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1. PRELUDE

1.1. Some set-theoretical and categorical preliminaries. Throughout this text, we
adopt Bernays-Godel’s axiomatic system for set theory, augmented with the axiom of global
choice ([13} §1.5.1]). We denote the cardinality of any set S by :

S].

Definition 1.1.1. Let k be a cardinal.
(i) We denote by x* the successor cardinal of k, i.e. the smallest cardinal > «.

(if) We say that « is regular, if k is infinite and for every family (S; | i € I) of subsets of
k with |S;| < k for every i € I and with |I| < k, we have | J;¢; Si| < k.

Example 1.1.2. (i) The smallest infinite cardinal 8y (i.e. the set N of natural numbers)
is clearly regular.

(i) If k > Ny, then k* is regular. Indeed, let (S; | i € I) be a family of subsets of k* with
|S;| < k for every i € I and with |I| < k; then | U;¢; Si| < k% = k.

(iii) Define inductively N, := N;“ for every i € N; then N, := [J;ery Ni is not regular,
since |N| < 8, and |N;| = &; < &, for every i € N.

(iv) A cardinal is said to be weakly inaccessible, if it is regular and it is neither N,
nor a successor cardinal. The existence of such large cardinals is unprovable within our
set-theoretic framework.

1.1.3. Recall that a relation between two classes X, Y is a subclass of X X Y. Especially,
amapf:X — Y fromX toY is a relation Iy C X X Y such that for every x € X there
exists a unique y € Y with (x,y) € Iy, and as usual one writes y = f(x) for this element.
Thus, we encode relations and maps between classes by their graphs. Hence, if X is a set,
then every map f : X — Y is a set as well.

Example 1.1.4. Let X be a class, and #Z C X X X a relation on X. Then there exists
a smallest equivalence relation % containing Z. Indeed, let first ' := Z U Ax, where
Ax = {(x,x) | x € X} is the diagonal of X x X. Then we let Z# C X x X be the subclass
of all pairs (x,x”) € X X X such that there exists k € N'\ {0} and a sequence xy, . .., xx of
elements of X with xy = x, x; = x’, and such that either (x;, xj+1) € %’ or (xj41,x;) € Z’
for every i = 0,...,k — 1. It is easily seen that R is an equivalence relation on X, and
obviously every equivalence relation on X containing % must also contain R. We call #
the equivalence relation on X generated by Z.

o The disjoint union and the (cartesian) product of a family of sets (X;|i € I) indexed
by a set I shall be denoted respectively :

|_|X,-:=U{i}><X,- and [ ]|X

iel iel iel

We will discuss in the extension of these operations to arbitrary classes; for now, we
only define the disjoint union of any two given classes X, and X; : namely

]XO LX; = ({0} x Xo) U ({1} X X7). \

Moreover, the pair (Xo, X1) is the map XoLUX; — {0, 1} that sends {i} X X; toi,fori =0, 1.
o For every pair of maps between classes f : X = Y, g: X' — Y we let

X X(r9) X' = {(x.x) € X xX'| f(x) = g(x)}
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and we call this class the fibre product of X and X’ over f and g (or simply over Y); often
the same class is just denoted by X Xy X’, unless the notation gives rise to ambiguities.
1.1.5. Let &/ be any category; for every pair (X, Y) of objects of .7, we shall write

(X, Y)
for the set of morphisms X — Y in .o/ The identity of an object X will be denoted:
1x.

We shall denote the classes of objects and of morphisms of &7 respectively by :

Ob(«/) and  Mor(&) := |_| o (X,Y).
(X,Y)€Ob ()2

We have obvious source and target maps :

Ob(e/) &Mor(e7) = Ob(e7) X 1 (X,Y),f:X = Y) > Y.

o The opposite category of o will be denoted :
o/ P

and for every morphism f : X — Y of o7, we shall sometimes write f°P : Y°P — X°P (or
f°: Y — X) to denote f, regarded as a morphism of &7°P. Likewise, we write:

FP ={fP|feF} for every subclass .# C Mor(%).

With this notation, every functor F : &/ — 4 induces a functor :

]F"P AP > PP AP (FA® [P (Ff)P

and every natural transformation 7, : F = G induces a natural transformation :

PGPS FP A (1 (GA)P — (FA)).

e Let F,G,H : &/ — 2 be three functors, and consider two natural transformations
7o : F = G and 1, : G = H; then the composition of 7z, and 7, is the natural transforma-
tion (see [13} Rem.1.127(ii)]) :

NeoTe : F=>H A a0ty

Also, we associate with every pair of natural transformations :

F F’
od oo ' i "
Y Y

the Godement product of we and w, defined as the natural transformation :

WL *kwe:FFoF =G oG A wgy 0 F(wa)

(see [13] Exerc.1.129]). For we = 1f (resp. for w, = 1p/), we usually write w, x F (resp.
F’ % w,) in lieu of w, * 1F (resp. in lieu of 1z % w.,); hence :

(we*xF)a=wp, and (F *we)a =F (wa) VA € Ob(&).

e For apair (7,, f) consisting of a natural transformation 7, : F = G between functors
F,G:9/ — %, and f € o/ (X,Y), we shall also use the notation :

Te ® X = 1x r.®f:=ryoFf=GforX:FX—>GY.‘
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Notice that for every composable pair of natural transformations F % 65 Hand every

composable pair of morphisms X L Y Z of of , we have the identity :
(neo7)®(gof) = (1.8 g) o (ra ®f).|

Definition 1.1.6. (i) We say that the category o7 is small (resp. finite) if Ob(.27) and

Mor(4/) are sets (resp. are finite sets).

(i) If [Mor(&7)| < « for a cardinal x, we say that <7 is x-small.

(i) We say that .27 is connected, if Ob(.ef) #+ &, and every pair of objects A, B € Ob(.2/)
can be joined by a finite chain of morphisms of </ :

A—>C «—Cy— -+« Cr—B.

(iv) We say that & is directed, if for every A, B € Ob(%) there exists C € Ob(.2/) with
morphisms A — C « B. We say that &7 is codirected, if <7 °P is directed.

(v) We say that o7 is filtered, if o7 is directed, Ob(.2¢) # @, and for every A, B € Ob(.%/)
and f, g € o/ (A, B) there exists C € Ob(«) and h € € (B, C) that coequalizes f and g, i.e.
ho f = hog. We say that <7 is cofiltered, if 27 °P is filtered.

(vi) We say that o7 is discrete, if o7 (X,Y) = @ for every pair (X,Y) of distinct objects
of o7, and &7 (X, X) = {1x} for every X € Ob(&).

Remark 1.1.7. Notice that the category <7 is k-small, for a given infinite cardinal «, if and
only if we have both |Ob(.%/)| < k and |7 (A, B)| < « for every A, B € Ob(&/).

1.1.8. Limits and colimits. Let A € Ob(&); for every category I, we shall denote
CA - I—> o

the constant functor with value A, i.e. the functor such that c4 (i) := A for every i € Ob(I)
and ca(¢) = 14 for every morphism ¢ of I. Every morphism f : A — B induces an
obvious constant natural transformation

CF:ca = B i f.

e Let F: I — & be any other functor; a cone with basis F and vertex A is a natural
transformation ¢4 = F. Dually a co-cone with basis F and vertex A is a cone cgop = F°P,
i.e. a natural transformation F = c4. We say that a cone 7, : ¢4 = F is universal, if for
every other cone 1, : cx = F there exists a unique morphism f : X — A of &/ such that

Ne =TeoOCf

and in this case we say that A represents the limit of F in /. Likewise, a co-cone 7, :
F = cu is universal if 7,° : ca» = F°P is a universal cone, ie. if for every other co-
cone 77, : F = cx there exists a unique f € &7 (A, X) such that no = ¢y o 7,; in which
case, we say that A represents the colimit of F in o (see [13 §2.2]). The limit (resp. the
colimit) of F is not necessarily representable in o7, but if it is, then clearly the object of &7
representing the limit (resp. the colimit) of F is determined up to isomorphism; we shall
use the standard notation :

li}n F and colIim F

to signify given choices of representing objects for the limit and colimit of F.

e Consider a sequence of functors :

BN
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such that the limits of F and of HF¢ are representable in ./ and respectively %, and
choose universal cones 7o : Clim;r = F and 17¢ : Clim; Hrg = HF¢; then there exists a
unique morphism of %A

li;)nH : H(li}nF) — li}nHngS such that  ne © clim, = H * 7e x §.

In other words, this is the unique morphism that makes commute the diagrams :

limy H
H(lim; F) ? lim; HF$

m / Vj € Ob()).

HFE$(j)

Dually, if the colimits of F and of HF¢ are representable, then for any given choice of
universal co-cones 7, : F = ceolim;r and 1, : HF$ = ccolim; HFg, We have a unique
morphism

cogmH : co}imHFd) — H(colIimF) such that  ccolimy 1 © n.=Hx1, % .

As usual, limg H (resp. colimg H) depends on the choice of universal cones (resp. of
universal co-cones), but its categorical properties are intrinsic.

e For any category I, we say that o7 is I-complete (resp. I-cocomplete) if the limit
(resp. the colimit) of every functor I — .27 is representable in <7. Moreover, we say
that o7 is complete (resp. cocomplete) if .o/ is I-complete (resp. I-cocomplete) for every
small category I; we shall say that <7 is finitely complete (resp. finitely cocomplete) if o
is I-complete (resp. I-cocomplete) for every finite category I.

Example 1.1.9. (i) We denote by :
Set and Cat

respectively the category of sets and the category of small categories; the morphisms of
Set (resp. of Cat) are the maps of sets (resp. the functors between small categories) with
the natural composition law. We have an obvious functor :

Ob : Cat — Set % — Ob(%)

sending every functor F : € — %" to the underlying map Ob(%) — Ob(¥¢”) : X — FX
for every X € Ob(%). The category Set is complete and cocomplete ([13, Prob.2.51(i)]);
we shall show later that the same holds for the category Cat (proposition [1.10.4).

(i) Recall that to every class A we can naturally attach the discrete category %, with
Ob(%r) = A (see [13, Exemp.1.114(vi,vii)]), and the data of A and %, are essentially
equivalent; especially, we have a fully faithful functor :

dis : Set — Cat A Gy

So, we won’t usually distinguish between a class and its associated category.

(iii) For every class A, the limit (resp. the colimit) of a functor F : ¥y — 7 (also
denoted F : A — &7) is called the product (resp. the coproduct) of the family (FA| A € A)
of objects of .o7, and if it is representable in .27, any choice of representative is denoted :

|_| FA (resp. I_I FA).

AEA AeA
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If A is a finite set of cardinality n, the datum of a functor A — .2/ amounts to that of
a sequence A, = (Ay,...,A,) of n objects of o7, and any representative in &7 for the
product of A, is denoted as usual by A; X - - - X A,.

Definition 1.1.10. Let I be a category, and ¢ : [ — &7, F : &/ — A two functors.

(i) We say that F preserves the limit of ¢, if there exists a universal cone 7, : ¢, = ¢
such that F x 7, : cpp = F o ¢ is universal. We say that F preserves I-limits, if it preserves
the limit of all functors I — & (so, &/ is I-complete in this case). We say that F preserves
small (resp. connected, resp. cofiltered) limits, if it preserves I-limits, for every small (resp.
connected, resp. cofiltered) category I.

(i) We say that F preserves the colimit of ¢, if F°P preserves the limit of ¢$°P. We
say that F preserves I-colimits, if F°P preserves I°P-limits. We say that F preserves small
(resp. connected, resp. filtered) colimits, if it preserves I-colimits, for every small (resp.
connected, resp. filtered) category I.

(iii) We say that F reflects the limit of ¢, if for every non-universal cone 7, : ¢ = ¢,
the cone F x 7, : cpp, = F o ¢ is non-universal. We say that F reflects I-limits, if it reflects
the limit of every functor I — o/. We say that F reflects the colimit of ¢ (resp. I-colimits)
if FOP reflects the limit of ¢°P (resp. I°P-limits). We say that F reflects small (resp. finite,
resp. connected, resp. cofiltered) limits, if it preserves I-limits, for every small (resp. finite,
resp. cofiltered) category I. We say that F reflects small (resp. finite, resp. connected, resp.
filtered) colimits, if FP reflects small (resp. finite, resp. connected, resp. cofiltered) limits.

(iv) We say that F is left (resp. right) exact, if it preserves finite limits (resp. finite
colimits). We say that F is exact, if it is both left and right exact.

(v) Let P(f) be a property of morphisms such as e.g. “f is a monomorphism” or “f is
an epimorphism”. We say that F preserves (resp. reflects) P, if for every morphism f of &7
we have : P(f) = P(Ff) (resp. P(Ff) = P(f)).

Remark 1.1.11. (i) Clearly o is I-complete & &7°P is I°P-cocomplete. Likewise <7 is
complete (resp. finitely complete) & o7°P is cocomplete (resp. finitely cocomplete). Also,
a functor F preserves (resp. reflects) the limit of a functor ¢ < F°P preserves (resp. re-
flects) the colimit of ¢°P. Hence, F preserves (resp. reflects) I-limits < F°P preserves
(resp. reflects) I°P-colimits, and F is left exact & F°P is right exact.

(if) The limit (resp. colimit) of the empty functor & — o7 is represented by any final
(resp. initial) object of .o, when such an object exists. Recall that an object A € Ob(.27) is
final (resp. initial) in o if for every X € Ob(.</) there exists a unique morphism X — A
(resp. A — X) (see [13| Rem.2.27]).

(iii) Every faithful functor F reflects both monomorphisms and epimorphisms. If the
functor F preserves fibre products, then it preserves monomorphisms. Dually, if F pre-
serves amalgamated sums, then it preserves epimorphisms : see [13] Exerc.2.66(ii,iv)].
Trivially, every functor preserves isomorphisms; we say that F is conservative, if it re-
flects isomorphisms.

(iv) If F is conservative and preserves fibre products, then F both preserves and reflects
monomorphisms. Indeed, let f € &7 (A,A’) and Agjar : A — A X4 A the diagonal mor-
phism of f; since F preserves fibre products, F(A4, 4/) is the diagonal morphism of Ff, and
the latter is an isomorphism if and only if Ff is a monomorphism ([13} Exerc.2.66(i)]). But
since F is conservative, F(A4/4/) is an isomorphism if and only if the same holds for A4 4/,
and again the latter holds if and only if f is a monomorphism. Dually, if F is conservative
and preserves amalgamated sums, then F both preserves and reflects epimorphisms.
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Definition 1.1.12. Let &/ be a category, and f,g : X =% Y two morphisms of &; notice
that the equalizer Equal(f,g) — X of f and g is a monomorphism, and the coequal-
izer Y — Coequal(f, g) is an epimorphism. We say that a morphism of <7 is a regular
monomorphism (resp. a regular epimorphism), if it is the equalizer (resp. the coequalizer)
of a pair of morphisms of 7.

Remark 1.1.13. (i) Clearly i : X’ — X is a regular monomorphism in .¢7 if and only if
P : X°P — X'°P is a regular epimorphism in .&/°P. Also, every functor &/ — % that
preserves equalizers (resp. coequalizers), also preserves regular monomorphisms (resp.
regular epimorphisms).

(i) Leti: X’ — X be a monomorphism of .7, and suppose that the amalgamated sum
X Uy X is representable. Then i is regular if and only if it represents the equalizer of the
two natural morphisms e, e; : X =% XLix» X. Indeed, the condition is obviously sufficient.
Conversely, suppose that i represents the equalizer of a pair of morphisms f,g: X =2 Y,
and let h : Z — X be a morphism of .2/ such that e; o h = e, o h; we have e; 0 i = e; o 1,
and since f o i = g o i, we have moreover a unique morphism k : X Lix» X — Y such that
f =koesand g =k o e;. Therefore :

foh=koejoh=koeyoh=goh
so h =h oifor aunique b’ € &/ (Z,X’), and thus, i is the equalizer of e; and e;.
(iii) Dually, if p : Y — Y’ is a an epimorphism of .27, and if the fibre product Y Xy+ Y

is representable in 7, then p is regular if and only if it represents the coequalizer of the
two natural projections Y Xy Y = Y.

Example 1.1.14. (i) It is easily seen that every monomorphism and every epimorphism
of the category Set is regular : the details are left to the reader.

(ii) Let (S;|i € I) be a family of subsets of a given set S; by (i), the epimorphism
T’ := | ;er Si = T := U;er Si s regular, and notice that T X7 T’ is represented by the set
Ui, jyer Si N Sj; we then get a diagram :

J1

(%) |_|i,‘e125insj—_>|_|ie15i—P>5
(i.7) 7
2

where p is the map whose restriction to S; is the inclusion S; — S for every i € I, and
J1 (resp. jz) is the map whose restriction to S; N S; is the inclusion S; N S; — S; (resp.
SiNS; — S;) for every (i, j) € I*. With this notation, remark iii) implies that
(%) is exact, i.e. identifies the image of p with the coequalizer in Set of the pair of maps
(j1, j2)- This boils down to the obvious assertion that for every set X, the datum of a map
f : Uier Si = X is equivalent to that of a family of maps (f; : S; — X |i € I) such that
fiisins, = filsins, for every (i, j) € I*.

(iii) In the situation of (ii), set J := {(i, j) € I? | i # j}; clearly the exactness of () holds
as well if we replace T” x7 T’ by its subset | |; jye; Si N S;. Moreover, if we endow I with
an arbitrary total ordering, we may also replace J by its subset J' := {(i, j) € I’ |i < j}
and still get an exact diagram ().

1.2. Families of classes and of categories. We shall deal often with families of objects
of various kind. A family of sets

(Siliel
indexed by a set or a class I can be defined as a map S, : I — Ob(Set), or equivalently, a
functor S, : I — Set, where, as usual, we identify I with its associated discrete category.
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However, clearly families of proper classes cannot be defined in this manner, not even
when I # @ is a finite set. Instead, we define a family of classes Co := (C; | i € I) indexed
by a class I as a pair (C, p) of a class C and a map

p:C— L

For every i € I, the i-th member C; of the family (C,p) is just the fibre C; := p~'(i).
Likewise, a family of maps f, : Co — D, between two given families of classes C, :=
(C,p:C —1I)and D, := (D,q : D — J) is the datum of a pair of maps

f:C—D p:I—>] with gof=¢op.
Hence, for every i € I, the map f yields by restriction a map of classes f; : C; — Dy ;).

o If each member C; is a set, this definition is equivalent to the previously considered
notion : namely, to such (C, p) we may attach the functor C, : I — Set given by the
rule : i — C;, and conversely, to every functor S, : I — Set we may attach the pair
(S, ps) with S := | |;¢; S;, with its obvious projection ps : S — I. These two constructions
are mutually inverse to each other, up to canonical bijections of classes and canonical
isomorphisms of functors.

o Every such family (C, p) admits a tautological disjoint union, namely

|_|c,»:=c

iel

and if I is a set, the class of all sections of p yields a product
|_|Cl- ={s: I > C|pos=1;}.

i€l

Even though there is no category of classes, these constructions enjoy the universal prop-
erties of categorical sums and products : namely, we have a canonical family of maps
(Ji : Ci = |liesCili € I) such that for every class X and every family of maps (f; :
C; — X |i € 1) there exists a unique map f : | |;c;C; — X with fo j; = f; foreveryi € L.
However, these families of maps must themselves be taken in the foregoing sense : so we
consider the constant families (C,u : C — {@}), (X,v : X — {@}), and j. and f, are
regarded as the pairs

Jo:=(1c:¢): (Cp) = (Cu)  fo:=(f.¢): (Cp) = (X,0)
where ¢ is the unique map ¢ : I — {@}, and f is a given map C — X. Then the universal
property for | |;c; Ci, actually comes down to the trivial identity v o f = u.

o Likewise, if I is a set, we have a canonical family of maps (p; : [ |;c;Ci — Ci|i € 1)
such that for every class X and every family of maps (g; : X — C;|i € I) there exists a
unique map g : X — [ |;c; C; with p; o g = g; for every i € I. Namely, set P := [],.; Ci;
then p, and g, are regarded as the pairs

pe=(q.1) : IXP,zp) = (C,p)  go:=(h1): (IxX,nx) — (Cp)

where q : [ X P — C is given by the rule : (i,s) + s(i) for every (i,s) € I X P, and
mp: IXP — I, mx : I Xx X — I are the projections. Then, the map g : X — P is given by
the rule : x — (i — h(i,x)) forevery x € X and i € .

iel

Remark 1.2.1. (i) Let C be a class, and #Z C C X C an equivalence relation on C; we
may associate with Z a family of classes : namely, the members of the family are the
Z-equivalence classes, indexed by the quotient class C/Z%. If C is a set, the family corre-
sponding to a given equivalence relation % on C is the same as the datum of a partition of
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C, i.e. a subset P of the power set &7(C) (of all subsets of C) such that & ¢ P,C = Uxep X,
and X N'Y = & for every pair of distinct elements X, Y of P. Indeed, to Z one attaches
the partition whose elements are the %-equivalence classes, and conversely, every such
partition P of C defines a unique equivalence relation Zp on C such that (x,y) € Zp if
and only if there exists X € P such that x, y € X. Then, the quotient C/%p is just P.

(ii) In particular, if C is a set, then clearly the class of all quotients of C is a subclass of
P(L(C)), and it is therefore a set. On the other hand, if C is a proper class, then the Z%-
equivalence classes may be proper classes as well, in which case they cannot correspond
to any partition of C in the sense of (i). However, a construction due to the logician Dana
Scott still allows us to attach to &% a quotient class C/Z and a projection p : C — C/%#
such that the fibres of p are precisely the Z-equivalence classes, so that p describes again
C as the disjoint union of the family of its Z-equivalence classes : see the discussion of
Scott’s trick in [13] Rem.2.9(ii)].

1.2.2. Wide categories. For some discussions, the usual framework of (large) categories
is still not general enough, since for certain constructions one would like to drop the
condition that the morphisms between pairs of objects are given by sets, and just allow
them to be arbitrary classes. We are thus led to the following definition :

Definition 1.2.3. (i) A wide pair € is the datum of :

o a class Ob(%), whose elements are called the objects of €

o a family of classes p : Mor(6) — Ob(%) x Ob(%) indexed by Ob(%) x Ob(%¥),

whose elements are called the morphisms of €.
For a wide pair (Ob(%), p), we let Ob(%) & Mor (%) 5 Ob(%’) be the compositions of
p with the projections Ob(%) « Ob(%) x Ob(%€) — Ob(%¥), so that p(f) = (s(f),t(f))
for every morphism f of ¢, and we call s(f) and t(f) the source and target of f. As usual,
we also write f : A — B if the source and target of f are A and B, and set
€(AB)=p'(AB) VA BeOb(%).
(if) A wide category € is the datum of a wide pair (Ob(%), p) together with :
e a composition law, i.e. a family of maps of classes indexed by Ob(%’) X Ob(%) :

Mor (%) X(tsy Mor(%) — Mor (%) (A i) B,B N C)m (A ﬂ> )

such that (hog)o f = ho(gof) for every sequence of morphisms A L BL e LA D

o a family of identity morphisms, i.e. a map of classes
Ob(%) — Mor(%) A (14:A— A)
such that 1g o f = f o 1,4 for every morphism f : A — B of .
Remark 1.2.4. (i) Let € be any wide category. Clearly, if € (A, B) is a set for every A, B €
Ob(%’), then ¥ is the same as a (usual) category. Moreover, most standard categorical
notions, such as monomorphisms, epimorphisms, and isomorphisms extend verbatim to
wide categories. Also, one can define connected, directed, codirected, and filtered wide
categories, just as in definition as well as the opposite wide category 4P, just as

for usual categories. Our terminology is perhaps less than ideal, since every category is
a wide category, but not every wide category is a category.

(ii) We define a functor F : € — €’ between wide categories as a pair of maps
Ob(%) — Ob(%") A FA
Mor(%) — Mor(%") (f:A—> B)— (Ff:FA — FB)
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such that F14 = 1p, for every A € Ob(%) and F(g o f) = Fg o Ff for every pair of

morphisms A ER B C. So, if € and ¢ are usual categories, F is an ordinary functor.
Clearly, functors between wide categories can be composed just as ordinary functors
between usual categories; also, every functor F of wide categories induces an opposite
functor F°P : ¥°P — %”°P, just as for usual categories.

(iii) Likewise, a natural transformation 7, : F = G of two functors F,G : 4 = ¢’
between wide categories, is the datum of a map

Ob(%) — Mor (%) A (ta: FA— GA)

such that Gf o 74 = g o Ff for every morphism f : A — B of €. Clearly, if ¢ and €” are
usual categories, 7, is an ordinary natural transformation of ordinary functors. Also,
the composition laws for natural transformations detailed in extend essentially
verbatim to the context of wide categories, and likewise for the usual definitions of cones
and co-cones : the details shall be left to the reader. Lastly, one can define faithful functors,
full functors, and equivalences of wide categories, just as for usual categories.

(iv) In the same vein as in the foregoing discussion of families of classes, a family of
wide categories (¢; | i € I) indexed by a class I shall be defined as a pair (¢, ) consisting of
awide category ¢ and a functor 7 : ¥ — I from % to the discrete category I. Hence, with
every i € I one may associate a wide category 4; with Ob(%;) := n71(i) and Mor(%}) :=
{f € Mor(¥) | n(f) = i}, and with the composition law and identities induced from %,
in the obvious fashion. Especially, every such family induces the family of classes

(Ob(%) |i € 1) := (Ob(%¥), ).

If every %; is a usual (resp. small) category, we say that (6; | i € I) is a family of categories
(resp. of small categories). Then, for given families of wide categories 4, := (¢, 7) and
€. = (¢’, ') indexed by classes I and I’, we define a family of functors F, : ¢« — 6, as
a pair consisting of a functor F : € — ¢’ andamap ¢ : [ — I’ such that 7’ o F = ¢ o 7.
Again, any family of wide categories (%, p) admits a tautological disjoint union :

|_|<gi;=<g

iel

and if I is a set, we have as well a product [ |,_; €; whose class of objects is [ ],.; Ob(%})

and with morphisms :

%650 =[Gs0.5()  V¥s.5" € ob([]4).

iel iel iel

iel iel

The reader is invited to spell out the universal properties of these constructions.

Example 1.2.5. For every wide category %, we let ~4 be the equivalence relation on
Ob(%¥) such that X ~ Y if and only if there exists an isomorphism X = Y in €. With
Scott’s trick (remark [1.2.1(ii)), we may form the quotient :

Ob(%) := Ob(€)/~% .

Every functor F : € — %" of wide categories induces a map F : 0Ob(%) — Ob(%"),
and we say that F is essentially injective (resp. essentially surjective) if F is injective (resp.
surjective).

Example 1.2.6. (i) For every wide category % we let ~¢ be the relation on Ob(%’) such
that X ~¢ Y if and only if there exists k € N and a chain of morphisms of € :

X—=>XiXp—> - —X—>Y.
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It is easily seen that ~¢ is an equivalence relation on Ob(%’), and by applying Scott’s
trick (remark 1.2.1ii)), we can form the quotient map

p% : Ob(€) — m(€) := Ob(€) ~+ .
Obviously, for every X, Y € Ob(%) we have € (X,Y) # @ ifand only p(X) = p(Y); hence,
we may regard py as a functor pg : € — my(€), i.e. a family of wide categories
(¢ili € m(€))

and every fibre %; is a connected full wide subcategory of €. We call (%; | i € my(€)) the
decomposition of € as the union of its connected components; by remark iv), we get
a tautological identity :

¢= || %
i€my (€)

(ii) It is easily seen that every functor F : 4 — % induces a unique map

| 7o(F) : 70(%) — 70(€)  suchthat  my(F) o poy = pes o F.

(iii) Especially, the rules: € +— my(%) and (F : B — €) +— my(F) yield a functor :
7y : Cat — Set.

Remark 1.2.7. We have moreover, three adjoint pairs of functors :

]no:CatﬁSet:dis:SetﬁCat:Ob:CatﬁSet:ch\

where dis is the functor of example [1.1.9(ii). Indeed, clearly every functor ¢ — dis(S)
factors through pe and dis(f), for a unique map f : 7(%) — S; conversely, any such
f induces a functor € — dis(S). Hence, the rule : ¥ + pe yields the unit for the
first adjunction. Notice that [0] := dis({@}) is the final object of Cat. The unit for the
second adjunction attaches to every set S the identity map 15 : S — S = Ob(dis(S)). The
functor ch attaches to every set S the chaotic category structure on S, defined as the unique
category ch(S) that is equivalent to the final category [0], and whose set of objects is S;
i.e. ch(S)(x,y) := {@} for every x,y € S. Notice that the datum of a functor € — ch(S)
is equivalent to that of a map Ob(%) — S, whence the last stated adjunction.

1.2.8. Wide limits and wide colimits. Just as for sets, a family of small categories can also
be defined as a functor from a discrete category I

%. : I — Cat i G.

To such a functor we may attach the family of categories (%, p) such that Ob(¥) :=
Ll;cr Ob(%7); we set € ((i, X), (i, Y)) := 6;(X,Y) for every i €  and every X,Y € Ob(%),
and € ((i,X), (j, Y)) = @ whenever i # j, and we endow € with the obvious composition
law, so that the rules : X — (i, X) for every X € Ob(%;) and f + f for every morphism
f of €, yield a functor j; : ¢; — € for every i € I. The functor p : € — I shall just
be the projection : (i, X) + i for every (i,X) € Ob(%¥). If € is small, it represents the
direct sum in Cat of the family of small categories %., and j. := (j; | i € I) is a universal
co-cone. This leads to the following definition :

Definition 1.2.9. (i) Let I be a category, F : I — Cat a functor, and ¢ a wide category.
A co-cone with basis F and vertex € is a family of functors 7, := (7; : Fi — % |i € Ob(I))
such that F¢ o 7; = 7; for every morphism ¢ : i — j of I. We say that z, is a global cone,
if for every wide category % and every cone 1, with basis F and vertex 2, there exists a
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unique functor G : # — € such that n; = G o 7; for every i € Ob(I). In this case, we also
say that & represents the wide colimit of F.

(ii) Dually, A cone with basis F and vertex € is a family of functors 7, := (7; : € —
Fi|i € Ob(I)) such that 7; o F¢ = 1; for every morphism ¢ : i — j of I. We say that 7,
is a global cone, if for every wide category % and every cone n, with basis F and vertex
A, there exists a unique functor G : 4 — 4 such that nj; = 7; o G for every i € Ob(I). In
this case, we also say that € represents the wide limit of F.

Lemma 1.2.10. (i) Let € be a wide category, and S C Mor(%) any subclass. Then there
exists a unique minimal wide subcategory €s with S C Mor(%5s).
(ii) If S is a set, then €5 is a small category.

(iii) Let (P (€), <) be the class of all subsets of Mor (%), filtered by inclusion of subsets.
Then € represents the wide colimit of the functor

% (P(€),<) > Cat S Gs.

Proof. (i): Let s, t : Mor(%) — Ob(%) the source and target maps (see definition i)),
and set X := s(S)Ut(S). Without loss of generality, we may assume that {14 | A € X} C S.
For every A, B € X, define inductively the family of classes (H, (A, B) | n € N) as follows :

e Hy(A,B) =€ (AB)NS

® Hy1(AB) :=Ucex{go f|f € Hi(AC),g € H,(C,B)} for every n € N.
It is easily seen that there exists a unique wide subcategory €s of € such that Ob(%s) = X
and 65 (A, B) := U, iy Hn (A, B) for every A, B € X, and clearly %5 will do.

Assertion (ii) follows by direct inspection. To check (iii), it suffices to notice that

USE(@(%) Ob(cgs) = Ob((g) and USE(@(%) MOI'(CKS) = MOI'(%) O

1.2.11. Class-valued functors. Even though there cannot be any category (nor any wide
category) whose objects are all the classes, we can still define a workable replacement
for the would-be functors taking values in the inexistent category of classes. Namely, we
make the following :

Definition 1.2.12. (i) A class-valued functor on a wide category I is the datum of :
(a) a family of classes p : .# — Ob(I) indexed by Ob(I)
(b) a family of maps indexed by Mor(I) (notation of and :
F:.F Xps) Mor(I) — F X(p,r) Mor(I)

where .7 X, ) Mor(I) is regarded as a family of classes indexed by Mor(I), via the natural
projection .% X(, ) Mor(I) — Mor(I), and likewise for .7 X, ;) Mor(I). We write Fi :=
p~1(i) for every i € Ob(I), and denote by F¢ : Fi — Fj the restriction of F to the fibres
over any morphism ¢ : i — j of I. The datum (.%,; F) must moreover fulfill the usual
identities, i.e. F1; = 1p; for every i € Ob(I), and F(y o §) = F(y) o F(¢) for every
composable pair of morphisms ¢ : i — j, ¢ : j — k of I. Clearly, if each fibre Fi is a set,
such a datum is equivalent to that of a functor F : I — Set.

(ii) Let F, G be two class-valued functors on I. A natural transformation z, : F = G is
the datum of a family of maps (7; : FA — GA|i € Ob(I)) such that G¢ o 7; = 7j o F¢ for
every morphism ¢ : i — j of I. Likewise, we define cones cs = F and co-cones F = cg,
for a given class-valued functor F and a given class S, just as in

Example 1.2.13. (i) Let X,Y be two classes, and f,g : X == Y two maps; according
to example and remark [1.2.1{ii) we may form first the smallest equivalence relation
~ on Y such that f(x) ~ g(x) for every x € X, and then construct the quotient map
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p:Y > Q: =Y/~ If X andY are sets, (Q, p) represents the coequalizer of f and g in the
category Set. In case X and Y are proper classes, (Q, p) still enjoys the universal property
of a coequalizer : for every class Z and every map h : Y — Z such that ho f = ho g, there
exists a unique map k : Q — Z such that h =k o p.

(if) Recall also that for every family of classes (C; |i € I), the (tautological) disjoint
union | |;e; C; enjoys the universal property of a direct sum; then, arguing as in the proof
of [13] Prop.2.40], we may attach more generally to any class-valued functor F (on an
arbitrary wide category I), a class C and a co-cone 7, := (7; : Fi — C|i € Ob(I)) (meant
as in definition [1.2.12(ii)) that enjoys the universal property of a universal co-cone : for
every class D and every co-cone 1, := (17; : Fi — D |i € Ob(I)) there exists a unique map
f:C — D suchthatn; = f o r; for every i € Ob(I) : the details are left to the reader. We
call C the global colimit and 7, the global co-cone of F.

(iii) If I is a filtered wide category, a more explicit construction for the colimit or global
colimit of any class-valued functor F on I is available; indeed, set

S = u Fi.
i€Ob(I)
We have an equivalence relation ~ on S such that (i,x) ~ (i’,x") if and only if there

exists i’ € Ob(I) and morphisms i i i’ l i’ of I such that F@(x) = Fy(x") (see [13]
Exerc.2.31(i)]). The quotient class Q := S/~ is well defined as in remark 1.2.1[ii), and for
every i € Ob(I) we have a map 7; : Fi — Q that assigns with every x € Fi the class
[i, x] of the pair (i,x) € S. As explained in [13] Exerc.2.31(ii)], if F is actually a set-valued
functor on a usual category I, and if Q is a set, then Q represents the colimit of F, and
T, := (73 | i € Ob(I)) is a universal co-cone F = cp; for a general F, the class Q represents
the global colimit of F, and the family of maps z, yields a global co-cone.

(iv) Likewise, to any small category I and any class-valued functor F on I we can
associate a global limit L and a global cone po := (p; : L — Fi|i € Ob(I)) : namely, L is
the subclass of the product P := |—|i60b( 1) Fi (defined as in consisting of all coherent
sequences, defined as in [13] Exemp.2.22(i)], and each ; is the restriction of the projection
P — Fi. The reader is invited to spell out the universal property of (L, pe).

