from LpHk+1

dR (M) to Zp,k+1(M, ξ); and items (2) and (3) that it is bijective. In par-
ticular LpHk+1

dR (M) is Hausdorff and thus a Banach space. By Lemma 1.7, the space
Zp,k+1(M, ξ) is Banach too. Therefore, Banach Theorem completes the proof. □

1.4. Non-vanishing. — The next proposition is a non-vanishing result which com-
plements Proposition 1.9. It is a special case of [Pan09, Cor. 32].

Observe that the space Ker(ιξ : LpΩ∗(M) → LpΩ∗−1(M)) is φ∗
t -invariant, since ιξ

and φ∗
t commute.

Proposition 1.10. — Let p ∈ (1,+∞) and k ∈ {0, . . . , D − 2} where D = dimM .
Suppose that (φt)t∈R acts properly on M and that there exists C, η > 0 such that for
t ⩾ 0:

∥φ∗
t ∥LpΩk→LpΩk ⩽ Ce−ηt,

and ∥φ∗
−t∥LpΩk+1∩Ker ιξ→LpΩk+1∩Ker ιξ ⩽ Ce−ηt.

(Note the opposite signs in front of t in the left side members). Then Zp,k+1(M, ξ) is
non-trivial.

Proof. — Since (φt)t∈R acts properly on M , every orbit admits an invariant open
neighborhood U ≃ R × V on which φt acts like a translation along the R factor.
In the sequel we suppose that such an orbit neighborhood has been chosen.

Pick a non-trivial φt-invariant form α ∈ Ωk(M) ∩Ker ιξ which is supported in U .
Since k ∈ {0, . . . , D − 2}, we can choose α so that dα ̸= 0. Set ψ := dα. We claim
that ψ ∈ Zp,k+1(M, ξ).

Let χ be a C∞ function on U ≃ R × V , depending only on the R-variable, and
such that χ(t) = 0 for t ⩽ 0 and χ(t) = 1 for t ⩾ 1. One has α = χ · α + (1− χ) · α,
and thus:

ψ = β + dγ with β = d(χ · α) = dχ ∧ α+ χ · dα and γ = (1− χ) · α.

The form dχ∧ α has compact support. The form dα belongs to Ker ιξ, thanks to the
formula Lξ = d ◦ ιξ + ιξ ◦ d. Since the restriction of dα to [0, 1] × V belongs to Lp,
the assumption on the norm of φ∗

−t implies that the restriction of dα to [0,+∞)× V

belongs to Lp too. Therefore, β ∈ LpΩk+1(M).
Since the restriction of α to [0, 1]× V belongs to Lp, the assumption on the norm

of φ∗
t implies that the restriction of α to (−∞, 0] × V belongs to Lp too. Therefore,

γ ∈ LpΩk(M). □

1.5. Poincaré duality. — Parts of vanishing and non-vanishing results for Lp-coho-
mology rely on the following version of Poincaré duality.

Proposition 1.11. — Let M be a complete oriented Riemannian manifold of dimen-
sion D. Let p ∈ (1,+∞), q = p/(p − 1) its Hölder conjugate, and k ∈ {0, . . . , D}.
Then

– LpHk
dR(M) is Hausdorff if and only if LqHD−k+1

dR (M) is.
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– LpHk
dR(M) and LqHD−k

dR (M) are dual Banach spaces. Thus LpHk
dR(M) = {0} if

and only if LqHD−k
dR (M) = {0}.

Proof. — See [Pan08, Cor. 14] or [GT10]. □

1.6. Examples and complements

(1) Let M be a complete connected Riemannian manifold of infinite volume and
dimension D, and let p ∈ (1,+∞), q = p/(p−1). It is obvious that LpH0

dR(M) = {0}.
By Poincaré duality (Proposition 1.11) this implies that LqHD

dR(M) = {0}. In another
hand, again by Poincaré duality, LqHD

dR(M) is Hausdorff if and only if LpH1
dR(M) is.

When M admits a complete unit vector field whose flow expands exponentially the
volume of M , then LpH1

dR(M) is Hausdorff for every p ∈ (1,+∞). Indeed this follows
from Proposition 1.9 applied with k = 0. This shows in particular that any connected
non-unimodular Lie group G of dimension D satisfies LqHD

dR(G) = {0} for every q ∈
(1,+∞). In fact, Pansu in [Pan07, Th. 1] shows that for any non-compact connected
Lie group G, either LpH1

dR(G) is Hausdorff or G is amenable unimodular. See also
[Tes09] for generalizations to topological groups.

(2) Under assumptions of Proposition 1.9, one has ∥φ∗
t ∥Ψp,k→Ψp,k → 0 when t →

+∞, and thus Ψk,p(M, ξ) = {0}. Therefore, the conclusion of Proposition 1.9 can
be stated as LpHk+1

dR (M) ≃ Hk+1(Ψp,∗(M, ξ)). In [Pan09, Th. 4], Pansu establishes a
general result that relates the Lp-cohomology ofM with the cohomology of Ψp,∗(M, ξ).

(3) Suppose M is diffeomorphic to R×N and that ξ = ∂/∂t is the unit vector field
carried by the R-factor. Let π : M → N be the projection, and let π∗ : D′i(N) →
D′i(M) be the continuous extension of the pull-back map π∗ : Ωi(N) → Ωi(M). Then,
under the assumptions of Proposition 1.9, one can prove that every ψ ∈ Zp,k+1(M, ξ)

can be written as ψ = π∗(T ), with T ∈ D′k+1(N) ∩Ker d. In other words, one has

Zp,k+1(M, ξ) = π∗(D′k+1(N) ∩Ker d
)
∩Ψp,k+1(M).

Therefore, the isomorphism LpHk+1
dR (M) ≃ Zp,k+1(M, ξ) can be interpreted by viewing

Zp,k+1(M, ξ) as a “boundary values” space for the cohomology classes in LpHk+1
dR (M).

See [Pan09] for more information along these lines.

2. The Lie group case

This section collects applications of the previous results to Lie groups. It will serve
as a main tool in the paper.

Let G be a connected Lie group equipped with a left-invariant Riemannian metric.
Let D = dim(G) and let g be its Lie algebra. As usual the left and right multiplications
by g ∈ G are denoted Lg and Rg, and we let Cg = Lg ◦Rg−1 be the conjugacy by g.
Given a unit vector ξ ∈ g, we will still denote by ξ the associated left-invariant vector
field on G. Its flow is φt = Rexp tξ.

The following result is implicit in [Pan99], see in particular [Pan99, Cor. 53] and
[Pan99, Prop. 57].
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Proposition 2.1. — Let ξ ∈ g and suppose that its flow acts properly on G. Let
λ1 ⩽ λ2 ⩽ · · · ⩽ λD be the real parts of the eigenvalues of (− ad ξ) ∈ End(g),
enumerated with their multiplicities in their generalized eigenspaces. We denote by
wk =

∑k+1
i=1 λi the sum of the (k + 1) first ones, and by Wk =

∑k
j=1 λD−j+1 the sum

of the k last ones. Let h =
∑D

i=1 λi be the trace of (− ad ξ), and suppose that h > 0.
Let k ∈ {0, . . . , D − 1}.

(1) If 1 < p < h/Wk, then LpHk
dR(G) = {0}.

(2) Under the same assumptions, the space LpHk+1
dR (G) is Hausdorff and Banach

isomorphic to Zp,k+1(M, ξ).
(3) If 1 ⩽ h/wk+1 < p < h/Wk, then LpHk+1

dR (G) ̸= {0}.
(When k = 0, we set W0 := 0 and h/W0 := +∞.)

Remark 2.2. — The above proposition applies to non-unimodular Lie groups only
(but no solvability or semi-simplicity assumption is made). Indeed the trace of ad ξ is
supposed to be non-zero.

Proof. — (1) and (2). To obtain vanishing and identification of the cohomology from
Propositions 1.4 and 1.9, we need to control the norm of φ∗

t : LpΩ∗(G) → LpΩ∗(G),
for t ⩾ 0. Let k ∈ {0, . . . , D − 1} and ω ∈ Ωk(G). Suppose first that ω is left-
invariant. Then φ∗(ω) is left-invariant too. In particular their norms |ω|g and |φ∗

t (ω)|g
are independent of g ∈ G. We have

φ∗
t (ω) = R∗

exp tξ(ω) = L∗
exp−tξ(R

∗
exp tξ(ω)) = C∗

exp−tξ(ω).

Moreover, for X1, . . . , Xk ∈ g, we have

C∗
exp−tξ(ω)(X1, . . . , Xk) = ω

(
Ad(exp−tξ)X1, . . . ,Ad(exp−tξ)Xk

)
= ω(e−t ad ξX1, . . . , e

−t ad ξXk).

In other words, by identifying the space of left-invariant k-forms with Λkg∗, we get
that C∗

exp−tξ(ω) = (e−t ad ξ)∗(ω).

Observe that Wk is the largest real part of the eigenvalues of (− ad ξ)∗ acting on
Λkg∗. Thus for every ε > 0 there is a constant C = C(ε, k) > 0 such that for all
ω ∈ Λkg∗ and t ⩾ 0, one has

|φ∗
t (ω)| ⩽ Ce(Wk+ε)t|ω|.

Now let ω be any element of Ωk(G) (it is not supposed to be left-invariant anymore).
Pick a basis (θI) of Λkg∗ seen as the space of left-invariant k-forms on G. Then ω

decomposes uniquely as ω =
∑

I fIθI , where fI ∈ Ω0(G). Since the norms on Λkg∗ are
all equivalent, there exists a constant D = D(k) > 0 such that for every ω ∈ Ωk(G)

and g ∈ G:

D−1
(∑

I

|fI(g)|p
)1/p

⩽ |ω|g ⩽ D
(∑

I

|fI(g)|p
)1/p

.
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On the other hand, for t ⩾ 0:

|φ∗
t (ω)|g =

∣∣∣∑
I

fI ◦ φt · φ∗
t (θI)

∣∣∣
g
⩽ C

∑
I

|(fI ◦ φt)(g)|e(Wk+ε)t.

Therefore:
∥φ∗

t (ω)∥
p
LpΩk =

∫
G

|φ∗
t (ω)|pg d vol(g) ⩽ Cpep(Wk+ε)t

∫
G

∑
I

|(fI ◦ φt)(g)|p d vol(g)

= Cpep(Wk+ε)t

∫
G

∑
I

|fI(h)|p Jac(φ−1
t )(h) d vol(h)

= Cpep(Wk+ε−h/p)t

∫
G

∑
I

|fI(h)|p d vol(h)

⩽ CpDpep(Wk+ε−h/p)t∥ω∥p
LpΩk ,

since the Jacobian of φt is eht. Finally, by letting E := CD, one obtains that

∥φ∗
t ∥LpΩk→LpΩk ⩽ Ee(Wk+ε−h/p)t.

Suppose that k ⩾ 1 and 1 < h/Wk. Then, just from their definitions, one sees
that 0 ⩽ Wk−1 ⩽ Wk < h (recall that h > 0 by assumption). This implies that
Wk + ε−h/p < 0 for 1 < p < h/Wk and ε > 0 small enough; and that the same holds
with Wk−1 instead of Wk. We conclude then by using Propositions 1.4 and 1.9.

Suppose that k = 0. Then W0 + ε − h/p = ε − h/p < 0 for ε > 0 small enough.
Thus we can conclude as well by using Propositions 1.4 and 1.9.

