
Master AIV1 S7
TP 9 Segmentation supervisée par analyse

d’histogramme

ludovic.macaire@univ-lille.fr

6 mars 2025

1 Binarisation par Règle de Bayes
L’objectif du TP est de segmenter une image en niveaux de gris par le

seuillage supervisé des niveaux de gris via des macros python que vous allez
concevoir.

Vous devez rendre un fichier pdf décrivant les réponses aux questions et
décrivant via les commentaires les macros python que vous avez développées.

Soit l’image I (′2classes_100_100_8bits.png′) composée de 2 classes ω1

et ω2 de pixels.

Q1. Seuillage fixe

A partir du code ci-dessous, binariser l’image avec les seuils X̂ fixés aux
valeurs 125, 135, 145.

1

2 ###############

(a) Image (b) Histogramme

1

3

4 nom= ' . / Fichiers_uti les_TP1 /2 classes_100_100_8bits_2016 . png '
5 nomFenetre= ' o r i g i n a l '
6 image = cv2 . imread (nom, cv2 .IMREAD_UNCHANGED)
7 # Af f i chage
8 cv2 . namedWindow(nomFenetre)
9 cv2 . imshow(nomFenetre , image)

10 # ca l c u l de l ' histogramme
11 h i s t = cv2 . c a l cH i s t ([image] , [0] , None , [2 5 6] , [0 , 2 5 6])
12

13 #s e u i l l a g e avec va l eur de s e u i l
14 (retVal , ImgSeui l) = cv2 . th r e sho ld (image , s e u i l , 255 , cv2 .THRESH_BINARY)
15

16 cv2 . namedWindow(' Resu l tat ')
17 cv2 . imshow(' Image␣ s e u i l ' , ImgSeui l)
18

19 cv2 . waitKey (0)
20 cv2 . destroyAllWindows ()
21

22 ##############

Le seuil X̂ définit les 2 classes de pixels ω̂1 et ω̂2 :

ω̂1 = {P ∈ I|I(P) < X̂}

ω̂2 = {P ∈ I|I(P) ≥ X̂}

A quoi correspondent ces valeurs dans l’histogramme ?
Quel est le taux de bonne classification des pixels obtenu pour chacune

de ces valeurs ? Pour ce faire, il faut calculer la matrice de confusion à partir
de l’image ′2classes_100_100_8bits_GT.png′.

Comme l’indique le listing ci-dessous, il faut transformer chaque image en
vecteur 1D avant d’appeler la fonction confusion du package ’sklearn.metrics’.
Les termes diagonaux de la matrice cm indiquent le nombre de pixels bien
classés. On peut alors en déduire le taux de bonne classification des pixels
en divisant le nombre de pixels bien classés par la taille de l’image.

1 from sk l ea rn . met r i c s import confus ion_matrix
2 GT = cv2 . imread (nom_GT, cv2 .IMREAD_UNCHANGED)
3 GT_1D = np . z e ro s ((he ight ∗width , 1) , dtype=in t)
4 f o r i in range (he ight) :
5 f o r j in range (width) :
6 va l =GT[i , j]
7 GT_1D[i ∗width + j] = va l
8 cm = confus ion_matr ix (GT_1D, ImageSeuil_1D)

2

Q2. Seuillage automatique (Bayes)

Dans le dossier ’Q2-20225, l’image ’train_bon_omega1_omega2’ repré-
sente les deux classes ω1 et ω2 de l’image ’train_bon’ qui vont vous être
utiles pour le seuillage automatique supervisé. Dans la macro Python (mise
en annexe dans le rapport)), écrire une boucle permettant de parcourir les
seuils et de calculer la probabilité d’erreur ε(t).

Il faudra alors estimer le minimum de ε(t) et retenir le niveau correspon-
dant.