1.2.14. Powers and copowers. For any category €, any X € Ob(%) and any class S, we
denote by
x® (resp. X5)

the coproduct (resp. the product) in € of the family (X |s € S) with X; := X for every
s € S, ie. the disjoint union (resp. the product) of copies of X indexed by S, when such
coproduct (resp. product) is representable in %, in which case we sometimes call it the
S-copower (resp. the S-power) of X. Notice that every map of classes f : S — T induces
well-defined morphisms

xH xS 5 xM and xF i xT 5 xS

when X and X(T) (resp. XT and X°) are representable. Namely, X/) and X/ are the
unique morphisms of ¢ that make commute the diagrams :

X=X )(Txéf-)cS

J;gl/ lj}m ”}(s)l lﬂf Vs€S
x X(T) —x
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where j5 = (jS : X — XS s € S)and jI := (]tT : X — XM |t € T) are chosen
universal co-cones, and likewise, 75 and 7] are universal cones. The morphism X )
depends on the choice of j$ and jI, but a different choice alters X/ ) by left and right
compositions with isomorphisms of %, so the categorical properties of X f) are intrinsic.
The same applies to X7 If X(5) is representable for every set S, then we get a functor

X :Set>%€ S x©® (SLT) — X

and if X® is representable for every set S, we get a functor
X :Set?P 54 S X° (SLT)fo.

1.3. Categories of functors. To any small category I we attach a category :
Fun(I, <) or sometimes !

whose objects are the functors I — o (notice that, since I is small, every such func-
tor is encoded by a set), and whose morphisms are the natural transformations between
such functors, with the standard composition law explicited in Notice the natural
isomorphism of categories ([13} Rem.1.127(iv)]) :

Fun(l, @) =5 Fun(I®, #/°?) F F® (1,:F = G) — (1)¥ : G = F°P).

e Every functor ¢ : I — J between small categories induces a functor

d ! > JE NI ) (i F26)

also denoted Fun(¢, o). Likewise, every functor H : &/ — 2 induces a functor

Fun(LH) =H : /' > B (15 o) HoF (r.:F=0G) H*r..

Example 1.3.1. (i) For every set S, we may form the category <75 (here S is regarded as
a discrete category : see example ii)); if o7 is small, then .27° represents the S-power
of &7 in Cat (as in §1.2.14), with universal cone given by the system

A % > g S g Vses

where js : {s} — S denotes the inclusion of {s} in S, regarded as an inclusion functor of
discrete categories. When <7 is not small, the system o//* := (@/’s : &5 — o/ |s € S)
still yields a well-defined family of functors indexed by S (in the sense of remark|[1.2.4{iv)),
providing a global cone, and <7 still enjoys the universal property of a categorical power.
Explicitly, the objects of .27° are the families A, := (A |s € S) of objects of <7, and the
morphisms f, : Ae — B, are the systems (fs : As — Bs|s € S) of morphisms of &7; it
is then easily seen that such a morphism f, is a monomorphism (resp. an epimorphism,
resp. an isomorphism) if and only if the same holds for f;, for every s € S.

(ii) A functor F : I — 7* is the just datum of a family (F; : I — <7 | s € S) of functors,
and a natural transformation 7, : F = G between functors F, G : [ = ./ is just a family
of natural transformations (z{ : F; = Gs|s € S). Especially, for every A, € Ob(27°), a
cone 7, : ¢4, = F is the datum of a family of cones (7] : ca, = Fs|s € S); hence, such a
cone 7, is universal if and only if the same holds for every z, and likewise for universal
co-cones : i.e. each functor @/’s preserves all representable limits and colimits.
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1.3.2. Let j; : Ob(I) — I be the unique functor from the discrete category Ob(I) to I
that is the identity map on objects; the associated evaluation functor

er = " — gD Fs (Fili € Ob(I))

is conservative and preserves and reflects every representable limit and colimit of /T : in
other words, limits and colimits in </T are computed termwise. As a consequence, if .27 is
J-complete (resp. J-cocomplete) for some category J, then the same holds for .77 (see
[13l Lemma 2.55, Rem.2.56 and 2.58(ii)]). Also, if all fibre products (resp. all amalgamated
sums) are representable in o7, then e; preserves and reflects monomorphisms (resp. epi-

morphisms), by virtue of remark|1.1.11{iv).

e For every i € Ob(I), the composition of e; with o7/ : o7 ") — o is the evaluation
functorati :

ei: A > o F+— Fi (T.:FﬁG)l—)(Ti:Fi—)Gl')‘

that preserves all representable limits and colimits, in light of example [1.3.1{ii).
o The category 27 is I-complete (resp. I-cocomplete) if and only if the functor

cI:,;z{—>,gziI X cx (f:X—>Y)> (cp:ex —cy)

(notation of admits a right adjoint (resp. a left adjoint)

LiIm:;sz—uzf (resp. CoIIim:,Q{I—mz%).

Namely, for every functor F : I — </ fix a universal cone 7l : c (ry = F (resp. a
universal co-cone 1! : F = c¢(r)); then Lim; (resp. Colim;) assigns to F the object L(F)
(resp. C(F)) of &7, and to every natural transformation y, : F = G, the unique morphism

li}n,u. : L(F) — L(G) (resp. collim 7o : C(F) = C(G))
such that 7€ o ¢jim, 7. = fte © ¥ (resp. such that ccolim, 7, © 75 = 1S o p.) : see [13} §2.3.3].

1.3.3. Let J be a small category, and €, Z two categories. The datum of a functor
G:JXC€ —>9

is equivalent to that of a functor
G :C— 9.

Namely, for such G and every X € Ob(%’) we let G}, : ] — & be the functor given by the
rules: j — G(j,X) and u — G(u, 1x) for every j € Ob(J) and every u € Mor(J); then, to
every morphism f : X — Y of ¥, we attach the natural transformation G},. :Gy — Gy,
such that j = (G(1}, f) : G4 (j) — G} (j)) for every j € Ob(J). Conversely, from every
such G’ we can recover easily the corresponding functor G : see [13| Lemma 2.55].

e Suppose moreover that 7 is J-complete (resp. J-cocomplete); we then set

lirJn'G = Li]m oG': 6 — 2 (resp. coljim’G = Co}lim oG': ¢ — 2).

For every j € Ob(J), let also G;.’ : € — 2 be the functor given by the rules: X — G(j, X)
and f — G(1;, f) for every X € Ob(%’) and every morphism f of €.
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Lemma 1.3.4. In the situation ofq1.3.3} let I be a category such that G preserves I-limits
I(resjl). I -co)limits) for every j € Ob(J). Then lim} G (resp. colim} G) preserves I-limits (resp.
-colimits).

Proof. To construct lim} G we fix a universal cone 7¥ : Clim) GX = Gy for every X €
Ob(%); for every f € ¢'(X,Y), the morphism lim} Gf : limj; GX — lim} GY is then
characterized as the unique morphism of & that makes commute the diagram

lim; Gf
lim), GX —— lim) GY
fjxl l Vj € Ob(J).
! G(1;.f) :
G(j,X) ———G(j,Y)

Hence, for every j € Ob(J) we get a natural transformation
7} lim'G = G} X - TJX
J

Now, let F : I — % be any functor, and 5, : ¢, = F a universal cone; by assumption,
G}' * e : CG(j,L) = G}' o F is a universal cone for every j € Ob(J), and we need to check
that the same holds for lim} G x 1, : Clim, GL = (lim}; G) o F.
Hence, let w, : cp = (lim'J G) o F be any cone; then for every j € Ob(J) there exists
a unique morphism ¢; : D — G(jj, L) such that :
(G} *me) ocy, = (7] x F) 0 w..

Claim 1.3.5. The rule : j — ¢; defines a cone ¢ : cp = Gj.

Proof : We need to check that G (u) o ¢; = ¢y for every morphism u : j — k of J. To this
aim, consider the commutative diagram :

i G(u,
D——" S G(jL) Sl | G(k,L)
wfl lc(ljm lcuk,m) Vi € Ob(I)
oFi _
lim) G(Fi) ——— G(jj, Fi) Clwtr) G(k, Fi)

and notice that the composition of the bottom horizontal arrows is 7f; hence the compo-
sition of the top horizontal arrows must be ¢, by the uniqueness property of the latter
morphism. <

By claim[1.3.5|we get a unique morphism
g:D— liJm'GL such that thocy = .
Let us check that (Iim} G * 1.) 0 ¢y = wo. The assertion means that w; = lim} G(nij)og

for every i € Ob(I), and the latter is equivalent to the system of identities :

Tl.:iowisziolirjn'G(ryi)og Vj € Ob())

J
in view of the universality of 7/*. However :
7j 0w =G(1m) 0 gy = Gl otjog=7j o lim'Gln) o g

as required. Conversely, if h : D — lim; GL is another morphism of & with (lim}; G*n,)o
Ch = w., then by arguing as in the foregoing we see that G(1;,1;) o ¢; = G(1j,1;) © T]I-' oh
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for every i € Ob(I) and j € Ob(J), whence T]L o h = ¢; for every such j, by universality
of G/ x ., and finally, h = g, by universality of Tk,

The assertion for colim’, G follows by duality with remark i), recalling that we
have colim’ G = (lim}., G)°? and (G*®)} = (G})°® for every j € Ob(]). O

1.3.6. Permutation of limits and colimits. Let I, ] be two small categories, and ¢ any cat-
egory. To every functor G : J X I — % we may then attach G’ : I — %7 as in
moreover, by composing G with the obvious isomorphisms of categories I X | = J X I
we get a functor I X J — %, whence a functor as in that we denote G : ] — ¥
These associations define isomorphisms of categories ([13} Lemma 2.55(i)]) :

(¢ & e = ¢y G — G G".

If € is I-complete (resp. I-cocomplete), we may set as well :

hl}l”G = LiIm oG" : ] > € (resp. coliIm"G = CoIlim oG" : ] = F).

Lastly, suppose that € is both I-complete and J-complete (resp. both I-cocomplete and J-
cocomplete); then € is also (I X J)-complete (resp. (I X J)-cocomplete), and the rules :
G+ lim} G and G + lim}’ G (resp. the rules : G - colim} G and G + colim]’ G) define
functors :

Lim’ Lim/ Colim),

Colim?
¢ —— ¢ —5H ¢ (resp. €' —— ¢ —5

%)

Moreover, we have natural isomorphisms of functors ([13] Prop.2.57, Rem.2.58]) :

LiImOLi}n' < Lim = LimoLim”

(resp. ColimoColim” ¢ Colim => ColimoColim”).
IxJ J I I J Ix J I

Summing up, we may say that the I-limits in € commute with the J-limits (resp. the I-
colimits in € commute with the J-colimits). On the other hand, suppose that € is both
I-complete and J-cocomplete; then we have a natural transformation :

I, . . . .
wb? : Colim o Lim” — Lim o Colim’
I I J

which however is not necessarily an isomorphism of functors ([13| Prob.2.59]), but in case
it is, we say that the I-limits in € commute with the J-colimits. As usual, the construction
of wi’ requires several choices, but is independent of such choices, up to composition

with isomorphisms, so its categorical properties are intrinsic.

Example 1.3.7. (i) According to [13 Prob.2.59(ii)], the finite limits in the category Set
commute with all small filtered colimits, i.e. the I-limits in Set commute with the J-colimits,
for every finite category I and every small filtered category J.

(ii) Let o/ be any small category. Since the limits and colimits in Set” are computed
termwise (see §1.3), it follows from (i) that the finite limits in the category Set” commute
with small filtered colimits. See lemma for a generalization.

(iii) From (i) it follows that the functor Colim; : Set/ — Set is exact for every fil-
tered set J; combining with and remark iii), we deduce that Colim; preserves
monomorphisms : explicitly, for every F,G € Ob(Set/) and every natural transforma-
tion 7, : F = G such that 7; : Fj — Gj is injective for every j € J, the induced map
colimy 7, : colim; F — colim; G is injective. More generally, by the same token, the
colimit of any filtered system of monomorphisms in Set” is a monomorphism.
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(iv) It is also easily seen that the fibre products in the category Set commute with all
small direct sums : i.e., for every set S, every family of maps of sets :

(Xs = Zs « Ys|s€S)

induces a natural bijection :

| %%z, Yo = (| %) %,z (| %)

seS seS seS

Again, it follows that the same assertion holds more generally in Set .

Remark 1.3.8. (i) The foregoing discussion extends partially to global limits and global
colimits : let I, J be two categories, F., a class-valued functor on I X J, and recall that F,.
is defined by a family of classes (F;; | (i, j) € Ob(I x J)) and a family of maps (see :

(Fpy : Fij = Frj | ((,9) = (i, j) = (i, j')) € Mor(I X J)).

For each i € Ob(I), we deduce by restriction a class-valued functor F;, on J, given by
the family of classes (F;; | j € Ob(J)) and the family of maps (F;y := Fy,y | € Mor(J)).
Then, for every such i, let C; and ;. be respectively the global colimit and the global
co-cone of F;,, constructed as in example ii); we thus obtain a well-defined family
of classes (C;|i € Ob(I)), and with the universal properties of the pairs (C;,7;s) we
may assign to every morphism ¢ : i — i’ of I a unique map Cy : C; — C; such that
Cp o nij = nijo Fya, for every j € Ob(J). Clearly, we get in this way a family of
maps (Cy4 | ¢ € Mor(I)) which yields a class-valued functor C,, whose global colimit and
global co-cone we denote by C and respectively o := (5; : C; — C|i € Ob(I)); one
checks easily that C also represents the global colimit for the class-valued functor F.,.,
with global co-cone given by the family of maps (; o : Fi; — C| (i, j) € Ob(I X J)).

(ii) Likewise, if I and J are small categories, we may form the global limit L; of each
class-valued functor F, ; on I (defined as the obvious restriction of F,.), and together with
the corresponding system of global cones ¢, j, the system (L; | j € Ob(J)) yields a well-
defined class-valued functor L, on J, whose global limit also represents the global limit
of F, . : we leave the details to the reader.

(iii) Lastly, if I is small, we may first form the class-valued functors C, on I and L, on J
as in (i) and (ii), together with the respective systems of global co-cones (1;4 | i € Ob(I))
and global cones (&, ;|j € Ob(J)); next, let colim; L, and lim; C, be respectively the
global colimit of L, and the global limit of C,, with their global co-cone and global cone

Ne:=(nj:Lj — co}imL. | j € Ob(J)) £o = (& : li§nC. — C;|i € Ob(I)).

Then, following [13] Prob.2.59], we get a natural map of classes
T: co}imL. - li§nC. such that E&OTON; =1;jO¢j Y(i,j) € Ob(I X J).
The map 7 is not always a bijection, but arguing as in the solution of [13| Prob.2.59(ii)]

one can check that 7 is bijective in case I is a finite category and ] is a filtered category.

1.4. Slice and comma categories. Let .o/ and % be two categories, and F : &7 — A a
functor; to every B € Ob(Z#) we attach the slice category of F over B, denoted :

Fd/ B

whose objects are the pairs (A, FA 5 B) for all A € Ob(«/) and all u € Z(FA, B); the
morphisms w/B : (A, u) — (A’,u’) of Fo/ /B are the morphisms w : A — A’ of o/ such
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that u’ o Fw = u, i.e. the commutative triangles

FA—" o pa

N

with the composition law inherited from .2#. We have an obvious source functor :

’sB:FJZ//B—>42/ (Au)— A W/BHW.‘

e Dually, we define the slice category of F under B as :
B/Fgf = (F°P./°P | BP)°P,

Namely, the objects of B/F.2/ are the pairs (A, B 5 FA), ranging over all A € Ob(«%/)
and all u € &7 (B, FA), and the morphisms B/w : (A,u) — (A’,u’) are the commutative

triangles of A :

FA'.

Then the correponding target functor is :

’tB := (sgop)®P : B/Fl — of (Au)— A B/w > w. ‘

o In the special case where F := 1./, we get, for every A € Ob(2/), the slice categories
of objects of o/ over A and respectively under A :

A =1,9]A Al = A1y

So Ob(.7 /A) consists of the pairs (A’,u : A” — A) with A’ € Ob(«/) and u € o/ (A, A),
and the morphisms w/A : (A’,u) — (A”,v) are the morphisms w : A” — A” of o/ such
that v o w = u, and likewise for the objects and morphisms of A/.<7.

o The family (FA/% | A € Ob(%7)) can be combined into a single comma category
Fof |
whose objects are the triples (A, B, f) with A € Ob(&7), B € Ob(Z) and f € ZB(FA, B).
The morphisms (h, k) : (A, B, f) — (A’,B’, f’) are the commutative diagrams :

Ff
FA——B

/| |
FA’ L> B’
withh € &/ (A, A’) and k € B(B, B'), with the obvious composition law : (h’, k")o(h, k) =
(k" o bk’ o k) for every composable pair (h, k), (h’, k") of morphisms.
Likewise, the family (B/F.<Z | B € Ob(Z)) can be combined into the comma category
B|Faf = (FPA°P | 5B°P)°P

and we have obvious source and target functors :

A EFA|B>B A (ABf)—B  hei(hk)—k
BEBIFAS of  Be (BAf)—A ke (kh)—h
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1.4.1. Every functor F : &/ — 2 and every morphism f : B — B’ of % induce a functor

f i Fd|B—Fd /B (FASB) > (FALSB)  w/Bo w/B

and by dualizing, we also get a corresponding functor f; := ((f°P)*)°P; explicitly :

fiiBJFd — B/F (B 5 FA) — (BLL FA) B /w > Bjw'.

e With this notation, F also induces functors :
]F/B .Fo//B— %#/B and BJ/F:B/F</ — B/%  (Au)— (FAu) \

such that w/B +— F(w)/B (resp. B/w +— B/F(w)) for every w/B € Mor(F<//B) (resp.
for every B/w € Mor(B/F.2/)). Moreover, any A € Ob(.¢/) induces functors :

Fia: 9/ |A— B[FA (A, u) — (FA’,Fu) w/A +— Fw/FA
a)F: Al — FA| A (A’,u) > (FA’,Fu) A/w +— FA/Fw.

Remark 1.4.2. (i) Let f : A — A’ be any morphism of 7. If all fibre products are repre-
sentable in of, then f* : &/ /A — o/ [A’ admits a right adjoint

u u'><A/A

fir d|A - FJA (B —A)— (B XgA——A) w/A > (W xXgA)JA

where B’ X4’ A denotes a chosen representative in <7 for the fibre product of the diagram

B 5 A i A, and where for every morphism w’ : B® — C’ of o/ we let w’ X4 A :
B’ x4 A — C’ X4 A be the induced morphism between these chosen fibre products.
Namely, the adjunction is given by the associations :

B w B X A (B’ %47 f)ow

B——F#
N NG L
U u'X 0 A fou u
A A

(ii) Dually, if every amalgamated sum is representable in o7, then the functor fi :
A’ o/ — A/ admits a left adjoint

FiAld SN (A5 B) o (A 22 BLLAY) Afw i A (wUa AY).

Proposition 1.4.3. Let o/, & be two categories, F : of — 2 a functor, and B € Ob(A).
Then we have :

(i) The source functor sg : Fof |B — o reflects epimorphisms, is conservative, and
preserves and reflects monomorphisms. Dually, the target functortp : B/Fo/ — < reflects
monomorphisms, is conservative, and preserves and reflects epimorphisms.

(ii) If & is finitely complete and F is left exact, then B/F.</ is cofiltered.

(iii) If o is finitely cocomplete and F is right exact, then Fo/ [B is filtered.
(iv) sp both preserves and reflects all representable connected limits.

(v) Dually, tg both preserves and reflects all representable connected colimits.

Proof. (i): Clearly sp is conservative, and reflects epimorphisms and monomorphisms.
Then, suppose that w/B : (A,u) — (A’,u’) is a monomorphism of F.¢7 /B, and consider
two morphisms f,g : A” = A of &/ such that w o f = w o g; hence u” := uo Ff =
u' oFwoFf = u’oFwoFg = uoFg, so f and g yield morphisms f/B, g/B : (A", u"”") = (A, u)
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with w/B o f/B = w/B o g/B, whence f = g, which shows that w is a monomorphism.
The assertions about tg follow by duality.

(ii) Indeed, if (¢; : B — FA;|i = 1, 2) are any two objects of B/F.<7, the product A; XA,
is representable by some A € Ob(%/), and a universal cone is given by a pair (p; : A —
A;|i = 1,2) of morphisms of .o/; by assumption, the pair (Fp; : FA — FA;|i = 1,2) is
still a universal cone for the product FA; X FA;, whence a unique morphism ¢ : B — FA
such that F(p;) o ¢ = ¢; for i = 1, 2. This shows that B/F.¢/ is codirected. Moreover, if A is
any final object of <7, then FA is a final object of % (remark[1.1.11{ii)), hence Ob(B/F.<)
is non-empty. It then remains only to check that B/F.</ satisfies the equalizing condition
dual to that of definition[1.1.6{v). Namely, let ¢; and ¢, be as in the foregoing, and suppose
we have a pair of morphisms ¢, ¥’ : A; = A, such that F()) o ¢1 = ¢ = F(¢’) o ¢y.
The equalizer of / and ¢/’ is representable by some E € Ob(.2/), and a universal cone for
E is given by a morphism § : E — A; such that ¢ o § = ¢’ o f5; then FE represents the
equalizer of Fy and Fy’, and Ff : FE — FA; still yields a universal cone. There follows a
unique morphism y : B — FE in 4 such that F(f) o y = ¢1, whence the claim. Assertion
(iii) follows from (ii) by duality.

(iv): Let ¢ : I — F.o7 /B be a functor with I connected, and say ¢ (i) := (A;, FA; 4, B)
for every i € Ob(I); let also 7, : c4 = sp © ¢ be any cone. We observe :

Claim 1.4.4. There exists g € A(FA, B) such that g = u; o Fr; for every i € Ob(I).

Proof : By assumption Ob(I) # @, so we may pick any iy € Ob(I) and set g := u;, o Fr;,.
Then, since I is connected, a simple induction reduces to checking that u; o Fr; = u;j o Fr;
for every morphism t : i — j of I. But we have : u; o Fr; = uj o F¢t o Fr; = ujo Fr;. <

By claim we may regard 7. as a cone 7, : ¢(a4) = ¢, and thus obtain a bijection
e — @i between the cones with basis sg o ¢ and the cones with basis ¢ : indeed 7, =
sg * 7, for every such z,. Clearly we have 7 o ¢j/p = (7. © cp)* for every morphism
h/B: (A’,goFh) — (A,g) of F</ | B; it follows easily that 7, is universal if and only if the
same holds for 7, so sp preserves and reflects the limit of ¢. Assertion (v) follows from
(iv) by duality. O

Proposition 1.4.5. (i) Let o7, %, I be three categories, F : o/ — 9B a functor that preserves
all representable I-colimits, and B € Ob(%). Then we have :
(a) The source functorsp : F.o/ |B — o7 reflects all I-colimits.
(b) If of is I-cocomplete, the same holds for F.o/ | B, and sg preserves I-colimits.
(ii) Dually, if F preserves all representable I-limits, we have :
(a) the target functortp : B/Fof — of reflects all I-limits.
(b) If o7 is I-complete, the same holds for B/F<f, and tg preserves I-limits.

Proof. By duality, it suffices to show (i). To prove (i.a), consider a functor
¢:1—Fe//B i (A,FA; - B)

and a co-cone 7. : ¢ = ¢(rf). Suppose that s x 7, is universal, and let 7o : ¢ = c(a4) be
any other co-cone; then there exists a unique h € 2/ (L, A) such that

cho(SpxTes) =SB ke
and we need to show that cj/g © 7o = 7., i.e. that g o Fh = f. But we have :

goFhoFri=goFn=u;=foFry Vi € Ob(I)
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whence the sought identity, as by assumption F * sg * 7, is still a universal co-cone.

(i.b): Let ¢ be as in the proof of (i.a); by assumption, there exists a universal co-cone
Te : Sg © ¢ = cr. On the other hand, we have a co-cone

nt:Fospg = cp (A,FALB)O—)M.
Since by assumption F % 7, is still universal, we then get a unique :
f € A(FL, B) such that r]f * ¢ =cpo(F*r,).
Hence, the rule : i — 7;/B defines the unique co-cone
Te/B ) = C(Lf) such that SB X Te/B = Te

and it suffices to check that 7,/p is universal. Thus, let A¢ : ¢ = c(a4) be any other
co-cone; then we get a unique h € o/ (L, A) with sg x Ae = ¢}, o 7., and arguing as in the
proof of (i.a) we see that A, = ci/p © 7./, Whence the assertion. |

Corollary 1.4.6. Let o7 and ] be two categories, and A € Ob(%7). We have :

(i) The source functor sy : </ |A — of reflects epimorphisms, is conservative, and
preserves and reflects monomorphisms. Moreover, s4 preserves all representable connected
limits, and reflects all colimits and all connected limits.

(ii) Dually, the target functorts : AJ </ — of reflects monomorphisms, is conservative,
and preserves and reflects epimorphisms. Moreover, t4 preserves all representable connected
colimits, and reflects all limits and all connected colimits.

(iii) If o7 is I-cocomplete, the same holds for o7 | A, and s4 preserves I-colimits. Dually, if
o is I-complete, the same holds for A/ .o/, and ta preserves I-limits.

Proof. This is a special case of propositions and O

Lemma 1.4.7. Let o7, 7 and] be three categories, G : &/ — A a functor, and A € Ob().
(i) Denote by I, the category with Ob(L,) := I U {&}, such that :
(a) I is a full subcategory of I,, and @ is a final object of I,
(b) 1,(2,i) = @ foreveryi € Ob(I).
Then, if o is I,-complete, the slice category of | A is I-complete.
(ii) Dually, setI° := (I°P)J¥; then if </ is I°-cocomplete, A/ .o/ is I-cocomplete.
(iii) Moreover, if G preserves I,-limits, then G : @/ [A — 98|GA preserves I-limits.
(iv) Dually, if G preserves I°-colimits, then 4/G : A o/ — GA[|Z preserves I-colimits.
Proof. (i): For every i € Ob(I), let {p;} := I, (i, @). Every functor
FI—)%/A I.HFiZZ(Bi,uiZB,’HA)
induces a functor F, : I, — &/ whose restriction to I agrees with s4 o F, such that
F.(2) = Aand F,(p;) = u; for every i € Ob(I). Moreover, every cone 7, : ¢(py) = F
induces a cone 7o, : cg = F, with 7,; = sa(r;) for every i € Ob(I) and 7,5 := u;

conversely, every cone 77, : cg = F, induces a cone 17e/4 : ¢(B ) = F with 14 :=1;/A
for every i € Ob(I). Clearly the rules 7, = 7o. and 17, > 14/4 are mutually inverse, and

(U‘ch)/A:TI./AOCf/A (TOocg/A)o:TooOCg

for every f € &/ (B, B) and every morphism g/A : (B’,u’) — (B,u) of &/ /A, where
¢ :cp = cpand cgq ¢ c(paw) = €(Bw) denote the constant natural transformations
with values f and respectively g/A, and likewise for cf/4 and c,. It follows easily that if
1o is universal, the same holds for 1,/4, whence the assertion.
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(ii) follows from (i), by duality, and likewise, (iv) follows from: (iii).

(iii): Let ne : cg = F, be a universal cone, so that, by assumption, the cone G % 1, :
cg = G o F, is again universal; notice that (G % 7.)/4 = G4 * 1]a/4, so both 11,/4 and
G/a * 17s/4 are universal, by (i), whence the contention. O

1.4.8. Let o/, & be two categories, F : &/ — 2 a functor, G : A — o/ a left adjoint
for F, and ¢ an adjunction for the pair (G, F). Then, for every A € Ob(%/) the functor
Fia: 9/ |A — PB[FA of §1.4.1]admits a left adjoint that we denote
f 955
Gja:BIFA— A (B> FA) —» (GB—— A)

that assigns to every morphism h/FA : (B, f) — (B, f’) of #/FA the morphism Gh/A :
(GB, 19/;;; (f)) — (GB, 3;113, (f")) in &7 [A. Indeed, & induces an adjunction &4 for the
pair (Gya, Fa) : to every (f : B— FA) € Ob(%/FA) and (g : A’ — A) € Ob(//A) we
assign the bijection

(91a)g.f =  [A(S5(f).9) = BIFA(f.Fg)  h[/A+> Jap(h)/FA.
e Dually, since F°P is left adjoint to G°P ([13] Exerc.2.14(iii)]), we see that for every
B € Ob(%) the functor p/G : B/% — GB/.</ of §1.4.1]admits the right adjoint

f aB(f)
g/F:GB/a/ — B/%# (GB > A) — (B—— FA) GB/h + B/Fh.

The detailed verifications shall be left to the reader. See also remark[1.6.9(i).

Remark 1.4.9. In the situation of §1.4.8] the adjunction & also induces an isomorphism of
categories :

G| B A [FB (GBL A) > (B2, gy

and conversely, every adjunction for the pair (G, F) arises from such an isomorphism.
Indeed, this construction — that allows to describe adjunctions without involving sets —
motivated the introduction of comma categories by Lawvere.

1.4.10. In the situation of let 7o : 1 = FG and &, : GF = 1, be the unit and
counit of the adjunction &, and suppose that all the fibre products of 9 are representable;
then for every B € Ob(%) the functor G,p : #/B — </ /GB admits a right adjoint

Fip: </ /GB — 2/B.
Indeed, for every object (g : A — GB) of 7 /GB let us fix a cartesian diagram :

) Fg
FFA———B

U,*ql/ l/’IB
Fg
FA ——— FGB.

If h/GB : (A,g) — (A’,¢’) is a morphism of 27 /GB, the universal property of the fibre
product yields a unique morphism F*h : F*A — F*A’ of % such that F*¢g’ o F*h = F'g
and 7, o F*h = Fh o n};. With this notation, we set

F/g(A g) = (F*A F'g) and F/g(h/GB) := F*h/B : F/p(A,g) — Fip(A’,g")
for every such (A4, g) and h/GB. It is easily seen that these rules define a functor as sought.
In order to check that F,p is right adjoint to G,p, consider any morphism

h/G
G5B LB % (4% G6B)  ino//GB.
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Hence, h : GB’ — A is a morphism in &/ with g o h = Gf, and we notice that :
Fgo 8ap(h) =FgoFhong =FGfong =npo f.
It follows that there exists a unique morphism k : B* — F*A of % such that n}, o k =
Gap (h) and F*g o k = f. With this notation, we set
(9/B)g,r(h/GB) :=k/B: (B, f) — F/p(A,9) in #/B.
Conversely, to every morphismk/B : (B, f) — F;g(A, g) of /B we attach the morphism
h:= 9,5 (nok) : GB' — A. Let us show that h/GB : G/g(B’, f) — (A, g) is a morphism
in &7 /GB; recalling that F*g o k = f, it suffices to compute :
goh=goexoGnyok) = eas o GFgo Gl o k) = écs o Glng 0 F'g o k)
=écpoGnpo f) =Gf
where the last equality follows from the triangular identities for the unit and counit
(Ne, €o) (see [13] Prob.2.13(iii,iv)]). Hence the map

(9/8)g.f : @ |GB(Gp(B', f). (A, 9)) — #/B((B, f).Fi5(A, 9))
is a bijection with inverse given by the rule : k/B + 9, (1} 0k)/GB. Indeed, by definition
(S/B)g,f(ﬁgé/(ﬂj; o k)/GB) is the morphism (B', f) — F/g(A,g) of /B determined by
the pair (dap 955 (17 © k), f) = (7, o k, f), which is just k/B, and on the other hand,
Oun (ny © (98)g,r(h/GB)) = 943, © dap (h) = h, whence the contention. The naturality
of (J/p)g,r With respect to g and f follows by a simple inspection : details left to the reader.

o Dually, we see that if all the amalgamated sums of o/ are representable, then for every
A € Ob() the functor 4/F : A/ &/ — FA/9% admits a left adjoint

4)G:FA|%B — Al o
which the reader is invited to spell out. See also remark[1.6.9]ii).

1.5. Coinitial and cofinal functors. Let I and % be two categories, and F : I — % any
functor. For the computation of the limit or colimit of F, it may sometimes be desirable
to replace the indexing category I by simpler ones. That is, we would like to be able to
detect whether a given functor ¢ : ] — I induces an isomorphism from the colimit of F
to that of F o ¢, and if possible, to construct useful functors of this type, to aid with the
calculation of limits or colimits. Concerning the first aim, one has a general criterion, for
which we shall need the following :

Definition 1.5.1. Let I, ] be two categories, and ¢ : ] — I a functor.

(i) We say that ¢ is cofinal if the slice category i/¢] is connected, for every i € Ob(I)
(see definition [1.1.6{jii)).

(if) We say that ¢ is coinitial if $°P : J°P — I°P is cofinal.
(iii) If ¢ is the inclusion functor of a subcategory J of I, and ¢ is cofinal (resp. coinitial)
we also say that J is cofinal in I (resp. that ] is coinitial in I).

(iv) We say that a category ¢ is cofinally small (resp. coinitially small) if there exists a
small category % with a cofinal (resp. coinitial) functor #Z — %.

Proposition 1.5.2. With the notation of definition[1.5.1 we have :
(i) ¢ is a cofinal functor & for every category <7, every A € Ob(«/), every F € Ob(&/T)
and every co-conet, : Fod = ca, there exists a unique co-conene : F = cs Witht, = e% .
(ii) ¢ is a coinitial functor & for every o7, A, F as in (i), and every cone t, : c4 = F o ¢,
there exists a unique cone 1o : c4 = F such that 7, = ne x ¢.
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Proof. By duality, it suffices to prove (i). Then, suppose first that the condition of (i) holds
for every o7, A, F and z,; for every i € Ob(I), consider the functor

I(G,-):I—Set ' = IG1) (5 e (IG5 1,i"))

where we define u,(v) := u o v for every v € I(i,i’). To every set S and every co-cone
Te : I(i,—) 0 ¢ = cg we attach the map

g :Ob(i/g]) =S (jii> ¢)) - 7;(0).
Claim 1.5.3. (i) The map g, factors through a (unique) map g, : o (i/¢pJ) — S.

(if) Conversely, for every map f : m(i/¢J) — S there exists a unique co-cone 7, :
I(i,—) o ¢ = cs such that f = g, (notation of example[1.2.6).

Proof : (i): Clearly it suffices to check that g.(v) = g,(v") for every object (j, i N ?J)
and every morphism i/u : (j,0) — (j’,v") of i/¢]. But since v’ = @(u).(v) we have
75 (0") = 777 (¢(u).(v)) = 7j(v), whence the assertion.

(ii): Let p : Ob(i/@J) — mo(i/PJ) be the projection; for every j € Ob(J) we let
7j : I(i,$j) — S be the map such that 7;(v) := f o p(v) for every v € I(i, $j). It is easily
seen that the system (7; | j € Ob(J)) yields the sought co-cone 7., and the uniqueness of
Te is Clear. &

Now, by applying claim with ¢ := 1;, we get as well, for every set S, a bijective
correspondence between the co-cones 7, : I(i,—) = cs and the associated maps gy :
7mo(i/I) — S; moreover, by inspection of the constructions we see that :

Tpuwgp = Iy © To(i/).

Summing up, under our assumption for ¢, claim[1.5.3|implies that 7o (i/¢) is a bijection
o (i/PJ) = mo(i/I). But mo(i/I) is a set of cardinality one, since i/I has an initial object;
on the other hand, i/¢] is connected if and only if 7y(i/¢]) is a set of cardinality one, so
the condition for ¢ in (i), with <7 := Set and every functor F := I(i, —), implies that ¢ is
cofinal, as stated.