(3) To prove non-vanishing of the cohomology by using Propositions 1.9 and 1.10,
we need in addition to control the norm of

φ∗
−t : L

pΩk+1(G) ∩Ker ιξ −→ LpΩk+1(G) ∩Ker ιξ,

for t ⩾ 0.
The group (φ−t)t∈R is the flow of the vector field −ξ. The real parts of the eigen-

values of ad ξ are −λD ⩽ −λD−1 ⩽ · · · ⩽ −λ1. The sum of the (k + 2) last ones
is −wk+1; and the trace of ad ξ is −h. We notice that ξ is an eigenvector of eigen-
value 0. By assumption one has wk+1 > 0; thus the eigenvalue 0 appears in the list
λ1 ⩽ · · · ⩽ λk+2, whose sum is wk+1. Therefore, −wk+1 is largest real part of the
eigenvalues of (ad ξ)∗ acting on (Λk+1g∗) ∩Ker ιξ.

By the same argument as in the first part of the proof, one obtains that for every
ε > 0 there is a constant E′ = E′(ε, k) > 0, such that for every t ⩾ 0:

∥φ∗
−t∥LpΩk+1∩Ker ιξ→LpΩk+1∩Ker ιξ ⩽ E′e(−wk+1+ϵ+h/p)t.

For p > h/wk+1 and ε > 0 small enough, one has −wk+1 + ϵ+ h/p < 0. We conclude
by using Propositions 1.9 and 1.10. □

Example 2.3. — Let R = R ⋉α RD−1 with α : R → GL(RD−1) defined by α(t) =

et · id. Then R is isometric to the real hyperbolic space HD
R. Consider the vector

field ∂/∂t. The linear map ad(∂/∂t) is the projection on the RD−1 factor. Put ξ =

−∂/∂t. The list of the eigenvalues of (− ad ξ) is 0 = λ1 < λ2 = · · · = λD = 1. For
every k ∈ {0, . . . , D − 1} one has wk =Wk = k. Moreover, h = D − 1. Therefore, the
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above proposition applied in combination with Poincaré duality (Proposition 1.11),
shows that for k ∈ {1, . . . , D − 1}:

– LpHk
dR(R) = {0} for 1 < p < (D − 1)/k or p > (D − 1)/(k − 1).

– If (D − 1)/k < p < (D − 1)/(k − 1), then LpHk
dR(R) ̸= {0} and is Banach

isomorphic to Zp,k(M, ξ).
Moreover, by Section 1.6(1), one has LpH0

dR(R) = LpHD
dR(R) = {0} for every p ∈

(1,+∞).

Apart for the above example, and few other ones, the Lp-cohomology is only par-
tially known. In the sequel we will use the following consequences of Proposition 2.1.

Corollary 2.4. — Suppose that R is a connected Lie group of the form R = A⋉N ,
with A ≃ Rℓ and ℓ ⩾ 1, that satisfies the contraction condition (nC) of the introduc-
tion (for a given ξ in the Lie algebra of A). Let D = dim(R). Then, with the notations
of Proposition 2.1, the numbers wℓ, WD−1−ℓ belongs to (0, h), and we have:

– If 1 < p < h/WD−1−ℓ, then LpHk
dR(R) = {0} for all k < D − ℓ.

– Under the same assumption, the space LpHD−ℓ
dR (R) is Hausdorff and Banach

isomorphic to Zp,D−ℓ(R, ξ).
– If p > h/wℓ, then LpHk

dR(R) = {0} for all k > ℓ .

Proof. — By condition (nC), the list of the real parts of the eigenvalues of (− ad ξ)

is of the form
0 = λ1 = · · · = λℓ < λℓ+1 ⩽ · · · ⩽ λD.

Thus, one has 0 < Wk ⩽ WD−1−ℓ < h for every k < D − ℓ. By Proposition 2.1
the first two items follow. The last one is a consequence of the previous ones in
combination with Poincaré duality (Proposition 1.11). It holds for p larger than the
Hölder conjugate of h/WD−ℓ−1, i.e., for p > h/wℓ (since WD−ℓ−1 + wℓ = h). Note
that wℓ = λℓ+1. □

In the special case ℓ = 1, one gets in addition:

Corollary 2.5. — Let R be as in the previous corollary, and assume in addition that
ℓ = 1. If 1 < p < h/WD−2, then LpHD−1

dR (R) is non-trivial.

Proof. — With the notations of Proposition 2.1, we have: 0 < WD−2 < wD−1 < h.
Thus the result follows from Proposition 2.1, applied with k = D − 2. □

3. A non-vanishing criterion

Let R be a connected Lie group of the form R = A⋉N with A ≃ Rℓ and ℓ ⩾ 1, that
satisfies conditions (nC) and (nT) of the introduction. As explained in Section 0.3,
it decomposes asR = B⋉H and the analysis of LpHℓ

dR(R) – for large p and ℓ = dim(A)

– reduces to the study of the action of B on LpHD−ℓ
dR (H) for p close to 1. The goal of

this section is to give a sufficient condition on this action (Proposition 3.2), to ensure
non-vanishing of LpHℓ

dR(R) for large p (Corollary 3.4).
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As an application we will prove Theorems B, C and D in the next two sections.
We keep the objects and notations of Section 0.3. Recall that the Lie algebra of A is
denoted by a, and that the Lie algebra of B is b = {X ∈ a : trace(adX) = 0}. The
group H is defined by by H = {etξ}t∈R ⋉ N , where ξ ∈ a is a vector that satisfies
condition (nC).

As in the statement of Proposition 2.1, we consider the real parts of the eigenvalues
of (− ad ξ) acting on the Lie of R. Since ξ satisfies condition (nC), one has

0 = λ1 = · · · = λℓ < λℓ+1 ⩽ · · · ⩽ λD.

Recall that wk :=
∑k+1

i=1 λi denotes the sum of the (k + 1) first ones, and Wk :=∑k
j=1 λD−j+1 the sum of the k last ones. The trace of (− ad ξ) is h :=

∑D
i=1 λi.

We also set n := D − ℓ = dim(N), and we denote by π the projection π : H → N

and by vol the Riemannian volume form on N .

3.1. Interpolation. — Our first result is a quantitative version of Proposition 1.10.
It shows that the norm ∥·∥Ψp,n(H) interpolates (in some sense) between ∥·∥LpΩn(N)

and ∥·∥LpΩn−1(N).

Lemma 3.1. — For every p such that 1<p<h/Wn−1, there exist constants a, b, C>0,
such that for every θ ∈ Ωp,n−1(N) the form π∗(dθ) belongs to Zp,n(H, ξ), and satisfies:

∥π∗(dθ)∥Ψp,n(H) ⩽ C inf
s⩾0

{
e−as∥dθ∥LpΩn(N) + ebs∥θ∥LpΩn−1(N)

}
.

Proof. — Recall that the flow of ξ in H is denoted by φt. It is simply a translation
along the R factor of H. From Corollary 2.5 (and its proof), for every p such that
1 < p < h/Wn−1 there exist η > 0 and C1 > 0 such that for t ⩾ 0:

(1) ∥φ∗
t ∥LpΩn−1→LpΩn−1 ⩽ C1e

−ηt,
(2) ∥φ∗

−t∥LpΩn∩Ker ιξ→LpΩn∩Ker ιξ ⩽ C1e
−ηt.

For s ∈ R, let χs ∈ C∞(H) which depends only on the first variable, and such
that χs(t) = 0 for t ⩽ s, and χs(t) = 1 for t ⩾ s+ 1. Let α = π∗(θ). Then α and dα

are φ∗
t -invariant. One has

π∗(dθ) = dα = d(χs · α+ (1− χs) · α) = β + dγ,

with β = d(χs · α) = dχs ∧ α+ χs · dα, and γ = (1− χs) · α. Thus ∥π∗(dθ)∥Ψp,n(H) ⩽
∥β∥LpΩn(H) + ∥γ∥LpΩn−1(H).

The form dα belongs to Ker ιξ and is φ∗
t -invariant. With the above property (2)

we obtain (since s ⩾ 0):

∥χs · dα∥LpΩn(H) ⩽ ∥(dα) · 1t⩾s∥LpΩn(H) =

∞∑
i=0

∥(dα) · 1t∈[s+i,s+i+1]∥LpΩn(H)

⩽ C1

∞∑
i=0

e−η(s+i)∥(dα) · 1t∈[0,1]∥LpΩn(H)

=
C1e

−ηs

1− e−η
∥(dα) · 1t∈[0,1]∥LpΩn(H).
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Since the Haar measure on H is the product of those on R and N times e−th, the
Lp-norms of (dα) · 1t∈[0,1] and of dθ are comparable. Therefore, there exists a con-
stant C2, depending only on C1, η and H, such that

∥χs · dα∥LpΩn(H) ⩽ C2e
−ηs∥dθ∥LpΩn(N).

It remains to bound by above the Lp-norms of dχs∧α and γ. One has dχs = χ′
s(t)dt,

with χ′
s supported on [s, s+ 1]. Thus

∥dχs ∧ α∥LpΩn(H) ⩽ ∥χ′
s · α∥LpΩn−1(H) ⩽ C3∥α · 1t∈[0,s+1]∥LpΩn−1(H),

with C3 = ∥χ′
s∥∞.

Similarly, by writing γ = α · 1t⩽0 + (1− χs) · α · 1t∈[0,s+1], one has

∥γ∥LpΩn−1(H) ⩽ ∥α · 1t⩽0∥LpΩn−1(H) + ∥α · 1t∈[0,s+1]∥LpΩn−1(H).

The form α is φ∗
t -invariant. By using property (1) and a similar argument as above,

one obtains that the Lp-norm of α · 1t⩽0 is control by above by a constant times
∥θ∥LpΩn−1(N).

Since φt increases the norms at most exponentially, there exists b > 0 and C4 > 0

such that for t ⩾ 0 one has

∥φ∗
−t∥LpΩn−1→LpΩn−1 ⩽ C4e

bt.

Thus the Lp-norm of α · 1t∈[0,s+1] is bounded by above by a constant times
ebs∥θ∥LpΩn−1 . The statement follows with a = η. □

3.2. The criterion. — We now state the criterion that will lead to non-vanishing of
cohomology. It requires some preparations.

Since a is abelian, there is a basis of n⊗C relative to which the matrices of adX
∣∣
n

(X ∈ a) are upper triangular [Hum78, 4.1. Cor. A]. For i ∈ {1, . . . , n}, denote by ϖi

the i-th diagonal coefficient; it is a linear form on A with real or complex values. Since
we assume that condition (nT) holds, we have:

n⋂
i=1

Kerℜ(ϖi) = {0}.

By definition of the factor b < a, one has trace(adX) = 0 for every X ∈ b; and thus∑n
i=1 ℜ(ϖi(X)) = 0. In combination with the above trivial intersection, this implies

that for every X ∈ b∖ {0}, there exists i ∈ {1, . . . , n} such that ℜ(ϖi(X)) > 0.

Proposition 3.2. — Suppose that we are given:
(1) A non-empty subset J ⊂ {1, . . . , n}, such that for every vector X ∈ b ∖ {0}

there exists j ∈ J with ℜ(ϖj(X)) > 0.
(2) To every j ∈ J , a vector Zj ∈ n or n⊗C depending whether ϖj takes real or

complex values, such that ad(X) · Zj = ϖj(X)Zj for every X ∈ b.
(3) A non-zero C1 function f : N → R with compact support, whose integral along

every orbit of the left-invariant vector fields Yj := ℜZj (j ∈ J) is null.
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Then for 1 < p < h/Wn−1, the form ψ = π∗(f vol) belongs to Zp,n(H, ξ), and satisfies:∫
X∈b

∥∥C∗
expX(ψ)

∥∥p
Ψp,n(H)

dX < +∞.