Rappel de l’algorithme :
— Pour t compris entre 0 et 255, calculer

— ε(t) =
∑t

i=0
h2(i)
h(i) .P (ω2) +

∑255
i=t+1

h1(i)
h(i) .P (ω1)

— le seuil optimal t̂ = arg min (ε(t))
Donner la valeur de seuil optimale et montrer l’image ainsi seuillée.

Q3. Détermination des images avec problème

Seuiller les autres images avec ce seuil et trouver une règle simple basée
sur la population des classes qui permet de déterminer automatiquement si
le nombre de trous est correct.

Q4. Classification en 3 classes de l’image

Identifier les 3 ROI correspondant aux 3 classes de l’image ′train_3classes_bis.bmp′

du dossier ’Q4-2025’. La probabilité de bonne assignation à maximiser est
donc

P (ε/X̂) =
∑K

k=1 P (X ∈ ω̂k, ωk)
Rappel de l’alogorithme :
— Pour t1 et t2 compris entre 0 et 255, calculer

— B(t1, t2) =
∑t1

i=0
h1(i)
h(i) .P (ω1)+

∑t2
i=t1+1

h2(i)
h(i) .P (ω2)+

∑255
i=t2+1

h3(i)
h(i) .P (ω3)

— le seuil optimal (t̂1, t̂2) = arg max (B(t1, t2))
Ajouter la macro python en annexe, l’image segmentée (label 0, 127

et 255) et commenter les résultats. Pour ce faire, examiner la fonction
cv2.threshold et combiner les résultats de 2 binarisations comme selon le
listing exemple ci-dessous :

1 (retVal1 , ImageSeui l1) = cv2 . th r e sho ld (image , s eu i l 1 , 127 , cv2 .THRESH_BINARY)
2 (retVal2 , ImageSeui l2) = cv2 . th r e sho ld (image , s eu i l 2 , 255 , cv2 .THRESH_BINARY)
3 [des t] = np .maximum([ImageSeui l1] , [ImageSeui l2])

Comme comme pour la question 2, ajouter les instructions pour calculer
le taux de bonne classification des 3 classes, à partir de l’analyse de l’image
verité terrain.

Classifier les autres images avec les 2 seuils identifiés.

3

Master Informatique - module AIV1 - S8
TP 10 Segmentation NON supervisée par analyse

d’histogramme

ludovic.macaire@univ-lille.fr

19 mars 2025

Q1.Binarisation non supervisée par méthode d’OTSU

L’objectif du TP est de segmenter une image en niveaux de gris par le
seuillage NON supervisé des niveaux de gris par des macros python que vous
allez concevoir.

Vous devez rendre un fichier pdf décrivant les réponses aux questions et
décrivant via les commentaires les macros python que vous avez dévelop-
pées. Certaines macros devront également être déposées sur moodle. Dans
le dossier ’Q2-20225, l’image ’train_bon_omega1_omega2’ représente les
deux classes ω1 et ω2 de l’image ’train_bon’ qui vont vous être utiles pour
le seuillage automatique NON supervisé. Soit l’image I (′train_bon′) com-
posée de 2 régions.

Dans la macro Python (mise en annexe dans le rapport)), écrire une
boucle permettant de parcourir les seuils afin de retrouver la dispersion
inter-classe la plus élevée.

Rappel de la méthode :
Pour t compris entre 0 et 255, calculer
— σ(t) = P (ω1(t)).P (ω2(t)).(µ(ω1(t))− µ(ω2(t)))

2

le seuil optimal t̂ = arg max (σ(t))
avec

P (ω1(t)) =

t∑
i=0

h(i)

N
et N(ω1(t)) =

t∑
i=0

h(i)

P (ω2(t)) = 1− P (ω1(t)) et N(ω2(t)) = N −N(ω1(t))

µ(ω1(t)) =

∑t
i=0 i.h(i)

N(ω1(t))

µ(ω2(t)) =

∑255
i=t+1 i.h(i)

N(ω2(t))

1

Donner la valeur de seuil optimale et montrer l’image ainsi seuillée.
Quel est le taux de bonne classification obtenu (en se basant sur l’image

’train_bon_omega1_omega2’) ? Comparer ce taux avec celui obtenu lors
du TP1 (seuillage supervisé).