Conversely, suppose that ¢ is cofinal, let F € Ob(g/ ), and consider two co-cones
Nes N : F = c4 such that ne x ¢ = 1, % ¢; by assumption, for every i € Ob(I) the category
i/¢] is non-empty, so pick any morphism u : i — ¢j in I. We then have :

ni =1Ng; o Fu=nj, o Fu=n;

S0 1e = 1,. It remains to check that every co-cone 7, : F o ¢ = c4 equals 1o x ¢ for some
co-cone 7, : F = c4. To this aim, we claim that the map

7o : Ob(i/¢J) — Mor () (i N ¢j) > (Fi rjoFu A)

is constant for every i € Ob(I). Indeed, say that ¢’ Py BN ¢j are two morphisms of
/; we need to check that 7j 0o Fu = rj o Fu’, and since i/¢ ] is connected, we may assume
that there exists v € J(j, j*) such that ¢(v) ou = u’. Then :
7j» o Fu' = 1y o F(¢v) o Fu = 7j o Fu

as required. We then obtain a well-defined map 1, : Ob(I) — Mor(%/) such that 7jo Fu =
n; for every i € Ob(I) and every morphism u : i — ¢j of I; to conclude, it suffices to
check that 7, is a co-cone F = cy4. Indeed, let w € I(i,i"), and pick (i N ¢j) € Ob(i/p])
and (i’ N ¢j’) € Ob(i’/¢J); we have just seen that 7(i, u) = 7(i,u’ o w) = T(i’,u’) o Fw,
i.e. n; = ny o Fw, whence the contention. O
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Corollary 1.5.4. Let I, ], o/ be three categories, ¢ : | — I and F : I — of two functors,
A € Ob(),ne:ca = Facone andt. : F = c4 a co-cone. We have :

(i) Suppose that ¢ is cofinal; then 7, is universal < the same holds for ro * ¢.

(ii) Suppose that ¢ is coinitial; then no is universal < the same holds for ne * ¢.
Proof. By duality, it suffices to prove (i). Hence, suppose first that 7, is universal, and
let B, : F % ¢ = ca be another co-cone; by virtue of proposition [1.5.2[i), there exists a
unique co-cone a, : F = cas such that f = ae * ¢, and then as = cf o 7, for a unique
f € (A A),sothat Bo = cf o (7. * ¢). Suppose next that f, = ¢4 o (s * $) for some
other g € &7 (A,A"); then (cgo7e) *$ = (cy07s) * ¢, 50 cf 0 Ts = ¢4 0 To, again by virtue of
proposition[1.5.2]i), and finally, f = g, by the universality of 7,. Hence, 7, * ¢ is universal.

The proof of the converse assertion is similar, and shall be left to the reader. O

Remark 1.5.5. (i) A direct inspection shows that the proof of proposition also gives
the following criterion. A functor ¢ : J — I is cofinal & for every class-valued functor
F on I, every class A, and every co-cone 7, : F o ¢ = cyu, there exists a unique co-cone

Ne : F = c4 with 7, = ne % ¢ (see definition|[1.2.12).

(if) Dually, a functor ¢ : ] — I is coinitial & for every F and A as in (i) and every
cone 7, : c4 = F o ¢, there exists a unique cone 7, : c4 = F with 7, = e % ¢.

(iii) Likewise, corollary admits the following variant. Let ¢ : ] — I be a cofinal
functor, F a class-valued functor on I, and A a class; then a co-cone 7, : F = c4 is a global

if and only if the same holds for 7, x ¢. Dually, if ¢ is coinitial, then a cone n, : c4 = F
is global if and only if the same holds for 1, *x ¢ (see example [1.2.13{ii,iv)).

Corollary 1.5.6. (i) LetI i J i K be two functors, and suppose that ¢ is cofinal (resp.
coinitial). Then  is cofinal (resp. coinitial) if and only if the same holds for i o ¢.

(ii) LetI ﬂ J Lot S Bbe three functors, and suppose that ¢ is cofinal (resp. conitial).
Then G preserves the colimit (resp. limit) of F < G preserves the colimit (resp. limit) of Fo.
Also, G reflects the colimit (resp. limit) of F & G reflects the colimit (resp. limit) of F o ¢.

Proof. This follows straighforwardly from proposition|[L.5.2]and corollary[1.5.4] m|

Proposition 1.5.7. Let I, J be two categories, and ¢ : J] — I a functor. We have :
(i) If J is filtered, then ¢ is cofinal if and only if the following conditions hold :
(a) Foreveryi € Ob(I) there exist j € Ob(J) and a morphismi — ¢(j) inl.
(b) For everyi € Ob(I), every j € Ob(J) and every pair of morphisms f,g : i = $(j)
in I, there exists h € J(j, j') such that ¢(h) o f = ¢(h) o g.
(ii) If ] is filtered and ¢ is cofinal, then I is filtered.
(iii) If I is filtered, and condition (i.a) is fulfilled, the following holds :
(a) If ¢ is full, then ¢ is cofinal and ] is directed.
(b) If ¢ is fully faithful, then J is filtered.
Proof. (i): Suppose first that i/¢ ] is connected for every i € Ob(I); then clearly (i.a) holds,

and we notice :

Claim 1.5.8. The category i/¢] is directed.
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Proof : Indeed, let ¢ j i ¢j’ be two objects of i/¢ J; we need to exhibit (i = 9j"’) €

Ob(i/¢J) and morphisms j > j’ & J" in J such that ¢(v) ou = u” = $(v’) o u’. Now,
by assumption there exists a commutative diagram in I :

i

u u
uz
Uy Ug

2 v a4 o ey

¢J

Pk ¢’

# () ¢ (or)

and we argue by induction on the length k of the horizontal chain of morphisms. Notice
that the length k is always even, since the direction of each arrow v, is rightward if r is

even and leftward if r is odd. If k = 0, the diagram consists of a unique morphism j 2 J’
so we can take j” := j’, v := vg and v’ := 1. Next, suppose that k > 1, and that suitable
v,v" have already been exhibited for every pair of objects of i/¢J linked by a chain of
morphisms of length k — 2. Since ] is filtered, we may find j; _, € Ob(J) and morphisms

Jk=1 . Jr_y & Jj' such that w o vg_; = w’ o vg; then we get a commutative diagram of

length k —2:

¢j = ¢h s e Yk Y
with ¢t := @¢(w) o ug_;. By induction, we then get morphisms j S1& Jy_, in J with

¢ (s) ou = P(s") o t; then we can take j”/ :=,v:=sand v’ :=s" o w'. &

Claim[1.5.8implies that, for f, g as in (i.b), there exist j € Ob(J) and hy, hy € J(j, J')
such that ¢(h1) o f = ¢(hs) o g. But since ] is filtered, we may then find b’ € J(j’, ")
such that A’ o hy = b’ o hy, so (i.b) holds with h := h’ o h;.

Conversely, if (i.a) holds, then i/¢J is non-empty for every i € Ob(I). Next, let g :
i — ¢(k)and g’ : i — ¢(k’) be any two objects of i/¢J; since ] is directed we may find
morphisms h : k — jand b’ : k¥’ — j for some j € Ob(J), whence the pair of objects
p(h)yog ¢p(W)og i =3 ¢(j) of i/¢], and using (i.b) we find an object g’ : i — $(j’)
and morphisms g — ¢”, ¢’ — ¢g” ini/¢], i.e. i/¢] is directed.

(ii): Let us check that I is directed : if i,i’ € Ob(I), by condition (i.a) we may find
J,J' € Ob(J) and morphisms f : i — @(j), f' : i’ — ¢(j’) in I, and since ] is directed,

we have as well morphisms j ER j"’ A j"in J, for some j* € Ob(J), whence morphisms

d(g)of:i— ¢(j")and ¢p(g')o f : i’ — $H(j”) in I. It remains to check the coequalizing
condition of definition[I.1.6{v), but the latter is an immediate consequence of conditions
(i.a) and (i.b).

(iii.a): It has already been remarked that condition (i.a) says that the category i/¢J is
non-empty for every i € Ob(I). Next,letg: i — ¢(k) and ¢’ : i — @(k’) be two objects

of i/¢]. Since I is filtered, we may find i’ € Ob(I) and morphisms ¢ (k) LA i’ & o(k")
of I such that f := hog = k' o ¢/, and by (i.a) we find k" € Ob(J) with a morphism

I:i" — ¢(k”) in I; then, since ¢ is full, there exist morphisms k 4 k" <t—, k’ in J with

¢(t) =lohand ¢(¢+') =loh’. Thenlo f : i — $(k’) is an object of i /¢ ] with morphisms
(k,g) l/—t> (k" 1o f) <l/—t (k’,g"), soi/¢] is directed; this shows that ¢ is cofinal. Next, let
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J»j' € Ob(]J); since I is filtered, there exists i € Ob(I) with morphisms ¢(j) ENF A o)
in I. Since (i.a) holds, there exist k € Ob(J) and h € I(i, ¢(k)), and since ¢ is full, there
exist morphismsj—t> k& j"in J with ¢(t) = hogand ¢(t') = ho g’; so, J is directed.
(iii.b): Clearly the assumptions show that Ob(J) # &, and we know already that J is
directed, by (iii.a). Next, let g,¢’ : j = j’ be two morphisms in J; since I is filtered, we
have a morphism A : ¢(j’) — iin I such that ho ¢(g) = h o ¢(g’), and since (i.a) holds,
there exists j”/ € Ob(J) with a morphism [ : i — @(j”’) in I. Since ¢ is full, there exists
t € J(j',j”) such that ¢(t) =l o h, so that ¢(t o g) = #(t o g’), and since ¢ is faithful, we
must then have t 0 g =t 0 ¢/, so ] is filtered. O

Example 1.5.9. (i) If I is a filtered category, and i € Ob(l), it is easily seen that the
category i/I is again filtered; moreover, the target functor t; : i/I — I fulfills conditions
(a) and (b) of proposition [L.5.7(i), so it is cofinal. Dually, if I is cofiltered, then the same
holds for I/i, and the source functor s; : I/i — I is coinitial.

(if) If I admits a final object iy, then the inclusion functor J — I of the (full) subcategory
J of I with Ob(J) = {i} fulfills conditions (a) and (b) of proposition[1.5.7]i), so it is cofinal
(and I is trivially filtered). Then, let F : I — % be any functor, and 7, : F = ¢ a
universal co-cone; with corollary i) we see that Fij represents the colimit of F, and
Tj, : Fig — Lis anisomorphism in ¢ Dually, if ij is any initial object of I, and 7{ : ¢;» = F
any universal cone, then Fij represents the limit of F and rl.'é : L' — Fij is an isomorphism.

Remark 1.5.10. (i) With the notation of lemma[1.4.7] suppose that I has a final object e;
then it is easily seen that the inclusion functor j : I — I, has a left inverse p : [, — I
with p(@) := e, and both j and p are coinitial. With corollary [1.5.4[i) we deduce that .o/
is I-complete & o7 is I,-complete. Summing up, in light of lemma|1.4.7(i,iii) we conclude
that for every such I and every A € Ob(&7), if o7 is I-complete, the same holds for o7/ A;
moreover, if the functor G : & — % preserves I-limits, the same holds for G4 : &/ /A —
AB|GA (corollary [1.5.6[ii)). Dually, if I has an initial object and <7 is I-cocomplete, the
same holds for A/ <7, and if moreover G preserves I-colimits, the same holds for 4/G.

(ii) Let .o/ be a category with a final object E, and G : &/ — 8 a functor that preserves
all small (resp. finite) connected limits, and such that GE is a final object of %; then G
preserves all small (resp. finite) limits. Indeed, lemma iii) implies that for any small
(resp. finite) category I, the functor G/g : &//E — 9/GE preserves I-limits; but on
the other hand, the source functors o/ /E — o/ and #/GE — % are isomorphisms of
categories, since E and GE are final, and these isomorphisms identify G,¢ with G, whence
the assertion. Dually, if .o/’ has an initial object, and if G preserves initial objects and all
small (resp. finite) connected colimits, then G preserves all small (resp. finite) colimits.

Example 1.5.11. As a last application, let us show that all filtered wide colimits are rep-
resentable (definition[1.2.9(i)). Indeed, let I be a filtered category, and consider a functor

%. : I — Cat i—> % (p:i—j)—= (Cp:C — C)).

We deduce a functor Ob(%,) : I — Set that assigns to every i € Ob(I) the set Ob(%}),
and to every morphism ¢ : i — j of I the map Ob(%;) — Ob(%;) defined by €. We set

L:= colIim Ob(%.)
where colim; denotes the global colimit. According to example[1.2.13{iii), the elements of

L are the equivalence classes [i, X] of pairs (i, X), where i € Ob(I) and X € Ob(%;), for
the equivalence relation ~ such that (i, X) ~ (j,Y) if and only if there exist k € Ob(I) and
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morphisms i fl—) k ﬁ Jj such that €3, X = 64,Y. For every i € Ob(I), lett; : i/T — I be
the target functor (see §1.4); notice that for every i, j € Ob(I), the objects of the category

(I’J)/I = I/I X(ti,tj) .]/I

are the pairs i & k ﬁ Jj of morphisms of I, and the morphisms
: 1 b
() (i,j)/v:(i&kﬁj)a(i%k’éj)

are the morphisms v : k — k’ of I such that v o ¢, = ¢, for r = 1, 2. For every couple of
pairs (i, X), (j, Y) as in the foregoing, we get a functor

RGX Y)Y T = Set (i 55k & ) o G, X, )
that assigns to every morphism (i, j)/v as in (*) the induced map
Cr(Cy, X, €4,Y) = Crr (%{X, (fqgé Y) e %(f)
and we consider the global colimit

H(i,X,},Y) :=colimh(i,X, j,Y).
(L)/1

Letalso t;; : (i, j)/I — I be the target functor given by the rules : (i — k « j) — k, and
(i, j)/v v v; for every i, j, k € Ob(I) we set as well
(1 )= (DT Xty 0 KL
The objects of this category are the systems ¢o := (1 : i > t, 2 : j = £, 3 : k — 1) of
morphisms of I with a common target ¢ that we call the target of ¢.. The morphisms
(isj’ k)/V : ¢' - ¢:
are the morphisms v of I with vo ¢, = ¢, for r = 1, 2, 3. With this notation, for every third
pair (k, Z) as in the foregoing, we get a system of composition maps
h(i>X’ j’ Y)(¢.) X h(]s Y’ k’ Z)(¢.) - h(l’xa k’ Z)(¢') V¢' € Ob((l’ j’ k)/I)

given by the composition law of the category %}, where ¢ is the target of ¢,. Clearly this
system of maps is natural with respect to morphisms of (i, j, k) /I; moreover it is easily
seen that (i, j, k) /I is a filtered category, and then, by the criterion of propositioni,ii),
the same holds for (i, j)/I, (j, k)/I and (i, k) /I, and the obvious projection functors

(i, . k)/1

N

Y (. k)/1 (i, k)/1
are cofinal. Therefore, in light of remark|1.5.5[iii), taking global colimits over (i, j, k)/I of
the foregoing compatible system of composition maps yields a well-defined map
H(i,X,j,Y)xH(j,Y,k,Z) —» H(i, X, k, Z) (f,9) = gof

and a simple inspection shows that this composition law is associative : if h € H(k, Z,t, W)
is any other element, we have ho (go f) = (ho g) o f (details left to the reader); likewise,
the class of 1x in H(i, X, i, X) yields a left and right unit for this composition law.

Hence, let us choose for every A € L arepresentative (i4, X4); we obtain a well-defined
category .Z with Ob(.Z) := L and with .2 (A, B) := H(ia, X4, ip, Xp) for every A,B € L,
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with the composition law thus defined. Moreover, for every i € Ob(I) we obtain a well-
defined functor

G :6 —> % X - [i,X]
that assigns to every morphism X — Y of &; its class in .Z([i, X1, [i, Y]).

Lastly, let Fo := (F; : 6; = 2 i € Ob(I)) be a co-cone with basis %, and whose vertex
is any wide category 2. The induced co-cone (Ob(%;) — Ob(Z)|i € Ob(l)) yields a
well-defined map L — Ob(Z). Moreover, for every two pairs (i, X), (j, Y) and every

object (i fl—> k ﬁz— J) of (i, j)/I, the functor F yields a map
%”k(%,lX, %ﬂquY) 4 @(Fk ] %@X, Fk o %¢2Y) = _@(FiX,FjY)

which defines a co-cone with vertex Z(F;X, F;Y) and for basis the functor h(i, X, j, Y),
whence a well-defined map

Fixjy:H(,X,j,Y) = 2(FX, F;Y).
A simple inspection shows that F; x r z(g © f) = Fjyz(g) o Fix jy(f) for every f,g as
in the foregoing (details left to the reader). We obtain therefore a well-defined functor
f
F:?—>9 Ao F,(Xa) (A= B) e Fiyxnx(f).

By construction, we have F o G; = F; for every i € Ob(I), and F is clearly the unique
functor fulfilling this system of identities, so .Z represents the wide colimit of 4., and
G. == (G;|i € Ob(1)) is a global co-cone with basis %, and vertex .Z.

Remark 1.5.12. In the situation of example[1.5.11} a simple inspection shows that if I is
small, then the same holds for the global colimit .Z of %,; hence, in this case £ also
represents the (usual) colimit of %,, and the global co-cone G, is also a universal co-cone.

1.6. Presheaves.

Definition 1.6.1. (i) Let .2/ be a category. A presheaf over </ is a functor
F: o/ — Set.

The natural transformations F = G between presheaves over .7 shall also be called
morphisms of presheaves, and denoted F — G.

(if) For every A € Ob(%/), the fibre of F at A, denoted
Fq:=F(A)
is the evaluation of F at A. Its elements are also called the sections of F over A.
(iil) For u € 27 (A, B), the induced map from Fg to F4 will often be denoted
u* := F(u) : Fg — Fa.

(iv) If o is a small category, the presheaves over o/ form a category :

o = Fun(</°?, Set).

Remark 1.6.2. (i) Let </ be a small category. By | the category o is complete and
cocomplete and the limits and colimits in .o/ are computed termwise; moreover, the finite
limits in & commute with all small filtered colimits, and the fibre products in </ commute
with all small direct sums (example mll,lV) .

(i) A morphism f : F — G of o is a monomorphism (resp. an epimorphism, resp.
an isomorphism) < the map fy : F4 — Ga is injective (resp. surjective, resp. bijective)
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for every A € Ob(%7), by virtue of and example[1.3.1{i). Furthermore, in light of (i)
and example i), every monomorphism and every epimorphism of o7 is regular.

Definition 1.6.3. (i) With every A € Ob(.2)) we associate the presheaf

ha:d® —Set B #(BA)  (B-5C) > (A(CA S (B A))

where u*(s) := s ou for every morphism u : C — A of .o/. We say that a presheaf F on &/
is representable by A, if there exists an isomorphism of presheaves hy = F. (The latter
means that there is an invertible natural transformgt\ion hy = F, which can be asserted
legitimately even if %7 is not small, in which case .7 is not well defined.)

(ii) Every morphism f : A — A’ of ./ induces a morphism of presheaves
hf : hA — hA/
such that hy(B) : ha(B) — ha (B) is the map :

B4 A) - BLS A VB e Ob(r)Vu € ha(B).

(iii) If o7 is small, it is easily seen that the rules : A — h4 and f + hy for every
a € Ob(%/) and every morphism f of .27, define a functor :

that we call the Yoneda embedding of </ into .

Remark 1.6.4. (i) Notice that for every A, B € Ob(/) and every set S such that A is
representable in .27, we have natural bijections (notation of §1.2.14) :

A (A®)B) = Set(S, 7 (A, B)  (A® 5 B) > (A= Blses)
where (js : A — A®) |5 € §) is a fixed universal co-cone. Thus, if AS) is representable
for every set S, then the functor A7) is left adjoint to e : &7 — Set, and especially, it
preserves all representable colimits ([13} Prop.2.49(ii)]).

(ii) Notice that hy(A) = hao (f°P) for every A € Ob(#/) and f € Mor(/). Also, it is
easily seen that f is a monomorphism (resp. a split epimorphism) < h¢(A) is injective
(resp. surjective) for every A € Ob(«/).

(iii) Let o7 and & be two categories, X a presheaf on .27, and Y a presheaf on Z. Since
(o x B)°P = o/ P x B°P, we can define a presheaf on &7 X A, denoted

’X&Y:(dx%’)""ﬁSet (A,B)HxAxYB.\

For every pair of morphisms f : A — A’ of & and g : B — B’ of &, the induced map
(f,9)" : XHY)ap = (XKY)spisofcourse f* X g* : Xa» X Yp — X4 X Yp.

Notice that this product operation preserves representable presheaves : indeed, we
have natural isomorphisms

ha®hg = hap YA€ Ob(),VB € Ob(A).

Moreover, every pair of morphisms of presheaves ¢ : X — X’ over &7 and ¢ : Y — Y’
over A induces an obvious morphism of presheaves over &/ X %

GRY:XKY > X' KY  (AB)— ¢a X 5.

(iv) Especially, if o/ and % are small, we get a natural functor :

N AXB— oA XB
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making commute the diagram :

o X B

N

Y X o X B.
Theorem 1.6.5. Let o7 be a category, and F a presheaf on <7 .

(i) (Yoneda’s lemma) For every A € Ob(<7) and every s € Fa there exists a unique
natural transformation ws.e : ha = F such that ws a(14) = s.

(ii) Especially, if o is small, we have a natural bijection :

y: o (haF) S Fx  (ha ir.—>F) = fa(1a).
(iii) In particular, if of is small, the Yoneda embedding of <f is fully faithful.
Proof. (i,ii): With every s € F4 and every B € Ob(./) we associate the map
wspha(B) > Fg (B A) > u'(s).

Let us check that the rule B — w; g yields a natural transformation ws e : hy = F. Indeed,
let v : C — B be any morphism of .<7; the assertion comes down to the commutativity of
the diagram :

of (B, A) —=2 + Fy

A (C,A) —= 5 e

which amounts to the identity : 0* o u™ = (v 0 v)* for every u € o/ (B, A).
By construction, ws 4(14) = s; conversely, if o : hy = F is any natural transformation
with 74(14) = s, then we must have 7, = w;s., since :

n(u) =ngohy(1a) =u" ona(ls) = u(s) VB € Ob(%/),Vu € o/ (B, A).
(iii): In case F = hp for a given B € Ob(.2/), the map y : fﬁa’/\(hA, hg) — (A, B)

precisely assigns to every morphism of presheaves h, : hy — hp the morphism u €
4/ (A, B). But y is bijective by (ii), whence the assertion. O

Remark 1.6.6. (i) We often abuse notation, to denote s : A — F the morphism of presheaves

ws,e : ha — F attached, via theorem[L.6.5(i), to A € Ob(#/) and s € Fa4.

(ii) Every functor H : &/ — % between small categories induces a functor

. 5 — f SHHP
H : B — o F+> FoH® (F>G)— (FoH® —— G o HP)

(notation of *) After composing with the Yoneda embedding % — P, we deduce as
well a functor that, by a slight abuse of notation, we denote also by :

H :%B— .
Explicitly, the latter attaches to every B € Ob(Z) the presheaf H*(B) on &/ with
H*(B)4 == B(H(A),B) VA € Ob()

which assigns to any morphism u : A” — A of o7 the map

u":H*(B)4 — H"(B)a givenby therule: (H(A) BN B) — (H(A") RGN B).
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(iii) Notice that the construction of the functor H* : # — o of (ii) makes sense more
generally, for any functor H from a small category .2/ to any category 2.

(iv) Moreover, every natural transformation 7, : H = K between functors H,K : &/ —

2 induces a natural transformation
op

7, K'=H" FH(FOKOP—E:T—.—)FOHOP)
where H* and K* may denote either E}ie functors Z — </ induced by H and K, or else
their respective compositions 4 — &/ with Yoneda embeddings, as in (ii).
1.6.7. Uniqueness of adjoints. Let <7, & be two categories, and
F:od 2%:G

a pair of functors. An adjunction for the pair (F, G) is equivalent to the datum of a family
of isomorphisms of presheaves :

(T) 193’. :hgo FP = hGB VB € Ob(z@)
such that the following diagram commutes (see [13] Prob.2.10]) :

hgoFP — 7 o hop
(%) hv*Fopl l how VB,B’ € Ob(A), Yo € B(B,B’)
5/.e

hB/ [e] FOP _—— hGB/~

It follows that a right adjoint for F is equivalent to the datum of a map G : Ob(#) —
Ob(), together with a system of isomorphisms (t) : indeed, for every morphism v :
B — B’ of A, a unique morphism Gv : GB — GB’ of &7 is then determined by requiring
that the diagram (*) commutes, by virtue of Yoneda’s lemma (theorem [1.6.5(i)), and the
uniqueness property of Gu easily implies that G1g = 1gp for every B € Ob(%), and
Gu o Gu = G(u o v) for every composable pair B 5B 5 B of morphisms of Z. As an
application, we get the following criterion :

Proposition 1.6.8. A functor F : &/ — 2 has a left (resp. right) adjoint if and only if
B/Fg7 has an initial object (resp. if and only if Fo7 | B has a final object) for all B € Ob(%).

Proof. Suppose that F.of/ /B has a final object (Ao, FAp o, B), and set GB := Ay; then for
every A € Ob(%7) and every v € Z(FA, B) there exists a unique v* € o7 (A, GB) such that
ug o Fo* = v. Clearly the rule : v — 0" is natural with respect to morphisms A — A’ of &7,
so it yields a system of isomorphisms as (). But we have just seen that () is equivalent
to the datum of a right adjoint G for F together with an adjunction for the pair (F, G).
Conversely, if G is a right adjoint for F, and &, : FG = 14 is the counit of an adjunction
for the pair (F, G), then it is easily seen that (GB, ¢p) is a final object of F.o/ /B, for every
B € Ob(Z). The assertion for initial objects in B/F.</ follows by duality. O

o It follows as well that any two right adjoints G, G’ of F are isomorphic : more precisely,
given adjunctions .. and 9, respectively for (F, G) and (F,G’), Yoneda’s lemma yields
for every B € Ob(#) a unique isomorphism

wp € 2/ (GB,G’'B) such that hop © I = 3,

and we claim that the rule : B — wp defines an isomorphism of functors we : G = G’.
Indeed, the assertion means that for every u € (B, B') we have G'u o wg = wp o Gu;
the latter is equivalent to : hgry © by = hey, © hgy, Which follows easily from (*) and the
corresponding diagram for the adjunction J,,.
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e Arguing with the opposite adjoint pair (G°P, F°P) (see [13] Exerc.2.14(iii)]), one sees
that, dually, any two left adjoints of G are isomorphic as well. Explicitly, for every (A, B) €
Ob(gf X #) we may regard Ip 4 as a bijection :

9.4 + BP (B, FPPAP) 5 o7/ °P(GOPBP, A°P)
and it is easily seen that the system of inverse maps :
(974 : haow 0 G =5 hpaps | AP € Ob(7/P))
is an adjunction for the pair (G°P, F°P) that we call the opposite adjunction of Jee.

e Given any two adjunctions Jee, Aee for the pair (F, G), there exist unique automor-
phisms 7, : G = G and g, : F = F such that :

Ape=heyodpe  and  Opeo (hs* ) =Ag. VB e Ob(A).

Indeed, the existence and uniqueness of 7, is a special case of the foregoing discussion on
the existence and uniqueness of w,.. Then, the existence and uniqueness of y, is deduced,
by arguing with the opposite adjunctions &;.! and A;]! (details left to the reader).

e Moreover, consider a second adjoint pair of functors :
F:%2%:G
with its adjunction J,. It is easily seen that the system of isomorphisms
Oes © Dae = (Jgrce © (I, c x F?) | C € OB(7))
is an adjunction for the pair (F'F, GG"). We call 9;, o J.e the composition of 3. and 9,,.
Remark 1.6.9. (i) As an application, we easily deduce from §1.6.7] that the adjoint pairs
(Gja: BIFAZ A |A:Fa) and (8/G : B/% = GB/ 4 : gF)

associated with an adjoint pair of functors (G : ## = &/ : F) and any A € Ob(%/),B €
Ob(£) as in are well defined up to natural isomorphisms.

(ii) Likewise, the adjoint pairs
(G/p: #/B= </|GB: Fp) and (4/G:FA|/Z — Al : o/F)
of are well unique up to natural isomorphisms, whenever they exist.
1.6.10. Adjoint natural transformations. Next, consider two adjoint pairs of functors
Fi:ad=2%B:G F.o=2%:G

with respective adjunctions 9. and J,,, and let 7, : F = F’ be a given natural transfor-
mation. By invoking yet again Yoneda’s lemma, we obtain for every B € Ob(%) a unique
morphism 7y : G'B — GB making commute the diagram :

’

B,e
hp o F'P ————— hg/p
hB*T:)p\L l/hrg
B.e

hp o F? ———— hgp

and we claim that the rule : B + 7 yields a natural transformation

[(1.9,9)" : G’ = G]

that we often denote just by 7, and that we call the adjoint of 7. relative to 9se and

J... Indeed, the assertion means that for every morphism u : B — B’ of # we have
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Guo T]\B/ = Tg, o G'u, or equivalently : hg, o hTE = h,;, o hgry. But in light of (*) and the
corresponding diagram for J,,, the latter identity is reduced to :

(%) (hg * 7.¥) o (hy * F’°P) = (hy, x F?) o (hg x 7,°)

and the interchange law for the Godement product (see [13] Exerc.1.129(iii)]) shows that
both sides of (**) equal h, * 7,". The previous discussion shows that 7.’ is independent of
the choice of Jee and 9,,, up to composition with automorphisms of G and G’; especially,
the categorical properties of T, are intrinsic.

Notice that the commutativity of the foregoing diagram amounts to the identity :

9pa(fora) =7y o8 (f) V(A B) € Ob(s/ x B),Vf € B(FA, B).

o In the foregoing situation, consider as well a third adjoint pair
F'iod 2 B:G"

with its adjunction 9/, and a second natural transformation 7, : F/ = F”. With this
notation, it is easily seen that :

(1. 07,8, 9") = (1,9, %)Y o (¢, ¥, 9")".

e On the other hand, for a natural transformation g, : G’ = G, we consider pfp :
G° = G’°P and recall that (G°P, F°P) and (G’°P, F’°P) are again two adjoint pairs; hence,
we define the adjoint of . relative to J, and J, as :

(e, 8,9)" = ((4")")P - F = F

oftend denoted just by pY, where (ug¥)" : F’°P = F° denotes the adjoint of yi,", relative
to the opposite adjunctions 9;,! and 8., detailed in Hence, p1! is characterized by
the identity :

95 (1B o g) =5 A(g) oy V(A,B) € Ob(& X B),Vg € o (A, GB).
Comparing with the corresponding identity for 7', we easily deduce that :
(@)Y =r  and ()’ =p

for every natural transformation 7, : F = F’ and yte : G’ = G.

e Lastly, a direct inspection of the definitions shows that :

] 1p 9,9 =1 and  (16,9,9) = 1F.\

Remark 1.6.11. (i) Let G,G’ : & =% </ be two right adjoints for a given functor F : &/ —
A, and .. (resp. J,,) an adjunction for the pair (F, G) (resp. for the pair (F, G")). Then,
it is easily seen that the isomorphism w, : G = G’ of is precisely (1f, &, 9)" (and
its inverse is (1,9, 9")Y). By the foregoing, w. is then characterized by the identities :
Sé’A(f) = wp o Ipa(f) for every (A, B) € Ob(/ X #) and every f € ZAB(FA, B). Letting
A:=GBand f = 191;’163(1(;3), we get : wp = ‘91,3,GB(‘9§,1C;B(IGB))' If (7, €0) (resp. (7., €.))
are the unit and counit of J.. (resp. of J.,), we have eg = 19;;’23(103), so we conclude
that w, is given by the composition :

G/SB

wp: GB 2% G'FGB 2%, G'B VB € Ob(A).

(ii) Dually, if F,F’ : of = % are two left adjoints for a functor G : & — <7, , and
(Me, 0) (resp. (n,¢€.)) are the unit and counit of a given adjunction for the pair (F,G)
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(resp. for the pair (F’, G)), then we have a natural isomorphism F = F’, given by the
system of compositions :

F ’ !
FA A FGF'A X2 FPA - VA € Ob(«).

Proposition 1.6.12. In the situation of §1.6.10, the following are equivalent :
(a) T4 is an epimorphism (resp. a split monomorphism) for every A € Ob(.%/)
(b) Tg is a monomorphism (resp. a split epimorphism) for every B € Ob(%).
Proof. Condition (a) is equivalent to the injectivity (resp. surjectivity) of the map
(hg * T84 : B(F'A B) — %B(FA,B) oty
for every A € Ob(.¢7) and every B € Ob(%) (remark [1.6.4(ii)), which is the same as the

injectivity (resp. surjectivity) of
(hey)a: &/ (A,G'B) — o/ (A GB) Y0y
for every such A and B. In turn, the latter condition is equivalent to (b). O

Example 1.6.13. (i) Suppose that the binary product X X Y is representable in .27, for
every X,Y € Ob(47), and fix a universal cone (i.e. projections) :

pX,Y qX,Y
Xé—XXY—Y

for every such pair (X, Y). Then, every Y € Ob(%/) induces a functor
(OxY:o/ 5 X XxVY|

Namely, with every f € o/ (X, X”") one associates the unique morphism

Y ’ !’
xxY 25 X xY with pXYo(fxY)=fop® and ¢V o(fxY)=qg".

The functors (—) XY as usual are independent, up to unique isomorphisms, on the choices
of representatives and projections for the binary products.

(if) Moreover, every morphism g : Y — Y’ induces a natural transformation
(-)xg: (-) XY= (-)xY.
Namely, to every X € Ob(.%) one attaches the unique morphism
b , ,
XxY % XxY  with PV o (X xg)=pXY and ¢V o(fxY)=gogS'.

Clearly, for every pair Y EN LA Y” of morphisms of &7 we have :
(=) xh) o ((-)xg)=(-)x(hog).

(iii) In the situation of (i), we say that the category 7 is cartesian closed if furthermore,
for every Y € Ob(«), the functor (—) X Y admits a right adjoint

[ Hom(Y,-): o/ > o Z > Hom(Y,2)]

so that have a system of bijections
(%) A (XxY,2) = o (X, #Hom(Y,Z)) VX,Y,Z € Ob(&)
natural in X and Z. The discussion of §1.6.10|then shows that, after fixing adjunctions for

each pair ((—) XY, #om(Y, —)), every morphism g : Y — Y’ of &/ induces a well-defined
adjoint transformation

Hom(g,—) = ((=) x g)" : Hom(Y',—) = Hom(Y,-)
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whence the naturality with respect to Y of the bijections (x). Also, for every pair Y ER
Y 2y of morphisms of &/ we have the identities :

Ftom(g,—) o Hom(h,—) = Hom(hog,—).
Again, the construction of the internal Hom functors .72om(Y, —) involves several auxil-
iary choices, but is independent of such choices, up to unique isomorphisms.

(iv) Summing up, we see that in every cartesian closed category .7, the binary products
and the internal Hom functors define bifunctors

() x(-): o/ x> o/| and ’jfom(—,—):%"l’x%—nﬂ.‘

Lemma 1.6.14. Let € be a cartesian closed category, and .7 om(—,—) its internal Hom
functor. Then, for every Y € Ob(%), the functors :

Jdom(Y,=): € > € and Hom(—,Y): € - €
preserve all representable limits.