Remark 3.3. — Note that assumption (2) holds for any J , since the wi’s are also the
weights of the representation ad : A→ End(n⊗C). Moreover, as explained above, as-
sumption (1) is valid with the maximal choice J = {1, . . . , n}. In general, condition (1)
leads to choosing big subsets J of {1, . . . , n} but this balanced by condition (3). The
latter assumption is not a straightforward consequence of our previous hypothesis and
the main part of the next section will be dedicated to sufficient conditions for it.

Corollary 3.4. — Suppose that the conditions (1), (2), (3) above are satisfied. Then
LpHℓ

dR(R) ̸= {0} for p > h/wℓ.

Proof. — Let p be such that 1 < p < h/Wn−1. According to Corollary 2.4 applied
with R = H, the space LpHk

dR(H) vanishes for k < n, and is Hausdorff and Banach
isomorphic to Zp,n(H, ξ) when k = n. As explained in the sketch of proof in Sec-
tion 0.3, these properties in combination with a spectral sequence argument taken
from [BR20] – see Corollary 6.10, imply that there exists a linear isomorphism:

LpHD−ℓ
dR (R) ≃

{
ψ ∈ Zp,n(H, ξ) :

∫
X∈b

∥∥C∗
expX(ψ)

∥∥p
Ψp,n(H)

dX < +∞
}
.

Thus by Proposition 3.2, the space LpHD−ℓ
dR (R) is non-trivial. Moreover, it Haus-

dorff (see Corollary 2.4). By Poincaré duality (Proposition 1.11) we obtain that
LpHℓ

dR(R) ̸= {0} for p > h/wℓ; indeed h/wℓ and h/Wn−1 are Hölder conjugated
(since wℓ +Wn−1 = h). □

Proof of Proposition 3.2. — Let ϕtj := Rexp tYj be the flow of Yj , and set ω := f vol, so
that ψ = π∗(ω). Then for every j ∈ J the form θj :=

∫ 0

−∞(ϕtj)
∗(ιYj

ω) dt is a primitive
of ω. Indeed by applying the Cartan formula LYj

= d ◦ ιYj
+ ιYj

◦ d to the compactly
supported closed form ω, one gets

dθj =

∫ 0

−∞
(ϕtj)

∗(dιYjω) dt =

∫ 0

−∞
(ϕtj)

∗(LYjω) dt =

∫ 0

−∞

d

dt

(
(ϕtj)

∗ω
)
dt,

which is equal to ω.
For X ∈ b, we want to estimate the Lp norms of C∗

expX(ω) and of its primitives
C∗

expX(θj), in order to apply Lemma 3.1 to the form C∗
expX(ψ) = π∗(C∗

expX(ω)).
Observe that∥∥C∗

expX(ω)
∥∥
LpΩn(N)

=
∥∥(f ◦ CexpX) · C∗

expX(vol)
∥∥
LpΩn(N)

= ∥ω∥LpΩn(N),

since CexpX preserves the Riemannian volume on N (by definition of the factor b < a).
To estimate the Lp-norm of C∗

expX(θj), we proceed as follows. Set Fj =
∫ 0

−∞ f ◦ϕtj dt.
By assumption (3) the function Fj has compact support. Since vol is bi-invariant
on N , one has θj = Fj · (ιYj

vol); and thus, since vol is CexpX -invariant:

C∗
expX(θj) = (Fj ◦ CexpX) · (ιC∗

expX(Yj) vol).
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By assumption (2), one has Ad(expX)Zj = e−ϖj(X)Zj . Since Yj = ℜZj , and since
it is left-invariant, one has |C∗

expX(Yj)|g = e−ℜϖj(X)|Yj |, for every g ∈ N . Thus for
every p ∈ (1,+∞):∥∥C∗

expX(θj)
∥∥
LpΩn−1(N)

= e−ℜϖj(X)|Yj |∥Fj∥Lp(N).

Note that all the Yj ’s are non-zero, indeed the operators adX are real endomorphisms.
Now assumption (1), in combination with the last equality and compactness of

the unit sphere in b, implies that there exist constants c, C > 0 such that for every
p ∈ (1,+∞) and every X ∈ b, one has

inf
j∈J

∥∥C∗
expX(θj)

∥∥
LpΩn−1(N)

⩽ Ce−c|X|.

Thus, by Lemma 3.1, the forms ψ and C∗
expX(ψ) belong to Zp,n(H, ξ) for 1 < p <

h/Wn−1. Moreover, the norm of C∗
expX(ψ) decreases exponentially fast to 0 when

|X| → +∞. The statement follows. □

4. First applications: proof of two non-vanishing results

This section is dedicated to the proof of the first two non-vanishing theorems,
namely Theorem B and Theorem C mentioned in the introduction; they deal with
general solvable groups satisfying conditions (nC) and (nT).

4.1. Functions with prescribed vanishing integrals. — The following lemmas will
serve to exhibit functions satisfying condition (3) of Proposition 3.2; these functions
will eventually provide suitable non-zero forms leading to our targeted non-vanishing
results by Corollary 3.4.

Lemma 4.1. — Let Y, T be non-trivial left-invariant vector fields on a connected sim-
ply connected nilpotent Lie group N . Then N admits a non-zero smooth compactly
supported function, whose integral along every orbit of Y and T is null.

Proof. — Let n be the Lie algebra of N , and let l be the subalgebra generated by Y
and T . We will prove the lemma by induction on the length of the descending central
series of l, i.e., on the smallest integer k ⩾ 1 such that lk+1 = 0 (where l1 := l,
l2 := [l, l], li+1 := [l, li]). Let denote the length by length(l).

If length(l) = 1, then Y and T commute, and the statement follows from (the
proof of) Lemma 4.2. Suppose now that length(l) > 1.

Let ϕtY and ϕtT be the flows of Y and T . Let f0 be a non-zero compactly supported
smooth function on N . The flow of every non-trivial left-invariant vector field acts
properly on such a Lie group N ; thus there exists t0 ∈ R with

(supportf0) ∩ ϕ−t0
T (supportf0) = ∅.

The function f := f0 − f0 ◦ ϕt0T is non-zero, smooth, compactly supported, and its
integrals along the T -orbits are null.
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We are looking for a sufficient condition on f0 which guaranties that the integrals
of f along the Y -orbits are also null. For g ∈ N one has∫

R

(f ◦ ϕtY )(g) dt =
∫
R

(f0 ◦ ϕtY )(g) dt−
∫
R

(f0 ◦ ϕt0T ◦ ϕtY ◦ ϕ−t0
T )(ϕt0T (g)) dt.

Thus, for the integrals of f along the Y -orbits to be null, it is enough that the integrals
of f0 along the orbits of Y and of (ϕ−t0

T )∗(Y ) are null.
The vector field (ϕ−t0

T )∗(Y ) is left-invariant. Its value at 1N is

Z := Ad(−t0T )Y = ead(−t0T )Y.

According to the induction hypothesis, such an f0 exists if the subalgebra m generated
by Y and Z satisfies length(m) < length(l).

Since Y, Z ∈ l, one has m ⊂ l. Moreover:

[Y,Z] = [Y, ead(−t0T )Y ] = [Y, Y ]− t0
[
Y, [T, Y ]

]
+ · · · ∈ l3.

It follows that m2 ⊂ l3, thus m3 = [m,m2] ⊂ [l, l3] = l4, . . . , and so mi ⊂ li+1 for every
i ⩾ 2. Therefore, one has length(m) < length(l) as expected. □

Lemma 4.2. — Let M be a smooth manifold and Y1, . . . , Yk, T be a family of complete
smooth vector fields. Assume that T commutes with all the Yi’s, and that its flow acts
properly on M . Suppose that the subfamily Y1, . . . , Yk satisfies the following property:
there exists a non-zero C1 compactly supported function on M , whose integral along
every orbit of the Yi’s is null. Then the same property holds for the entire family
Y1, . . . , Yk, T .

Proof. — Let f0 be a function satisfying the property for the subfamily Y1, . . . , Yk.
Let ϕt be the flow of T . Since it acts properly on M there exists t0 ∈ R such that
(supportf0) ∩ ϕ−t0(supportf0) = ∅. Define f = f0 − f0 ◦ ϕt0 . It is a non-zero C1

compactly supported function whose integral along every orbit of T is null. Since T
commutes with the Yi’s, the integrals of f along their orbits remain null. □

4.2. Two non-vanishing results for solvable groups. — We can now give the proofs
of Theorems B and C.

Proof of Theorem B. — We can assume that N = Rn. With the notations of Sec-
tion 3.2, let J ⊂ {1, . . . , n} be a minimal subset such that

{ϖj : j ∈ J} ∪ {ϖj : j ∈ J} = {ϖ1, . . . , ϖn}

as sets of linear forms on a. It satisfies assumption (1) of Proposition 3.2. For every
j ∈ J , let Zj be as in assumption (2) of Proposition 3.2. The orbits in Rn of the
vector field Yj := ℜZj are the lines parallel to Yj . They commute. Thus Lemma 4.2
provides a function which satisfies assumption (3) of Proposition 3.2. Now Theorem B
follows from Corollary 3.4. □

Proof of Theorem C. — Since A ≃ R2, one has B ≃ R. Let X0 be a non-zero vector
in b. Let J = {j1, j2}⊂{1, . . . , n} be such that ℜ(ϖj1(X0))>0 and ℜ(ϖj2(−X0))>0.
It satisfies assumption (1) of Proposition 3.2. For every j ∈ J , let Zj be as in
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assumption (2) of Proposition 3.2, and let Yj := ℜZj . By applying Lemma 4.1 to
the pair of left-invariant vector fields Yj1 , Yj2 , one obtains a function that satisfies
assumption (3) of Proposition 3.2. Now Theorem C follows from Corollary 3.4. □

5. Semisimple Lie groups

In this section, we are looking for connected solvable Lie subgroups R in semisimple
real Lie groups which are of the form R = A⋉N with A ≃ Rℓ and ℓ ⩾ 1. Of course
these groups will satisfy the contraction condition (nC) and the non-triviality condi-
tion (nT). More precisely, our goal is to prove that in any semisimple real Lie group
with finite center, the solvable subgroups appearing in Iwasawa decompositions fulfill
the assumptions of our non-vanishing criterion Corollary 3.4. As a consequence we
obtain a proof of Theorem D, hence a proof for Theorem A, in view of the reduction
contained in Section 0.1. From a technical viewpoint, the proofs in this section are
ultimately relevant to the combinatorics of root systems.

5.1. Lie-theoretic notions and notations. — Let G be a semisimple real Lie group
with finite center. We pick in G a subgroup A which is maximal for the properties
of being connected, abelian and diagonalizable over the real numbers in the adjoint
representation of G. We denote the latter representation by

Ad : G −→ GL(g),

with g = LieG . We have a direct sum decomposition

g = g0 ⊕
⊕

α∈Φ(G,A)

nα,

where g0 is the subspace on which the adjoint A-action is trivial and where nα is the
weight space associated with the character α of A:

nα = {X ∈ g : Ad(a)X = α(a)X for all a ∈ A}.