Q2 Classification non supervisée en 3 classes de l’image par
la méthode d’Otsu

Concevoir une macro python pour retrouver via la méthode d’Otsu les
3 classes de l’image ′train.bmp′ du dossier ’Q4-2025’.

Ajouter la macro python en annexe, l’image segmentée (label 0, 127 et
255). Pour ce faire combiner les résultats de 2 binarisations comme indiqué
dans le TP1.

Quel est le taux de bonne classification obtenu à partir de l’image ′train_3classes_bis.bmp′

du dossier ’Q4-2025’. ? Comparer ce taux avec celui obtenu lors du TP1 (clas-
sification supervisée).

Q3 Segmentation d’une image couleur par binarisation des
canaux

Vous allez segmenter l’image couleur ’image3d-v2025.bmp’. Pour ce faire,
il faut

— séparer l’image couleur en 3 canaux grâce à cv2.split
— calculer l’histogramme de chaque canal (R, G et B)
— binariser de manière non supervisée chaque canal R, G, B via la

méthode d’Otsu de la Question 1
— fusionner les canaux binarisés adéquats pour fournir une image de

labels (où les deux disques concentriques sont fusionnés en une seule
région) grâce à cv2.merge.

Combien de classes de pixels ont été identifiées dans l’image segmentée ?
Comment sont segmentés les deux disques concentriques ?

Comment procéder pour extraire les deux disques concentriques ?

2

Master Informatique - module AIV1 - S8
TP 11 Analyse en composantes principales pour la

segmentation d’images couleur

ludovic.macaire@univ-lille.fr

27 mars 2025

1 Q1 Analyse en composantes principales
Vous allez représenter l’image couleur ’image3d_v2025.bmp’ selon ses 3

composantes principales.

1.1 Transformation en matrice de données

Pour ce faire, il faut convertir l’image dans une matrice de données X
de dimension (width.height × 3) , où width.height représente le nombre
de pixels de l’image et 3 le nombre de composantes couleur. N’hésitez pas à
utiliser la fonction flatten (qui transforme un canal 2D en un vecteur 1D).
Par exemple les instructions pour la composante R pourraient être :

R = image [: , : , 0]
R_1d = R. f l a t t e n ()
X = np . z e r o s ((width . height , 3) , dtype=i n t)
X[: , 0] = R_1d [:]

1.2 Fonction ACP

La matrice X sera passée en paramètre de la fonction ACP(X) que vous
allez créer :

— Centrage à la moyenne des termes de la matrice :

X_meaned = X − np . mean(X , ax i s = 0)

— Calcul de la matrice ΣΣΣ de co-variance des données X :

cov_mat = np . cov (X_meaned , rowvar = False)

1

— Recherche et tri des 3 vecteurs propres wi de ΣΣΣ : ΣΣΣ.wi = λi.wi où
λi = sont les d valeurs propres les plus élevées et i = 1, .., 3.

— La matrice solution représentant la base est W = (w1, ..,w3)

e igen_values , e igen_vector s = np . l i n a l g . e igh (cov_mat)
sorted_index = np . a r g s o r t (e igen_values)[: : −1]
sor ted_e igenva lue = eigen_values [sorted_index]
so r t ed_e igenvec to r s = e igen_vector s [: , sorted_index]

— Les données projetées sont alors Y = WT .X

Y_projected = np . dot (e i g e n v e c t o r v e c t o r s . t ranspose () ,
X_meaned . t ranspose ()) . t ranspose ()

1.3 Transformation de la matrice projetée vers 3 canaux

Soit XPCA la matrice de données projetée par ACP. Cette matrice doit
maintenant être transformée en une image couleur RGB pour la binarisation
de ses canaux via les étapes suivantes :

— Normalisation de XPCA entre 0 (la valeur la plus petite de XPCA)
et 255 (la valeur la plus grande de XPCA)

— Conversion de XPCA en entier non signé

XPCA=XPCA. astype (' uint8 ')

— Transformation de chaque composante de XPCA en un canal 2D
(dans le listing ci-dessous C0PCA). On obtient ainsi 3 canaux C0PCA,C1PCA
et C2PCA.