Proof. The assertion concerning .72om(Y, —) is clear, since the latter is a right adjoint ([[13]
Prop.2.49(i)]); by the same token, for every X € Ob(%) the functor X X (=) : € — €
preserves all representable colimits, since it is isomorphic to the functor (—) X X, which
is a left adjoint. Next, let F : I — % be any functor, and 7, := (7; : Fi = L|i € Ob(I)) a
universal cocone; we deduce natural bijections for every X € Ob(%) :
E (X, #Hom(L,Y)) = C(X xL,Y) = €( lim X xFi,Y) <> lim (X x Fi,Y)
i€eOb(I) i€Ob(I)
= lim € (X, #om(Fi,Y))
ieob(I)
=5 (X, lim s¢om(Fi, Y))
i€Ob(I)
inducing, by Yoneda’s lemma (theorem|[1.6.5[i)), an isomorphism of % :
lim J¢om(Fi,Y) = JZom(L,Y)
ieOb(I)
whose composition with the cone
Ftom(te, L) = (Hom(r;,Y) : Hom(L,Y) — Hom(Fi,Y)|i € Ob(I))

is a universal cone, so also S#om(t., Y) is universal, whence the claim for sZom(-,Y). O

1.6.15. Universal colimits. Let I,/ be two categories, F : | — <7 a functor, A € Ob(<7).
Notice that the datum of a co-cone 7, : F = c4 is equivalent to that of the functor

- . . T R . FolA
T I1>F/A i— (Fi— A) (i—j) = (df — 9.

Suppose now that all the fibre products are representable in <. Then, for every morphism
f: A" = Aof &/ we get an associated functor f, : 4/A — € /A’ as in remark[1.4.2[i), and
there exists a unique pair (fiF, fi7.) consisting of a functor f,F : I — % and a co-cone
fiTe : fiF = c4s such that:
T = f 0"

Moreover, let (G, 17s) be any other pair consisting of a functor G : I — 2/ and a co-cone
Ne : G = c4; then the datum of a natural transformation pe : F = G with 77, © pte = 74 is
equivalent to that of the natural transformation

DA DT = DT i /A
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Clearly we can recover F from @7, and y, from ®*/4, via the identities :
spo® =F and sA*CID'”/Azy..

Notice that the pair (fiF, f.7.) is independent, up to isomorphisms, of the choice of the
functor f; : indeed, for any other right adjoint f; of f*, the discussion of §1.6.7] yields an

isomorphism w, : f. = f/, whence a unique isomorphism
Be=Sa ke x D" : LF 5 f'F with (/1) 0 @e = fute and @4 = g % @7,

Definition 1.6.16. In the situation of §1.6.15 suppose that the co-cone 7, : F = ¢4 is
universal; then we say that the colimit of F is universal, if for every A’ € Ob(%/) and
every morphism f : A” — A of &7, the co-cone f,7, is also universal.

Remark 1.6.17. Notice that the universality of the colimit of F is an intrinsic property of F,
i.e. itis independent of the choices of 7, and of the functors f.. Indeed, the independence of
the choice of f. is clear from the foregoing discussion, since the co-cone f.z, is universal
if and only if the same holds for it composition with the isomorphism w,. Likewise,
if ©, : F = cp is another universal co-cone, then there exists a unique isomorphism
g : B = Awith 7, = ¢, o 7;, whence, for every f € &/ (A’, A), a commutative diagram :

7 firi
FixgB ——> Fi x4 A’ B—L S
| oo
T g
Fi B A

whose two square subdiagrams are cartesian; we get then an isomorphism
we: fIF = f.F suchthat  firo0owe =cy 0 fi7]
which easily implies that f.z, is universal if and only if the same holds for f;z,.

Lemma 1.6.18. Let &/ be a cocomplete (resp. finitely cocomplete) category with repre-
sentable fibre products, and suppose that all coequalizers and all small (resp. finite) direct
sums of o/ are universal. Then all small (resp. finite) colimits of o/ are universal.

Proof. If o/ is cocomplete, let F : I — .o/ be a functor from a small category I, and
To : F = ¢y a co-cone. Let also J be the category with Ob(J) = {0, 1}, and whose only
non-identity morphisms are a,b : 0 = 1; we consider the functor F Tt J — & such that

F1(0) := LIFi Fi(1) = |_|Fi
(¢:i—j)eMor(I) ieOb(I)

and where F'(a), F'(b) : FT(0) = F'(1) are the unique morphisms that make commute
the diagrams :

i) [ | V(p:i - j) € Mor(l)
. (b +
F(1) <2 Ft(0) — L~ Fi(1)

where (774 : Fi — F'(0)|(¢ : i — j) € Mor(I)) and (1} : Fi — F'(1)|i € Ob(I)) are
universal co-cones for these direct sums. Let also g : FT(0) — Land ¢’ : F'(1) — L be
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the unique morphisms of .27 such that g o 54 = 7; = g’ o 5} for every morphism ¢ : i — j
of I and every i € Ob(I). We attach to 7, the unique co-cone

i Fl= ¢ such that rf oni=1 Vi € Ob(I).

Recall that 7, is universal & the same holds for Tj (see the proof of [13] Prop.2.40]). Now,
let f : A — L be any morphism of .27, and consider the cartesian diagrams :

A A A,

A lf | |

FH0) — =1L <2 — F(1).

By assumption, the co-cone ﬁ'r.T is universal, if the same holds for 7, . By the same token,
h.one and hy.n, are universal co-cones as well, so they induce isomorphisms :

(%) |_|Fi><LA:>Ag UFixLA:nq;.
(¢:i—j)eMor(I) i€Ob(I)
But it is easily seen that the isomorphisms (*) identify the functor f,F" with (£,F)’, and
the natural transformation f,z; with (f.7,)'; summing up, if 7, is universal, the same

holds for (f.z.)", and then also for f.7., as stated. If .7 is finitely cocomplete, the same
argument still applies, provided I is a finite category, and concludes the proof. O

Example 1.6.19. (i) Let us show that all small colimits of Set are universal. To this aim,
the lemma reduces to checking that the coequalizers and the small disjoint unions in Set
are universal. Hence, let (S; |i € I) be any small family of sets, S := | |;c;Si,and T — S
any map of sets; the assertion comes down to the bijectivity of the map :

U(S, Xs T) - T

iel
induced by the projections (S; X¢ T — T | i € I), which holds by simple inspection.

Next, let f,g : X = Y be two maps of sets; recall that the coequalizer of f and g is

represented by the quotient C := Y /~, where ~ is the smallest equivalence relation on
Y such that f(x) ~ g(x) for every x € X ([13} Prob.2.51(i)]). We need to check that for
every map u : C’ — C, the projection p : Y X¢c C’ — C’ identifies C” with the coequalizer
of fXcC'hgxc C" : X Xc C" = Y Xc C'. However, since the projectiong : Y — C
is surjective, the same holds for p; it remains then only to check that for every ¢’ € C,
the preimage p~1(¢’) is an equivalence class for the smallest equivalence relation ~ on
Y’ X¢ € such that (f(x),c¢”) ~ (g(x),c”) for every (x,c¢’) € X X¢c C’. But it is clear that
the equivalence class of any (y,¢’) € Y x¢ C’ is ¢ q(y) X {¢} = p~1(¢), as required.

(ii) Let & be any small category; since o/ is complete and cocomplete, and since
limits and colimits in &/ are computed termwise (see §1.3.2), it follows from (i) that all
small colimits of </ are universal.

1.7. The category of elements of a presheaf. Let </ be a category, and F a presheaf
over /. The category of elements of F is

of |F = ({@})F.<fP)°P.

Since a map of sets {@} — F4 is just a section s € Fa, the objects of &7 /F are the pairs
(A,s) with A € Ob(«/) and s € Fa; the morphisms (A,s) — (B,t) in &/ /F are the
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morphisms u : A — B in ¢/ such that u*(¢) = s. With the notation of remark i), this
amounts to the commutativity of the diagram of presheaves :

A—— B

RN

Remark 1.7.1. (i) With the notation of we have a faithful functor
YF = t?"g} : ol |F — o (A5)— A
which is the identity on morphisms (where t;¢ is the target functor of §1.4).

(ii) Suppose that o7 is small; then clearly the same holds for .7 /F; moreover, in this
case we have a natural identification :

h/ |[F = o/ |[F (A f:ha— F) = (A fa(14))
where h : o7 — 47 is the Yoneda embedding. Then, we have as well a functor
hoyp:JF >  (As)hs  ((As) (B1) — hy.

Furthermore, from the commutativity of the diagrams (*) we get a natural co-cone of
basis h o i and vertex F :

’rF:hO¢F:>cF (A,s)+—>(s:A—>F).‘

(iii) Every morphism f : F — G of presheaves on o7 induces a functor
S| A[F—>A|G (As) = (A fa(5))
which is the identity map on morphisms. Indeed we have :
fa(s) = fa@ () =u*(fs(t))  Yu:(As)— (Bt) ind/F
whence the assertion. Clearly there results a commutative diagram of functors :

d)F— g6

(iv) A direct inspection of the definitions shows that :
o [ha = o |A VA € Ob()

where 7 /A is the slice category over A, as in Moreover, under this identification,
Yn, : & [hy — o corresponds to the source functor sy : &/ /A — 7.

(v) Let I be any category; according to proposition [1.4.5[ii.b), if &7 is I-cocomplete
and F : &/°P — Set preserves [-limits, then ./ /F is I-cocomplete. Moreover, F is a
representable presheaf if and only if o/ [F admits a final object : indeed, (A,s) is a final
object of &7 /F & for every B € Ob(.%/) and every t € Fp there exists a unique morphism
u € o/ (B, A) such that t = u*(s), and the latter condition says precisely that (A, s) is a
universal pair for the functor F, whence the assertion ([13] §2.1.1]).

Lemma 1.7.2. (i) If </ is a small category, then for every presheaf F on of we have a
natural equivalence of categories :

A |F = o |F
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where ﬁ?\/F denotes the slice category ofsz;'\over F.

(ii) For every (A,s) € Ob(&//F), the natural equivalence of (i) identifies the repre-
sentable presheaf h(a sy on & [F with the object (ha, s) of </ [F (see remark i)).

Proof. (i): Toevery (G,f : G — F) € Ob(;z?\/F) we attach the presheaf G* on .« /F with
Glagy =fi'(s)  Y(As) e Ob(/F).

The map u* G'ZB H = G(A ) associated with any morphism u : (A,s) — (B,t) of &7 /F
is the restriction of u* : Gg — Gy4.

Moreover, every morphism (f : G — F) 5 (f:G" > F) of@/f\/F induces a morphism
of presheaves 0" : G — G’ : namely, vay) : G‘(’A’s) - G(Z 9 is the restriction of
va : Go — G, for every (A,s) € Ob(&).

It is easily seen that the rules : G +— G” and v +— 9" yield a well-defined functor
(=) : @F — WJ ; conversely, to every presheaf T on .o/ /F we attach the presheaf T*
on ./ such that

TS = |_| Tias) = U {s} X Tas) VA€ Ob().
seFy seFy

<

The map u* : T; — T, associated with any morphism u : A — B of </ is the unique
one whose restriction to {t} X T(g;) = T(g) coincides with u* : T(g;) — T(au(s)), for
every t € Fg. Likewise, every morphism w : T — T’ of presheaves on 7 /F induces
a morphism of presheaves w* : T — T’ : namely, w} : T; — T, is the unique map
whose restriction to T4 ) agrees with w4, for every A € Ob(.) and every s € Fa.
For every presheaf T on &/ /F, we get furthermore an obvious morphism of presheaves
T* — F given, for every A € Ob(%), by the disjoint union of the system of projections

(Tias) — {s} |s € F4). Hence T" is naturally an object of ,@’7\/F and clearly w™ is a
morphism of ] /F, for every morphlsm w of presheaves on .7 /F; summing up, we have
a well-defined functor (-) : o |F /F — o] /F, and a simple inspection shows that both
(=)" o(—-)"and (—)" o (—)” are isomorphic to the respective identity functors, whence (i).

(ii) follows by inspecting the construction of (—)“ : details left to the reader. O

Proposition 1.7.3. ForallF € Ob(47), the co-cone tr ofremark ii) is universal in <7 .

Proof. Let G € Ob(,;z?j and y : hoyp = cg a co-cone. We need to exhibit a unique
morphism of presheaves f : F — G with y = ¢y o 75, i.e. such that

(0 s = (fa9) :A—>G)  Y(Ass) € Ob(//F).

Now, y amounts to the datum of a morphism of presheaves pi(45) : ha — G for every
object (A, s) of o7 /F, such that the diagram :

hA—>
(1) MA& /B,,

commutes, for every morphism u : (A,s) — (B, t) of &/ /F. To such p4y), the natural
bijection of Yoneda’s lemma attaches the section

fa(s) = pas)a(14) € Gy
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and the commutativity of (1) amounts to the identity
fa™ (1) = fa(s) = pBrya © hua(1a)
= piB,t),a(u)
= ji(B1).A © hpu(1B)
=u"(u(B,r),5(1p)) = u" (fp(t))
(here hy 4 : ha(A) — hp(A) is the map induced by h, : hy — hp, and hp,, : hg(B) —
hp(A) is the map induced by u : A — B). Thus, for every A € Ob(%/) the rule :
s fa(s) Vs € Fuy

yields a map fs : Fa — Ga, and the above calculation shows that the system of maps
(fa| A € Ob(&)) is a natural transformation f : F — G. By construction, f is clearly the
unique morphism of presheaves verifying (). O

1.7.4. Extensions of functors by colimits. Proposition implies the following result, a
variant of the construction of the left Kan extension of a functor :

Theorem 1.7.5. (Kan) Let .o/ be a small category, € a cocomplete category, andu : &/ — €
any functor. Then we have :

(i) The induced functor u* : € — ;Z//\(see remarkiii)) admits a left adjoint

u;:;z?\—>§a”.

(ii) Moreover, the diagram :
o —=C

|

o

is essentially commutative, i.e. we have a natural isomorphism in € :
u(A) = u(hya) VA € Ob().
We call uy the extension of u to Jz?\by colimits.
(iii) For a functor w : T —C, the following conditions are equivalent :
(a) w preserves all small colimits
(b) The extension of w o h’ by colimits is isomorphic to w

(c) w admits a right adjoint.

Proof. (i): For every F € Ob(@, define Yy : &/ /F — </ as in remark i); pick
u (F) € Ob(%) representing the colimit of u o F, and a universal co-cone :

7y = (14 s uo Yr(A s) = u(A) - w(F)| (A s) € Ob(&[F)).

Let f : F — G be any morphism of o7, and recall that VG o (/f) = Yr (see remark
iii)); then, the universality of [’ gives a unique morphism in %’
w(f) :w(F) » w(G) such that T(GA,fA(s)) =u(f)o T{A’S) V(A,s) € Ob(/F).

It follows easily that the rules : F — u(F) and f + w (f) for every presheaf F and every
morphism f of presheaves, yield a well-defined functor u; : o —C.

We need to check that w is left adjoint to u*. To this aim, let X € Ob(%) and F €
Ob(&z?; ; again by the universality of 7!, we have a natural identification of € (u(F), X)
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with the set of co-cones (u(A) — X | (A, s) € Ob(//F)) in € of basis u o /r and vertex

X, and on the other hand, by virtue of proposition the set o7 (F, u" (X)) is naturally
identified with the set of co-cones (hy — u*(X) | (A,s) € Ob(«//F)) of basis h o {p and
vertex u*(X). Moreover, Yoneda’s lemma (theorem|[1.6.5(ii)) yields natural bijections :

() A (hau' (X)) = u"(X)a =% w(A),X) VAe Ob().

Claim 1.7.6. The bijections () induce a bijection between the set of co-cones v, : uoyyr =
cx and the set of co-cones e : h o ifp = ¢y (x)-

Proof : Such a p, is a system (pas) : ha — u*(X)|(A,s) € Ob(#)) of morphisms of
presheaves that makes commute the diagram :

h
hA ! hB
() \ /
H(A,s) H(B,t)

u*(X)

for every morphism f : (A,s) — (B,t) of o/ /F. The bijection () attaches to yi(45) the
morphism va ) := pi(as)(1a) : u(A) = X of €, and we need to check the commutativity
of the induced diagram :

u(d) — )

(1)

V(As) V(B.t)

However, the naturality of y(p,) yields the commutative diagram :

H(B,t).B

hs(B) € (u(B), X)
hg(f) l%”‘(u(f),x)
hp(A) —22% o 4 (u(A), X)

which implies the identity : (g s) a(f) = v(B) ou(f), and on the other hand, from (T) we
get : pg1).a(f) = v(as), whence (7). Conversely, to a given co-cone v, : u o Yr = cx,
the bijections () attach a system of morphisms (p(ay) : ha — u*(X) | (4,s) € Ob(&)),
and arguing similarly one checks the commutativity of the resulting diagrams () : the
details shall be left to the reader. <&

Summing up, with claim[1.7.6| we have obtained bijections :
() € (w(F),X) = (F,u*(X)) VF e Ob(&),VX € Ob(%).

Lastly, let us check that the bijections (x*) are natural with respect to morphisms f : G —

F of </ and f : X — Y of €. Explicitly, (+*) assigns to every morphism of presheaves
¢ : F — u*(X) the unique morphism ¢¥ : u)(F) — X of ¢ such that ¢ o T(FAS) = ¢al(s)

for every (A, s) € Ob(«//F). Hence, ¢" o T&,ﬁA(S)) = ¢4 0 Pa(s) for every such (A4, s); but
T{A,ﬁA(s)) =u(f)o T(C;,S), so ¢¥ ou(B) = (¢pof)Y, which shows the naturality with respect
to f. Likewise, f 0 §" 01, | = f o $a(s) = (u'(f) 0 $)a(s) for every (A,s) € Ob(e//F),
whence (u*(f) o ¢)¥ = f o ¢V, which gives the naturality of (x*) with respect to f.

(ii): Notice that (A, 14) is a final object in the category o7 /ha : indeed, for every
(B,t) € Ob(4f/hga), the unique morphism (B,t) — (A,14) in &7/ /haist : B — A. But
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then, the colimit of u o Yr is represented by u o Yr(A, 14) = u(A), ie
na = T?X’M) u(A) = uy(ha)

is an isomorphism, and it remains only to check that the rule : A — n4 is natural with
respect to morphisms ¢ : B — A of 2/. Now, such t induces a morphism of presheaves
h; : hg — hya, and by construction we know that

w(he) o np = t(n,) = naou(t)

whence the assertion.

(iii): From the construction of u, it is clear that (a)=(b), and on the other hand, (i)
implies that (b)=>(c). The implication (c)=(a) is a general property of left adjoint functors
(see [13] Prop.2.49(ii)]). O
Proposition 1.7.7. Let o7 be a small category, and F a presheaf on /. We have :

(i) F is representable if and only if it preserves all small limits of .

(ii) If F is representable, then it is represented by the presheaf F| = F o (h”)°P on < .

(iii) More precisely, we have, for every representable presheaf F on o, an isomorphism
B":F = hp,
of presheaves on o, that is natural with respect to morphisms of representable presheaves.

Proof. (Here h” : of — </ is the Yoneda embedding). If F is representable, then it
preserves small limits, by [13] Exemp.2.39(ii)]. Conversely, suppose that F preserves small
limits, and let X be any presheaf on .¢7; recall that the objects of .27 /X are the pairs (A, s)
with A € Ob(«/) and s € X4, and the morphisms (A,s) — (A’,s’) are the f € o/ (A, A")
such that f*s” = s, where as usual we write f* := Xr : Xa0 — Xa. To every such

pair (4,s), Yoneda’s lemma attaches a unique morphism wg : hy — X of ,@7\ and then
the condition on f can be written as wy o hy = ws, for the morphism of presheaves
hf : ha — ha induced by f. Our assumption on F and proposition[1.7.3]imply that

(0! : FX — Fha| (A,s) € Ob( /X))

is a universal cone cpx = Fjzy © tﬁ;p. Hence, the rule : t — (w0} (t) | (A s) € Ob(/X))
establishes a bijection between FX and the set of all families

0 := (0(as) | (A5) € Ob(7/X))

with o(45) € Fhy for every such (4, s), and where h}(a(Af,sr)) = 0(as) for every mor-
phism f : (A,s) — (A',s) of &7 /X, where h;} : Fhyr — Fhg is the map induced by h.

But such a datum o, is just a morphism ¢ : X — F| of </ : namely G4(s) = 0(as) for
every A € Ob(«7) and every s € X4. We have thus obtained a bijection :

BEFX 5 (X, Fly)  te (0(1)](As) € Ob(«7/X))

and we need to check its naturality, relative to morphisms ¢ : X* — X of /. Now, for
everyt € FX we have ﬁf(,(gb*t) = (0, (¢"t) | (A,s") € Ob(o//X")), where ¢* : FX — FX’
is the map induced by ¢; however, ¢ o wy = wg () for every (4,s’) € Ob(# /X’), so

P (9°1) = () (1) | (As”) € Ob(7 /X)) = P () 0 ¢ : X — Fly
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which is the required naturality. This completes the proof of (i) and (ii). For (iii), we need

to check that every morphism y : F — F’ of representable presheaves on </ and every
X € Ob(«/) induce a commutative diagram :

B —
FX —= o/ (X, Fl)
Yxl \LQZ(X,)/W) with Vi ==Y % (hd)(’p : F|g¢ — Fl’d‘
’ ﬁ)l;(', 97 ’
FX —> (X F,)

However, for every t € FX we have ﬁﬁl(YXt) = (w;(yxt) | (A's) € Ob(&/ /X)), and the
naturality of y yields, for every (A, s) € Ob(4//X), the commutative diagram :

FX — o Fhy
Yx l l Ner)a
FX -2 Fhy
which easily implies that ﬁ; (yxt) = yjer © fE (1), as required. O
Remark 1.7.8. (i) With the notation of theorem notice that assertion (iii) of the
theorem implies that hf’“ is isomorphic to the identity endofunctor of <7.

(ii) Theorem also implies that, for any small category <7, the category o is carte-
sian closed (see example[I.6.13(iii)). Indeed, in light of theorem[1.7.5(iii) it suffices to check

that for every F € Ob(.7), the functor (—) X F preserves small colimits, and since colimits
are computed termwise in 7, we come down to showing that for every set S, the functor

()XS:Set>Set  T>TxS (I'LT)w (FxS)

preserves small colimits, which holds by example [1.6.19(i). Moreover, by proposition
1.7.7(ii), for the internal Hom functor we can take

Hom(F,G)a = o (ha X F,G) VA € Ob(&)

and proposition iii) says that for every u € e;z’%\(G, G, we ,557\(F’, F), A € Ob(«),
the associated map 7Zom(w,u)s : F€om(F,G)4 — Fom(F’',G"), is given by the rule :
h
(haXxF3G) > (haxF 2 hyx F3 G5 6.

(iii) In the situation of theorem|1.7.5} let v : &# — % be another functor,and 7, : u = v
a natural transformation; by remark iv), we get an induced natural transformation
7, : 0 = u*, whence an adjoint natural transformation (see §1.6.10)

Tie = (Tf)v LU = 0.

Corollary 1.7.9. (i) In the situation of remark[1.7.§(iii), we have a commutative diagram
of natural transformations :

Te
U—>7
o] [
T!.*h

u!OhQ{:U!ohd

whose vertical arrows are the natural isomorphisms of theorem|[1.7.5(ii).
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(ii) Suppose that T4 is an epimorphism for every A € Ob(/); then Tip is an epimorphism
for every F € Ob(£7).

Proof. (i): The proof of theorem [1.7.5(i,ii) exhibits an explicit adjunction 9%, (resp. 92,)
for the pair (u), u*) (resp. for the pair (v),0*)); for given A € Ob(&7) and X € Ob(%),
consider then the diagram :

I ox € (03.X)

7 (ha, 0" X) E (01(ha), X) ————— € (0(A), X)
eoﬁhA,r@l %(rzhA,X)l l%mx)
— X € (w04,X)
o (hy, u*X) E(w(hy),X) ————— C(u(A), X)

whose left square commutes, by definition of 7i,, and notice that the assertion is equiva-
lent to the commutativity of the right square for every such A and X. However, a direct
inspection of the constructions shows that the composition of the top horizontal arrows
is the canonical bijection

FhaoX) 2 TXA) =AY (ha D050 5 ga(1)
provided by Yoneda’s lemma, and likewise for the composition of the bottom horizontal
arrows. The assertion follows straighforwardly.

(ii): By proposition[1.7.3] there exists a small category I and a functor ¢ : I — &7 such
that F represents the colimit of ¥ o¢ : [ — of; then w F and o, F represent the colimits of
u0h? o ¢ and respectively v, 0 h” o ¢ ([13 Prop.2.49(ii)]), and under these identifications,
nir correspond to the colimit of 7 o h” o ¢. In light of (i), it then suffices to check that if
T4 is an epimorphism for every A € Ob(.%7), the colimit of 7, o ¢ is an epimorphism as
well, and the latter follows from [13] Exerc.2.34(ii)]. O

1.8. Subobjects and quotients. Let € be a category, and X € Ob(%); we denote
Sube (X)

the class of subobjects of X (see [13| Def.2.8 and Rem.2.9(ii)]). If all fibre products are
representable in ¥, every morphism f : Y — X induces a map ([[13| Rem.2.48(iii)])

Sube (f) : Subg (X) — Subg(Y) (Z—>X)> (YXxZ—>Y).
Definition 1.8.1. Let ¥ be any category.

(i) We say that € is well powered, if Sub (X) is a set for every X € Ob(%).
(ii) Suppose that € is well powered, and that all fibre products are representable in €.

Then evidently we get a well-defined presheaf :
Subyg : P — Set X + Subg (X) (f : Y > X)  Subg(f).
We call subobject classifier for € any object of € that represents the presheaf Sube.

Remark 1.8.2. (i) A well powered category ¢ with fibre products does not necessarily
admit a subobject classifier, but as usual, by Yoneda’s lemma, if such an object exists, it is
unique up to isomorphism.

(ii) Notice also that, for every category ¢ with fibre products, every monomorphism
f : X — Y induces a surjection Suby (f) : indeed, every subobject i : Z «— X of X
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induces a commutative diagram of ¢ where the projection p is an isomorphism :

ZXyX—>-Z

Also, every split epimorphism g induces an injection Sub« (g), since every contravariant
functor sends split epimorphisms to split monomorphisms.

Example 1.8.3. (i) The set [1] = {0,1} is a subobject classifier for the category Set :
indeed, for every set S, the set Subsg(S) is of course the power set Z(S) of all subsets of
S, and we have a natural bijection &2 (S) = Set(S, [1]) that assigns to every subset T C S
its characteristic function yr : S — [1] such that )(Tl(l)

(if) The map Subset(f) associated with a map of sets f : §” — S corresponds, under
the identifications of (i), to the map Set(f, [1]) : Set(S, [1]) — Set(S’, [1]) that assigns to
every characteristic function yr : S — [1] the characteristic function yr o f = yf-1(r).

(iii) Notice that the map f is injective (resp. surjective) if and only if Set(f, [1]) is
surjective (resp. injective). Indeed, let x’, ¢y’ € S’ be two distinct elements; if Set(f, [1]) is
surjective, then {x'} = f~1{f(x)}and {y’} = F-1{f(y)}.s0 f(') # F(y). IESet(f, [1])
is injective, then for every x € S we must have f~!(x) # f~1(2) = @, i.e. f is surjective.
The converse assertions follow from remark [1.8.2[ii).

(iv) Assertion (iii) holds more generally for any map f : X — Y of classes : such f is
injective (resp. surjective) & every subclass of X is of the form f~1(S) for a subclass S of
Y (resp. © for any two distinct subclasses T1, T, C Y we have f~!Ty # fITy).

(v) LetI be a category, F : I — Set a functor, and (Q, 7.) the canonical pair consisting
of the global colimit and the global co-cone (see example [1.2.13[ii)). Suppose moreover
that F admits a colimit C (this holds, e.g. if I is cofinally small), and let 5o : F = c¢ be
a universal co-cone. Then we get a unique map f : Q — C such that n; = f o 7; for
every i € Ob(I); furthermore, by the universal properties of 7, and 7., the map f induces
a bijection between the set Set(C, [1]) and the set of all maps Q — [1] (the fact that the
maps Q — [1] form a set follows from the existence of the bijection). By (iv), it follows
that f is a bijection, so Q is a set, and 7, is a universal co-cone.

Proposition 1.8.4. Let </ be any small category; we have :
(i) The category o is well powered and admits a suboboject classifier.
(ii) Sub o (h”)°P is a subobject classifier for ,Q}\(notation of definition .
Proof. For every F € Ob(sz?j we have a natural injection :
Sub _AF) - [ ]| Subset(FA)
AeOb(s7)

whence the first assertion of (i). For (ii) and the second assertion of (i), proposition i)
reduces to checking that Sub 7 Preserves small limits, and then it suffices to show that

Subj};\: o — Set°P preserves small direct sums and coequalizers ([13] Exerc.2.42]).

e Hence, let (Fy | A € A) be any small family of presheaves on o7, and set F := | |;c5 Fi;
we need to check the bijectivity of the natural map :

(%) Sub _AF) = [ |SubAF) G+ (GNE|deN).
AeA
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For the injectivity, it suffices to notice that G represents the direct sum of the family
(G N Fy|A € A), by example [1.6.19[ii). Next, let (G, |A € A) be a family of presheaves
on o/ with G; C F) for every A € A; after evaluating on each object of &7, we get
(Llxear Ga) N Fy = G, for every A € A, whence the surjectivity of (x).

e Lastly, let f,g : F = G be two morphisms of o/, and p : G — E the epimorphism
onto the coequalizer E of the pair (f,g). We need to check that Sub ~{p) : Sub _{E) —
Sub _{G) identifies Sub _{E) with the equalizer of the maps

Sub ~(f),Sub Ag) : Sub _{G) = Sub X{F).

The injectivity of Sub _{(p) is clear, again by virtue of example[1.6.19(ii). Then, consider a
subobject j : G’ < G suchthat f7'G’ := FX(,;) G’ =g G’ := FX(4;)G’,andlet E' C E
be the image of G’; we need to check that G’ = G” := G xg E’. Now, by construction
we have G' C G”; for the converse inclusion, we have to show that G'A ¢ G’A for
every A € Ob(&), and since limits and colimits in ./ are computed termwise (see ,
we have E’A = ps(G’A) and G”A = GA Xga E'A = p ' (E’A). By the same token, EA
is the coequalizer of the two maps fa,g4 : FA =2 GA, i.e. EA = GA/~, where ~ is the
smallest equivalence relation on GA such that f4(x) ~ ga(x) for every x € FA. Hence,
let (y,z) € G”,sothaty € GA, z € E’A and pa(y) = z; we come down to checking that
y € G’A. To this aim, define the relation A~ on GA by :

yi~y, < either {y;, 42} C G'Aor {y;, 2.} NG'A = 2.

It is easily seen that A« is an equivalence relation. On the other hand, it is easily seen
that f4(x)aga(x) for every x € FA, since fA_l(G’A) = g;‘l(G'A); but then we have :
Y1 ~ Y2 = Y1~y for every y;,y2 € GA. By assumption, there exists y' € G’A with
p(y') =z,s0y ~ v, and finally yay/, i.e. y € G’ A. O

1.8.5. Let ¢ be a well powered and cartesian closed category (see example [1.6.13(iii)),
with representable fibre products, and let Q be a subobject classifier for 4. We set

['(X) == #om(X,Q) VX € Ob(%)

where Zom denotes a given internal Hom functor for € (see example [1.6.13[iii)). We
then get natural bijections :

F(Y,T(X)) = C(YXX,Q) = Sube(YXX)  VX,Y € Ob(%)
and we denote by
5X X > F(X)

the unique morphism of ¢ corresponding, under these bijections, to the diagonal subob-
ject Ax : X — X X X. The following lemma shall be used in remark [4.2.8] in order to
provide an alternative proof for corollary
Lemma 1.8.6. In the situation of §1.8.5 for every X € Ob(%) we have :
(i) 8x is a monomorphism of €.
(it) T(X) is an injective object of €.
(iii) Especially, if € admits a final object, Q is an injective object of €.
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Proof. (i): Consider two morphisms f,g : Y = X of ¥ such that §x o f = §x o g. Notice
that every morphism h : Z — Y of % induces a commutative diagram :

(Y, T(X)) ——> Sube (Y x X)
(*) h*l lSub%(hXX)
€ (Z,T(X)) — Subg (Z x X)

whose horizontal arrows are the bijection of As f*(dx) = 9" (8x), we may apply
() with h replaced by either f or g, to deduce :
() [(Y X X) X(rxx.ax) X] = [(Y X X) X(gxxax) X]  in Subg (Y X X)

where, for every monomorphism j : T — S of €, we let [j] denote the class of j in
Sub« (S). Notice moreover that f yields the commutative diagram :

~ Iy q
YX(f,lx)X—>Y Y xX Y
| o s
X Ax Xxx s x

. . p p
whose two square subdiagrams are cartesian, and where we let X S XXX DX

q q N . . .
and Y «— Y x X —> X be the natural projections. Likewise, g induces a corresponding
morphism [, : Y — Y X X, and by construction, we have :

qioly=qol;=1y qzo]"f:f gzoIly=g.
In other words, I'r and I, are the graphs of the morphisms f and g, and the identities ()
come down to :
[Tr] = [Ty] in Sub¢ (Y X X).

The latter means that I'r = T ow for an automorphism w : Y = Y; but then 1y = g, oIy =
giolyow=w,ie Ir =T, and finally, f = q; o Ty = gz o [, = g, whence the contention.

(ii): Let h : Z — Y be a monomorphism, and f : Z — T'(X) any morphism. Under the
bijections of f corresponds to the class in Suby (Z X X) of some monomorphism
i: S — Z xX; notice that h X X : Zx X — Y X X is also a monomorphism ([13|
Exemp.2.23(iii)]), so the same holds for j := (h x X) 0 i: Sy — Y X X, and the class [j] of
Jj is an element of Sub« (Y X X), corresponding to a unique morphism g : Y — I'(X). It
is then easily seen that Suby (h X X)([j]) = [i] (the details are left to the reader), and in
view of (x), we get h*(g) = f, i.e. f = g o h, whence the assertion.