We also pick a minimal parabolic subgroup P containing A, which provides a basis
and a positive root subset Φ+ for the root system Φ = Φ(G,A) of G. In order to
fit with the notation of [Bou68], we set V = a∗. This real vector space is equipped
with the Killing form, which makes it a Euclidean space; this enables us to identify a

and a∗. Finally, we set:
2ρG =

∑
α∈Φ+

dim(nα)α,

and we denote by N the nilpotent group integrating
⊕

α∈Φ+ nα. Thus, R = AN is
the solvable part of an Iwasawa decomposition of G, and all such solvable subgroups
of G can be obtained by varying the choices of A and P above. The remaining choice
is that of a maximal compact subgroup K: the stabilizer of any point in the maximal
flat associated to A in the Riemannian symmetric space associated to G does the job.

From a combinatorial viewpoint, in the main part of this section we are looking
for a subset Ψ ⊂ Φ+ and a family of real numbers (mβ)β∈Ψ, with mβ > 0 for each
β ∈ Ψ, such that
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(i) we have: 2ρG =
∑

β∈Ψmββ,
(ii) we have: V =

∑
β∈Ψ Rβ,

(iii) if β, β′ ∈ Ψ then: β + β′ ̸∈ Φ.
We will sometimes relax condition (iii) to the following one
(iii′) if β, β′ ∈ Ψ then: β + β′ ̸∈ Φ except maybe for one pair {β;β′} ⊂ Ψ.

5.2. Relationship with the non-vanishing criterion. — Let us explain why the
above combinatorial conditions are relevant to the non-vanishing criterion of the previ-
ous section. In 3.2, the set {1, 2, . . . , n} is determined by the dimension of the nilpotent
group N : in the present section, we see it more concretely as the set of positive roots
counted with their multiplicities; accordingly, the subset J of 3.2 is denoted here by Ψ

in view of its interpretation in terms of roots. Note also that, by the choice of A here
(a maximal R-split torus), we do not need to extend the scalars to C in our context.

First of all, the solvable group R = AN from 5.1 satisfies condition (nC) since we
can choose −ξ to be the sum of the fundamental coweights for the root system of G
(in fact, we can take any vector in a+, i.e., in the Weyl cone given by AN , tangent to
a regular geodesic in the symmetric space). The group R also satisfies condition (nT)
by definition of a root as a non-trivial character of A (or a). We now concentrate on
checking the conditions of the non-vanishing criterion in the present situation.

Lemma 5.1. — We assume we are given Ψ satisfying (i)–(iii′). Then the choice J = Ψ

fulfills the assumptions of Proposition 3.2.

The lemma will lead to the desired non-vanishing statement, hence most of the
rest of the section will be dedicated to exhibiting such a subset Ψ for any semisimple
real Lie group G.

Proof. — As mentioned in Remark 3.3, Condition (2) is automatically satisfied by
definition of the adjoint representation and of the roots.

Let us check Condition (1). By (i), we have:∑
α∈Φ+

dim(nα)α = 2ρG =
∑
β∈Ψ

mββ.

Now let X ∈ b. Note first that for any X ∈ a, we have: trace(adX) = 2ρG(X);
therefore b, defined in Section 0.3 by b = {X ∈ a : trace(adX) = 0}, can be seen as
b = {X ∈ a : ρG(X) = 0}. We assume that β(X) ⩽ 0 for each β ∈ Ψ. Since mβ > 0

for each β ∈ Ψ, we deduce that β(X) = 0 for each β ∈ Ψ. Finally this implies that
X = 0 by (ii), proving that (1) is satisfied.

Condition (3) is more delicate to check but it is treated thanks to the lemmas
in Section 4.1 combined with the fact that if for α, α′ ∈ Φ+ we have α + α′ ̸∈ Φ

then [nα, nα′ ] = {0}. Indeed, in view of this, the function requested by Condition (3)
is directly given by an inductive use of Lemma 4.2 in case Ψ satisfies (iii); if Ψ

satisfies (iii′) only, then one has to apply first Lemma 4.1 to the pair of roots in Ψ

whose sum is a root, and then again apply inductively Lemma 4.2. □
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In the rest of the section, we are thus reduced to exhibiting subsets Ψ satisfying
(i)–(iii′), or even better satisfying (i)–(iii). Note that in view of Theorem C we may –
and shall – assume that the rank ℓ = dim(A) of G is at least 3.

5.3. A preliminary result in linear algebra. — We use the notation from [Bou68,
Planches], and more precisely the concrete descriptions of root systems in terms of lin-
ear algebra. In particular, we consider the standard Euclidean space Rℓ with canonical
basis (εi)1⩽i⩽ℓ. We are interested in sums of the form

M∑
m=1

m(εℓ−2m+1 + εℓ−2m + εℓ−2m + εℓ−2m−1)

=

M∑
m=1

m(εℓ−2m+1 + 2εℓ−2m + εℓ−2m−1),

where M is a suitably chosen integer. We will see below that such linear combinations
are very useful to approximate the sum of positive roots of some fixed norm in suitable
root systems.

In addition, the vectors appearing in these sums are sums of two consecutive vectors
of the form εi + εi+1: in many root systems, such a vector εi + εi+1 is a positive root
and the sum of two such vectors is not a root, which is useful to achieve condition
(iii), or maybe (iii′), above.

More precisely, in many root systems the sum of positive roots of norm equal to
√
2

is the vector σ given by:

σ =
∑
i<j

εi ± εj =

ℓ−1∑
i=1

(∑
j>i

(εi + εj + εi − εj)
)
= 2

ℓ−1∑
i=1

(ℓ− i)εi = 2

ℓ−1∑
i=1

iεℓ−i,

and we want to see σ as a linear combination, with positive coefficients, of vectors
εi + εi+1.

Lemma 5.2. — Besides the vector σ =
∑

1⩽i<j⩽ℓ εi ± εj = 2
∑ℓ−1

i=1 iεℓ−i above, we
introduce the sum S =

∑⌊(ℓ−2)/2⌋
m=1 m(εℓ−2m+1 + εℓ−2m + εℓ−2m + εℓ−2m−1). Then:

– if ℓ is even, we have: σ = 2S + ℓε1;
– if ℓ is odd, we have: σ = 2S + (ℓ− 1)(ε1 + ε2) + (ℓ− 1)ε1.

Proof. — In the sum SM =
∑M

m=1m(εℓ−2m+1+εℓ−2m+εℓ−2m+εℓ−2m−1), we consider
the sum of two consecutive terms, that is:

k(εℓ−2k+1 + 2εℓ−2k + εℓ−2k−1) + (k + 1)(εℓ−2k−2+1 + 2εℓ−2k−2 + εℓ−2k−2−1)

= kεℓ−2k+1 + 2kεℓ−2k + (2k + 1)εℓ−2k−1 + (2k + 2)kεℓ−2k−2 + (k + 1)εℓ−2k−3.

The three middle terms also appear in 1
2σ. The maximal index of summation M is

the biggest integer m satisfying ℓ− 2m− 1 ⩾ 1, that is m ⩽ (ℓ− 2)/2. This explains
why we are led to considering:

S = S⌊(ℓ−2)/2⌋ =

⌊(ℓ−2)/2⌋∑
m=1

m(εℓ−2m+1 + εℓ−2m + εℓ−2m + εℓ−2m−1).
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The sum S = S⌊(ℓ−2)/2⌋ approximates 1
2σ down to the index ℓ− 2⌊(ℓ− 2)/2⌋ − 1.

– If ℓ is even, we have ⌊(ℓ− 2)/2⌋ = (ℓ− 2)/2, then ℓ − 2⌊(ℓ− 2)/2⌋ − 1 = 1 and
therefore:

S =

⌊(ℓ−2)/2⌋∑
m=1

m(εℓ−2m+1 + εℓ−2m + εℓ−2m + εℓ−2m−1)

=

ℓ−2∑
j=1

jεℓ−j +
( ℓ
2
− 1

)
ε1 =

1

2
σ − ℓ

2
ε1,

so that in this case:
1

2
σ = S +

ℓ

2
ε1.

– If ℓ is odd, we have ⌊(ℓ− 2)/2⌋ < (ℓ− 2)/2, then

ℓ− 2⌊(ℓ− 2)/2⌋ − 1 = ℓ− (ℓ− 3)− 1 = 2

and therefore:

S =

⌊(ℓ−2)/2⌋∑
m=1

m(εℓ−2m+1 + εℓ−2m + εℓ−2m + εℓ−2m−1) =

ℓ−3∑
j=1

jεℓ−j + ⌊(ℓ− 2)/2⌋ε2.

If we denote ℓ = 2r+1 with r ⩾ 1, then ⌊(ℓ− 2)/2⌋ = ⌊(2r − 1)/2⌋ = ⌊r−1/2⌋ = r−1

and we have:

S =

ℓ−3∑
j=1

jεℓ−j + (r − 1)ε2,

so that, since the coefficient of ε2 in 1
2σ is ℓ − 2 = (2r + 1) − 2 = 2r − 1, we have

1
2σ = S + r(ε1 + ε2) + rε1 and finally

1

2
σ = S +

ℓ− 1

2
(ε1 + ε2) +

ℓ− 1

2
ε1.

This concludes the proof. □

At this stage, in order to find subsets Ψ of positive roots achieving the conditions
(i)–(iii′) at the end of Section 5.1, we use the classification of simple real Lie groups.
The parameters of this classification are: a (possibly non-reduced) root system, and
the multiplicities of the roots. According to É. Cartan’s classification, a simple real
Lie group either is a simple complex Lie group seen as a real one (in which case the
root system is reduced and all multiplicities are equal to 2), or is absolutely simple
(i.e., its Lie algebra stays simple after complexification) and belongs to the list given
for instance in [Hel01, Chap. X, Table VI, pp. 532-534]. One useful fact is that the
Weyl group acts transitively on roots of given norm (see [Hum78, Lem. C, p. 53]), so
that not so many possibilities of root multiplicities appear (one multiplicity if the root
system is simply laced i.e., if the edges in the Dynkin diagram are all simple, at most 2
if it is reduced, at most 3 otherwise). This also implies that 2ρG =

∑
α∈Φ+ dim(nα)α

can be computed as a sum of at most 3 partial sums, namely packets of roots of given
norm multiplied by the corresponding multiplicity.
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In the rest of this section, we check that we can find a suitable root subset Ψ

for each isomorphism class of simple real Lie groups by sorting them according to
their relative root system first and then their multiplicities. The reader will easily
check that all Cartan types appearing in [Hel01, Chap. X, Table VI, pp. 532-534] are
covered.

5.4. All types except Aℓ. — To be consistent with the notation of [Hel01, Chap. X,
Table VI, pp. 532–534], we denote by ℓ the real rank of G and by r its complex rank
(recall that the latter rank is the dimension of a subalgebra in g ⊗R C consisting of
diagonalizable elements in the adjoint representation, and maximal for this element-
wise property). Recall that we can restrict our attention to the case ℓ ⩾ 3, thanks to
Theorem C.

Type Bℓ [Bou68, Planche II, p. 252]. — This is a non simply laced root system, and
indeed some cases with different multiplicities do appear in Cartan’s classification.
This is the root system in the standard Euclidean space Rℓ with canonical basis
(εi)1⩽i⩽ℓ, where the positive roots are the vectors of the form εi (there are ℓ such
roots, of norm 1) or εi ± εj with i < j (there are ℓ(ℓ − 1) such roots, of norm

√
2).

We still denote the partial sum of roots of norm
√
2 by

σ =
∑
i<j

εi ± εj = 2

ℓ−1∑
i=1

iεℓ−i,

and we denote the partial sum of roots of norm 1 by τ =
∑ℓ

i=1 εi. The Cartan types
where this root system appears are the types BI and DI, in which cases we have:

2ρBI
= σ +

(
2(r − ℓ) + 1

)
τ and 2ρDI

= σ + 2(r − ℓ)τ.