RPCA=np . reshape (XPCA[: , 0] , (he ight , width))

1.4 Binarisation des 3 canaux

Il faut enfin combiner la binarisation non supervisée via OTSU en ap-
pliquant les instructions développées pour répondre à la question Q3
du TP10 sur les 3 canaux C0PCA,C1PCA et C2PCA. Pour rappel,
il faut
— calculer l’histogramme de chaque canal (C0PCA, C1PCA et C2PCA)
— binariser de manière non supervisée chaque canal C0PCA, C1PCA

et C2PCA via la méthode d’Otsu
— fusionner les canaux binarisés adéquats pour fournir une image

de labels grâce à cv2.merge.
Combien de classes de pixels ont été identifiées dans l’image pseudo-
couleur segmentée ? Comment sont segmentés les deux disques concen-
triques ?

2

2 Q2 Application à 3 images
Appliquer l’algorithme ACP en retenant pour chaque cas les canaux

adéquats pour identifier les chiffres par binarisation via OTSU dans les 3
images suivantes :

nom= ' ./ Fichiers_uti les_TP11 /cas_4_dalton29 .bmp '
nom= ' ./ Fichiers_uti les_TP11 /cas_1_dalton26 .bmp '
nom= ' ./ Fichiers_uti les_TP11 /cas_2_dalton73 .bmp '

Justifier pour chaque image le choix des composantes retenues et com-
menter les résultats de segmentation.

3

M1 RVA-AIV1 – Module VISA - TP 11 Segmentation d'une image couleur par classification
non supervisée de pixels – version 2025

L'objectif du TP est de segmenter une image couleur par classification de pixels avec des
macros Python que vous allez concevoir.

Le package nécessaire est le suivant: from sklearn.cluster import KMeans.

L'objectif de ce TP sera d'extraire des images les chiffres par segmentation et de comparer
les résultats fournis par l’ACP avec ceux en RGB.

1 SEGMENTATION DES IMAGES par K-Means en RGB

Le programme devra

– 1.1. Segmenter l'image 'cas_2_dalton7.bmp' par K-Means. Attention le nombre de classes
est à fixer avec attention, tout en étant le plus faible possible.

n : nombre de classes

k_means = KMeans(n_clusters=n)

a : vecteur de dimension nbpixels x 3

k_means.fit(a)

centroids : vecteur de dimension n x 3

centroids = k_means.cluster_centers_

labels: vecteur de dimension nbpixels x 1

labels = k_means.labels_

labels: vecteur de dimension nbpixels x 3

a2 = centroids[labels]

– 1.2. Segmenter automatiquement les autres images du 'cas_2' (sélection du nom de l’image
par l’utilisateur) à l’aide des centroids identifiés en 1.1 grâce à la fonction

test_labels = k_means.predict(test_color_image_vector)

– test_centroid_vector = centroids[test_labels].

– Rendre la macro commentée sur moodle avec comme paramètre d'entrée l'autre image
cas_2 à analyser.

2 COMPARAISON DES SEGMENTATIONS DES IMAGES ‘cas_1_dalton42.bmp‘ et
'cas_2_dalton73.bmp' par K-Means via RGB ou ACP.

Appliquer les segmentations sur les images codées en RGB ou ACP et comparer les résultats (en
prenant le même nombre de classes).

M1 RVA– AIV1- - TP11 segmentation non supervisée couleur – vers. 2025

P