(iii): Let E be a final object of 4, and notice that the natural projection X X E — X is
an isomorphism for every X € Ob(%’). We deduce a natural bijection

(X, Q) > C(X XE, Q) > €(X, #om(E,Q)) VX € Ob(%)
whence, by Yoneda’s lemma (theoremi)), an isomorphism Q = J#om(E, Q), so the

assertion follows from (ii). O

1.8.7. Images and coimages. Let € be a category, and f : X — Y a morphism of €. We
let .7 be the full subcategory of 4’/Y whose objects are the monomorphisms j : Y’ — Y
in & such that f factors (necessarily uniquely) through j. The image of f is defined as
the initial object of yf, if such an initial object exist, in which case it is denoted :

jr:Im(f) =Y
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and it is easily seen that j; represents in ¢’/Y the product of all objects of ., so it is well
defined up to unique isomorphism. We have also a natural map :

() Ob(F) > Subye(Y) (YL y)e )]

where [ j] denotes the equivalence class of j. Let Sy C Subs (Y) be the image of (x), and
pick a section 1y : Sy — Ob(f) of (*); then the image of i is the set of objects of a
(cofinal and) coinitial full subcategory . I: of ., so in order to represent the image of f,
it suffices to be able to form the product in €' |Y of all the objects ofyjﬁ (corollary ii)).
Especially, if € is complete and well-powered, then €'/Y is complete for every Y € Ob(%)
(lemma [1.4.7(i)), and the image of every morphism X — Y of ¥ is representable in €'/Y.

e Suppose that the image of f exists in €/Y, and that all equalizers in € are repre-
sentable. Then the resulting morphism oy : X — Im(f) (such that f = jr o ay) is an
epimorphism of €. Indeed, let g, h € € (Im(f), Z) such that goay = hoay, and denote by
i : E — Im(f) the equalizer of g and h; then &y = i o ¢ for a unique morphism ¢ : X — E,
whence f = Jroio ¢, and i is a monomorphism of €, so the same holds for Jf oli. But
theni/Y : (E, jroi) — (Im(f), jr) is a morphism in ., which must be an isomorphism,
since (Im(f), j¢) is initial in .%f; so i is an isomorphism in €', whence g = h, QED.

o Dually, we define the coimage of f as the image of f°P : YP — X°P in €°P. If the
latter exists, it is then an epimorphism :

7p : X — Coim(f)

well defined up to unique isomorphism, such that f factors uniquely through z¢. If € is
cocomplete and co-well-powered (i.e. such that €°P is well-powered), then the coimage of
every morphism f : X — Y of € exists in X /%. Moreover, if the coimage of f exists, and
if all coequalizers in ¢’ are representable, the resulting morphism f¢ : Coim(f) — Y isa
monomorphism of €.

o If the image and coimage of f : X — Y exist in €, and if either all the equalizers or
all the coequalizers in € are representable, then we have a unique factorization of f as :

Xa—f>Im(f)ﬁ>Coim(f)ﬁ—f>Y with 7np=wroay and jr=pfrowr

where w is both a monomorphism and an epimorphism (details left to the reader). Simple
examples show that wy is not always an isomorphism, in this generality.

Example 1.8.8. (i) Let us show that the monomorphisms of Cat are the functors F :
o/ — 9B between small categories, that factor through the inclusion of a subcategory
B’ — A and an isomorphism &/ = Z’. Indeed, such functors are clearly monomor-
phisms of Cat; the converse amounts to checking that every such monomorphism induces
an injection Ob(F) : Ob(.&/) — Ob(%), and injections Fxy : & (X,Y) — ZA(FX,FY) for
every X,Y € Ob(«7). However, suppose that FX; = FX, for some X;,X; € Ob(%/), and
let [0] be the discrete category with Ob([0]) = {0}; then we have two functors

GI,GZ : [0] — o Gl(O) = Xi (l = 1,2)

with F o G; = F 0 G,, whence Gy = Gy, i.e. X; = X,. This shows that Ob(F) is an injection.
Likewise, suppose that fi, f € @/ (X,Y) verify Ff; = Ff,, and let [1] be the category such
that Ob([1]) = {0, 1} and Mor([1]) = {1,, 11,0_1> : 0 — 1}; then we have two functors

H,Hy:[1] > %  suchthat H;(0):=f (i=12)
with F o H; = F o H,, and this implies that f; = f;, as stated.
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(ii) From (i) we see that Cat is well powered, and more precisely, for every &/ €
Ob(Cat), the set Subc,t(7) is (in natural bijection with) the set of all subcategories
of &/. Moreover, for every family (<% |i € I) of subcategories of <7, the intersection
@ = (\je; & is well defined : namely, it is the subcategory % of &/ with Ob(#) =
Nicr Ob(%) and B(X,Y) = ;e (X, Y) for every X, Y € Ob(ZA). Hence, the discus-
sion of applies to Cat, and shows that every functor F : &/ — 98 between small
categories has an image Im(F) C %, and Ob(Im(F)) is {FA| A € Ob(«/)}.

(iii) Consider next a category 7, a wide category & (see definition [1.2.3(ii)), and a
functor F : &/ — 2. By lemma [1.2.10{i,ii), there exists a minimal wide subcategory
B c B with {Ff|f € Mor(«)} c Mor(#’) and Ob(#’) = {FA|A € Ob(&)}; also,
if .o/ is small, the same holds for #’. Clearly F factors uniquely through #’, and it is
easily seen that %8’ enjoys the categorical properties of an image for the functor F : i.e. F
factors through a wide subcategory € of 4 if and only if &’ C ¥. By a small abuse of
terminology, we may then call &’ the image of the functor F.

(iv) Asan application, we deduce that a category € is cofinally small if and only if it has
a small cofinal subcategory (see definition [1.5.1{iii,iv)). Indeed, the condition is trivially
sufficient; conversely, let F : @/ — % be a given functor from a small category o7
the explicit construction of (iii) shows that the image ¢’ of F is a small subcategory
of ¥, and by a direct inspection of the definitions we easily check that if F is cofinal,
then " is a cofinal subcategory of 4. Moreover, the full subcategory € of € with
Ob(%"") = Ob(¥”) is also small, and by the same token it is again cofinal in %’; taking

and only if it has a small filtered cofinal subcategory.

Remark 1.8.9. (i) Let ¢ be a category, and f : X — Y a morphism of ¢". Let % be the
full subcategory of .7y whose objects are the regular monomorphisms j : Y’ — Y (see
definition[1.1.12). The regular image of f is defined as the initial object of %y, denoted

jj} :Im*(f) - Y

if such an object exists, in which case it is unique up to unique isomorphism. So, j}’i isa
regular monomorphism and f is the composition of j; and a unique morphism aJ”} X -
Im*(f). If every monomorphism of %" is regular, then %y = . and Im(f) = Im"(f).

(ii) Suppose that all the equalizers and all the amalgamated sums are representable in
% . Then we claim that the regular image of f is represented by the equalizer [ : E — Y
of the two natural morphisms

€1,€2:YjYUX Y.

Indeed, let i : Z — Y be a regular monomorphism such that f factors through i and a
morphism g : X — Z; then i is the equalizer of the two natural morphisms ef,e; : ¥ =
YUz Y (remark|1.1.13(ii)), and since ej o f = ef oiog = e,0iog = ej o f, we have a unique
morphism h: Y Lx Y — Y Lz Y such that ho e; = ¢] and h o e; = e;. Then we get :

e;ol=hoejol=hoeol=¢jol

so that [ factors through i, necessarily uniquely, since i is a monomorphism.

(iii) Dually, the regular coimage of f, denoted

7[; : X — Coim™(f)
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is the regular image of f°P in €°P. So JT;} is a regular epimorphism such that :

f=pBpom; with  fL = apy, : Coim*(f) —» Y

and is a final object of the subcategory of .%ro» whose objects are the regular epimor-
phisms through which f factors. If all the coequalizers and all the fibre products are repre-
sentable in €, then the regular coimage of f is represented by the coequalizer of the two
natural morphisms

P1: P2 XXy X = X,
(iv) A direct inspection of the definitions yields a unique monomorphism of €’/Y (resp.
epimorphism of X /%) :
(%) Im(f) — Im"(f) Coim*(f) — Coim(f)

whenever these images (resp. coimages) are both defined. Also, whenever the regular
image and the regular coimage of f both exist, we have a unique factorization of f:

T T T
X — Coim*(f) — Im*"(f) — Y.

Indeed, say that jj’; is the equalizer of a pair of morphisms u,v : Y = Z; then

uoﬁ}on}:uof:uof:uoﬂ}on}i
whence u o ,BJ’Z =vo ﬁ]"; since Jrj’ﬁ is an epimorphism, and therefore ﬂ]*, factors through
Im*(f). Neither a);;, nor the morphisms () are necessarily isomorphisms. Moreover,
whereas the class of monomorphisms is stable under compositions, a composition of reg-
ular monomorphisms is not necessarily regular. However, we have :

Lemma 1.8.10. (i) Let € be a category as in remark i), and X i) Y Z two regular
monomorphisms of €. Suppose moreover that every push-out of every regular monomor-
phism of € is a monomorphism; then g o f is regular.

(ii) Let € be a category, f : X — Y a morphism of € whose regular image exists in € .
Then a;; : X — Im*(f) is the coimage of f & a}*r is an epimorphism.

(iii) Let € be as in remark[1.8.(ii). Suppose moreover that the class of regular monomor-
phisms of € is stable under compositions. Then a}*c : X — Im*(f) is an epimorphism for
every morphism f of € whose regular image exists in €.

Proof. (i): The condition means that for every cocartesian square in ¢ :

A—2-B

Lo

A’ _* B’

such that « is a regular monomorphism, the same holds for a’. For the proof, denote by
e,e;: Z = ZUx Zand e, e; : Z = Z Uy Z the two pairs of natural morphisms; since
e;ogf = ey ogf, wehave a unique morphism h : Z Ux Z — Z Uy Z such that hoe; = ]
fori = 1,2. Let also j : E — Z be the equalizer of e; and ey; then ej o j = hoej o j =
hoeyoj = e o j,and since, by remark [L.1.13{ii), g : Y — Z represents the equalizer
of ] and ej, we deduce a unique morphism k : E — Y such that j = g o k. Since jisa
monomorphism, the same holds for k, and it follows easily that k represents the equalizer
of e; o g and e; o g : the details are left to the reader.
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& &
On the other hand, let ¢, 62 : Y =2 YUy Yand Y BEND S Ux Z <~ Z be the two pairs of
natural morphisms, and consider the cocartesian squares :

YUxY=—2—y—" vz
YI_ngl lg lgLIXZ
& ey
YUux Z Z ZUx Z.

By assumption, both Y Lix g and g Lix Z are monomorphisms, so the same holds for their
composition g Lix g : Y Ux ¥ — Z Ux Z. Lastly, notice that (g Ux Z) o &5 = e, and
(YUx g) oe = €], whence e; 0 g = (g Ux g) o & for i = 1,2, so the equalizer of ¢; 0 g
and e, o g is also the equalizer of ¢; and &;; but the latter is represented by f, according to
remark [1.1.13(ii). Summing up, we get a unique isomorphism I : X = E of ¢’ such that
f =kol whencego f =jol, and this proves that g o f is regular.

(ii): The condition is obviously necessary. Conversely, let p : X — Z be an epimor-
phism of & such that f = h o p for some morphism h : Z — Y; arguing as in remark
iv), we see that h factors though j;i and a unique morphism Z — Im*(f). Hence, if

B3

ap is an epimorphism, it is the coimage of f.

(iii): Consider morphisms v, : Im*(f) =% Z such that u o a}*c =voa},andleti: E —
Im*(f) be the equalizer of u and v. Then i is a regular monomorphism, and a}’i =iogqfor
some morphism ¢q : X — E. By assumption, j]*, oi:E — Y is aregular monomorphism
as well, so there exists a morphism i’ : Im*(f) — E of € such that j;} oioi = j;;, Le.

ioi’ =1 (f), and then i is an isomorphism ([13} Exerc.1.119(ii)]), so u = v, whence the
assertion. O

Example 1.8.11. (i) Let ./ be a small category; then every morphism f : X — Y of o
admits an image : namely, Im(f) is the subpresheaf of Y such that

Im(f)a = fa(Xa) VA€ Ob().
By remark [1.6.2[ii), Im(f) is also the regular image of f.
(ii) Let X € Ob(%, and X, := (Xj | i € I) a small family of subobjects of X; we define
the union | J;c; X; of the family X,, as the image of the induced morphism p : | |;c; Xi —
X, whose restriction to each X; is the inclusion X; — X. Hence, the set of sections of

Uier Xi over any A € Ob(&7) is just ;7 Xi(A). Moreover, we have a natural diagram of
presheaves :

7 P
Upes Xi N X; T; Lier Xi —=X
2

with J == {(i, j) € I?|i # j} and X; N X := X; Xx X for every (i, j) € J, where j; (resp.
Jj2) is the unique morphism of .27 whose restriction to X; N X agrees with the inclusion

identifies | J;c; X; with the coequalizer of the pair of morphisms (ji, j»). The same holds
if we choose an arbitrary total ordering of I, and replace J by {(i, j) € I?|i < j}.

1.9. Preordered and partially ordered sets. Recall that a preorder on a class C is a
binary relation < on C that is reflexive and transitive; then < is a partial order if it is also
anti-symmetric, i.e. if x < y < x = x = y. A total order on C is a partial order < such that
for every x,y € C we have either x < y or y < x. A preordered (resp. partially ordered,
resp. totally ordered) class is the datum (C, <) of a class and a preorder (resp. a partial
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order, resp. a total order) < on C; if C is a set, naturally we say that (C, <) is a preordered
(resp. partially ordered, resp. totally ordered) set.

Remark 1.9.1. (i) Let S be a given set; the set Pr(S) of preorders on S admits a natural
partial order : namely, each preorder is a subset of S X S, and we endow Pr(S) with the
ordering induced by the inclusion of subsets of S X S.

(ii) Every family (<) |A € A) of preorders on S admits an infimum < in Pr(S) :
namely, each <, can be seen as a subset of S X S, and < is then just the intersection of
these subsets. Clearly, if every <, is a partial order, the same holds for <.

Moreover, every such family admits a supremum <’ in Pr(S), namely the minimal
transitive relation containing the union of the preorders <;. The supremum of a family
of partial orders is not necessarily a partial order; however, if (<) |A € A) is a filtered
family of partial orders (that is, it is filtered by inclusion, when regarded as a family of
subsets of S X S), it is easily seen that its supremum is again a partial order.

o A morphism of preordered classes f : (C, <) — (C’,<’)isamap of classes f : C — C’
such that x < y = f(x) <’ f(y) for every x,y € C. If (C, <) and (C’, <’) are partially
ordered classes, naturally we say that f is a morphism of partially ordered classes.

Clearly, if g : (C',<’) — (C”,<”) is another morphism of preordered classes, then
the same holds for go f : (C <) — (C”,<”). Hence, the classes of preordered sets and
of partially ordered sets, with their morphisms, form two categories

prSet and poSet.
o The fully faithful inclusion functor poSet — prSet admits a left adjoint
prSet — poSet (A <) = (A, <9

assigning to every preordered set (A, <) its anti-symmetric quotient (A, <%), with A =
A/~, where ~ is the equivalence relation on A such that x ~ y © x < y < x; then <% is
the minimal partial order on A (for the ordering on Pr(A) given by remark 1)) such
that the projection 7 : A — A is a morphism of preordered sets (A, <) — (A, <%). This
amounts to declaring that 7(x) <% n(y) & x < y, for every x,y € A.

1.9.2. We have moreover a fully faithful functor
(g(_’_) : prSet — Cat (AL - %(A,s)
that assigns to every preordered set (A, <) the category (s <) with Ob(%(a <)) = A,
such that €(a<)(A ) = @ if A £ p, and otherwise 64 <) (A, p) contains exactly one
morphism, that we denote sometimes :
N
Ap:A—p
e A 3 . — ud ad
(so, ML = 1), and if A, g, v € A with A < p < v, then necessarily puv o Ay = Av). Every
morphism f : (A, <) — (A, <) of preordered sets induces the functor
- —_—
CriCas) = Gy AP ) e fOf ().
The functor € _) admits a left adjoint
| —]:Cat — prSet E — |F]
that assigns to every small category & the preordered set |€| := (Ob(%), <¢), where
< is the preorder on Ob(%) such that X <¢ Y © € (X,Y) # &. Then, every functor

F : 6 — ¥’ between small categories induces the morphism |F| : || — |%”| such that
X + FX for every X € Ob(%).
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Remark 1.9.3. (i) The constructions of the category %(4 <) and of the functor ¢y make
sense, more generally, for every preordered class (A, <) and every map f of classes. Like-
wise, using Scott’s trick (see remark [1.2.1{ii)), the foregoing construction of the anti-
symmetric quotient can be extended to every preordered class.

(ii) Just as in example [1.1.9(ii), since the data of (A, <) and its associated category
‘f( A <) are essentially equivalent, we won’t usually distinguish between the two of them,
and often the notation (A, <) shall refer to either of them; especially, we shall write usu-
ally (A, <)-complete in lieu of €4 <)-complete, and likewise for (A, <)-cocomplete.

(iii) For every integer n € N we define the totally ordered set
[n] :={0,1,...,n}

whose ordering is induced by the standard ordering of the natural numbers. In other
words, [n] is the ordinal number n+1, for every n € N. As explained in (ii), we regard often
every such [n] as a category, denoted again by [n]; notice that the functors [n] — [m]
are the morphisms of totally ordered sets, i.e. the non-decreasing maps.

1.9.4. Furthermore, the forgetful functor
prSet — Set (AL)— A

admits a left adjoint
Set — prSet S (S, Sg)

that endows every set S with its discrete ordering Sg such that x Sg y © x =y. Clearly,
every map of sets g : S — T is a morphism of partially ordered sets g : (S, <¢) — (T, S?).
The forgetful functor admits as well a right adjoint
Set — prSet S (S,<9)

that endows every set S with its chaotic preorder <g such that x <¢ y for every x,y € S.

Again, every map g : S — T is a morphism g : (S, <§) — (T, <) of preordered sets.
Proposition 1.9.5. The categories prSet and poSet are complete and cocomplete.

Proof. The direct sum of every small family E, := ((E;, <3) | A € A) of preordered sets is
representable in prSet as follows : we endow the disjoint union E := | |3, Ex with the
unique preorder such that for every (4,x), (g, y) € E we have (4, x) < (py) © A =pu
and x <; y. The universal co-cone is then given by the system of natural injections
(Ex — E|A € A) (details left to the reader). Next, let f,g : (E, <g) = (F, <r) be a pair
of morphisms of prSet; we let Q be the coequalizer of the pair of underlying maps of sets
f,g : E = F, we denote by p : F — Q the natural projection, and we endow Q with
the minimal transitive relation < such that p(x) < p(y) whenever x < y. Then (Q, <)

represents the coequalizer of f and g in prSet, and p : (F, <p) — (Q, <) is the universal
co-cone. By [13] Prop.2.40], this shows that prSet is cocomplete.

In order to check that prSet is complete, consider any small category I and any functor
F : I — prSet; the composition F with the forgetful functor prSet — Set yields a functor
I — Set, whose limit we denote by A. Hence, A is the subset of ﬂieobm Fi consisting of
all coherent sequences xo := (x;|i € I), i.e. all the elements x, such that F¢(x;) = x; for
every morphism ¢ : i — j of I. Then, for given x,,y. € A we declare that x, < y. &
x; < y; for every i € I; it is easily seen that (A, <) represents the limit of F in prSet, with
universal cone given by the system of natural projections (A — Fi|i € Ob(I)).

Since the inclusion functor j : poSet — prSet admits a left adjoint, it follows that poSet
is a cocomplete category ([13] Prop.2.49(ii)]) : indeed, for any given functor G : I — poSet,
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let (A, <) be the colimit of j o G : I — prSet; then the anti-symmetric quotient (A, <%)
of (A, <) represents the colimit of G (with the obvious universal co-cone deduced from
a universal co-cone for (A, <)). Lastly, from the foregoing explicit description of limits
in prSet we see that the limit of j o G is represented by a partially ordered set; then it
follows that this object also represents already the limit of G ([13] Lemma 2.52(i)]), and
this shows that poSet is a complete category. O

Corollary 1.9.6. The monomorphisms (resp. the epimorphisms) of prSet and of poSet are
the injective (resp. surjective) order-preserving maps.

Proof. Since the forgetful functor prSet — Set admits both a left and a right adjoint, it is
both left and right exact ([13] Prop.2.49]). Then, since prSet is complete and cocomplete
(proposition [1.9.5), for every monomorphism (resp. epimorphism) f : (A, <) — (A’, <)
of prSet, the underlying map f : A — A’ is a monomorphism (resp. an epimorphism) of
Set (remark [I.1.11fiii)), i.e. it is an injection (resp. a surjection); the converse assertion is
clear (details left to the reader).

Likewise, the inclusion poSet — prSet is left exact, since it admits a left adjoint; then,
since poSet is complete, every monomorphism of poSet is also a monomorphism of prSet,
i.e. itis an injective map, and conversely, every injective order-preserving map of partially
ordered sets is clearly a monomorphism of poSet.

Lastly, it is clear that every surjective order-preserving map is an epimorphism of
poSet. Conversely, let f : (S, <s) — (T, <r) be a morphism of poSet, and t € T \ f(S);
we endow T” := T \ {t} with the partial order <7- induced by the inclusion into T, and
we let (T*, <*) == (T, <7) U, <) (T, <7). Explicitly, the set T* is the amalgamated sum
TuUq T, ie T* = TU{t*} and the universal co-cone T 57 ETis given by the natural
inclusion map e;, and by the map e, such that e;(x) := x for every x # t, and e, () := t*.
Then <* is the minimal transitive relation on T* such that ej, e, : (T, <7) — (T*, <*) are
morphisms of poSet. Clearly e; o f = e; o f, but e; # €3, so f is not an epimorphism. O

Remark 1.9.7. The existence of the left adjoint | - | in §1.9.2]implies that the fully faithful
functor €(_ _y : prSet — Cat preserves all small limits. Also, the explicit construction of
the coproduct of a small family of categories explicited in remark|1.2.4{v), combined with
the description of coproducts in prSet given by proposition [1.9.5} imply that €(_ _) pre-
serves and reflects all small coproducts, and the same holds for its restriction ® : poSet —
Cat. However, the latter does not in general preserve coequalizers. Indeed, consider two
morphisms f,g : (E, <g) = (F, <) of poSet, and denote by p : (F,<r) — (Q,<p) the
projection onto the coequalizer of f and g in prSet; we have seen that the coequalizer of
f and g in poSet is the anti-symmetric quotient (Q, <) of (Q, <p), with universal co-cone
(F, <r) — (Q, <) given by the composition of p with the projection 7 : (Q, <g) — (0, <).
Hence, if ® preserved coequalizers, then in particular the projection p : (F, <) — (Q, <)

would factor through 7 o p and a unique morphism (Q, <) — (Q, <) of prSet; but since
p is surjective, & would then have to be a bijection, and this fails in easy examples.

Example 1.9.8. (i) Not many epimorphisms of poSet are regular (see definition[1.1.12),
but some regular epimorphisms of partially ordered sets will play a special role in later
chapters. To describe them, consider any partially ordered set (E, <), denote by £(E) the
set of all finite totally ordered non-empty chains of elements of E, endow every C € &(E)
with the total ordering induced by the inclusion C C E, and endow &(E) with the ordering
given by inclusions of chains; then we claim that the resulting system of inclusions

Jo = (jc:C—= E|C € {(E))
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is a universal co-cone in the category Cat. Indeed, let € be any small category, and F, :=
(Fc : C > €| C € &(E)) any co-cone; so, every Fe is a functor C — %, and for every
C’ € ¢(E) with C' c C, the functor Fr is the restriction of F-. We associate with F, a
functor F : E — % as follows; for every x € E pick any C € ¢(E) with x € C (e.g. we can
choose C := {x}), and set Fx := Fc(x). We notice that Fx is independent of the choice of
C :indeed, if x € C’, then CNC’ € £(E) and both F¢ and F¢r agree with Foner on C N CY,
whence the claim. Next, for every x,y € E with x < y, choose C € £(E) withx,y € C
(e.g. C = {x,y}) and set F(x7) := Fc(x1); again, it is easily seen that this definition is
independent of the choice of C, and clearly F(1,) = 1p, for every x € E. Lastly, for every
x,1,z € E with x < y < z we need to check that F(yz) o F(X7) = F(x2); then, pick any
C € é(E) with x, y, z € C; by the foregoing we have F(x7)) = Fo(x7), F(yz) = Fe(y2) and
F(x%) = Fo(x%), and on the other hand Fo (y_z>) ) Fc(x_y>) = Fo(x%), whence the assertion.
Obviously F is the unique functor E — % that restricts to Fc over C, for every C € ¢(E),
whence the stated universality of j.

(i) Now, let E" := | lceg(g) C 2, Ebe the unique epimorphism of poSet whose restric-
tion to C agrees with ji, for every C € £(E); notice that E' Xg E' = | |(c,cr)ez(p)2 C N C's
then, the universality of j, easily implies that p identifies (E, <) with the coequalizer in
Cat of the two natural projections E’ XgE’ = E; in other words, p is a regular epimorphism
in Cat, and therefore also in poSet.

(i) Let (E, <) be a finite partially ordered set, and denote by & /(E) the set of all max-
imal totally ordered chains of E; with this notation, we get the following variant of the
discussion of (i,ii). We have a diagram of morphisms of poSet :

J
|_| cne—= |_| c—L.E
(C.C7)eZ (E) S Ce&(E)

where p is the unique morphism of poSet whose restriction to C is the inclusion into E,
for every C € & (E), and where j (resp. j’) is the unique morphism whose restriction to
C N’ is the inclusion map CNC" — C (resp. CNC" — C’) for every C,C’ € &(E). We
claim that the diagram is exact in the category Cat, i.e. p identifies E with the coequalizer
in Cat of the pair of functors (j, j*) : the proof is similar to that of (i), and shall be left to
the reader. In particular, p is a regular epimorphism in both Cat and poSet.

1.9.9. It follows easily from corollary[1.9.6] that the categories prSet and poSet are both
well-powered and co-well-powered, so the image and coimage of every morphism f :
(A, <) = (N, £') in either of these categories is well defined. Moreover, since prSet and
poSet are also complete and cocomplete, the natural morphisms ay : (A, <) — Im(f)
and fy : Coim(f) — (A, <) are respectively an epimorphism and a monomorphism
(see the discussion of . We deduce that, in either category, Im(f) = (f(A), <f),
where < is the minimal transitive relation on f(A) such that A < p= f(1) <y f(p), for
every A, i € A (notice that if (A’, <’) is partially ordered, then also < is a partial order,
since the inclusion map f(A) — A’ is a monomorphism (f(A), <f) — (A’, <’) in prSet).
Likewise, Coim(f) = (f(A), S}), where S} is the restriction to f(A) of the preorder <’
of A’; again, if (A’, <’) is partially ordered, clearly the same holds for (f(A), s}). The
details shall be left to the reader.

Remark 1.9.10. (i) With the notation of §1.9.9] notice that the canonical morphism wy :
Im(f) — Coim(f) is not necessarily an isomorphism, though it is always a bijection.
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(if) However, if (A, <) is a total order, then the same holds for both Im( f) and Coim( f),
and therefore wy is an isomorphism, since any order-preserving bijection between total
orders is obviously an isomorphism of poSet.

1.10. Freyd’s adjoint functor theorem and applications. In this section we state and
prove Freyd’s adjoint functor theorem and Freyd’s representability theorem, that we will
use later to construct some interesting categories and functors. Both of Freyd’s theorems
are corollaries of the following proposition :

Proposition 1.10.1. Let € be a complete category. Then € has an initial object if and only
if there exists a subset S C Ob(%) such that :

(%) Jexrze  vreob).
XeS

Proof. If X is an initial object of €, then clearly S := {X} will do. Conversely, suppose that
S c Ob(%) verifies (), and notice that the product U := [ ]y . X is representable in %,
since ¢ is complete. We have €' (U, Y) # @ for every Y € Ob(%), since by assumption for
every such Y there exists X € Sand f € €(X,Y), so ¥ (U, Y) contains the composition
of f with the projection U — X.

Next, let e : I — U be the equalizer of all the endomorphisms of U in 4 (again, this
is representable in ¥); thus, g o e = h o e for every g, h € € (U, U), and every morphism
f:Y — Usuchthatgo f = ho f for every such g and h, factors uniquely through
e. Obviously € (I,Y) # @ for every Y € Ob(%); suppose that u,v € €(I,Y), and let
e’ : I’ — Ibethe equalizer of u and v. Pick also any w € € (U, I’); then ece’ow € € (U, U),
and since e equalizes all the endomorphisms of U, we have :

eoe’owoe=1yoe=eolj.

Since e is a monomorphism, we deduce that e’ owoe = 11, so e’ is both a monomorphism
and a split epimorphism, i.e. ¢’ is an isomorphism of ¢ ([13, Exerc.1.119(ii)]). But then
u = v, and this shows that I is an initial object of % O

Theorem 1.10.2. (Freyd’s adjoint functor theorem) Let o7 be a complete category, and
F:of — 2 a functor. The following conditions are equivalent :

(a) F admits a left adjoint.

(b) F preserves all small limits, and every B € Ob(%) has a solution set, i.e. a subset
SpCcOb(.f) such that, for every A€ Ob(), every f € (B, FA) factors as

f=F(h)og with A" €S hed(A,A) ge PB(BFA).

Proof. (a)=(b) : Indeed, if F admits a left adjoint G : & — 7, then F preserves all
representable limits of .7 ([13] Prop.2.49(i)]), and if (7., €.) are the unit and counit of an
adjunction for the pair (G, F), we get the sought identity with h := ¢4 o Gf : GB — A
and g := np, so that {GB} is a solution set for every B € Ob(%).

(b)=(a): Recall that F has a left adjoint if and only if the category 43 := B/F.</ has
an initial object for every B € Ob(%) (proposition[1.6.8), and by virtue of propositions
[1.4.5(ii.b) and the latter holds if and only if there exists a subset .5 C Ob(%3)
such that Uy o, €5(X,Y) # @ for every Y € Ob(%p). But condition (b) says that
S = t3'(Sp) will do, for every such B. m|

The following result generalizes proposition[1.7.7]:
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Theorem 1.10.3. (Freyd’s representability theorem) Let o7 be a cocomplete category, and
F a presheaf on o7 . Then the following conditions are equivalent :

(a) F is representable

(b) F: o/°P — Set preserves all small limits, and there exists a solution set :

ScOb(«/)  suchthat  Fa= U U f*(Fx) VA e Ob().
A’€S feod (AA")

Proof. (a)=(b): Indeed, if F is representable by some A’ € Ob(7), then F preserves all
small limits ([13} Exemp.2.39(ii)]), and it is easily seen that S := {A’} fulfills condition (b).

(b)=(a): According to remark[1.7.1[v), since .&/°P is complete, the same holds for & :=
(&7 [F)°P = {@}/F</°P, and F is representable & Z has an initial object. But proposition
says that Z has an initial object < there exists a subset ./ € Ob(%) such that
Uxe.o» B(Y,X)# D for every Y e Ob(A). It is easily seen that .7 := t{_;la} (S) willdo. O

As an application, let us show :
Proposition 1.10.4. The category Cat is complete and cocomplete.

Proof. Consider any functor from a small category I :

. P €y
%. : 1 — Cat i % (i—=Jj) = (6 — ).

Then the limit of ¢, is represented by the category € with Ob(%) := lim; Ob o 4, where
Ob : Cat — Set is defined as in example[1.1.9(i). Hence, an object of ¢ is a family (X; | i €
Ob(I)), where X; € Ob(%;) for every i € Ob(I), and €3(X;) = X; for every morphism
¢ : i — jin I. For any two objects X, = (X;|i € Ob(I)) and Y, := (Y;|i € Ob(I)),
notice that the rule : i — %;(X, Y;) for every i € Ob(I) defines a functor Hx, y, : I — Set;
namely, to every morphism ¢ : i — j in I we assign the map Hy, y, (i) — Hx, v, (J) given
by : (X; L Y;) - (X m Y;). Then we set

¢(X.Y.):=limHy,y,  YX.Y. €Ob(?).

The composition of morphisms in % is induced by the composition laws of the categories
%;, in the obvious way. The obvious projection functors 4 — %; yield a universal cone
¢y = G, : the details shall be left to the reader.

Next, in order to check that the colimit of %, is representable in Cat, let us consider
the functor L : Cat — Set that attaches to every small category 27 the set L(.27) of all co-
cones 1o : 6o = g, and to every functor G : & — &/’ the map L(G) : L(«/) — L(</")
: e > ¢G o7e. Then L is a presheaf on Cat?, and it is easily seen that L is a representable
presheaf if and only if the colimit of %, is representable in Cat : more precisely, colim; €,
is represented by any small category representing the presheaf L. However, we have just
shown that Cat® is cocomplete, and it is easily seen that L preserves all small limits of
Cat, so by theorem we are reduced to exhibiting a solution set for L. To this aim,
let 7 := |icon(r) ¢i be the coproduct of the family of categories (¢; | i € Ob(I)) (remark
[1.2.4[v)); for every small category Z and every co-cone 7, : 6o = cs,let F; : 2 — B be
the unique functor whose restriction to %; agrees with r; for every i € Ob(I), and denote

by %, C % the image of F; (see example[1.8.8[ii)). The system of categories
F = (%, % € Ob(Cat), 7, : 6o = cz)

is not necessarily a set, but by remark ii) we have a quotient .%#/ ~ for the equivalence
relation ~ such that %, ~ %, & %, and %, are isomorphic categories.
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Claim 1.10.5. The quotient .%/~ is a set.

Proof : For every equivalence relation # on Ob(Z) and every X € Ob(Z) we denote
by [X]%z € Ob(2)/Z% the Z-equivalence class of X. For every X,Y € Ob(Z2) let also
([ X%, [Y]%) be the set of all sequences of morphisms of 2

(fi:Zi>Z|li=1,...,n)
of arbitrary finite length n, such that [Z;] % = [X]%, [Z,]# = [Y]# and [Zi1]% = [Z]] %

for every i = 1,...,n — 1. Next, let S be the set of all pairs (%,.Z), where Z is an
equivalence relation % on Ob(2), and .Z is the datum of :

(a) a quotient 2 ([X], [Y]2) of #%([X]%, [Y]2), for every X,Y € Ob(2)
(b) for every X,Y,Z € Ob(2), a composition map

H2([X12 [Y]2) X %[V [Z)2) — # 2([X]2, [Z]2)-

Now, let 7, : 4o = cg be any co-cone; we attach to 7, the equivalence relation %; on
Ob(2) such that (X,Y) € %, if and only if F,.X = F.Y, and to ease notation we set
[X]; := [X] &, for every X € Ob(Z). For every X,Y € Ob(Z), we then have an obvious
surjection

Ha, ([X]: [Y]) = B (FX,F.Y) (fili=1,...,n) > F,fyo---0oF. f;

that induces a bijection of %, (F.X, F,Y) with a unique quotient H([X]s [Y]:) of the
set . ([X]: [Y];), and the composition law of 4, yields a system of composition maps
H (X0 [Y]0) X Ao ([Y] [2]0) = (X [Z],), for all X, Y, Z € Ob(2).

The datum .Z; formed by such quotients and their composition maps then yields an
element (%, %;) € S. By construction, if we have (%#;, £;) = (%,,, £, for two co-cones
Te, Jls : Go = e, then clearly %, ~ %,,. This shows that .7/~ admits a natural bijection
with a quotient of a subset of the set S, whence the claim. &

By the axiom of global choice we may pick in .% a representative for each isomorphism
class; by claim[1.10.5] the set of such representatives finally yields a solution set for L. O

Remark 1.10.6. Recall that the product and coproduct of any small family of small cate-
gories admit also more explicit descriptions, independent of the constructions proposed
in the proof of proposition[1.10.4]: see remark [1.2.4{iv). Likewise, see remark [1.5.12] for
an explicit construction of the colimit of any small filtered family of small categories.
Moreover, the discussion of example can now be completed as follows :

Proposition 1.10.7. LetI be a category, and F : I — Cat a functor. We have :
(i) There exists a global co-cone 7, := (1; : Fi — € | i € Ob(I)) (see definition[1.2.9(i)).
(ii) If I is small, the same holds for the wide colimit €, and 7. is also a universal co-cone.