Let us treat thoroughly the Cartan type BI, the type DI being similar. We invoke
Lemma 5.2, together with the associated notation.

If ℓ is even, we have:

2ρBI
= 2S + ℓε1 +

(
2(r − ℓ) + 1

) ℓ/2∑
m=1

(ε2m−1 + ε2m),

so that we can take the subset of positive roots Ψ to be consisting of ε1 and of the
roots εj + εj+1 for 1 ⩽ j ⩽ ℓ − 1. This choice of Ψ gives immediately (i) in view of
the definition of the sum S and (ii), i.e., the fact that Ψ generates V , is easy; at last,
(iii) follows from the fact that no coefficient 2 appears in the coordinates of roots and
the fact that the support of roots has cardinality ⩽ 2.

If ℓ is odd, we have

2ρBI
= 2S + 2(ℓ− 1)(ε1 + ε2) + (ℓ− 1)ε1

+
(
2(r − ℓ) + 1

) (ℓ−1)/2∑
m=1

(ε2m + ε2m+1) +
(
2(r − ℓ) + 1

)
ε1.
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The expression is more complicated but it gives (i) and the same arguments as above
work to give (ii) and (iii).

At last, as already mentioned, the Cartan type DI is deduced from this case after
replacing the coefficient

(
2(r − ℓ) + 1

)
by 2(r − ℓ).

Type Cℓ [Bou68, Planche III, p. 254]. — This is a non simply laced root system, and
again some cases with different multiplicities do appear in Cartan’s classification. This
is the root system in the standard Euclidean space Rℓ with canonical basis (εi)1⩽i⩽ℓ,
where the positive roots are the vectors of the form 2εi (there are ℓ such roots, of
norm 2) or εi ± εj with i < j (there are ℓ(ℓ − 1) such roots, of norm

√
2). We still

denote the partial sum of roots of norm
√
2 by

σ =
∑
i<j

εi ± εj = 2

ℓ−1∑
i=1

iεℓ−i,

and we denote the partial sum of roots of norm 2 by κ =
∑ℓ

i=1 2εi. The Cartan types
covered by this root system are: some cases AIII, all cases CI, some cases CII, half of
the cases DIII and the case EVII. For any such type, say G, we have:

2ρG = mσσ +mτκ

where mσ and mτ are integers ⩾ 1.(1)

We choose for Ψ the set of roots 2εj for 1 ⩽ j ⩽ ℓ. Conditions (i) to (iii) are
trivially satisfied, for a choice of integral coefficients in (i) thanks to the coefficients 2

in the expressions of σ and τ .

Type BCℓ [Bou68, Chap. VI.14, p. 222]. — This is the only type of non-reduced root
systems: the system BCℓ consists of the union of the system Bℓ and of the system Cℓ

as described above. The Cartan types covered by this root system are: the remaining
cases AIII and CII, as well as the remaining half of the cases DIII. More precisely, still
denoting by r the complex rank, we have

2ρAIII = 2(r − 2ℓ+ 1)τ + 2σ + κ

in the remaining cases of AIII,

2ρCII = 4(r − 2ℓ)τ + 4σ + 3κ

in the remaining cases of CII, and

2ρDIII
= 4τ + 4σ + κ

in the remaining cases of DIII.
This type is treated by taking Ψ = {2εj}1⩽j⩽ℓ, as for the previous case. Condi-

tions (i) to (iii) are trivially satisfied, for a choice of integral coefficients in (i).

(1)More precisely, we have: 2ρAIII
= 2σ+κ in the Cℓ case of AIII, 2ρCI

= σ+κ, 2ρCII
= 4σ+3κ

in the Cℓ case of CII, we have 2ρDIII
= 4σ + κ in the Cℓ case of DIII and 2ρEVII

= 8σ + κ, the root
system being C3 in the latter case.
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Type Dℓ [Bou68, Planche IV, p. 256]. — This is a simply laced type but in fact it
occurs only once in Cartan’s classification, namely for DI. This is the root system in
the standard Euclidean space Rℓ with canonical basis (εi)1⩽i⩽ℓ, where the positive
roots are the vectors of the form εi ± εj with i < j (there are ℓ(ℓ− 1) such roots, of
norm

√
2). In this situation, we have

2ρDI = σ = 2

ℓ−1∑
i=1

iεℓ−i.

We use the subset of positive roots Ψ to be consisting of the roots εj + εj+1 for
1 ⩽ j ⩽ ℓ − 1, together with the roots ε1 ± εℓ. Condition (ii) is checked by the fact
that ε1 is the average of the last two roots, and then the other canonical vectors are
obtained by an easy induction. Condition (iii′) is checked by seeing that the only pair
of roots in Ψ whose sum is a root is {ε1 − εℓ, εℓ−1 + εℓ}, again by considerations of
support or coefficient ⩾ 2. For condition (i), we use Lemma 5.2. If ℓ is even we have

2ρDI
= 2S + ℓε1 = 2S +

ℓ

2

(
(ε1 + εℓ) + (ε1 − εℓ)

)
,

and if ℓ is odd we have

2ρDI = 2S + (ℓ− 1)(ε1 + ε2) +
ℓ− 1

2

(
(ε1 + εℓ) + (ε1 − εℓ)

)
.

The rest of the root systems consists of exceptional types. In the case of E6, E7

and E8 the root systems are simply laced and can be realized in R8. We merely
mention the targeted vector ρ, the subset Ψ and the linear combination achieving (i).

Type E6 [Bou68, Planche V, p. 260]. — It occurs in Cartan’s classification for EI

only. The underlying vector space V is the 6-dimensional subspace x6 = x7 = −x8
in R8 endowed with the canonical orthonormal basis ε1, . . . , ε8. The positive roots
are ±εi + εj , for 1 ⩽ i < j ⩽ 5, and

1

2

(
ε8 − ε7 − ε6 +

5∑
i=1

(−1)ν(i)εi
)
, with

5∑
i=1

ν(i) even.

The targeted vector is

2ρEI = 2ε2 + 4ε3 + 6ε4 + 8ε5 + 8(ε8 − ε7 − ε6).

To simplify the notation we let v := ε8 − ε7 − ε6, and we consider the positive roots
β1, . . . , β5 defined by:

2β1 = v + ε1 + ε2 + ε3 + ε4 + ε5,
2β2 = v − ε1 − ε2 + ε3 + ε4 + ε5,
2β3 = v − ε1 + ε2 + ε3 + ε4 − ε5,
2β4 = v + ε1 − ε2 − ε3 + ε4 + ε5,
2β5 = v − ε1 − ε2 − ε3 − ε4 + ε5.

Then one checks easily that

2ρEI
= 6β1 + 2β2 + 4β3 + 2β4 + 2β5 + 2(−ε1 + ε5) + 2(ε1 + ε5).
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We define Ψ to be the union of β1, . . . , β5 with ±ε1+ε5. Condition (i) is then satisfied.
To show that condition (ii) holds, one first observes that the two roots ±ε1 + ε5
generates ε1 and ε5. Moreover, one has

β2 − β1 = −ε1 − ε2,
β3 − β1 = −ε1 − ε5,
β4 − β1 = −ε2 − ε3,
β5 − β1 = −ε1 − ε2 − ε3 − ε4,

from which one obtains that Ψ generates ε1, . . . , ε5. Condition (ii) follows easily. More-
over, {β3, ε1 + ε5} is the only pair of roots in Ψ whose sum is a root in E6. Thus
condition (iii′) is satisfied.

Type E7 [Bou68, Planche VI, p. 266]. — The targeted vector is

2ρEV
= 2ε2 + 4ε3 + 6ε4 + 8ε5 + 10ε6 − 17ε7 + 17ε8,

which we decompose as the sum of 2ε2 + 4ε3 + 6ε4 + 8ε5 + 10ε6 and of 17(ε8 − ε7).
It turns out that ε8 − ε7 is the longest root in the system; we take it in Ψ together
with the four roots ε2 + ε3, ε3 + ε4, ε4 + ε5, ε5 + ε6, as well as the roots ε6 ± ε1. Then
we have:

2ρEV
= 2(ε2 + ε3) + 2(ε3 + ε4) + 4(ε4 + ε5) + 4(ε5 + ε6)

+ 3(ε6 + ε1) + 3(ε6 − ε1) + 17(ε8 − ε7).

The subset Ψ satisfies (i), (ii) and (iii), the latter condition being easily checked by
the concrete description of E7 in terms of the canonical vectors εi.

Type E8 [Bou68, Planche VII, p. 268]. — The targeted vector is

2ρEVIII = 2ε2 + 4ε3 + 6ε4 + 8ε5 + 10ε6 + 12ε7 + 46ε8.

We use the subset Ψ consisting of the roots ε2 + ε3, ε3 + ε4, ε4 + ε5, ε5 + ε6, ε6 + ε7,
ε7 + ε8 together with ε8 ± ε1. Then we have:

2ρEV = 2(ε2 + ε3) + 2(ε3 + ε4) + 4(ε4 + ε5) + 4(ε5 + ε6)

+ 6(ε6 + ε7) + 6(ε7 + ε8) + 20(ε8 − ε1) + 20(ε8 + ε1).

The subset Ψ satisfies (i), (ii) and (iii), the latter condition being easily checked by
the concrete description of E8 in terms of the canonical vectors εi.

Type F4 [Bou68, Planche VIII, p. 272]. — This is a non simply laced root system
corresponding to four cases in Cartan’s classification, namely EII,EVII,EIX and FI.
The sum of the positive roots of norm

√
2 is σ = 2(3ε1 + 2ε2 + ε3) and the sum of

the positive roots of norm 1 is τ = 5ε1 + ε2 + ε3 + ε4. The targeted vectors are of the
form σ + 2jτ with 0 ⩽ j ⩽ 3, so it is enough to treat separately σ and τ . We choose
Ψ = {ε1, ε1 + ε2, ε2 + ε3, ε3 + ε4}. Condition (ii) is clear and (iii) is checked by the
concrete description of F4 in terms of the canonical vectors εi. For (i), we use the fact
that: σ = 2(ε1 + ε2) + 2(ε2 + ε3) + 4ε1 and τ = (ε1 + ε2) + (ε3 + ε4) + 4ε1.
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Type G2 [Bou68, Planche IX, p. 274]. — This is a root system of rank 2, correspond-
ing to only one case in Cartan’s classification, so we do not need to consider it. Still,
we can simply say that using the root notation we have: 2ρG = 10α1 + 6α2, which
can be written as: 2ρG = α1 + 3(3α1 + 2α2).

5.5. The type Aℓ. — This type is more delicate because pairs of positive roots more
often lead to a sum providing another root.

According to [Bou68, Planche I, p. 250], type Aℓ is a simply laced root system in
the subspace V ⊂ Rℓ+1 defined by

∑ℓ+1
i=1 xi = 0. The positive roots are the εi − εj ,

with 1 ⩽ i < j ⩽ ℓ+ 1.
The Cartan types where it appears are the types AI and AII. One has

2ρAI = ℓε1 + (ℓ− 2)ε2 + (ℓ− 4)ε3 + · · · − (ℓ− 2)εℓ − ℓεℓ+1,

and ρAII
= 4ρAI

. The latter relation shows that the same root subset Ψ holds for both
type. We will thus restrict ourselves to the type AI. The idea here is to write 2ρAI by
using long roots.