Proof. (ii): So, suppose that I is small, and let 7, := (7; : Fi — % |i € Ob(I)) be a universal
co-cone, which exists by virtue of proposition[1.10.4} it suffices to check that 7, is a global
co-cone. Hence, let # be any wide category, ne := (1; : Fi — % |i € Ob(I)) a co-cone,
and for every i € Ob(I) denote by %; C % the image of 7; (example[1.8.8[iii)). By lemma
[1.2.10(i,ii) there exists a minimal subcategory %’ ¢ & with U;cop(1) Mor(%;) € #’, and
%' is a small category. Let also j’ : %8’ — 2 be the inclusion functor, and 5, := (7] :
Fi — %’|i € Ob(I)) the unique co-cone with ; = j’ o 5 for every i € Ob(I); by the
universality of 7,, there exists a unique functor G’ : € — %’ such that G’ o 1; = 7] for
every i € Ob(I),andif wesetG := j' oG’ : € — B, we get Gor; = n; for every i € Ob(I).
Next, suppose that H : 4 — £ is another functor with H o 7; = 1; for every i € Ob(I),
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and let j” : 8”” — ¥ be the inclusion of the minimal subcategory of % containing the
images of G and H; then %" is small (lemma , and both H and G factor through j”
and unique functors H”,G"” : € = A" Clearly, H' o 7; = G” o 1; for every i € Ob(I),
whence H” = G” by the universality of 7., and finally H = G, as required.

(i): Let Z(I) be the class of all small subcategories of I; it follows easily from lemma
[1.2.10(i,ii) that &2 (I) is filtered by inclusion. By (ii), for every | € Z(I) we may find a
global co-cone ] = (r]] : Fj — €7]j € Ob(]J)) for the restriction Fj; : ] — Cat of the
functor F, and % is a small category. Then, every inclusion J C K of small subcategories
of I induces a unique functor

@€ — ¢k suchthat 8 oGk =1/  VkeOb()).
It follows easily that the rules : J = %} and (J € K) — @)k yield a functor
Go : P (I) — Cat

whose global colimit is representable by a wide category %, by example and we
fix as well a global co-cone po := (5 : €7 — €| ] € F(I)). Next, for every i € Ob(I)
and every J € & (I) with i € Ob(J), let us set

r,-::p]orl.J:Fi—>(£.

It is easily seen that 7; is independent on the choice of J, and that the rule : i — z; yields
a co-cone 7, with basis F and vertex € : the details shall be left to the reader. Now, let
% be another wide category, and v, := (v; : Fi — Z|i € Ob(I)) a co-cone; for every
J € Z(I), the restriction vl = (vj|j € Ob(J)) is a co-cone with basis Fj;, whence a
unique functor Gy : 67 — % such that v; = Gy o rj] for every j € Ob(J). The uniqueness
of Gj easily implies that for every inclusion | C K of elements of Z(I), the functor G;
equals Gk o €k, whence a co-cone (G | J € £7(I)), which in turns determines a unique
functor G : € — % such that Gy = G o pyj for every J € &(I). It follows easily that
G ot = v; for every i € Ob(I). Lastly, let H : € — 2 be another functor such that
H o r; = v; for every i € Ob(I); then for every J € &(I) and every i € Ob(J) we get
Hoy]ori] =G0p]ori],whenceHoy] = G o yy for every such J,so finally H=G. O

1.11. Localizations of categories. As an application of proposition[1.10.4] we now wish
to explain how to formally invert given morphisms of a category : this problem — framed
as a suitable universal factorization property - is solved by the localization of a category
along a class of its morphisms; later we also explain the technique of calculus of fractions
in a category, that enables us to describe explicitly such localizations, under suitable as-
sumptions. The original source for most of this material is [[6} Ch.1].

Definition 1.11.1. Let € be a category (resp. a wide category), and & C Mor(%) a
given subclass. For every wide category 2, let also Isom(%) c Mor(Z) be the class of
isomorphisms of Z. A localization (resp. a wide localization) of € along ¥ is a pair :

(CI=7"Ly)  (esp. (€(=7).y))

where €' [27!] is a category and y : € — €’[>7!] a functor with y(2) C Isom(¢'[27'])
(resp. where €' (27! is a wide category, and y : € — €(=7!) a functor with y(Z) C
Isom(%(=71))), and such that for every category (resp. every wide category) Z and
every functor F : 4 — % such that F(Z) c Isom(Z%), there exists a unique functor
G:%[27!] - Z (resp. a unique functor G : €(=7!) » Z) with F=Goy.
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Example 1.11.2. (i) Let & be a category that admits either a final or an initial object,
and take ¥ := Mor(%’). Then ¢’[>™!] is (isomorphic to) the category ¢ whose class of
objects is Ob(%) and such that for every X, Y € Ob(%), the set € (X, Y) contains exactly
one element ¢xy. Indeed, there exists a unique functory : 4 — € which is the identity
on objects, and obviously y(2) C Isom(%). Next, let F : 4 — & be a functor such that
F(2) c Isom(2); we need to check that F factors uniquely through y. To this aim, say
that X is a final object for ¥, and for every X € Ob(%), let tx : X — X be the unique
morphism; then, for every morphism f : X — Y of € we have ty o f = tx, whence
Ff = (Fty)™' o Ftx, and thus we have F = G o y if and only if G : € — & is the unique
functor such that GX := FX and G¢xy := (Fty)™! o Ftx for every X,Y € Ob(%). One
argues likewise in case ¥ admits an initial object.

(ii) If € is a wide category that admits either an initial or a final object, the argument of
(i) also yields the same description for the wide localization 4’ (3~1) along ¥ := Mor(%).
Especially, if € is a category, the localization and the wide localization of 4" along Mor (%)
coincide (as usual, up to unique isomorphism), under either of these assumptions.

Remark 1.11.3. (i) If the localization (¢ [Z7'],y) exists, the functor y is a bijection on
objects; i.e. we may always take Ob(%’[%7!]) = Ob(%), and then y will be the identity
on objects. Indeed, consider the category & such that Ob(Z) = Ob(%¢) and Z(X,Y) =
C[=7(yX,yY) for every X,Y € Ob(%), with the composition law deduced from the
composition law for morphisms of € [27!]. We have a functor A : ¢ — 2 that is the
identity on objects, and such that A(f) := y(f) for every morphism f of €. Clearly
A(Z) C Isom(9), so A factors through y and a unique functor « : €[>7'] — 2; on
the other hand, y factors through A and a unique functor f : 2 — %[>7!] : namely,
SX = yX for every X € Ob(Z), and f is the identity map on morphisms. The identity
A = a oy implies that « is surjective on objects. Next, since y = fod = foa oy, we
must have 8 o @ = 14[5-17 by the universal property of y; this implies that « is injective
on objects, i.e. « is bijective on objects, so the same holds for y.

ii) Moreover, every morphism of €’ [2~!] can be written as a composition :
y p p

1 -1
() X, y(fo) Y, ¥(90) X, y(f) Y, y(g1) y(fn) Y,

of some arbitrary length n, where fi,..., f; are morphisms of &, and g, ...,gn-1 are
elements of ¥. Indeed, clearly any composition of morphisms of the type (*) is again of the
same type, so let Z C €[] be the subcategory such that Ob(%) = Ob(%), and whose
morphisms are of the form (x). Obviously y factors through the inclusion Z — €' [37']
and a unique functor y’ : ¥ — %, and clearly y’ () C Isom(%). Moreover, if F : € — 2
is any functor with F(2) C Isom(2), then the unique functor G : €[>7'] — 2 with
F = G o y restricts to a functor G’ : & — Z with F = G’ o y’, and it is easily seen that
there can be at most one such functor G’. Hence, (4, y’) is another localization of €
along ¥, and one deduces easily that Z = €' [>7'].

(iii) The discussion of (i) and (ii) also applies verbatim to the wide localization ¢’ (X 1)
of any wide category ¢ along any subclass X ¢ Mor(%).

(iv) Suppose that € is a small category, and let (.Z, y) be a pair consisting of a small
category .Z and a functor y : ¥ — £ with y(2) C Isom(.Z), such that for every small
category %, the functor y induces a bijection :

Cat(¥Z,¢’) = {F € Cat(¥,%¢’) | F(2) C Isom(¢")} G Goy.
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Then (.Z, y) is alocalization of ¢ along 3. Indeed, let F : ¥ — & be any functor such that
F(Z) c Isom(2),andlet j : 9’ — 2 be the inclusion functor of the minimal subcategory
9’ C 9 such that F(Mor (%)) U{(Ff)™'| f € 2} C Mor(Z’). Then F is the composition
of j and a unique functor F/ : ¥ — 2’. Clearly F'(3) C Isom(Z’); moreover, 2’ is
a small category (lemma [1.2.10{i,ii)), so by assumption F’ is the composition of y with a
unique functor G’ : .£ — 2’. With G := j o G, we get F = G o y. Lastly, suppose
that H : £ — 9 is another functor such that F = Hoy, and leti : 9”7 — 2 be the
inclusion functor of the minimal subcategory 2" ¢ 2 with G(Mor(.Z))UH(Mor(.Z)) C
Mor(2"); then G (resp. H) is the composition of i with a unique functor G : .& — 2"
(resp. H” : £ — 2"), and clearly G” oy = H” oy, whence G” = H”, by our assumption
on the pair (%, y), so finally G = H, as required. The same argument shows that, in this
situation, (£, y) also represents the wide localization of € along 3.

Proposition 1.11.4. (i) For every wide category € and every subclass . C Mor(€), the
wide localization (€(=71),y) of € along > exists.

(ii) If € is a small category, the same holds for € (X1).
(iit) If € is a category and ¥ is a set, (€(=71),y) is also a localization of € along .
Proof. Suppose first that % is small, and that ¥ = {f} for some morphism f : X — Y of .

We let I be the category with Ob(I) := {0, 1} and such that the inclusion functor [0] — I
is an equivalence of categories (so Mor(I) = {1, 11,0_1> 10 —> I,F}) : 1 — 0}). Clearly the
totally ordered set [1] is a subcategory of I, and we let j : [1] — I be the inclusion; since
Cat is cocomplete (proposition[1.10.4) we may then consider the cocartesian diagram :

1] L@

jl ly

| ——9

where F is the unique functor such that F (0_1>) := f. Hence, for every small category <7,

the datum of a functor 2 — 7 is equivalent to that of a pair of functors ¢ S ol
with GoF = Ho j. However, notice that H is the same as the datum of an isomorphism of
&7, and the foregoing identity then means that Gf is an isomorphism in .2/ Taking into
account remarkjl.ll.b’kiv), this shows that (2, y) is a localization €[ f !] of € along {f}.

o Next, let X = {f,..., f»} be any finite subset of Mor(%); we set

Do=¢ and  Zi=Pi4[f,"']  Vi=1,...n

where ]_Ci denotes the image of f; in %;_1, for every i = 1,...,n. It is easily seen that Z,
represents the localization 4’[£7!], and the localization functor y : € — %’ [>7!] is the
composition of the localizations (%;—1 — Z;|i=1,...,n).

o Lastly, let ¥ c Mor(%) be an arbitrary subset, and denote by #(2) the set of all
finite subsets of X, partially ordered by inclusion of subsets. By the foregoing, for every
A € Py(3) we get a localization yp : 4 — € [A™!], and clearly, for every A’ € Py(3)
with A C A’ there exists a unique functor yaar : €[A™'] — €[A’"!] such that yap oya =
Ya. We then get a well-defined functor

Cl-]: Po(3) > Cat A F[A]  (ACA) o yan
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and again, in light of remark [1.11.3{iv), it is easily seen that the colimit .Z of €[] rep-
resents the localization €[27!]; indeed, if (S : €[A7!] — ZL|A € Py(2)) is a uni-
versal co-cone, then 8y : € = €[@7'] — .Z is the localization functor. Moreover,
(€[=71], 85) is also a wide localization of €’ along 3, so the proof of (ii) is complete.

e To prove (i), denote by & (%) the class of all subsets of Mor(%’), and recall that for
every S € &(%) there exists a minimal wide subcategory %s of € with S ¢ Mor(%s),
and ¥ is a small category; moreover, % is the wide colimit of the filtered family (€5 | S €
P(€)) (lemma [1.2.10). For every S,T € Z(%¢) with S C T, let js : €5 — ¢ and
Gst : s — €t be the inclusion functors, set g := SN 3, and let (555(251), ¥s) be the
wide localization of 65 along S; by (ii), we get an induced functor

F: P(6) > Cat S %s(35") (ST (For: Gs(S5h) = Gr(37h)

where Fsr is the unique functor such that Fsroys = yro%sr. According to example[1.5.11]
the wide colimit of F is represented by a wide category ., and we choose a global co-
cone 7, := (75 : €s(Z5') = ZL|S € P(%)). Let theny : € — & be the unique functor
such that y o js = 75 o ys for every S € &(%); we claim that (7, y) is the sought wide
localization of € along X. Indeed, it is clear that y(X) C Isom(.%); next,let G : € — 2
be any functor of wide categories such that F(2) c Isom(2), and for every S € Z(%)
let Gs : ‘KS(ZEI) — 2 be the unique functor such that Gs o ys = G o js. It follows easily
that Gr o Fst o ys = Gs o ys for every S, T € Z (%) with S ¢ T, whence Gt o Fst = G,
so that we get a unique functor

H: -9 such that Ho1s =Gg VS € Z(%).

It follows that G o js = Gsoys = Ho 1g o ys = Ho y o js for every S € (%), so that
G = Hoy. Lastly, let K : .Z — 2 be another functor with K o y = G; it follows that
Korgoys=Koyojs=Gojs=Hotgoys forevery S € (%), whence Korg =Horg
for every such S, and finally K = H, as required.

(iii): Denote by S the class of all objects of € that are either source or target of elements
of 3, and for every X,Y € Sset 2(X,Y) = €(X,Y) N 3; clearly, if ¥ is a set, the same
holds for S. For every n € N and every X,Y € Ob(%), let T,,(X,Y) be the set of all
sequences (X,, Ys) = ((Xo, Y0), -+, (Xpn, Yp)) with Xp = X, Y, = Y and X;, Y;_; € S for
every i =1,...,n. Remark ii) yields a surjection

n n-1
[1€06 %) x [ | 2(Xi1, Yi) = G(EHX,Y).
neN (X.,Y,) €T, (X,Y) i=0 i=0

Thus, if ¥ is a set, the same holds for €(=71)(X, Y), for every X,Y € Ob(%). O

Remark 1.11.5. (i) When % is a (usual) category and ¥ is is a proper class, the existence of
the localization ¢’[> '] is in general a delicate question, and depends on the chosen set-
theoretic framework. On the other hand, it is clear that if the wide localization € (>™1) is
a (usual) category, then (6'(=1),y) is also a localization of ¢ along 3. Moreover, standard
arguments show that the pair (¢’ [27!],y), when it exists, is determined by its universal
property : if (Z,y’) is another localization of € along ¥, there exists a unique isomor-
phism of categories @ : €'[27'] = % such that y’ o @ = y; the same of course applies,
mutatis mutandis, to wide localizations.

(i) Let € be a category, ¥ C Mor(%) a subclass, (4(=7!),y) the wide localiza-
tion of ¢ along ¥, and suppose as well that the localization (¢’[Z7'],y’) exists; by re-
mark i,iii) we may suppose that y and y’ induce identifications : Ob(%(Z71)) =
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Ob(%[=71]) = Ob(¥), and we have a unique functor
p: € - €= such that poy=y.
Especially, ¢ is the identity map on objects. It follows easily that the rule :
(X,Y) > 2(X,Y) = ¢p(C€ (=YX, Y)) Y(X,Y) € Ob(%)?

defines a subcategory 2 C €' [2™!] with Ob(Z) = Ob(%¥), such that y’ factors uniquely
through a functor y”’ : € — 2, with y”’(2) C Isom(2), and ¢ factors through a unique
functor ¢’ : €(X71)y — 2. Now, let F : ¥ — &/ be any functor of categories such that
F(2) c Isom(47), so that F factors uniquely through y’ and a functor F : €[27'] — 7,
and denote by G : 9 — & the restriction of F. Clearly G o y”” = F; moreover, suppose
that G’ : 2 — 7 is another functor with G’ oy”” = F. It follows that Go¢’ oy = G’ o ¢’ oy,
whence Go¢’ = G’ o ¢’; but ¢’ is the identity on objects, and is surjective on morphisms,
whence G = G’. This shows that (Z,y”) is a localization of ¥ along %, and then the
inclusion 2 — %’[27!] must be an isomorphism of categories, by (i). Summing this
proves that ¢ is a full functor. However, will shall later show that ¢ is not necessarily an
isomorphism of (wide) categories : see proposition [1.12.14}

(iii) It is clear from the definition, that the localization (¢'[27!],y) exists if and only
if the same holds for the localization (4°P[2°P~1],y’), and if these categories exist, we
have a unique isomorphism of categories :

w: EP[ZPT = g[zTP such that YP=woy

and again, the same applies to wide localizations.
Proposition 1.11.6. Let €, Z be two categories, F : € = 2 : G two functors and
3 r = {f € Mor(%) | Ff is an isomorphism}.

Suppose that G is fully faithful, and is either right or left adjoint to F. Then :
(i) The localization (€'[2:'],y) exists.

(ii) F factors uniquely throughy and an equivalence F : C2:' = 2.

Proof. Obviously we have ng = Xpop, and (F, G) is an adjoint pair if and only if the same
holds for (G°P, F°P) ([13| Rem.2.15(i)]); taking into account remark [1.11.5(iii), we may
therefore assume that G is right adjoint to F.

Now, let € be the category with Ob(%) := Ob(¥), and
€ (X,Y) := Z2(FX,FY)  VX,Y € Ob(%)

with composition law deduced from that of 2, in the obvious way. We have a functor
Yy : € — € that is the identity on objects, and such that y( f) = Ff for every morphism f
of €; then F is the composition of y and a unique functor F : € — 2 such that FX := FX
and Fg := g for every X € Ob(%) and every g € Mor(%). By construction, F is fully
faithful. Moreover, let o : 14 = GF and ¢, : FG = 14 the unit and respectively
the counit of an adjunction for (F, G); since G is fully faithful, ¢, is an isomorphism of
functors ([13] Prop.2.16(iii)]), i.e. €4 : FGA — A is an isomorphism for every A € Ob(2),
and especially, F is essentially surjective, so it is an equivalence of categories, as stated.

It remains only to check that (%.y) is a localization of ¢ along Sr. Obviously, y(f)

is an isomorphism of ¥, for every f € Xp. Next, let H : ¥ — %" be any functor such
that Hf is an isomorphism of €” for every f € Xp; we must exhibit a unique functor



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 68

H:% — ¢ suchthat H=Ho y. Clearly, we must then set HX := HX for every
X € Ob(%). Notice moreover that for every such X, we have

erx © Fnx = 1px in9

by the triangular identities for (7, &) ([13} Prob.2.13(ii)]). We have already noticed that
erx is an isomorphism of 2, so the same holds for Fnx, i.e. nx € Zp, and we get an
isomorphism :

(%) erx :GFX = X in% suchthat ep) = y(nx).

In view of (%), every morphism g : X — Y of & (i.e. every g € Z(FX, FY)) then yields
the following commutative diagram in € :

X Y
(%) Y(”X)l ly(w)
yGg
GFX GFY.

Hence, for every such g we set Hg := (Hpy) ™' o HGg o Hyx : HX — HY.
It is easily seen that H is a well-defined functor & — ¢’, and we get :

ﬁoy(f) = (Hryy)_1 oHGFf oHnx = (Hr]y)_l oHnyoHf =Hf Vfe?(X,Y)

so that Hoy = H. Lastly, ifK : € — %" is any functor with H = Koy, we apply K termwise
to the diagram (sx) to easily deduce that Kg = Hg, and the proof is complete. O

Lemma 1.11.7. Let €, 2 be two categories, and ¥ C Mor(%) such that the localization
(€271, y) exists. Let also F,G : €[] — Z be two functors, andt, : Foy = Goya
natural transformation. Then we have :

(i) There exists a unique natural transformation o : F = G such that 7, = o % y.
(ii) Especially, if € is small, y induces a fully faithful functor
Fun(y, 2) : Fun(¢[27'], 2) — Fun(¥%, 2).
Proof. Clearly (ii) follows from (i). Now, the datum of 7, is equivalent to that of a functor
T:¢ — W such that egoT=Foy and e oT=Goy

where [1] is defined as in remark iii), and eg,e; : 2! — & are the evaluation

functors, as in ~. Namely, we set TX := (FyX = GyX) for every X € Ob(%’). Notice
that a morphism g of 2!!! is an isomorphism if and only if both e(g) and e;(g) are
isomorphisms of Z; then clearly T maps every f € 3 to an isomorphism T f of 21!, so
it factors through y and a unique functor

T ¢z - 2 such that egoT'=F and e oT =G.
In turns, T’ is equivalent to the datum of a natural transformation f, : F = G with the
sought property. O
Proposition 1.11.8. Let F : &/ = 2 be an equivalence of wide categories, > C Mor (/)
a subclass, and A := F(X) C Mor(%). We have :
(i) F induces an equivalence of wide categories o/ (X™1) => B(A™!).

(ii) If & and P are categories, and if the localization (/' [£71], y.y) exists, then the same
holds for the localization (#B[A'], y), and F induces an equivalence o/ [£~1] = Z[A™!].
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Proof. (i): Let G : 28 = o/ be a quasi-inverse for F, and 7, : 12 = FG, €4 : GF =5 14
the unit and counit of an adjunction for the pair (G, F) (so ne and &, are isomorphisms of
functors : see [13] Prop.2.16(iii)]). We consider the wide category 2 such that Ob(B) =
Ob(%), and with @(X, Y) = (Y (ywGX,yxGY) for every X,Y € Ob(%); the com-
position law of 4 is induced by that of .7 (S~ in the obvious fashion. We have a functor

va: B—>RB XX (f:X->Y) y,Gf
and we claim that y»(A) C Isom(é). Indeed, for every (f : X — Y) € Mor (&) we have

Y& (Ff) = yor(ey) ™ oy (f) 0 yor(ex) : Yoy GFX — yoyGFY

s0 Yz (Ff) is an isomorphism whenever f € %, whence the assertion.

o Next, let H : 4 — % be any functor of wide categories such that H(A) c Isom(%);
hence HF () C Isom(%), so there exists a unique functor K : &/(271) — % such that
Ky.s = HF. Especially, for the case H = y, we denote by F : </ (%™!) — 2 the unique
functor such that Fy,, = yzF. We define a functor H : & — € as follows. For every
X,Y € Ob(%) we set HX := HX, and for every ¢ € &7 (X7 ')(ysGX, y.sGY) we let

H¢ = H(ny) ' o K(¢) o H(nx) : HX — HY.

We claim that Hy = H. Indeed, Hy(X) = HX for every Xe Ob(A); then, if p = yz(f)
for f € B(X,Y), we get K(¢) = KysGf = HFGf, so that Hp = Hf, as stated.

e Lastly, let H' : % — € be another functor with H'ys = H. We need to show that
H’ = H, and since yg is the identity on objects, we see already that H'X = HX for every
X € Ob(A); we are then reduced to checking :

Claim 1.11.9. For every X, Y € Ob(%), every ¢ € %(X,Y) can be written as a composition

) ()1 . (a1 2 (Fs
0% v (fo) B, Yoz (90) C ye(fi) B, Yoz (g1) Y (fn) %

for some n € N, where fi, ..., f, are morphisms of % and gy, ..., gn-1 € A.

Proof : By definition, ¢ € & (X7')(ysGX, yoyGY), so it can be written as a composition

GX Yer (ho) Y, Yer (s0)7" X, Yer (h1) Y, Yer (s1)7! Yoz (hn) GY

for some n € N, where hy, ..., h, are morphisms of &7 and s,...,s,—1 € % (remark
ii)). Recall that Gnp = ¢, for every B € Ob(%) ([13| Prob.2.13(ii)]); we deduce the
commutative diagram of o7 :

GFh GF GFh GF GFh,

GFGX °> GFY, < GFX; > GFY; =2 ... GFGY
GUXT lEYo l/g)ﬁ lle lG(’?;l
h h hn
GX L L ' Loy, 2 GY

all whose vertical arrows are isomorphisms. Hence, we can take B; := FY;, Ciy1 := FXjyq
fori=0,...,n—1,and fy := Fsg o nx, f == 17;,1 oFhy,, fi == Fh;fori=1,...,n—1, and
gi :=Fs;fori=0,...,n—1. &

With claim we conclude that (4, Y#) is the wide localization of % along A; the
remaining assertion of (i) follows now from :
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Claim 1.11.10. F is an equivalence of wide categories.
Proof : Clearly Fy.,X = FX for every X € Ob(4), and we show that :

FYy=yu(ex) oY oyul(ey) " 1 ywGFX = yyGFY VY € (3 ) (ywX,ywY).
Indeed, there exists a functor F’ : &7 (3™!) — 2 such that F'y,X := FX for every
X € Ob(&), and with F'y) := y(ex) o i/ o yor(ey) ™! for every  as in the foregoing,
and it is easily seen that F'(y.s ) = yaFf for every f € o/ (X,Y), whence F’' = F, by
the uniqueness property of F. It follows that F is fully faithful, and since F is essentially
surjective, we also easily deduce that the same holds for F, whence the assertion. &

(ii): If o7 and 8 are categories and if </ [27!] exists, the proof of (i) yields, mutatis
mutandis, the construction of Z[A~!], whence the claim (details left to the reader). O

The following result, that I learned from O.Gabber, shows that every wide category
can be realized, up to equivalence, as a wide localization of some (large) category.

Proposition 1.11.11. For every wide category € there exists a category A, a class ¥ C
Mor (%) and an equivalence of wide categories € = PB(31) that is injective on objects.

Proof. Let T be the class of all composable pairs (f, g) of morphisms of €, i.e. such that
the target of f equals the source of g; denote by %, be the discrete category with

Ob(%)) = {Xc|c € Ob(E)} L{Yr|f € Mor(€)} U{Zsy|(f.9) € T}.
o Let %, be the category obtained by adding to %, the family of morphisms :

Xs(f) & Yf ﬂ) Xt(f) Vf € MOI‘(%)

where s(f) and t(f) are respectively the source and target of f (see definition [1.2.3[i)),
and we also require that o(f) = 7(f) if and only if f = 1, for some ¢ € Ob(%). Notice
that for every composable pair (¢, ) of morphisms of %, either ¢ or ¢ is an identity
morphism, so there exists a unique (trivial) composition law on such composable pairs
verifying the usual associativity and unit axioms.

o Next, let # be the category obtained by adding to %, the family of morphisms :
Xs(f) Xi(f) = Xs() Xi(g)

M T” V9 re

Zfg Y(f.g) €T

y l;:(fg) S

Yr Yor ¥
where A(f, 9), u(f,9), p(f,g) are all distinct, and we require the identities :

a(f) o A(f.9) = A (f.9) = o(gf) o u(f.9)
o(f) o A(f.9) = 1 (f.g) = a(g) o p(f.9)
7(9f) o u(f.9) = p*(f.9) = 7(9) o p(f.9)

so that A*(f,g) = p*(f. g) (resp. A*(f,9) = p*(f.9). resp. p*(f,9) = p*(f.9)) if and only
if f = 1, (resp. if and only if gf = 1., resp. if and only if g = 1.) for some ¢ € Ob(%).
Notice that for every composable triple (¢, ¥, &) of morphisms of % (i.e. such that both
(4, ) and (¢, &) are composable pairs), either @, i or ¢ is an identity morphism, so that
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the foregoing identities uniquely determine a composition law on 4 fulfilling the usual
associativity and unit axioms (details left to the reader).

o Let (B(Z71),y) be the wide localization of % along the class
2:={c(f)|f € Mor(€)} U{A(f.9). u(f.9). p(f.9) | (f.9) € T}
We define a functor F : 4 — %(%"!) by the rules :
e Xe  fry(f)oy(a(f)™  VeeOb(?),Vf € Mor(%).

Let us check that F1, = 1p, for every ¢ € Ob(%) and that F(g o f) = Fg o Ff for every
(f,g) € T. The first identity is clear, as 6(1.) = 7(1.); for the second identity, we compute:

F(go f) =y(z(gf) o y(a(gf)) ™
=y(z(9f) o y(u(f,9)) o y(p(f.9) " o y(o(gf)!
=y(z(9) o y(p(f.9)) o y(A(f.9) ' o y(a(f) "
=y(2(9)) o y(a(9) " o y(a(g)) o y(p(f.9) o y(A(f,9) " o y(a (N~
=Fgoy(z(f)) o y(A(f.9) o y(A(f.9) " o y(a(f)~"

=FgoFf.
e We define as well a functor G : # — % by the rules :
X, —c Yi, Zgg = s(f)
a(f). A(f.9). i(f.9) = 1s() t(f).pf.9) = f

for every ¢ € Ob(¥), every f € Mor(%¥) and every (f,g) € T (and of course, with
G1p = 1 for every B e Ob(£A)). Clearly G(2) c Isom(%), so G factors uniquely
through y and a functor G : Z(371) — &.

e Clearly G o F = 14. Moreover, we get a natural transformation w, : Fo G = y by :

Xey(x)  Yeey(o(f)  Zpg y(X(f.9)
for every ¢ € Ob(¥%), every f € Mor(%) and every (f,g) € T (details left to the reader).
Then, by lemma there exists a unique natural transformation w, : FoG — 1451y
such that we = ¥ %y, and it follows easily that @, is an isomorphism of functors, so F and
G are equivalences of wide categories, whence the proposition. O

1.11.12. A groupoid (resp. a wide groupoid) is a category (resp. a wide category) in which
every morphism is an isomorphism. The class of small groupoids (that is, small categories
that are groupoids) forms a full subcategory

Grp

of the category Cat of small categories, and the inclusion functor i : Grp — Cat admits
both a left adjoint 7; : Cat — Grp and a right adjoint k : Cat — Grp. Indeed, for
any wide category %, let k(¢) ¢ € be the wide subcategory with Ob(k(%)) = Ob(%)
and such that the morphisms of k(%) are the isomorphisms of &. Hence k(¥) is the
largest wide groupoid contained in €. Clearly, for every wide groupoid ¢, every functor
¥ — % factors uniquely through the inclusion k(%) — %’; especially, every functor
F : # — ¥ induces by restriction a functor k(F) : k(%) — k(€). Hence, by restricting
the construction k to small categories, we do obtain a well-defined right adjoint for i.

o Next, for every small category ¢ we set

11(€) = € [Mor(€)™'].
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We see easily from remark [1.11.3(ii) that 7;(%) is a groupoid, and clearly for every
groupoid ¥, every functor ¢ — ¥ factors uniquely through the localization y% : € —
7m1(6); especially, every functor F : & — € between small categories induces a unique
functor 7, (F) : m1(AB) — m1(€) such that 1 (F) o yg = y¢ o F. It follows easily that the
rules € — m1(%) and F +— 71 (F) yield the sought left adjoint for i.

1.12. Calculus of fractions. The following definition - inspired by analogous consid-
erations arising in the study of non-commutative rings — yields natural conditions for the
existence of localizations of categories, that can be applied in a variety of useful situations.

Definition 1.12.1. Let € be a wide category, and X C Mor (%) a given subclass.
(i) We say that X admits a right calculus of fractions, if the following holds :

(CF1) 1x € 3 for every X € Ob(%).

(CF2) Foreverys: X — Yandt:Y — Z withs,t € 3, wehavetos € 3.

(CF3) For every morphism f : X — Y in ¥ and every s : W — Y in 3, there exists
g:Z—>Win%andt:Z — XinXsuchthat fot=5s0g.

(CF4) If f,g : X =2 Y are any two morphisms in € such that s o f = s o g for some
s:Y — Zin %, then there exists t : W — X in X such that fot=got.

(if) For every X € Ob(%), let Xx be the full wide subcategory of ¥’ /X whose objects
are the elements of ¥ with target equal to X. We say that X is right cofinally small, if Z(;(p
is cofinally small for every X € Ob(%) (see definition [1.5.1fiv)).

(iii) We say that ¥ admits a left calculus of fractions, if the subclass Z°P admits a right
calculus of fractions in 4°P. We say that X is left cofinally small, if (X°P)x is coinitially
small for every X € Ob(%).

Example 1.12.2. In the situation of proposition[1.11.6] suppose that G is a right (resp.
left) adjoint to F. Then the class 3 admits a left (resp. right) calculus of fraction. For the
proof, by duality, we may assume that G is right adjoint to F, and we let (7., ¢,) be the
unit and counit of an adjunction for the pair (F, G). Now, (CF1) and (CF2) trivially hold
for ng. Next, let f : X — Y be a morphism of € and s : X — W an element of X, so
that Fs is an isomorphism of Z; we set g := GF(f) o GF(s) lonw : W — Z := GFY, and
t :=ny: Y — Z. By the triangular identities, ey o Ft = 1py, and on the other hand, ¢ry
is an isomorphism, since G is fully faithful; hence Ft is an isomorphism, i.e. t € Xp. To
see that ZOFP fulfills (FC3), it then suffices to check that t o f = g o 5; we compute :
gos=GF(f)oGF(s)™" onw os=GF(f) o GF(s)"' o GF(s) onx = GF(f) onx =to f
as required. Lastly, let f,g : X =% Y be two morphisms of € such that f os = g o s for
some s € Xp; it follows easily that Ff = Fg, whence :
nyof =GF(f)onx =GF(g)enx =nyog
and arguing as in the foregoing we see that y € Xp; this shows that (CF4) holds for Z;p.

1.12.3. Let % and X be as in definition [1.12.1(i); we consider the functors

Hyy:5% > Set  (Z5X) - {t}xC(ZY)  VX,Y € Ob(%)

oh
that assign to every morphism h/X : (Z’ o, X) — (Z—t> X) of 3 x the map

Hx,y(h) : Hx,y(t) — Hxy(t o h) (t,f) = (toh foh).
We denote the global colimit of Hy y by :
[X, Y],



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 73

and for every (¢t : Z — X) € Y and every f € €(Z,Y) we let [t, f], € [X,Y], be the
image of (¢, f) € Hx y(t) under the global co-cone Hxy = c|x ],

Proposition 1.12.4. Let € be a wide category, and (€ (X71),y) the wide localization of
€ along a subclass 3. C Mor(%) that admits a right calculus of fraction. We have :

(i) The wide category Xx is cofiltered, for every X € Ob(%).

(ii) For every X,Y € Ob(%) we have a natural bijection :

[X.Y], S CEHGXyY)  (tLfl,=y(Hoy® ™

Proof. (i): First, Ob(Zx) # @, due to (CF1). Next, let (Z 4 X), (Z' LN X) € Ob(Zx); by
virtue of (CF3), we find Z”" € Ob(%¥), f € €(Z",Z), and an element g : Z"" — Z’ of T
such that to f = t’ og. Then, (CF2) says that ¢ og lies in 3, so it defines an object t"" of Zx,
with morphisms f/X : "/ — tand g/X : t” — t’ in 3. Lastly, let h/X,k/X : t' =2 t be
any two morphlsms inXx. By (CF4) we may finds : Z” — Z’in X such that hos = koss;

clearly s/X : (Z” LA X) — (7 LN X) is a morphism in Xx equalizing h/X and k/X.

(ii): By virtue of (i) and example[1.2.13[iii), for every X,Y € Ob(%) the global colimit
of Hx y is represented by the class [X, Y], of equivalence classes [t, f], of all pairs

(t, f) € Tx,y = Ureon(sy) Hx.y (t)
for the equivalence relation ~ such that (¢, f) ~ (¢, f’) < there exist (Z” LA X) €

Ob(2x) and morphisms g/X : t”” — tand ¢’ /X : t” — ' of x such that fog= " og’.
Let us then define a wide category 2 such that Ob(Z) = Ob(%), and

2(X,Y) = [X,Y], VX,Y € Ob(%).
The composition law of Z is as follows. Let A, B,C € Ob(%), (B i 1 A) € Typ and

(C <i]—t> B) € Tsc; by (CF3) we may find K — I in % and K i]in%witthTz togd,
so that we get the commutative diagram :

K
AR
A Ry
where s o 7 € ¥, by (CF2), and we set :

(t.g)o (s f)=[sor.goglr € [AC].