Proposition 5.3
(1) If ℓ is odd, write ℓ = 2k − 1 with k ⩾ 1. Then:

2ρAI = 2
∑

k<j−i

(εi − εj) +

k∑
i=1

(εi − εi+k).

Moreover, if Ψ is the set of roots that appear in the right side member, then Ψ satisfies
the conditions (i), (ii), (iii).

(2) If ℓ is even, write ℓ = 2k with k ⩾ 1. Then:
2ρAI = 2

∑
k<j−i<ℓ

(εi − εj) + 2(ε1 − εk+1) + 2(εk+1 − εℓ+1).

Moreover, if Ψ is the set of roots that appear in the right side member, then Ψ satisfies
the conditions (i), (ii), (iii′).

Proof. — By counting the number of times εi and εj appear, one has:∑
k<j−i

εi − εj =

ℓ−k∑
i=1

(ℓ+ 1− k − i)εi −
ℓ+1∑

j=k+2

(j − k − 1)εj .

(1) Suppose ℓ = 2k − 1 with k ⩾ 1. Then:∑
k<j−i

εi − εj =

k−1∑
i=1

(k − i)εi −
ℓ+1∑

j=k+2

(j − k − 1)εj .

Since 2(k − i) + 1 = ℓ− 2i+ 2 and 2(j − k − 1) + 1 = 2j − ℓ− 2, one obtains

2
∑

k<j−i

(εi − εj) +

k∑
i=1

(εi − εi+k) = 2ρAI .

Thus Ψ satisfies (i). The roots contained in Ψ are those of the form εi − εj with
j − i ⩾ k. No root of the system Aℓ is the sum of two of them, thus (iii) holds.
Moreover, the above roots generate V . Indeed:
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– for i < k, one has εi − εi+1 = (εi − εℓ+1)− (εi+1 − εℓ+1), with ℓ+ 1− i ⩾
ℓ+ 1− (i+ 1) ⩾ k,

– for i > k, one has εi−εi+1 = (ε1−εi+1)−(ε1−εi), with i+1−1 ⩾ i−1 ⩾ k,
– and for i = k: εk − εk+1 = (ε1 − εk+1) + (εk − εℓ+1)− (ε1 − εℓ+1).

Therefore, (i)–(iii) are satisfied.
(2) Suppose ℓ = 2k with k ⩾ 1. Then:∑

k<j−i

εi − εj =

k∑
i=1

(k + 1− i)εi −
ℓ+1∑

j=k+2

(j − k − 1)εj .

Since 2(k + 1 − i) = ℓ − 2i + 2 and 2(j − k − 1) = 2j − ℓ − 2, one obtains that
2
∑

k<j−i(εi − εj) = 2ρAI
. Therefore

2
∑

k<j−i<ℓ

(εi − εj) + 2(ε1 − εk+1) + 2(εk+1 − εℓ+1) = 2ρAI
.

Thus Ψ satisfies (i). The roots in Ψ are those of the form εi − εj , with k < j − i < ℓ,
and the roots ε1−εk+1, εk+1−εℓ+1. Apart ε1−εℓ+1 which is the sum of the last ones,
no root of the system Aℓ is the sum of two of them. Thus (iii′) holds. In addition the
above roots generate V . Indeed:

– ε1 − εℓ+1 = (ε1 − εk+1) + (εk+1 − εℓ+1),
– for i < k, one has εi − εi+1 = (εi − εℓ+1)− (εi+1 − εℓ+1), with ℓ+ 1− i ⩾

ℓ+ 1− (i+ 1) > k,
– for i > k + 1, one has εi − εi+1 = (ε1 − εi+1)− (ε1 − εi), with i+ 1− 1 ⩾

i− 1 > k,
– for i = k: εk − εk+1 = (εk − εℓ+1)− (εk+1 − εℓ+1),
– for i = k + 1: εk+1 − εk+2 = (ε1 − εk+2)− (ε1 − εk+1).

This concludes the proof. □

5.6. Proof of non-vanishing for semisimple groups. — We can finally put things
together in order to provide a proof for Theorem D, hence a proof for Theorem A of
the Introduction, in view of the reduction contained in 0.1.

Proof of Theorem D. — By Lemma 5.1, it suffices to exhibit a suitable subset Ψ of
positive roots for any semisimple group. This can be done separately for each con-
nected component of the Dynkin diagram, which amounts to dealing with simple real
Lie groups. The absolutely simple cases were treated by a case-by-case analysis in
Sections 5.3 to 5.5. The remaining cases correspond to the simple non absolutely sim-
ple groups, i.e., simple complex Lie groups seen as real groups. In the latter cases, the
root multiplicities are all equal to 2 since the groups are split over C and the root
groups are all isomorphic to the real Lie group C. Therefore, the function ρG in this
case is twice the corresponding function for the split groups over R with the same
root system, showing that the same subset Ψ can be chosen, up to multiplying the
coefficients mβ by 2 for each β ∈ Ψ. □

J.É.P. — M., 2023, tome 10



804 M. Bourdon & B. Rémy

6. Cohomologies of semi-direct products

This section relates the de Rham Lp-cohomology with the group Lp-cohomology.
Our goal is to transfer to the setting of de Rham Lp-cohomology, a result issued from
[BR20] about the group Lp-cohomology of semi-direct products, see Corollary 6.10.
It leads to the key relation (0.4) of the introduction.

The section is also an opportunity to advertise several incarnations of Lp-cohomo-
logy, and to present their properties in a synthetic way. It collects results issued from
[Pan95, SS18, BR20] (see also [Ele98] for related results in the discrete group case).

6.1. Asymptotic and group Lp-cohomologies. — The asymptotic Lp-cohomology of
a metric space has been defined by Pansu in [Pan95]. Let (X, d) be a metric space
equipped with a Borel measure µ. Suppose it satisfies the following “bounded geome-
try” condition. There exist non-decreasing functions v, V : (0,+∞) → (0,+∞), such
for every ball B(x,R) ⊂ X one has

v(R) ⩽ µ
(
B(x,R)

)
⩽ V (R).

For R > 0 and k ∈ N, let

∆
(k)
R = {(x0, . . . , xk) ∈ Xk+1 | d(xi, xj) ⩽ R for all i, j}.

Let ASp,k(X) be the space of (classes of) measurable functions f : Xk+1 → R such
that for every R > 0 one has

NR(f)
p :=

∫
∆

(k)
R

∣∣f(x0, . . . , xk)∣∣pdµ(x0) . . . dµ(xk) < +∞.

We equip ASp,k(X) with the topology induced by the set of the semi-norms NR

(R > 0).

Definition 6.1. — The asymptotic Lp-cohomology of X is the cohomology of the com-
plex ASp,0(X)

δ0−→ ASp,1(X)
δ1−→ ASp,2(X)

δ2−→ · · · , where the δk’s are defined by:

(6.2) (δkf)(x0, . . . , xk+1) =

k+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , xk+1).

The reduced asymptotic Lp-cohomology is defined similarly. They are denoted by
LpH∗

AS(X) and LpH∗
AS(X) respectively.

Theorem 6.3 ([Pan95, §2]). — Let X and Y be metric spaces. Assume that each of
them admits a Borel measure with respect to which it is of bounded geometry (as de-
fined above). Let F : X → Y be a quasi-isometry. Then F induces a homotopy
equivalence(2) between the complexes ASp,∗(Y ) and ASp,∗(X), and a canonical iso-
morphism of graded topological vector spaces F ∗ : LpH∗

AS(Y ) → LpH∗
AS(X). In par-

ticular F ∗ depends only on the bounded perturbation class of F . The same holds in
reduced cohomology.

(2)All the maps occurring in homotopies are supposed to be continuous.
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See also [Gen14, SS18] for a detailed proof. We now turn our attention to the
continuous group cohomology, see [BW00, Chap. IX] or [Gui80] for more details.

Let G be a locally compact second countable group. It admits a left-invariant
proper metric defining its topology, see e.g. [CdlH16, Struble Th. 2.B.4]. Let (π, V ) be
a topological G-module i.e., a Hausdorff locally convex vector space over R on which G
acts via a continuous representation π. We denote by V G ⊂ V the subspace of π(G)-
invariant vectors. For k ∈ N, let Ck(G,V ) be the space of continuous maps from
Gk+1 to V equipped with the compact open topology. Then Ck(G,V ) is a topological
G-module by means of the following action: for g, x0, . . . , xk ∈ G,

(g · f)(x0, . . . , xk) = π(g)
(
f(g−1x0, . . . , g

−1xk)
)
.

Consider the following complex of invariants:

C0(G,V )G
δ0−−−→ C1(G,V )G

δ1−−−→ C2(G,V )G
δ2−−−→ · · · ,

where the δk’s are defined as in (6.2). The continuous cohomology of G with coefficients
in (π, V ) is the cohomology of this complex, it will be denoted by H∗

ct(G,V ). Similarly
is defined the reduced cohomology H∗

ct(G,V ).

Definition 6.4. — Let H be a left-invariant Haar measure on G. The group
Lp-cohomology of G is the continuous cohomology of G, with coefficients in the
right-regular representation of G on Lp(G,H), i.e., the representation defined by(

π(g)u
)
(x) = u(xg) for u ∈ Lp(G,H) and g, x ∈ G.

It will be denoted by H∗
ct(G,L

p(G)). The reduced group Lp-cohomology of G is defined
similarly and is denoted by H∗

ct(G,L
p(G)).

Observe that the right-regular representation on Lp(G,H) is isometric if and only
if G is unimodular.

Theorem 6.5 ([SS18, Th. 10], [BR20, Th. 3.6]). — Suppose G is a locally compact sec-
ond countable topological group equipped with a left-invariant proper metric. Then the
complex of invariants C∗(G,Lp(G))G is canonically homotopy equivalent to ASp,∗(G).
In consequence, there exists a canonical isomorphism of graded topological vector
spaces H∗

ct(G,L
p(G)) ≃ LpH∗

AS(G). The same holds for the reduced cohomology.

We notice that the above isomorphism admits the following property. Suppose we
are given an isomorphism φ : G1 → G2 of topological groups as above. It induces
isomorphisms of complexes:

φ∗
ct : C

k
(
G2, L

p(G2)
)G2 −→ Ck

(
G1, L

p(G1)
)G1

φ∗
ct(f)(x0, . . . , xk;x) = f

(
φ(x0), . . . , φ(xk);φ(x)

)
,

φ∗
AS : ASp,k(G2) −→ ASp,k(G1)and

φ∗
AS(f)(x0, . . . , xk) = f

(
φ(x0), . . . , φ(xk)

)
.
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Then the isomorphisms H∗
ct(Gi, L

p(Gi)) ≃ LpH∗
AS(Gi), together with the induced

isomorphisms

φ∗
ct : H

∗
ct(G2, L

p(G2)) −→ H∗
ct(G1, L

p(G1)), φ∗
AS : LpH∗

AS(G2) −→ LpH∗
AS(G1),

form a commutative diagram.

6.2. Asymptotic and de Rham Lp-cohomologies. — Let M be a C∞ complete Rie-
mannian manifold. Unlike its asymptotic Lp-cohomology, its simplicial Lp-cohomology
is not invariant by quasi-isometry (e.g. for compact manifolds it is isomorphic to the
standard de Rham cohomology). For that reason we restrict ourselves to manifolds
which are “uniformly diffeomorphic to RD”.