Claim 1.12.5. The class (¢,g) o (s, f) does not depend on the choices of K, r and ¢, and
depends only on the classes [s, f], and [t, g],.

’

Proof : Indeed, suppose that K’ 7, I is another element of $ and K’ 4, J is another
h W
morphism of € such that fo7’ = to¢’. By (CF3), there exist K — KinX and K" — K’
in€ withtoh=1"oh’, whence :
topoh=foroh=for oh’'=to¢d oh’.
Then, by (CF4) there exists K'”/ % K” in 3 such that pohou=¢"oh’ ou. By (CF2), we

may then replace K’ by K’ and h, h’ with h o u and respectively h’ o u, after which we
may assume as well that ¢” o i’ = ¢ o h. Finally, we find :

[sorgodl, =[sorohgodohl,=[sor oh.god o], =[sor.go¢'],
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as required. Next, let us check that [so7, god], depends only on [s, ], and [t, g],; indeed,
let I' 5 I be any morphism of ¢ such that sou € 3, and set (s, f') = (sou, f o u).
Suppose also that f’ oy =t o ¢’ for some K’ L I'in3and K’ f—> J in €’; we need to
show that [s" o y,go ¢'], = [s o 7,g 0 ¢],. However, by (CF3) we find K L Kin % and
K" LN K’ in¥ suchthatuopol’ = rol;hence,tog’ol’ = fouopol’ = forol =togdol,

ll/
so that, by (CF4) there exists K’ — K’’ in X such that ¢’ oI’ o I"” = ¢ ol o I"". Since

["oumgod’l, =[s"opuol" ol”,go¢’ ol ol”],, we may then replace K’, ; and ¢
respectively by K"/, pol’ ol and ¢’ oI’ o I”’; then we get the commutative diagram :

K-t

u’l/ l/u\s;
K——=I1—=A
g s
c<2 j—-t.pB

withu’ :=lol” and ¢’ = ¢pou’, whence [s" oy, god’], = [sorou’,godou’], = [soT,go ],
as required. Similarly, we check the independence on the representative for [z, g], : let
v :J' — J be a morphism of € such that t o v € 3, let us set (t',¢") := (t 0cv,g 0 v), and
pick also, by (CF3), p : K’ —» [inX and ¢’ : K’ — J' in ¥ such that fopu =t o ¢’;
we need to show that [s o g, g’ 0o ¢'], = [s o 7,9 0 ¢],. To this aim, we apply again
(CF3)tofindl : K/ » Kin%and!” : K/ — K' inX suchthat pol” = rol;it
follows that t ov o @’ o'’ = fopuol' = forol =to¢ol, soby (CF4) there exists
I : K" — K" suchthatvo ¢’ ol' ol” =¢dolol”. Setv’ :=1ol” andv” := 1" ol”; then
[sou, g’ 0d’], = [sopov”, g’ 0¢’0v”], and [sor,go ], = [sorov’,godov’],, and on the
other hand we have sopov”” = sotolol” = sorov’ and g’ o¢p’ov”” = govog’ol’ol” = gogor’,
whence the claim. <

By virtue of claim[1.12.5 for every [s, f], and [t, g], as in the foregoing, we may set

[tsg]r ° [S,f]r = (t>g) © (S>f)'
Next, in light of (CF1) we have [14,14] € [A, A], for every A € Ob(%), and obviously

(1414, o [5, flr = [ fl, = [5 f1, © [15, 5], for all A B € Ob(%) and all [s, f], €
[B,A],. Thus, it remains only to check the associativity of the composition law thus

obtained. To this aim, say that A, B,C,D € Ob(%) are any four objects, and (B i 1>
A) € Tap (C L5 B)eTse, (D& K C) € Tep. Choose L € Ob(%) with an
element L — I of ¥ and amorphism L i Jof € with for =tod,sothat [t,g],o[s, f], =

[soz,g0¢],. Then, choose M € Ob(%),ML]inZandMLKin‘fwithgovz uoty,
so that [u, k], o [t,g], = [t o v, h o ¥],. By (CF3) we may find N € Ob(¥), N L linz

and N 4 M in € such that ¢ o y = v o A; summing up, we get the commutative diagram :
N
/ X
M L
L ON K
hoglu o XNl g SN s g
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By (CF2), roplies in %, and then it is easily seen that the pair (sor oy, hoi o) represents
both [t o v,ho ], o [s, f], and [u, h], o [s o 7, g o ¢],, whence the assertion.

Next, we have a functor y : € — & that is the identity on objects, and such that
v(f) = [1x, f], for every morphism f : X — Y of ¥. Notice that [1z,t], o [t,17], =
[t,t], = [1x,1x], and [t,12], o [12,t], = [12, 1], for every (Z—t> X) € 3,50 y(t) is an
isomorphism for every such t. Lastly, let F : 4 — %" be any functor of wide categories
such that Ft is an isomorphism of €” for every t € 3; we set

F(t,f) ==Ffo(Ft)™' : FX - FY  VX,Y € Ob(%),VY(t,f) € Txy.
Claim 1.12.6. F(t, f) depends only on the class [t, f], of (¢, f).

Proof : Indeed, say that [t, f], = [/, f’],, for some (Z 4 X), (Z' LR X) € 3; then there
exists (Z” LN X) € X with morphisms g/X : t” — tand ¢’/X : t”” — t’ of x such that
fog=f"og, andnotice that Fg = (Ft)~"! o Ft” and Fg’ = (Ft’) ! o Ft” in ¢”. It follows
easily that F(t, f) = F(f o g,t"”) = F(f" o g’,t"”) = F(f’,t"), whence the assertion. &

In view of claim[1.12.6] we may set
FILf], == F(tf)  VABeOb(2),VI[L fl, € Z(A B).

We claim that the system of maps thus obtained yelds a well-defined functor F:9—%
with FX := FX for every X € Ob(2). Indee_d, obviously F[1x, 1)_<], = 1px for every
X € Ob(2), so it remains only to check that F([t,g], o [s, f1r) = F[t,g], o F[s, f], for

every A, B,C € Ob(92), ever B<£Ii>A € T4, and ever Ci]—t>B € Tgc. Then,
Yy Yy , Yy ,

pick K - IinSand K s, Jin ¢ with for = tog, and notice that (Ft) "'oF f = F¢po(Fr)~!
in ¢”; consequently, F[soz,go¢], = FgoFdo (Fr)~'o(Fs)~! = Fgo (Ft)"'oFfo(Fs)™,
whence the sought identity. Clearly F = F o y, and since [t, f], = y(f) o y(t)~! for every
morphism [¢, f], of 2, it is easily seen that any functor G : 2 — %"’ suchthat F=Goy
must coincide with F. This shows that (2,y) is awide localization of € along X; assertion
(ii) is then clear from the construction of Z. O

Remark 1.12.7. (i) In the situation of proposition if both ¢ and (X~ !) are cat-
egories, then we know that (¥(Z7!),y) also represents the localization of ¢ along 3.
(remark [1.11.5(i)); the latter holds in particular, whenever 3 c Mor(%) is right cofinally
small (see example [1.8.3(v)). The proposition then says that every morphism X — Y of

€' [>71] is the class [¢, f], of some pair (X Lz i) Y) with t € Ob(Zx), and the local-
ization y : ¢ — € [27!] is the identity on objects, and maps every morphism f : X — Y
of ¢ to [1x, f],. Then [t f], = y(f) o y(t)~", which we may shorten as f o t™, by a
tolerable abuse of notation; this exhibits the morphisms of €' [X '] as right fractions, with
denominators in .

(ii) The dual of proposition[1.12.4] provides a corresponding computation of the mor-
phisms in €’(2~1) in terms of left fractions. Namely, suppose that 3 admits a left calculus
of fractions; for every Y € Ob(%) we let Y := (Z"p);p, i.e. %Y is the full wide subcate-
gory of Y /% whose objects are the elements of ¥ with source equal to Y. By the dual of
proposition i), %Y is a filtered wide category. For every X, Y € Ob(%’) we consider
the functor

HYY . 3Y SSet (Y5 2) o {1} xE(X, Z)
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that assigns to every morphism X /A : (X—t> Z) — (X Bet, Z') of ¥X the map
HYY () s HXY () —» HYY (hot)  (f.t) > (ho fhot),

We denote the global colimit of HXY by [X, Y];. Then we have natural identifications :

[X, Y], = CE DX, yY) VXY € Ob(%).

So, every morphism X — Y of €'[%7!] is the class [f,t]; of a pair (X L z L Y) with
t € Ob(ZY), and may regarded as the left fraction t = o f. If € and €’(X~!) are categories
(especially, if 3. is left cofinally small, i.e. if XY is cofinally small for every Y € Ob(%)),
then (¢'(=71),y) is also a localization of % along X.

(iii) In case the class ¥ admits both a left and a right calculus of fractions, we have
then two different constructions of the wide localization 4’(%~!), which must therefore
produce isomorphic wide categories (remark[1.11.5(i)), i.e. we get natural bijections :

[X.Y], S [X,Y], VXY €Ob(?)]

compatible with the respective composition laws. Explicitly, for every pair (t, f) with
(t:Z—>X)eXand f € €(Z,Y), the left calculus of fractions ensures the existence of
(s:Y > W)eXandg € ¥(X,W) with s o f = got, and the foregoing bijection is given
by the rule : [t, f], + [s, g];. The inverse map is obtained likewise, by invoking the right
calculus of fractions for X (details left to the reader).

Example 1.12.8. In the situation of proposition [1.11.6] suppose that G is a right (resp.
left) adjoint to F : ¥ — . Then Xf admits a left (resp. right) calculus of fraction, by
example[1.12.2] and we claim that [X, Y]; (resp. [X, Y],)isaset forevery X, Y € Ob(%), so
the morphisms of %[Z;l] are the left (resp. right) fractions, as detailed in remark
For the proof, we may assume that G is left adjoint to F; recall that F factors through an
equivalence F : €[2:'] = 2, inducing, for every X,Y € Ob(%), amap :

[X,Y], —» 2(FX,FY) [t, fl, + Ffo (Ft)~!

so it suffices to check that every such map is injective. Hence, let [¢, f1,, [t', f']f € [X, Y],
with Ffo(Ft)~™! = Ff’o(Ft')~!; since (XF)x is a cofiltered category (propositioni)),
we may assume that t = ¢’ : Z — X, in which case Ff = Ff’. Now, let (7., ¢4 ) be the unit
and counit of an adjunction for the pair (G, F), and recall that 7, is an isomorphism ([13
Prop.2.16(iii)]); we get

foez=eyoGFf=¢yoGFf' =f"o¢z.

On the other hand, F(ez) is an isomorphism of 2, by the triangular identities for (7., €. )
([13} Prob.2.13(ii)]), i.e. ¢z € X, and then [¢t, f], = [toez, foez], = [toez foez], =
[t, f'];, as required.

Corollary 1.12.9. (i) In the situation of proposition suppose that € is a finitely
complete category and that [X, Y], is a set for every X, Y € Ob(%). Then € [>7!] is finitely
complete, and the localizationy : € — €' [%7!] is left exact.

(ii) Dually, let € be a finitely cocomplete category, ¥ C Mor(%) a subclass admitting
a left calculus of fractions, and suppose that [X, Y] is a set for every X,Y € Ob(%€). Then
€ [=71] is finitely cocomplete and the localizationy : € — €' [37'] is right exact.
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Proof. By duality, it suffices to check (i). Hence, let F : I — % be a functor from a finite
category I, and pick a universal cone & := (¢; : L — Fi|i € Ob(I)). we need to check
Y * € is still universal, i.e. that every X € Ob(%) induces a bijection :

(%) CI=(X,L) = 1i}n<5[z—l](x, F)

where €[271(X,F) : I — Set is the induced functor such that i — % [2~!](X, Fi) for
every i € Ob(I). However, remark[1.12.7]i) identifies (x) with the natural map

(%) colim Hx ;, — lim colim G,,
5 [
where Gee : I X Z(;(p — Set is the functor such that (i,t) — G;; = {t} X €(Z, Fi) for
every (t : Z — X) € Xx and every i € Ob(I), and we denote by colingg G : I — Set the

functor that assigns to every i € Ob(I) the (global) colimit of the functor G, : Z;)f — Set
given by the rule : t — G;; for every t € Ex. Notice that for every such ¢, the set Hx 1 (t)
is in turns naturally identified - via the universal cone ¢, — with the limit of the functor
Gie : I — Set such that i — G;; for every i € Ob(I), so we may regard () as a map

7 : colimlim G.e — lim colim G,..

op op
201 I =¥

A direct inspection shows that 7 is precisely the map exhibited in remark iii), which
is therefore a bijection, since I is finite and Z(;(p is filtered (proposition [1.12.4{i)).

Next, to show that €’[%7!] is finitely complete, it suffices to prove that the product
of every finite family X, := (X;|i € I) of objects of €[Z7!] is representable in € [Z7}],
and that every pair of morphisms ¢,/ : X — Y of ¥[27!] admits an equalizer ([13]
Prop.2.40]). However, since y is an identity map on objects, and since we have just shown
that y preserves finite products, it is clear that the product in % of the family X, is also the
product of X, in €’[%7!]. Lastly, by construction we have (t : Z — X), (¢’ : Z’ > X) € =
and f € 4(Z,X), g € €(Z’',X) such that y(f) = ¢ o y(¢t) and y(g) = ¢ o y(¢’); then,
since X is cofiltered (proposition[1.12.4{i)), we find (¢ : Z”” — X) € % with morphisms
s/X:t" > tands’' /X :t" > t' of Zx.Set f' := fosand g’ :=gos,andleth: E — Z”
be the equalizer of f” and ¢’ in €’; by the foregoing, y(h) is the equalizer of y(f”) and
y(¢") in €[271], and since y(f’) = ¢ o y(¢") and y(g’) = ¢ o y(t"), it follows easily that
y(t” o h) : E — X is the equalizer of ¢ and i/ in €' [=7']. i

Corollary 1.12.10. (i) Let € be a pre-additive category, ¥ C Mor(%) a subclass that
admits a right (resp. left) calculus of fractions and suppose that [ X, Y], (resp. [X, Y];) is a set
foreveryX,Y € Ob(%). Then ¢’ [X™1] is pre-additive, and the localizationy : 6 — € [371]
is an additive functor (see [13| Def.2.71]).

(ii) If moreover, € is an additive category, the same holds for €' [27!] (see [13] Def.2.80] ).

(iii) Let &/ be an abelian category, and ¥ C Mor(.«/) a subclass that admits both a right
and a left calculus of fractions, and such that [A, B], is a set for every A, B € Ob(/) (so the
same holds also for [A, B];, by remarkiii)). Then &/ [271] is an abelian category, and
the localization y : & — </ [27!] is an exact additive functor.

Proof. (i): By [13l Rem.2.72(i)], ¥ is pre-additive if and only if the same holds for €°P,
and y is additive if and only if the same holds for y°P, so we may assume that ¥ admits a
right calculus of fractions; then, by the pre-additive structure on %, it is easily seen that
each functor Hx y is the composition of a functor

HX,Y : Z;)(p — Z — Mod
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and the forgetful functor ® : Z—Mod — Set from abelian groups to sets. Moreover, since
® preserves filtered colimits, 4[] (X, Y) inherits an abelian group structure, and the
universal co-cone Hx y = c[x,y], upgrades to a universal co-cone

Y tHxy = CE[z-1](X,Y)

A simple inspection shows that y induces group homorphisms ¢'(X,Y) — ¢[>7'](X,Y)
for every X,Y € Ob(%), so it remains only to check that the composition maps

C[271(A B) x €[2"(B,C) —» F[=1](4,0)

are Z-bilinear, for every A, B, C € Ob(%). To this aim, let ¢, ¢’ : A = B be two morphisms
of €[=7!]; by proposition i) we may assume that there exists t : Z — A in X and
f,f' € €(Z,B) such that ¢ and ¢’ are the classes [t, ], and respectively [t, f'], of the
pairs (t, f), (¢, f') € Hap(t), and then ¢ + ¢’ = [t, f+ f'],. Let also ¢ : B — C be another
morphism of € [271] with ¢/ = [t’, g] forsome t’ : Z/ — BinX and g € €(Z’, B); we pick
s:U—ZinYandh e ¢(U,Z") with fos=t'oh,sothatyo¢ = [tos,goh], : A — C,
and likewise we pick s’ : U’ — ZinX and b’ € €(U’,Z’) with f" os’ =t o I, so that
Yo¢' =[tos ,goh], : A — C. Invoking again proposition [1.12.4i), we then find
s :U” - ZinXYandv € ¥(U",U),v € €(U",U’) withsoov =" =5 o0’; then
(f+f)os” =t o(hov+h ov'),sothat o (¢p+¢’)=[tos”’,go(hov+h ov’)],. On
the other hand, we have :

[ﬁog{) = [tosov, gohoz)]r = [tos”,gohov]r [ﬁog{)' = [tos'oz)',goh'oo’]r = [tos”,goh'ov']r

whence o (¢ + ¢’) = Yo p+ ¢+ ¢’. Likewise, if ¢’ : B — C is another morphism of
%[27!] one checks that ( +¢’) o ¢ =1/ o ¢ + /' o ¢, whence the assertion.

(ii): Indeed, we know by (i) that €’[=~!] is preadditive, and the proof of corollary
shows that all biproducts are representable in €’ [~~!]. Hence, it remains only to check
that € [>~!] admits a zero object; but recall that an object of a pre-additive category is
initial if and only if it is final ([13] Rem.2.72(ii)]), and y preserves either initial objects or
final objects, by corollaryand remark ii), whence the assertion.

(iii): Indeed, since 7 is finitely complete and finitely cocomplete ([[13] Th.2.89(ii)]), the
same holds for &/ [27!], and y is exact, by corollary moreover, we know already
that .7 [27'] is additive and that y is an additive functor, by (i) and (ii). Hence, it remains
only to check that every morphism ¢ : A — B of &7 [2™!] is strict. However, by construc-
tion there exists an element s : A — Z of ¥ and f € &/ (Z, B) such that ¢ = y(f) o y(s) 7},
so it suffices to show that y(f) is strict; hence, we may assume that ¢ = y(f) for some
morphism f : A — B of o7. But then, the exactness of y implies that the natural mor-
phism S : Coim(¢) — Im(¢) coincides with y(Bf), where f¢ : Coim(f) — Im(f) is the
natural morphism; the latter is an isomorphism, so the same follows for . O

Example 1.12.11. (i) Let ./ be an abelian category, and # C .27 a full non-empty sub-
category; we say that # is a Serre subcategory (or a thick subcategory) of <7 if the fol-
lowing holds. For every short exact sequence 0 - A” - A — A” — 0 of .o/ we have
A € Ob(A) & A’,A” € Ob(f). We say that a morphism f of &7 is a B-isomorphism,
if Ker(f), Coker(f) € Ob(Z). We wish to show that the class X of %-isomorphisms of &/
admits both a left and a right calculus of fractions.

(if) To this aim, notice first that & is a Serre subcategory of &/ & %°P is a Serre
subcategory of <7°P, and f is a Z-isomorphism of o/ & f°P is a %" -isomorphism of
2/ °P ([13, Rem.2.69(iii), Exerc.2.101(ii)]). Hence, it suffices to check that ¥ admits a right
calculus of fractions. Axiom (CF1) of definition [1.12.1[i) trivially holds, and (CF2) and
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(CF3) follow respectively from [[13| Prob.2.108(i)] and [13] Prob.2.108(ii)]. Lastly, let f, g :
X =2 Y be two morphisms of &7, and s : Y — Z a #-isomorphism such that s o f =
s o g; then f — g is the composition of a morphism A : X — Ker(s) and the inclusion
Ker(s) — Y. Let 0 denote the zero object of .o7; since the unique morphism 0 — Ker(s)
is a A-isomorphism, the same holds for the inclusion ¢ : Ker(h) — X, again by [13|
Prob.2.108(ii)]. We get f o t = g o t, whence (CF4).

(iii) Next, for every X € Ob(.%/), let Sub’,(X) (resp. Sub’, (X)) be the subclass of all
subobjects (j : X’ < X) € Sub/(X) such that j (resp. the projection px’ : X — X/X’)
is a #B-isomorphism (notation of . We claim that if Sub’,(X) U Sub’,(X) is a set
for every X € Ob(«</), then the class [X, Y], of right fractions with denominators in ¥ is
also a set, for every X,Y € Ob(%/); hence, in this case the localization 2/ [Z7!] exists,
and its morphisms X — Y are given by the sets [X, Y],; also the localization functor
o/ — @/[37'] is an exact additive functor, by corollary iii). For the proof, let
[X, Y], be the subclass of all [t, f], € [X,Y], with (¢t : Z — X) € Sub’,(X), and

consider any pair X sz i) Y of morphisms of &/ with s € 3; let Y/ — Y be the image
of the restriction Ker(s) — Y of f, and set X’ := Im(s). We get a commutative diagram :

zZ

/ \
J f Y’ Py’

where py- and g are the natural epimorphisms, j is the natural monomorphism with
jogq =s,and f is induced by py o f. It follows that [s, f], = [py’,1v]; o [J, f], in
7 (271); hence, we get a surjection :

[X’ Y/Y’]:‘ - [X’ Y]r [J,g]r = [pY”lY]r o [J’g]r
Y’ eSub’, (Y)

Now, if Sub’, (X) is a set for every X € Ob(/), the subclass [X, Y], is also a set, for every
X,Y € Ob(«), and the claim follows.

(iv) In the situation of (i), the wide localization .2/ (%™!) is called the quotient of &/ by
the Serre subcategory %8, and it is usually denoted o7 /. As a special case of (iii), we see
that if o7 is well-powered, then the quotient o7 | % is an abelian category.

Proposition 1.12.12. Let € be a category, i : 6y — € the inclusion of a full subcategory,
3 a subclass of Mor(%), and set Xy := X N Mor(6). Suppose that :

(a) Forevery X € Ob(%), every Xy € Ob(%) and every f € € (X,iXy) N X there exists
Yy € Ob(%6y) and g € € (iYy, X) such that f o g € 3.

(b) T admits a right calculus of fractions.
Then we have :
(i) Xo admits a right calculus of fractions.
(i) If 3 is right cofinally small, the localizations (€'[S7'],y) and (6,[2;"], yo) exist,
and i induces a fully faithful functor

i[Zal] : ‘50[251] - C[=7 such that i[Zgl] oyp=yoi.
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Proof. (i): Axioms (CF1) and (CF2) obviously holds for 3. Next, let X, Y, W € Ob(%,) and
Z € Ob(%), and consider any commutative diagram of % :

72w

,l li(s) with s, t € 2.

ix iy
By (a), we may then find a morphism u : iZy — Z of € for some Z, € Ob(%)), such that
t'=tou:iZy — iXliesin %y, ¢’ :== gou : iZy — iW lies in 6,(Zy, W), and clearly
fot' =sog, whence (CF3). Lastly, let X,Y € Ob(%)), Z € Ob(%), and suppose that
we have f,g € 6o(X,Y) and t : Z — iX in ¥ such that i(f) o t = i(g) o t. Pick again
u:iZy — Z such that ¢’ := t o u lies in 3¢; then f o t’ = g o t’, whence (CF4).

(ii): We know already that (% [Z7!],y) exists, by remark i). Lastly, for ev-
ery X € Ob(%)) (resp. for every X € Ob(%)), define the subcategory Xox of 65/X
(resp. the subcategory Zx of ¢’/X) as in definition [1.12.1]ii); taking into account propo-
sition [1.12.4[ii), corollary [1.5.4(i) and example v), in order to prove the existence of
(%o[=Z71, yo) and to show that i[ 2] is fully faithful, it suffices to check that 28& isa co-
final subcategory of Z?)p(, for every X € Ob(%,). However, we know already that Zg& and

Z(gz are filtered categories, by proposition [1.12.4{i). Then, by proposition iii.a), we

are reduced to showing that for every object Z 5 iX of 3 ix there exists an object Z box
of 2o x and a morphism u/X : i(ty) — t of Z;x. But this is precisely our condition (a). O

1.12.13. Suppose now that % is a category, and > C Mor(%) is a subclass admitting a
(left or right) calculus of fraction, and such that the localization (¢’[%7!],y) exists. One
might ask whether, in such a situation, the morphisms X — Y of ¢ [Z7'] are always
given by the class [X, Y] of (left or right) fractions with denominators in X, as detailed
in remark [1.12.7]i,ii). More precisely, we do know, by virtue of remark [I.11.5[ii), that the
natural map [X,Y] — €[Z7!](X,Y) is always surjective (this can also be established
more directly from remark[1.11.3[ii)), but the injectivity of this map does not follow from
our previous results, unless we already know that [X, Y] is a set for every X,Y € Ob(%).
It turns out that the answer is negative, in general; indeed we have the following result,
that I have learned from O.Gabber :

Proposition 1.12.14. Let G, := (G, | @ € Q) be a totally ordered family of groups, indexed
by the class Q of ordinals, with injective transition homomorphisms G, — Gg for every
a, € Q with B > a. Suppose moreover that the wide group G := {J,cq Go does not admit
any non-trivial quotient groups (i.e. for every surjective homomorphism of wide groups
G — G, either G’ is a proper class, or else G’ is the trivial group 0 with one element).

We consider the category € with Ob(%) := Q and with

Gg ifa<p
& ifnot

C(a,p) = {

with composition law induced by the group laws of the groups G,, in the obvious fashion.
(i) Set ¥ := Mor(%); the wide localization (€' (%™1),y) is the wide groupoid with :
Ob(Z(Z"H) =Q and  CE W@, f)=G  Va,feQ.
(ii) On the other hand, the localization (€'[271],y’) is the groupoid with :
ob(Z[=7']) =Q and  E[ZN(a,p)=0 Va,feQ.
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(iii) Moreover, the class X admits a left calculus of fraction.

Proof. (iii): The duals of axioms (CF1) and (CF2) trivially hold for X. Next, let Lals B
be morphisms of ¥, and set " := max(f, f’); we get the commutative diagram of ¢ :

/\
\/

(where 1 denotes the neutral element of Gg+) whence the dual of (CF3). Lastly, let g, g" €
€ (a, f) and h € € (y,a) with g o h = g’ o h; the latter means that g @ h = ¢’  h, where
— e — denotes the group law of G. Hence g = g, whence the dual of (CF4).

(i): According to remarkii), for every a, f € Q the morphisms @ — fin ¢ (=)
are represented by the class of left fractions [a, f];; we have a well-defined map

wap:[afli =G [ghlihT"eg
where h™! is the inverse of h in the wide group G, and — e — denotes the group law
of G. Recall that [g, h]; is the equivalence class of a pair (« EN Y X B) of morphisms; if

(p KR Y X ) is another such pair, the composition [¢’, h'];0[g, h]; is formed as follows.
g'eh!
Set y” := max(y, y’); as in the foregoing, we get morphisms y EAIEN Y’ & Y, and then

(g h1iolghli=[g eh " eg ],

We see then that wes (¢ 0 §) = wps(P”) ® wap(¢) for every composable pair ﬂ I L 1)
of morphisms of €(X7"). It is easily seen that weg is surjective for every a, f € Q. Lastly,

suppose that wqp([g, hl;) = wap([g’, h'];) for some pairs (« ER Y & B, (a g Y &z B),
and say that y > y’; the identity means thath™'eg = h'"'eg’ in G, so k := geg’~! = heh’™!
is amorphism y’ — y of ¢, and [¢', h']; = [kog',koh’]; = [g, h];, hence wqg is injective.

(ii): Let o be any category, and F : ¥ — < a functor such that F(Z) c Isom(%/);
the latter means that F factors through a functor F’ : ¥ — ¢ and the inclusion 4 — <7,
where ¢ is the largest groupoid contained in «7. Let G : €(X7') — ¥ be the unique
functor with F’ = F o y; clearly F induces homomorphisms of wide groups

Fou:G=FCE "N a,a) = 9(Ga,Ga) Ya € Q.

However, since by assumption G does not admit group quotients, we see that F,, maps
every element of G to 1G4, for every such a. Now, every morphism g : &« — B of €(=71)

can be written as a composition « EAEN B, so I?a/;(g) = fap = Faﬁ(l) for every
a, f € Q. Summing up, this shows that the map F,4 : € (a, f) — 2/ (Fa, FB) induced by
F is the constant map with value fyg, for every @, f € Q; i.e. F factors uniquely through

the category % such that Ob(%) = Q and € (a, f) = 0 for every a, f € Q, whence the
assertion. O

Example 1.12.15. (i) To complete this discussion, we wish to exhibit a sequence of
groups (G | a € Q) fulfilling the conditions of proposition [1.12.14] To this aim, let first
T be any group, yo € T an element of infinite order, and S c T \ {yo} any subset of
elements of infinite order; denote by A(S) the free group with basis S, by js : § — A(S)
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the universal map, and by I' * A(S) the free product of T and A(S). By [10} Ch.IV, lemma
1.1], we have injective group homomorphisms

T 5T+ A®S) & A(S).

We let ¥, := ir(yo), and we consider also the composition

S EAS) ETAG) s ..

We set
G(T,y0,S) == (T = A(S)) /%

where Z is the smallest normal subgroup of T * A(S) containing the system of elements.

(1 ir ()57 ") |5 € 9).

Le. the image in G(T, yy, S) of every s € S is conjugate to ¥,, via the inner automorphism
of G(T, yo,S) induced by 7;. The construction of G(T,yy, S) is an instance of an HNN
extension (named after G.Higman, B.H.Neumann and H.Neumann : see [10, Ch.IV, § 2]).

(if) We claim that the natural map irs : I — G(T, yo,S) is injective. For the proof, let
Z(S) be the set of all finite subsets of S, and notice that G(T, yo, S) is the filtered colimit
of the induced system of groups (G(T,yo, T) | T € Z(S)); hence, we are reduced to the
case where S is a finite set. In this case, we argue by induction on the cardinality ¢ of S.
The assertion is trivial if ¢ = 0, so suppose that ¢ > 0, and that the assertion is already
known for every subset T of cardinality < c. Pick sy € S, let IV := G(L,y0,S \ {s0}),
and denote by ¥, and 5, the images of y, and respectively s, in I'; then it is easily seen
that G(T, yo, S) = G(I', ¥y, {50}). By inductive assumption, the natural map I' — I" is
injective, and the same holds for the natural map I'' — G(I",y,, {So}), by virtue of [10
Ch.IV, Th.2.1(i)], whence the assertion.

(iii) Next, we claim that if T is a torsion-free group, the same holds for G(T, y,, S). Indeed,
arguing as in (ii), we reduce first to the case where S is a subset of finite cardinality ¢, and
then to the case where ¢ = 1; in this case, the assertion follows from [[10, Ch.IV, Th.2.4].

(iv) Let f : T — I” be an injective group homomorphism, set y; := f(yo) and let
S" € I\ {y;} be a subset of elements of infinite order such that f(S) C S’. Then we claim
that f induces a cartesian square of injective homomorphisms in the category of groups :

r / I’

irysl/ lir/,s'
G(f,S,S/) ’ ’ ’
G(r5 Yo, S) —— G(F 5 }/Os S )'

Indeed, clearly, f induces a group homomorphism I' * A(S) — I’ % A(S’) that maps
the normal subgroup % to the normal subgroup #’ = Ker(I'" * A(S") — G(I",y,,5")),
whence the induced homomorphism G(f, S, S"). Now, set I := G(I", y;, f(S)), and let y;’
and T be the images of y; and respectively S\ f(S) inI"’; then G(I", y;, ") = G(I", vy, T),
and G(f,S,S’) is the composition of G(S, f(S)) : G(I, yo,S) — I'”” and the natural group
homomorphism i : T" — G(I', y{', T). According to (ii), the map i is injective, so we are
reduced to checking that the assertion holds for G(S, f(S)), i.e. we may assume that S’ =
f(S), and in this case we just write G(f, S) for the map G(f, S, f(S)). With this notation,
it is easily seen that G(f,S) is the filtered colimit of the system of maps (G(f,T)|T €
Z(S)), so we are reduced to the case where S is a set of finite cardinality ¢, and we
argue by induction on c¢. The assertion is trivial if ¢ = 0, so suppose that ¢ > 0, and
that the assertion is already known for every subset T of cardinality < c. Pick s € S, let
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sg = f(s0), set A := G(T,y0, S\ {s0}), A" := G(I", ¥, S" \ {s;}), and denote by &y and &, the
images of y; in A and of y; in A’; by inductive assumption, g := G(f, S5\ {so}) : A — A’
and f yield a cartesian square of injective maps, and on the other hand, the map G(f, S)
corresponds to G(g, {so}) under the natural identifications :

G(r3 YO» S) l> G(As 50’ {SO}) G(l’"’ Y(’)’ S’) l> G(A,’ 5(/)’ {S(,)})

So we are further reduced to the case where S = {so}. In this case, set also 7 := 75, and
pick a set U (resp. V) of representive for the set T'/(yo) (resp. I'/(so)) of right cosets in
I of the subgroup (yo) generated by y, (resp. of the subgroup (so) generated by sy), with
the neutral element 1 of I' contained in both U and V; according to [10, Ch.IV, Th.2.1(ii)]
every element of G(T, yo, {so}) can be written uniquely in (U, V')-normal form :

gotlgr - TGy with £,...,6n € {1,-1}

where gy is an element of T, there is no consecutive sequence 7°177%, and fori =1,...,n,
the following holds : if ¢; = —1 then g; € U, and if ¢; = 1 then g; € V. Notice now that the
map f induces injective maps :

T/¢vo) = T /{yg)  T/{s0) = I’/ {sp)-
Hence, we may complete f(U) and f(V) by adding suitable elements, to obtain set of
representatives U’ and V” for the sets of right cosets I /(y;) and I'"/(s;). Then clearly
G(f,{so}) sends (U, V)-normal forms to (U’, V’)-normal forms, whence the assertion.

(v) Now, for every ordinal & we construct inductively a system of groups (G5 | n € N)
with injective transition maps, as follows. Let [0, «] be the set of all ordinals < a, and let
Gy = Z(10aD) (the free abelian group with basis [0, a]). Especially, G) = Z, and we let yy

be a generator of GJ; the inclusion [0, ] C [0, f] for every @ < f§ induces an injective

group homomorphism G§ — Gf , so we may regard y, as an element of G, for every
ordinal a. Let as well G¥, := {0,y,}, and denote by iy : G%, — G§ the inclusion map;
then, for every n > 0 set inductively

Sy =Gy \ in(G,_;) Gy, =G(GZ, 10, Sy)

n+l
and denote by i,41 : G — G¢,, the natural injective group homomorphism of (ii). Notice
that, since Gy’ is torsion-free, from (iii) and an easy induction argument we see that G5 is

torsion-free for every n € N, so Gy, | is well-defined.
(24

(vi) We set Gy := U,en Gy (Where we identify each GJ} to a subgroup of G5, ;, via in41).
Clearly G, is torsion-free, and by construction, every element of G, is conjugate to yy,
hence to every other element. Every pair of ordinals « < f#induces a map jg 7 Gy — Gf ,
and since jg # (s5) ¢ sP , we get an induced group homomorphism jf‘ b Gy — Gf ,
as in (iv). Next, invoking the cartesianity of the diagram of (iv), we get inductively a
system of injective group homomorphisms j, Pz ( j,'f’ﬁ : GY — GE |n € N) such that
i p (85) c 55 for every n € N (details left to the reader). The colimit of the system j, Fis
an injective group homomorphism j, 5 : Go — Gg; moreover, a direct inspection of the
construction shows that for every ordinal y > ff we have j,y = jgy © jo g. This completes
the construction of our system of groups (G, | @ € Q). It is then clear that every element
of the wide group G := |Jyecq Gy is conjugate in G to every other element, since the same
holds for each G,; hence, the only normal subgroups of G are 0 and G. Lastly, let H be
any group (so, H is a set), and f : G — H any homomorphism of wide groups; since G is
a proper class, f cannot be injective, and therefore its kernel is not 0, so it must be G, as
required.
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2. SIMPLICIAL OBJECTS

2.1. The category of simplicial sets. We shall denote by :
A
the full subcategory of Cat whose objects are the totally ordered finite sets :
[n] :={0,1,...,n} Vn € N.
As detailed in remark[1.9.3[iii), the morphisms of A are the non-decreasing maps.