Definition 6.6. — Let B = B(0, 1) be the unit open ball in RD. A manifold M is
said uniformly diffeomorphic to RD, if there exist functions ρ, λ : [0,+∞) → [1,+∞),
and for every m ∈M a C∞-diffeomorphism φm : B →M , such that

– for every m ∈M and R > 0, there exists r ∈ ( 12 , 1) with

B(m,R) ⊂ φm

(
B(0, r)

)
⊂ B

(
m, ρ(R)

)
,

– and φm

∣∣
B(0,r)

is λ(R)-bi-Lipschitz.

For example a Riemannian manifold which is diffeomorphic to RD, and which
admits a cocompact group of isometries, is uniformly diffeomorphic to RD.

Theorem 6.7 ([Pan95]). — Let M be a C∞ Riemannian manifold which is uniformly
diffeomorphic to RD. There exists a homotopy equivalence between the complexes
ASp,∗(M) and Ωp,∗(M). It induces a canonical isomorphism of graded topological
vector spaces LpH∗

AS(M) ≃ LpH∗
dR(M). The same holds for reduced cohomology.

The proof that Pansu gives in [Pan95] goes through the simplicial ℓp-cohomology.
A more direct proof is presented in the appendix below.

We notice that the isomorphism in Theorem 6.7 above admits the following prop-
erty. Suppose we are given a bi-Lipschitz C∞ diffeomorphism φ :M1 →M2 between
Riemannian manifolds as above. Then the isomorphisms LpH∗

dR(Mi) ≃ LpH∗
AS(Mi),

together with the induced isomorphisms φ∗
dR : LpH∗

dR(M2) → LpH∗
dR(M1), φ∗

AS :

LpH∗
AS(M2) → LpH∗

AS(M1), form a commutative diagram.

6.3. Semi-direct products. — We transfer to de Rham Lp-cohomology a result
about group Lp-cohomology of semi-direct products, see Corollary 6.10. This leads
to relation (0.4) of the introduction.

Let (V, ∥·∥V ) be a separable normed space, let X be a locally compact second
countable topological space endowed with a Radon measure µ, and let p ∈ (1,+∞).
We denote by Lp(X,V ) the normed space consisting of the (classes of) measurable
maps f : X → V such that

∥f∥pLp(X,V ) :=

∫
X

∥∥f(x)∥∥p
V
dµ(x) < +∞.
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Let G be a locally compact second countable group. Suppose it decomposes as a
semi-direct product G = Q ⋉ H, with Q, H closed subgroups and the standard
multiplicative law

(q1, h1) · (q2, h2) = (q1q2, q
−1
2 h1q2h2).

Let HQ, HH be left-invariant Haar measures on Q, H respectively. Then HG :=

HQ ×HH is a left-invariant Haar measure on G. One has:

Theorem 6.8 ([BR20, Cor. 5.5]). — Let G = Q ⋉H as above. Assume that the com-
plex of invariants C∗(H,Lp(H))H is homotopically equivalent to a complex of Banach
spaces. Suppose also that there exists n ∈ N, such that Hk

ct(H,L
p(H)) = 0 for

0 ⩽ k < n and such that Hn
ct(H,L

p(H)) is Hausdorff. Then Hk
ct(G,L

p(G)) = 0 for
0 ⩽ k < n and there is a linear isomorphism

(6.9) Hn
ct

(
G,Lp(G)

)
≃ Lp

(
Q,Hn

ct

(
H,Lp(H)

))Q

,

where the Q-action on Lp(Q,Hn
ct(H,L

p(H))) is by right multiplication on itself and
by conjugacy on Hn

ct(H,L
p(H)); in other words it is the action induced by

(q · f)(y)(x0, . . . , xn;x) = f(yq)(q−1x0q, . . . , q
−1xnq; q

−1xq),

for every q, y ∈ Q, f : Q→ Cn(H,Lp(H)) and x0, . . . , xn, x ∈ H.

For Lie groups diffeomorphic to RD, one gets the following result which implies
the relation (0.4) in the introduction.

Corollary 6.10. — Let G be a Lie group diffeomorphic to RD. Suppose it decomposes
as G = Q ⋉H with Q, H closed subgroups and H diffeomorphic to Rd for some d.
Suppose that there exists n ∈ N, such that LpHk

dR(H) = 0 for 0 ⩽ k < n and such
that LpHn

dR(H) is Hausdorff. Then LpHk
dR(G) = 0 for 0 ⩽ k < n and there is a linear

isomorphism

(6.11) LpHn
dR(G) ≃ Lp

(
Q,LpHn

dR(H)
)Q
,

where the Q-action on Lp(Q,LpHn
dR(H)) is by right multiplication on itself and by

conjugacy on LpHn
dR(H); in other words, it is induced by the action

(q · f)(y) = C∗
q−1

(
f(yq)

)
,

for every q, y ∈ Q, f : Q→ Ωp,n(H).

Proof. — Since G and H are homogeneous and respectively diffeomorphic to RD

and Rd, they are uniformly diffeomorphic to RD and Rd. By applying successively
Theorems 6.5 and 6.7, one sees that the complexes C∗(G,Lp(G))G and Ωp,∗(G) are
homotopy equivalent. The same holds for C∗(H,Lp(H))H and Ωp,∗(H). In particular
C∗(H,Lp(H))H is homotopy equivalent to a complex of Banach spaces, and thus
Theorem 6.8 applies.
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It remains to relate the expressions of the Q-action on Hn
ct(H,L

p(H)) and on
LpHn

dR(H). For that we need to find the expressions the conjugacy C∗
q : LpHn

dR(H) →
LpHn

dR(H) by q ∈ Q, when transformed by the successive isomorphisms

LpHn
dR(H) ≃ LpHn

AS(H) ≃ Hn
ct

(
R,Lp(H)

)
.

It is done by using their functional properties described right after Theorems 6.7
and 6.5. □

Remark 6.12. — The linear isomorphism (6.9) in Theorem 6.8 is the composition of
the following two isomorphisms

Hn
ct

(
G,Lp(G)

) φ1≃ Hn
ct

(
H,Lp(G)

)Q φ2≃ Lp
(
Q,Hn

ct

(
H,Lp(H)

))Q

.

The second one is a topological isomorphism [BR20, Prop. 5.2]; it comes from a Fu-
bini type argument. The first one comes from the Hochschild-Serre spectral sequence
[BW00, Th. IX.4.3]. When G is countable, the continuous cohomology Hn

ct(G,L
p(G))

coincides with the standard one Hn(G, ℓp(G)). In this case it is known that φ1 equals
the restriction map [HS53, Th. III.2]. We suspect that the equality between φ1 and
the restriction map holds in general under the assumptions of Theorem 6.8. Since the
restriction map is continuous, this would imply that Hn

ct(G,L
p(G)) is Hausdorff and

that the isomorphisms (6.9) and (6.11) are canonical and Banach.

Appendix. On asymptotic and de Rham Lp-cohomology

The goal of the appendix is to give a direct proof of Pansu’s Theorem 6.7, that
we restate below for commodity (see Definition 6.6 for the notion of uniformly diffeo-
morphic to RD):

Theorem A.1. — Let M be a C∞ Riemannian manifold which is uniformly diffeomor-
phic to RD. There exists a homotopy equivalence(3) between the complexes ASp,∗(M)

and Ωp,∗(M). It induces a canonical isomorphism of graded topological vector spaces
LpH∗

AS(M) ≃ LpH∗
dR(M). The same holds for reduced cohomology.

The following standard notion will serve repeatedly in the sequel.

Definition A.2. — Let (A∗, d) be a complex of topological vector spaces, let (B∗, d) ⊂
(A∗, d) be a subcomplex, and let denote by i : B∗ → A∗ the inclusion map. One says
that A∗ retracts by deformation onto B∗, if there exists a continuous linear map
r : A∗ → B∗ such that r ◦ d = d ◦ r, r ◦ i = id, and i ◦ r is homotopic to id.

When A∗ retracts by deformation onto B∗, the inclusion map i : B∗ → A∗ induces
canonically isomorphisms of graded topological vector spaces H∗(B∗) ≃ H∗(A∗) and
H∗(B∗) ≃ H∗(A∗).

The method for proving Theorem A.1 is a variant of the double complex proof of
the isomorphism between de Rham and Čech cohomologies (see e.g. [BT82, Th. 8.9 &

(3)Recall that all the maps occurring in homotopies are supposed to be continuous.
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Prop. 9.5]). This method is used in [Pan95] to show the equivalence between the de
Rham and the simplicial Lp-cohomologies. It is based on the following general lemma:

Lemma A.3. — Let (Ck,ℓ, d′, d′′)(k,ℓ)∈N2 be a double complex of topological vector
spaces, with d′ ◦ d′′ + d′′ ◦ d′ = 0. Suppose that for every ℓ ∈ N, the complex
(C∗,ℓ, d′) retracts by deformation onto the subcomplex that is null in degrees at least 1
and equal to Eℓ := Ker d′|C0,ℓ in degree 0. Then the complex (D∗, dD), defined by
Dm =

⊕
k+ℓ=m Ck,ℓ and dD = d′ + d′′, retracts by deformation onto its subcomplex

(E∗, d′′).

This kind of result is well-known from the specialists (see e.g. [BT82, Prop. 9.5
& Rem. p. 104]). It is stated in this form in [Pan95, Lem. 5], with a sketch of proof.
A detailed proof appears in [Seq20, Lem. 2.2.1].

A.1. Definition of the double complex C∗,∗. — Let M be a C∞ complete Riemann-
ian manifold. We denote by Ωp,k

loc (M) the space of (measurable) k-differential forms
on M that belong to Ωp,k(U) for every relatively compact open subset U ⊂ M . The
Ωp,k-norm of the restriction of ω to U is denoted by ∥ω∥U for simplicity. Equipped
with the set of semi-norms ∥·∥U , where U ⊂M is open relatively compact, the space
Ωp,k

loc (M) is a separable Fréchet space.
For every pair (k, ℓ) ∈ N2, every R > 0 and every measurable map f : M ℓ+1 →

Ωp,k
loc (M), we define the semi-norm NR(f) by

NR(f)
p =

∫
∆

(ℓ)
R

∥∥f(m0, . . . ,mℓ)
∥∥p
B(m0,R)

d volℓ+1(m0, . . . ,mℓ),

where volℓ+1 denotes the product measure on M ℓ+1. We remark that changing
B(m0, R) by B(mi, R) in the definition of NR(f), leads to an equivalent family of
semi-norms; indeed one has B(mi, R) ⊂ B(mj , 2R) when (m0, . . . ,mℓ) ∈ ∆

(ℓ)
R .

Let Ck,ℓ be the topological vector spaces of (the classes of) the measurable maps
f :M ℓ+1 → Ωp,k

loc (M) such that NR(f) < +∞ for every R > 0. We define d′ : Ck,ℓ →
Ck+1,ℓ and d′′ : Ck,ℓ → Ck,ℓ+1 by

d′f = (−1)ℓd ◦ f and d′′f = δf,

where d is the de Rham differential operator and δ is the discrete operator defined
in (6.2). Then C∗,∗ = (Ck,ℓ, d′, d′′)(k,ℓ)∈N2 is a double complex of topological vector
spaces. It satisfies d′ ◦ d′′ + d′′ ◦ d′ = 0.

The complex C∗,∗ interpolates between the complexes ASp,∗(M) and Ωp,∗. Indeed:

Proposition A.4. — There are canonical isomorphisms of topological complexes
Ker d′

∣∣
C0,∗ ≃ ASp,∗(M) and Ker d′′

∣∣
C∗,0 ≃ Ωp,∗(M).

Proof

(1) One has f ∈ Ker d′
∣∣
C0,ℓ if and only if f : M ℓ+1 → Ωp,0

loc(M) satisfies d ◦ f = 0,
i.e., f(m0, . . . ,mℓ) is a constant function for a.a. (m0, . . . ,mℓ) ∈ M ℓ+1. Moreover,
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when f(m0, . . . ,mℓ) is a constant function, one has∥∥f(m0, . . . ,mℓ)
∥∥p
B(m0,R)

=
∣∣f(m0, . . . ,mℓ)

∣∣p vol(B(m0, R)
)
.

Therefore, Ker d′
∣∣
C0,∗ ≃ ASp,∗(M).

(2) One has f ∈ Ker d′′
∣∣
Ck,0 if and only if f : M → Ωp,k

loc (M) satisfies δf = 0 i.e.,
f is a constant map. Let ω be its constant value. Since M is uniformly diffeomorphic
to RD, it admits bounded geometry in the sense of Section 6.1; there exist functions
v, V : (0,+∞) → (0,+∞) such that such for every ball B(m,R) ⊂M one has

v(R) ⩽ vol
(
B(m,R)

)
⩽ V (R).

By Fubini one has for every R > 0

v(R)∥ω∥p
Ωp,k ⩽

∫
M

∥ω∥pB(m,R)d vol(m) ⩽ V (R)∥ω∥p
Ωp,k .

Therefore, Ker d′′
∣∣
C∗,0 ≃ Ωp,∗(M). □

A.2. Homotopy type of the columns

Proposition A.5. — For every ℓ ∈ N, the complex (C∗,ℓ, d′) retracts by deformation
onto the subcomplex (Ker d′

∣∣
C0,ℓ → 0 → 0 → · · · ).

Its proof is postponed at the end of the subsection. A crucial ingredient is the
following lemma issued from [IL93, §4].

Lemma A.6. — Let B = B(0, 1) be the unit Euclidean open ball in RD. Let h ∈ C∞(B)

be non-negative, supported on B(0, 12 ), and normalized so that
∫
B
h(x)dx = 1. There

exists a continuous operator T : Ωp,k
loc (B) → Ωp,k−1

loc (B) with the following homotopy
properties:

(1) d ◦ T + T ◦ d = id when k ⩾ 1.
(2) (T ◦ d)(f) = f −

∫
B
f(x)h(x)dx, for f ∈ Ωp,0

loc(B).
(3) For every r ∈ ( 12 , 1), k ⩾ 1 and ω ∈ Ωp,k

loc (B), one has

∥Tω∥B(0,r) ⩽ C∥ω∥B(0,r),

where C is a constant which depends only on the dimension D.

Proof. — This is precisely done in [IL93, §4]. We recall the construction for conve-
nience. First, for every y ∈ B, one defines an operator Ky : Ωk(B) → Ωk−1(B) by
H. Cartan’s formula

(Kyω)(x; v1, . . . , vk−1) =

∫ 1

0

tk−1ω
(
y + t(x− y);x− y, v1, . . . , vk−1

)
dt.

It satisfies d ◦ Ky + Ky ◦ d = id when k ⩾ 1, and (Ky ◦ d)(f) = f(y) when k = 0.
Then one averages Ky over all y ∈ B, to define the operator T : Ωk(B) → Ωk−1(B):

Tω =

∫
B

(Kyω)h(y)dy.

Clearly it satisfies the homotopy relations (1) and (2) of the lemma. A bit of analysis
is required to see that it extends to an operator from Ωp,k

loc (B) to Ωp,k−1
loc (B), and
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to show that it satisfies the property (3) of Lemma A.6 – see Inequality (4.15) and
Lemma 4.2 in [IL93]. □

By assumption M is uniformly diffeomorphic to RD. Thus, for every m ∈M , there
is a diffeomorphism φm : B →M with controlled geometry, see Definition 6.6.

We remark that we can (and will) assume that the map

M ×B −→M, (m,x) 7−→ φm(x)

is measurable. Indeed one can always transform the family {φm}m∈M in such a way
that the resulting map M → C∞(B,M), m 7→ φm is piecewise constant.

Lemma A.7. — For f :M ℓ+1 → Ωp,k
loc (M) and (m0, . . . ,mℓ) ∈M ℓ+1, set

(Hf)(m0, . . . ,mℓ) =
(
(φ−1

m0
)∗ ◦ T ◦ φ∗

m0

)(
f(m0, . . . ,mℓ)

)
,

where T is the homotopy operator in Lemma A.6. This defines a continuous operator
H : Ck,ℓ → Ck−1,ℓ, which satisfies the following homotopy relations

– d′ ◦H +H ◦ d′ = id for k ⩾ 1,
– H ◦ d′ = id−ψ for k = 0, where

(ψf)(m0, . . . ,mℓ) =

∫
B

f
(
m0, . . . ,mℓ;φm0

(x)
)
h(x)dx.

Proof

(1) First, since (m,x) 7→ φm(x) is measurable on M×B, the map Hf is measurable
on M ℓ+1.

(2) For ω ∈ Ωp,k
loc (M), m ∈M and R > 0, with the notations of Definition 6.6 and

Lemma A.6, one has:∥∥((φ−1
m )∗ ◦ T ◦ φ∗

m

)
(ω)

∥∥
B(m,R)

=
∥∥(φ−1

m )∗
(
(T ◦ φ∗

m)(ω)
)∥∥

B(m,R)

⩽
∥∥(φ−1

m )∗
(
(T ◦ φ∗

m)(ω)
)∥∥

φm(B(0,r))
⩽ λ(R)k+p/D

∥∥(T ◦ φ∗
m)(ω)

∥∥
B(0,r)

⩽ Cλ(R)k+p/D
∥∥φ∗

m(ω)
∥∥
B(0,r)

⩽ Cλ(R)2k+1+2p/D∥ω∥φm(B(0,r))

⩽ Cλ(R)2k+1+2p/D∥ω∥B(m,ρ(R)).

Therefore NR(Hf) ⩽ Cλ(R)2k+1+2p/DNρ(R)(f), and thus H maps Ck,ℓ to Ck−1,ℓ

continuously.
(3) The homotopy relations follows easily from those in Lemma A.6. □

Proof of Proposition A.5. — We keep the notations of Lemma A.7. Recall that the
subspace Ker d′

∣∣
C0,ℓ is described in the proof on Proposition A.4. Define a retraction

r : C∗,ℓ → (Ker d′
∣∣
C0,ℓ → 0 → 0 → · · · ) by letting r = ψ on C0,ℓ, and r = 0 on Ck,ℓ

when k ⩾ 1. Clearly it commutes with d′. Since
∫
B
h(x)dx = 1, one has r ◦ i = id.

Finally H is a homotopy between i ◦ r and id. □
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A.3. Homotopy type of the rows

Proposition A.8. — For every k ∈ N, the complex (Ck,∗, d′′) retracts by deformation
onto the subcomplex (Ker d′′

∣∣
Ck,0 → 0 → 0 → · · · ).

Again we start with two lemmas.

Lemma A.9. — There exists, for every m ∈ M , a function χm : M → [0,+∞) which
enjoys the following properties:

(1) its support is contained in B(m, 1),
(2) the maps (m,m′) 7→ χm(m′) and (m,m′) 7→ (dχm)(m′) are C∞ and bounded

on M ×M ,
(3)

∫
M
χm d vol(m) = 1.

Proof. — Consider a C∞ non-negative function Φ on M ×M , which is equal to 1 on
{d(m,m′) ⩽ 1/2}, and 0 on {d(m,m′) ⩾ 1}. Set

χm(m′) :=
Φ(m,m′)∫

M
Φ(m,m′) d vol(m)

.

It satisfies the excepted properties because M is uniformly diffeomorphic to RD. □

Lemma A.10. — For f :M ℓ+1 → Ωp,k
loc (M) and (m0, . . . ,mℓ−1) ∈M ℓ, set

(Kf)(m0, . . . ,mℓ−1) =

∫
M

χm · f(m,m0, . . . ,mℓ−1) d vol(m).

This defines a continuous operator K : Ck,ℓ → Ck,ℓ−1, which satisfies the following
homotopy relations:

– d′′ ◦K +K ◦ d′′ = id when ℓ ⩾ 1,
– (K ◦ d′′)(f) = f −

∫
M
χm · f(m) d vol(m) when ℓ = 0.

Proof. — We divide it into few steps.
(1) The map K is a continuous linear from Ck,ℓ to Ck,ℓ−1:
For f ∈ Ck,ℓ, thanks to properties (1), (2) in Lemma A.9, one has:∥∥(Kf)(m0, . . . ,mℓ−1)

∥∥
B(m0,R)

=
∥∥∫

M

χm · f(m,m0, . . . ,mℓ−1) d vol(m)
∥∥
B(m0,R)

⩽
∫
M

∥∥χm · f(m,m0, . . . ,mℓ−1)
∥∥
B(m0,R)

d vol(m)

⩽ C ·
∫
B(m0,R+1)

∥∥f(m,m0, . . . ,mℓ−1)
∥∥
B(m0,R)

d vol(m),

where C is a constant which depends only on the upper bounds in Lemma A.9(2).
Since M has bounded geometry the volume of the ball B(m0, R + 1) is bounded
by above by a function of R only. Moreover, the relations m ∈ B(m0, R + 1)

and (m0, . . . ,mℓ−1) ∈ ∆
(ℓ−1)
R imply that (m,m0, . . . ,mℓ−1) ∈ ∆

(ℓ)
2R+1 and that

B(m0, R) ⊂ B(m, 2R + 1). These properties, in combination with Hölder inequality
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and Fubini, yield the existence of a function ϕ : (0,+∞) → (0,+∞) such that
NR(Kf) ⩽ ϕ(R) ·N2R+1(f).

(2) For m ∈M and f :M ℓ+1 → Ωp,k
loc (M), put

(kmf)(m0, . . . ,mℓ−1) = f(m,m0, . . . ,mℓ−1),

so that one can write Kf =
∫
M
χm · (kmf) d vol(m).

It is an easy and standard fact that δ◦km+km◦δ = id when ℓ ⩾ 1, and (km◦δ)(f) =
f − f(m) when ℓ = 0. Since

∫
M
χm d vol(m) = 1 by Lemma A.9, and since d′′f = δf ,

the operator K satisfies the excepted homotopy relations. □

Proof of Proposition A.8. — We keep the notations of Lemma A.10. Recall that the
subspace Ker d′′

∣∣
Ck,0 is described in the proof on Proposition A.4. Define a retraction

s : C∗,ℓ → (Ker d′′
∣∣
Ck,0 → 0 → 0 → · · · ), by letting s(f) =

∫
M
χm · f(m) d vol(m)

on Ck,0, and s = 0 on Ck,ℓ when k ⩾ 1. Clearly it commutes with d′′. Since∫
M
χm d vol(m) = 1, one has s ◦ i = id. Finally K is a homotopy between i ◦ s

and id. □

A.4. Proof of Theorem A.1. — Let (D∗, dD) be the complex Dm = ⊕k+ℓ=mC
k,ℓ

with dD = d′ + d′′. From Propositions A.4, A.5 and Lemma A.3, it retracts by defor-
mation onto ASp,∗(M). From Propositions A.4, A.8 and Lemma A.3, it retracts by
deformation onto Ωp,∗(M). Therefore, ASp,∗(M) and Ωp,∗(M) are homotopy equiva-
lent. Their cohomologies are topologically isomorphic. □
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