Definition 2.1.1. (i) A simplicial set is a presheaf over the category A. We write

for the category of simplicial sets. For a simplicial set X and n € N, we shall usually write
Xy = X[n], and we call X, the set of n-simplices of X.
(ii) For every n € N, the standard n-simplex is the simplicial set
A" = hpp
representing the object [n] of A. Yoneda’s lemma yields a natural bijection :
X, = sSet(A", X) Vn € N,VX € Ob(sSet).
For every non-decreasing map u : [m] — [n], we shall also sometimes write
AY AT — A"
for the induced morphism hy, : Ay — h[p) of sSet.
(iii) For all integers n > 1 and 0 < i < n, the i-th face morphism
@ [n-1] - [n]
is the unique injective morphism of A whose image does not contain i.
(iv) For all integers n > 0 and 0 < i < n, the i-th degeneracy morphism

ol : [n+1] — [n]
is the unique surjective morphism of A which takes the value i twice.
(v) By Yoneda’s lemma, the face and degeneracy maps correspond naturally to mor-

phisms of simplicial sets that we call by the same names, and we denote as well

AN AT A" and o AT AM

Also, for any simplicial set X, we shall write :

d = ()" : Xy — Xn-1 and sh= (o))" : Xy — X1

Proposition 2.1.2. (i) The following identities hold in A :

Fod = o d Yo<i<j<n+1

0]’-’00?“:0?05]'.’:11 VOo<i<j<n
oot} Vo<i<j<n-1

af o d = 4 1o Vo<j<i<j+1<n-1
ool VO<j<i-1<n-1

(ii) Any morphism A™ — A" in A admits a unique factorization f = i o & into a split
epimorphism i : A™ — AP followed by a monomorphism i : AP — A™.
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Proof. (i) is an easy verification, by inspection of the definition.

(ii): It is easily seen that the epimorphisms (resp. monomorphisms) of A are the sur-
jective (resp. injective) maps of ordered sets AP — A9, and clearly every epimorphism
admits a right inverse in A, i.e. is split. Assertion (ii) is an immediate consequence. O

Example 2.1.3. For every n € N we consider the topological n-dimensional simplex
[A"] = {(x1,...,x0) €RE Xy 4+ +x, =1}

which we endow with the topology induced by the inclusion into RZ ;. To any morphism
f:+ A™ — A" of A we attach the continuous map

|f| : |Am| — |An| (xl,...,xm) = (ZjEf‘l(i) Xj | i= 1,...,71).
The rules : A" — |A"]| and f + |f] clearly define a functor
|-]: A — Top

from A to the category Top of topological spaces (whose morphisms are the continuous

’Sing =] |": Top — sSet T — ([n] +—>T0p(|A"|,T))‘

attaching to every topological space T its singular (simplicial) complex Sing(T). And by
virtue of Kan’s theorem[1.7.5] the functor Sing admits a left adjoint :

’|-|:sSet—>Top X0—>|X|‘

called the realisation functor.

2.1.4. Front-to-back duality. Let (=)°® : A — A be the functor that is the identity on
objects, and that associates with every morphism f : [m] — [n] of A the morphism

fPiiml = [nl m—ivn—f).
Clearly (—)°P is an involution, i.e. (—)°P o (=)°P = 1. The functor (—)°P induces a functor
sSet — sSet X XP=Xo(-)®? (u:X—>Y)> (u?® :=ux(—)?P:XP - YP)
For every simplicial set X, we call X°P the front-to-back dual of X; clearly :
(XP)P =X and (X XY)P = XP xYP VX,Y € Ob(sSet).
Example 2.1.5. (i) A direct calculation shows that :
(MP=0,, Ynz1¥0<i<n (6f)P=o0p,_; Ym20VY0<j<m.
(ii) For every n € N we have a natural isomorphism :
wp : (A" = A"
that assigns to every k € N the bijection :
A=A (KD ) o (16 5 ().

(iii) In light of (i) and (ii), we deduce commutative diagrams :

(An=1)op On-1  An—1 (AM+1yop Omil _ AmH
(8;’)""L La:i (0}")°pj j“ﬁj
(A™)°P ©n AR (A™)oP ©m AM
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foreveryn > 1and 0 <i < n,andeverym > 0and 0 < j < m.

2.1.6. Asfor any category of presheaves, sSet is complete and cocomplete, and its limits
and colimits are computed termwise; moreover, the finite limits in sSet commute with all
small filtered colimits. Also, all small colimits of sSet are universal (example[1.6.19ii)), all
its monomorphisms and epimorphisms are regular, and a morphism f : X — Y of sSet is
a monomorphism (resp. an epimorphism) if and only if the map f;, : X, — Y, is injective
(resp. surjective) for every n € N (remark|[1.6.2). Recall also that, by remark[1.7.8{ii), sSet

admits an internal Hom-functor
FHom(—,—) : sSet? x sSet — sSet (X,Y) > Hom(X,Y)

such that for every X € Ob(sSet), the resulting functor sZom(X, —) : sSet — sSet is right
adjoint to the functor (=) X X : sSet — sSet. Explicitly, we have :

Jtom(X,Y), =sSet(A" x X,Y) VneN

and every pair of morphisms f : X’ — X, g : Y — Y’ of sSet induces the morphism
Ftom(f,g) : #Hom(X,Y) — Hom(X',Y') given by the rule :

ouo(A?
(A" x X 2 ) > (A" x x7 L0,

A" X Y") Vn € N,Vu € #om(X,Y),.
Remark 2.1.7. By example[2.1.5(ii), we get for all X, Y € Ob(sSet) a natural isomorphism :
Hom(X, V)P =5 Hom(XP,YP)  (F:A"XX = Y) > (fP: A" x XP — Y°P),

2.1.8. Bisimplicial sets. A bisimplicial set is a presheaf on the category A X A. For a bisim-
plicial set X, we shall usually write

Xmn = X([m], [n]) Vm,n € N.

As usual, the bisimplicial sets form a category

] bSet := Fun((A x A), Set). \

e According to remark iv), we have a natural product functor :

’@:sSethSetﬁbSet (X,Y)HX&Y‘

that preserves representable objects; namely, we have natural identifications :
AR AT = h([m].[n]) Vm,n € N.

e We shall also consider the obvious diagonal functor

’ diag := Fun(8, Set) : bSet — sSet diag(X), :== Xnn VneN

(notation of §1.3), for the diagonal embedding
6:A—> AXA [n] — ([n], [n]) VneN

as well as the flip functor

(—)? := Fun(¢, Set) : bSet => bSet X,ﬁ,n = Xn.m Vm,n € N

induced by the flip automorphism of A X A that swaps the two factors
P:AXASAXA ([n], [m]) ¥ ([m], [n]) Vm,n € N.
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e Moreover, a fourth type of functor will be useful for our discussion : let X be a
bisimplicial set; since (AXA)°P = A’ XA, we may regard X as a functor X : A’ XAP —
Set, or equivalently, as a functor

X,o : AP — sSet [n] > Xen

via the natural identification of §1.3.3] Hence, X, , is the simplicial set such that [m] —
Xm.n, for every m,n € N. Then, since sSet°? is cocomplete (see =) the functor X(? :
A — sSet®? admits an extension by colimits (theorem i)) which shall be denoted

’ (-, X) : sSet — sSet? K +— (K, X). ‘

Explicitly, for every K € Ob(sSet), the simplicial set (K, X) represents the limit of the
functor (notation of :

(AJK)® — sSet  ([n] > K) > Xon
and we fix for every such K a universal cone
K (K. X) > Xon  VY([n] > K) € Ob(A/K).

Then, for every morphism u : K — L of simplicial sets, the induced morphism (u, X) :
(L,X) — (K,X) is the unique morphism of sSet such that the following diagram com-
mutes for every s € Ob(A/K) :

TL

uos

(LX) ——— Xen

]

TK
(K, X) —— Xep.

o Clearly, every morphism ¢ : X — Y of bisimplicial sets induces a natural trans-
formation ¢. : X, = Y., whence an opposite natural transformation ¢,* : Y,* = X,*.
Recall that the extension by colimits of X,” is left adjoint to the functor (X,*)* : sSet® —

sSet (notation of remark [1.6.6). Then $;" induces first a natural transformation (@g")* :
(XP)* = (Y,P)* (remark iv)), and then an adjoint transformation (relative to the

canonical adjunctions for the pairs ((—, X), (X,¥)*) and ({-, Y), (YJ¥)*) : see ; we
denote the latter by

(=) = (@)Y : (= Y) = (= X).
Ify : Y — Zis a second morphism of bSet, then clearly (i o ¢)e = 4 © ¢, and a
simple inspection yields : (( 0 #)¥)* = (¥*)* o (o' )*, whence (see
(Yo =(=d)o(=¥).

Summing up, we get a well-defined functor :

’ (=, —) : sSet? x bSet — sSet (K, X) — (K, X) ‘

that assigns to every pair of morphisms u € sSet(K, L) and ¢ € bSet(X, Y), the morphism
(u, ) == (K, ) o (u, X) = (u, Yy o (L, ) : (L, X) — (K, Y) of sSet.

Remark 2.1.9. (i) By theorem ii), we have natural identifications in sSet :

] (A", X) = X., VX € Ob(bSet),Vn € N.
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(if) A direct inspection yields natural identifications in bSet and sSet :

(KKL)x (K'KL) > (KxK)X(LxL)
diag(KK L) =K x L VK,L K’,L’ € Ob(sSet)
(KRL)?=LXK
diag(X?) = diag(X) VX € Ob(bSet).

Proposition 2.1.10. Every L € Ob(sSet) induces a natural adjoint pair of functors

]-@L:ssetﬁbsa:(L,—).\

Proof. We need to exhibit bijections :
bSet(K X L, X) = sSet(K, (L, X)) VK € Ob(sSet), VX € Ob(bSet)
natural in K and X. Notice that we have natural bijections :
(%) sSet(K, (L, X)) = sSet®®({L, X), K) = sSet(L, (X,*)*(K)).

On the other hand, to every ¢ € bSet(K X L, X), every n € N and every s € L, we may
assign the morphism

¢s : K — Xop such that t > Pmn(t,s) Vm e N,Vt € K,,,.

It is easily seen that the rule : s + ¢, defines a morphism ¢, : L — (X.¥)*(K) of
sSet, and conversely, every morphism L — (X,”)*(K) is of the form ¢, for a unique
¢ € bSet(K X L, X) (the details shall be left to the reader). Hence, we get a system of
bijections :

bSet(K X L, X) =5 sSet(L, (X,*)*(K)) ¢ do

that are clearly natural in K and X. Combining with (%) concludes the proof. O

2.1.11. Connected components of a simplicial set. Let S be any set; the constant simplicial
set associated with S is the constant presheaf cs on A with value S (see §1.1.8); hence
csn = S for every n € N, and cs 4 := 15 for every morphism ¢ of A, i.e. cs = (A%
(notation of §1.2.14). We thus obtain a fully faithful functor

cpor @ Set — sSet Stcs

that assigns to every map of sets f : S — T the induced morphism of presheaves cy :
cs — cr. Since Set is complete and cocomplete, according to §1.3|the functor caer admits
left and right adjoints :

Colimper : sSet — Set Limpor : sSet — Set.

The left adjoint Colimaer assigns to every X € Ob(sSet) its set of connected components,
and is traditionally denoted as well

7T - sSet — Set.

Especially, we shall say that X is connected if 7y(X) is a set of one element. This terminol-
ogy will be justified by remark[2.3.1{iii). In order to describe more explicitly this functor,
letJ € A be the subcategory with Ob(J) := {[0], [1]} and whose morphisms are 1o}, 1|1},

and the face maps 63, d; : [0] — [1]. We observe :

Lemma 2.1.12. J is coinitial in A.
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Proof. Let i : J — A be the inclusion; we need to check that the category iJ/[n] is

connected for every n € N. To this aim, consider any two objects [0] i [n] and [1] i)
[n] of iJ/[n]; it suffices to exhibit a sequence of morphisms of iJ/[n] :

(o1 & ) L (11 5 ) 2 (01 2 ) 2 (111 L ).
Weletn := 0 d] : [0] = [n],and y := 9] : [0] — [1]; next, we let 7 : [1] — [n] be
the unique map whose image is {¢(0),7(0)}, and « (resp. ) any map [0] — [1] whose
image lies in 771 (¢(0)) (resp. in 771(5(0))). O

From lemma [2.1.12]it follows that J°P is cofinal in A°P, and with corollary i), we
conclude that my(X) is represented by the coequalizer of the face maps in degree 1, i.e.
we have an exact diagram of sets, for every simplicial set X :

dO
Xl _1>.X0 —_— 7T0(X).
1

d

Example 2.1.13. For every n € N, the set Aj := A([0], [n]) is naturally identified with
[n]; also, for every i,j € [n] there exists a unique s € A} := A([1], [n]) such that
{d)(s),d}(s)} = {i, j}. In light of the foregoing discussion, we deduce that :

’ﬂo(An) ={@} Vne N\

i.e. A" is connected for every n € N.
2.1.14. Pointed simplicial sets. The category of pointed simplicial sets is the slice category
sSet, := A%/sSet.

o Since sSet is complete and cocomplete (§2.1.6), the same holds for sSet,, and the
target functor (notation of §1.4)

t :=tpo : sSet, — sSet

preserves and reflects all representable limits and all representable connected colimits;
also, t is conservative, and preserves and reflects both monomorphisms and epimorphisms

(=)o : sSet — sSet, X (jx: A > X, =X 1A%

where jx denotes the natural inclusion : namely, the adjunction for ((—).,t) assigns to
every (Y,y : A° — Y) € Ob(sSet,) and every morphism f : X — Y of sSet the unique
morphism (X, jx) — (Y,y) of sSet, whose restriction to X agrees with f.

e We will also use the notation :

X, =X, VX := (X, x) € Ob(sSet,),Vn € N.

Example 2.1.15. (i) For every n € N, the n-simplex A" has a distinguished base point
0, : A — A", namely the morphism induced by the inclusion map [0] — [n], and clearly
0, is also a base point for A", whence well-defined pointed simplicial sets

A" = (A%0,) and  9A":=(dA",0,)  V¥neN.
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(if) For every X := (X,x),Y = (Y,y) € Ob(sSet,), the simplicial set S#om(X,Y)
is endowed with a natural base point : namely, the 0-simplex A — S#om(X,Y) corre-
sponding to the unique morphism Oxy : X — Y of sSet that factors through y : A° — Y.
We have then a well-defined pointed simplicial set

Hom(X,Y) := (Hom(X,Y),0xy).

Moreover, we define the simplicial set of pointed morphisms from X toY as the fibre product
in the cartesian square of sSet, :

Fomo(X,Y) —— FHom(X,Y)

A° Y

where x* = Jom(x,Y) : Hom(X,Y) — Hom(AY) = Y is the evaluation at x.
Hence, we get a well-defined functor

Home(—, —) : sSet? x sSet, — sSeto.
(iii) Furthermore, the wedge sum of X and Y is defined as the pointed simplicial set
XVY:=(XVY, (xy)) where XVY =Xx{ylU{x}xY
and the smashed product of X and Y is the amalgamated sum in the cocartesian square :

XVY—>=XxY

b

A~ XAY
and we let X A Y be the simplicial set underlying X A Y. Clearly we get functors :

—A— —V—
sSet, X sSet, —— sSet, «—— sSet, X sSet,.

Proposition 2.1.16. (i) For every pointed simplicial set Y := (Y,y), the smashed product
and the simplicial set of pointed morphisms yield by restriction an adjunction :

’ — A Y :sSet, & sSet, : Somo (Y, —).

(ii) For every X,Y,Z € Ob(sSet,) we have natural isomorphisms :
XAY SYAX  (XADVAZSDXAYAZ) A AXDX A AX A
Homeo (X, Hom(Y,Z)) — Hom(Y, Hom.(X,Z))
Homo(X NY,Z) = Home(X, Homo(Y,Z)).
(iii) For every X, Y € Ob(sSet) we have natural isomorphisms :
(XUY) DX VY  (XXY)o 2 Xo A Yo

Proof. (i): Let X := (X,x) and Z := (Z,z) be two pointed simplicial sets; the datum of
a morphism X — J%om,(Y,Z) of sSet, is the same as that of a morphism f : X —
Ftom(Y, Z) of sSet whose composition with the evaluation y* : #om(Y,Z) — Z is the
unique morphism X — Z that factors through z : A — Z, and that maps the base
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point x of X to the base point of #om,(Y, Z). The adjunction J,, of §2.1.6|for the pair
(= x Y, #Zom(Y,-)) yields a commutative diagram whose vertical arrow are bijections :

sSet({x}, #om(Y, Z)) <—— sSet(X, H#Hom(Y,Z)) —— sSet(X, #om({y}, Z))

| l

sSet({x} xY,Z) <————sSet(X X Y,Z) ————— sSet(X x {y}, Z)

from which we see that f corresponds, under .., to a morphism X X Y — Z of sSet
whose restriction to {x} X Y and X x {y} both factor through z : A — Z. Summing up,
we see that, under J,., the datum of a morphism X — %om, (Y, Z) of sSet, is equivalent
to that of a morphism X A Y — Z. The naturality of this correspondence follows from
the naturality of J.., whence (i).

(ii): The first four isomorphisms follow by a direct inspection of the constructions.
Next, say that X = (X,x), Y = (Y,y), Z := (Z,z); by virtue of lemma [1.6.14] we have
cartesian squares of sSet, :

Homo(X, Hom(Y, Z)) — A’ Hom(Y, Homo(X, Z)) = Hom(Y,A°) = A°

| e e

identifies o with f, whence the fifth isomorphism of (ii).

For the last isomorphism, let us also write X A Y = (X A Y, (x,y)), and notice that,
for every n € N, the n-simplices of J#om.(X A Y,Z) are naturally identified with the
morphisms A" X (X A'Y) — Z of simplicial sets whose composition with A" X (x,y) :

A" x A" =5 A" — A" x (X A'Y) equals A" — A 5 Z. By adjunction, these correspond
to the morphisms X A Y — #om(A", Z) whose composition with (x,y) : A > X A Y
equals the base point A® — #om(A", Z) of #om(A", Z). So, by virtue of (i), the set of
n-simplices of ##om.(X A 'Y, Z) is naturally identified with :
sSeto (X A Y, Hom (A", Z)) = Ay = sSeto(X, Homo (Y, Hom(A", Z))).
On the other hand, the n-simplices of J#om(X, 7#om.(Y,Z)) are naturally identified
with the morphisms A" X X — #om(Y, Z) of simplicial sets whose composition with
A'xx: A"x A" = A" — A" x X equals A* — A° 7, Hom, (Y, Z), and the adjunction
for the pair (- x A", .7#Zom(A", —)) naturally identifies the latter with the set :
By, = sSeto (X, #om (A", #Hom, (Y, Z))).
But by the foregoing, we have as well natural isomorphism of sSet, :
p : Homo(Y, Hom(A", Z)) = stom(A", #om.(Y,Z)) VYneN
and it is easily seen that the induced system (sSet, (X, w,) : A, = By | n € N) translates
as the last sought isomorphism of (ii).

(iii) follows by inspecting the definitions. O

Corollary 2.1.17. For every X, Y € Ob(sSet,) we have natural identifications :

Homo(X,Y)n = sSeto((A")o AX,Y) Vn e N.
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Proof. Indeed, the adjunction for the pair ((—)o, t) yields natural identifications :
FHomo(X,Y), = sSet(A", t(Homo(X,Y))) = sSeto((A™)o, Homo(X,Y))
= Homo((A"), Homo(X, Y))o
and on the other hand, proposition [2.1.16{ii) yields the natural identifications :
Homo((A")o, Homo(X, X))o => Homo((A")o A X, Y)o = sSeto((A™)o A X, Y)

whence the corollary. O

2.2. Cellular filtrations. This section presents an axiomatic treatment of some argu-
ments from Gabriel-Zisman’s classical book [[6]. The interest of this axiomatic treatment
is that it makes these arguments available in more general situations.

Definition 2.2.1. An Eilenberg-Zilber category is a datum
(o, d) = (A, Ay, S, d)

where &7 is a small category, 27, o7_ C o/ are subcategories with Ob(.27) = Ob(27_) =
Ob(«), and d : Ob(&7) — N is a map verifying the following conditions :

(EZ0) Every isomorphism of <7 is an identity morphism.

(EZ1) Ifa — bisamorphism in.eZ; (resp. in .2/_) that is not an identity, then d(a) < d(b)

(resp. d(a) > d(b)).
(EZ2) Any morphism u of &7 has a factorization u = i o p with p in &7_ and i in <7,
(EZ3) For every morphism p : a — b of &/_ there exists s € 27/ (b, a) that is a section of

p, Le such that p o s = 1;; moreover, any two morphisms p,p’ : a = b in &
having the same set of sections in .2/ are equal.

We shall say that an object a of &7 is of dimension n if d(a) = n.

Example 2.2.2. (i) A is an Eilenberg-Zilber category, with A, (resp. A_) the subcategory
of monomorphisms (resp. epimorphisms), and d([n]) := nforalln € N.

(ii) If (%, d) is an Eilenberg-Zilber category, and if F is any presheaf on .o/, we get
an induced Eilenberg-Zilber structure on 7 /F : namely, if the functor yr : &/ /F — &/
is defined as in we set (&7 [F)y := @, Xy &/ |F and (& [F)_ = _ Xy A [F, ie.:

Mor((& /F)4) = wgl(Mor(M)) and Mor((&7/F)-) := tﬁF_l(Mor(Jz{_)).

Then we set d(a,s) := d(a) for every (a,s) € Ob(&//F). Indeed, axioms (EZ0), (EZ1)
and (EZ2) trivially hold for ((.//F)4, d). Lastly, let p : (a,s) — (b,t) be a morphism of
(«//F)_and i : b — a a morphism of &/ with p o i = 1; then i*(s) = i*p*(t) = t, so
i:(bt) > (a,s) is a section of p in &7 /F, whence (EZ3).

(iil) If (4, doy) and (Ay, dp) are two Eilenberg-Zilber categories, the product &7 X %
carries a natural Eilenberg-Zilber structure, such that (& X B), = & X B, for all
* € {+,—}, and with d(a, b) := d(a) + d%(b) for all (a,b) € Ob(</ X A).

Definition 2.2.3. (i) Let (%%, d) be an Eilenberg-Zilber category, X a presheaf on 7,
and x a section of X over some a € Ob(.2/). We say that x is degenerate if there exists a
morphism o : a — b of o/ with d(a) > d(b), and y € X}, such that x = o*(y). The pair
(0,y) shall be called a decomposition of x.

(ii) For every n € Z, we denote by :

Skn (X)
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the maximal subpresheaf of X such that for every b € Ob(«/) with d(b) > n, all the
sections of Sk, (X) over b are degenerate. Notice that Sk, (X) = @ if n < 0. It is easily
seen that every morphism of presheaves f : X — Y induces by restriction a morphism

Skn(f) = Skn(X) — Skn(Y).

So, the rules : X — Sk, (X) and f +— Sk, (f) yield a well-defined functor Sk, : A — .
(iii) For every a € Ob(.2/), the boundary of the presheaf h, represented by a is :

oh, = Skd(a)—l(ha)-
Remark 2.2.4. Notice also that :
h, = Skd(a) (ha) Va € Ob(,;zf).

Indeed, for every b € Ob(.«?) with d(b) > d(a) and every u € h,(b) we have u = u*(1,),
so any such u is a degenerate section of h,,.

Lemma 2.2.5. (Eilenberg-Zilber) Let (%, d) be an Eilenberg-Zilber category, X a presheaf
on &/, and x a degenerate section of X over some a € Ob(.2/). Then there exists a unique
decomposition (o,y) of x such that o is a morphism of <7_ and y is non-degenerate.

Proof. For every decomposition (7 : a — b, z) of x, let us set d(z, z) := d(b), and let us
denote by X the set of decompositions (7, z) of x such that 7 lies in 27_.

Claim 2.2.6. For every decomposition (, z) of x there exists (7/,2") € X with d(7’,2") <
d(z,2).

Proof: By (EZ2) we have 7 = i o p for some morphism p : a - cof &_ andi:c — b
of @/,; notice that p # 1,, since otherwise we would have d(a) = d(c) < d(b). Then
(p,i*(z)) € Z,and d(p, i*(z)) = d(c) < d(z,2). &

Hence, let (0;a — b,y) € X such that d(o,y) = min{d(r,z)|(r,z) € 2}. Theny
must be non-degenerate, due to claim [2.2.6|and the minimality of d(o, y). It remains to
check the uniqueness property of (o, y). However, let (¢’ : a — b’,y’) € X be another
decomposition with d(b) = d(b’); by (EZ3) we have a morphism i : b — awithooi = 1p,
and we setu:=0"oi:b— b’. Then:

u'(y) =i"o0”(y) =i"(x) =i" 00’ (y) = .
Next, by (EZ2) we have a factorizationu = jop withp : b - ein & andj:e — b’
in of,; if p # 1;, then d(b) > d(e), by (EZ1); but since (po o : a — e, j*(y’")) € I, this
would contradict the minimality of d(b). Hence p = 1, and then j = 1, as well, again
by (EZ1), since d(b) = d(b’). Thus, u = 15, so that b = b” and y = y’. Morever, it follows
that 0’ o i = 1y, i.e. i is a section of ¢’ as well; symmetrically, every section of ¢’ is also a
section of o, and then o = ¢’, by (EZ3). |

Example 2.2.7. (i) Let X be any simplicial set, i.e. a presheaf on the Eilenberg-Zilber
category (A, A4, A_,d) of example i); it follows easily from lemma that the
degenerate sections of X in any degree n € N are precisely the n-simplices of X that are
in the image of some degeneracy map o;'.

(ii) Let (4, dor) and (As, dz) be two Eilenberg-Zilber categories, X € Ob(,ﬂz/fj, Y e
Ob(#), and endow &7 x Z with the Eilenberg-Zilber category structure as in example

[2.2.2]iii). With the notation of remark[1.6.4[iv) and example [1.8.11{ii), we have :
Ska(X X Y) = U Ski(X) ®Sk;(Y)  VneN

i+j=n
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Especially, in view of remark[2.2.4] we deduce:
(hiap)) = Oha K hy Uhy Mok, V(a,b) € Ob(<f x %B).

Theorem 2.2.8. Let (2,,d) be an Eilenberg-Zilber category, X C Y two presheaves over
&/, andn € N. We have a cocartesian diagram in </ :

Uacd-1 (m) (9ha) F4) —= X U Sky_1(Y)

() | l

Uacd-(ny BS ——= X U Skn(Y)

where g = Y, \ (Skn_1(Y)a U X,,) for every a € d~1(n), and with vertical arrows given by
the natural inclusions (the copower (=) ><) is as in .

Proof. Explicitly, for every a € d~!(n) and every y € %, we have, by Yoneda’s lemma,
a unique morphism ¥ : h; — Y of </ such that 1, — y, and in light of remark
the image of fY lands in the subpresheaf Sk, (Y); also, the restriction g¥ : dh, — Y of
fY obviously has image in Sk,_1(Y), and the upper (resp. lower) horizontal arrows of ()
are the disjoint union of these morphisms g¥ (resp. fY). The commutativity of (%) is then
immediate. Now, let Z be any presheaf on 7, and X U Sk,,_1(Y) Lz& Laca1(n) héz“)

two morphisms of </ that agree on I_lagd—l(n)(aha)(za). Hence, v is equivalent to the
datum of a system :

(zY|aed Y (n),yeX,) with zYe€Z, Vaed'(n),Vye3,

and every zY corresponds to a unique morphism v¥ : h, — Z. We define a morphism w :
X USk,(Y) — Z as follows. Let a € Ob(&/) and y € X, U Sk, (Y),;if y € X, USkn—1(Y)q,
we set wa(y) == ug(y). f y € X, U Sky—1(Y),, then we must have d(a) > n; if d(a) = n,
then y € 3, and we set w,(y) := zY. Lastly, if d(a) > n, then y is a degenerate section
of Y,, so there exists a unique decomposition (o, s) of y where ¢ : a — c is a morphism
of &7_ and s is non-degenerate (lemma [2.2.5); but notice that d(c) = n and s ¢ X, since
otherwise we would have y € X, U Sk,,_1(Y),. Hence, in this case we let w,(y) := o*(z°).

e We need to check that the rule : a — w, yields a morphism X U Sk,(Y) — Z
of presheaves. Hence, let t : b — a be any morphism in &7, and y € X, U Sk, (Y),; if
Y € Xq U Skn-1(Y)q, then t*(y) € X, U Skyp—1(Y)p, so wp(t*(y)) = up(t*(y)) = t*ua(y) =
t*(wq(y)), as required. In case y ¢ X, U Sk,—1(Y)q, in view of (EZ2), we may consider
separately the cases where t lies in 27, and in &7_, and clearly we may suppose as well
that t # 1,. Suppose first that d(a) = n and that t lies in 7, so that d(b) < n by (EZ1);
then w,(y) = z¥ and t*(y) € Sk,—1(Y), whence w,(t*(y)) = up(t*(y)) = t*(us(y)). On
the other hand, we have :

t*(wa(y)) = t* (04 (12)) = v, (t'(1a)) = up © g (" (1)) = t*(a © f7 (1a)) = t* (ua(y))
since t*(14) € (dhg)p and since u and v agree on | |;eq-1(n) (0hg) %),

e Ifd(a) =nandt liesin &/, then d(b) > n and (¢,y) is the unique decomposition of
t*(y) provided by lemma so that the sought identity t*(w,(y)) = wp(t*(y)) holds
by definition of wy.

o Lastly, if d(a) > n,let (¢ : a — ¢, s) be as in the foregoing; by (EZ2) we may write
oot =iop, where p liesin &/_ and i lies in .2Z,. By construction :

t*(wa(y)) =17 0 07(2°) = p" 0 i"(2°) = p* 0 i"(we(s))
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and wy (17(s)) = wp(p™ 0 i*(s)), so we are reduced to checking the sought identity for
t = i and t = p; both these cases are already known, by the foregoing. It is clear that
w is the unique morphism that restricts to u and v on X U Sk,_;(Y) and respectively

Laed1(n) héz“), so the proof is concluded. O

Definition 2.2.9. Let .o/ be a small category, and X C Ob(sz’f\). We say that ¥ is saturated
by monomorphisms, if the following holds :

(a) For any small family (F; |i € I) of elements of 3, we have | |;c; F; € 2.

(b) For any cocartesian square of .« whose vertical arrows are monomorphisms :

F——F

b

G—G
and with F, F/,G € 3, we have G’ € 3.
(c) For any sequence of monomorphisms of o
Fp—-F —>F—>--
such that F; € X for every i € N, we have | ;. F; € 2.

Corollary 2.2.10. Let (%%, d) be an Eilenberg-Zilber category, and ¥ C Ob(sz?j a class
saturated by monomorphism. If ¥ contains all representable presheaves, then 3 = Ob(7).

Proof. Let Y be a presheaf on .7; we apply theorem with X = @&. Then, for every
n € N we have a cocartesian square :

Llaed*l(n) (aha)(za) — Skp_1(Y)

l J

Uacd-1(n) BS —— Skn(Y)

with £, := Y, \ Sk,_1(Y), for every a € d~!(n). Let us check by induction on n that each
Sk, (Y) lies in 3. For n = 0, we have oh, = Sk_1(Y) = &, so Sko(Y) is the coproduct of a
small family of representable presheaves, so it lies in .

Suppose next that n > 0, and that the assertion is already known for n — 1; then the top
row of the diagram consists of elements of 2, since dh, = Sky,—1(dh,). The same holds for
the lower left corner, so also for Sk, (Y). Now, Y = ,cp Skn(Y),s0 Y € 3. O

Corollary 2.2.11. Let (%, d) be an Eilenberg-Zilber category, such that each representable
presheaf over o/ has finitely many non-degenerate sections. Then, for every presheaf F
which has only finitely many non-degenerate sections, the functor

A (F,-):o —Set G d(FG)
preserves all small filtered colimits.

Proof. Let 3 C Ob(,;a’f\) be the class of all presheaves X such that the functor ,;a?\(X, -)
preserves filtered colimits. Let us check first that X is stable under finite colimits. Indeed,

let X, : I — & be a functor from a finite category I, such that X; € ¥ for all i € Ob(I),
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andlet G, : ] — &/ be a functor from a small filtered category J; we need to check that
the natural map :

(+) lim o (lim X, Y;) — / (lim X;, lim ;)
JjeJ iel iel JjeJ

is bijective. However, it is easily seen that the natural map :

() o/ (lim X, Y)) = lim &/ (X;. Y;)
iel iel

is bijective for every j € Ob(J); on the other hand, since filtered colimits commute with
finite limits in the category of sets, the natural map :

() lim lim & (X;, Y;) — lim lim <7 (X;, Y;)
S St et Jer

is bijective as well, and by assumption, the natural map :

(1) lim o7 (X;, Y;) — o (X;, lim Y;)
jeJ jeJ
is bijective for every i € Ob(I). Lastly, it is easily seen that by combining (1), (1) and
(1 1 1) we get the map (=), so the latter is a bijection, as sought.

Now, let F be a presheaf on o/ with only finitely many non-degenerate sections; by
applying theorem [2.2.8| with Y = F and X = &, we deduce that F = Sk, (F) for some
n € Z, and we argue by induction on n. If n < 0, then F = &, and the assertion is clear,
since a filtered colimit of sets of one gl\ement is a set of one element. If n > 0, theorem
yields a cocartesian diagram in &7 :

|_|aEd’1(n) (aha) (Za) — Skn—l(F)

l J

Uaed-1(n) h{7e) —— Sk, (F)

where 2, := F; \ Sk,_1(F), is a finite set for every a € d~!(n). By inductive assumption,
the presheaves | |,cq-1(n) (0hg) ) and Sk,_; (F) lie in 3, hence, by the foregoing, we are

reduced to checking that the same holds for [ |,cq-1(n) héz“).

We are then easily reduced to checking that h, lies in X for every a € Ob(.2/); but
Yoneda’s lemma identifies the functor ,Q?\(ha, —) with the evaluation functor : G +— G,
and the latter commutes with all representable colimits. O

Example 2.2.12. (i) Let A be a simplicial set that has finitely many non-degenerate
simplices. Then the functor

Ftom(A, —) : sSet — sSet X — stom(A, X)

preserves all small filtered colimits. Indeed, since the colimits of sSet are computed

termwise (see §2.1.6), it suffices to check that the functor
sSet(A" xX A, —) : sSet — Set X - sSet(A" x A, X)

preserves small filtered colimits for every n € N. Since A" X A has finitely many non-
degenerate sections for every such n, this follows from corollary[2.2.11
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(if) Since the finite limits in sSet commute with all small filtered colimits, we easily

such that A has finitely many non-degenerate sections, the functor
Ftomo (A, —) : sSet, — sSet, X > Foms (A, X)
preserves all small filtered colimits.

2.3. Nerves. Recall that the category poSet of partially ordered sets can be regarded as
a full subcategory of the category Cat of all small categories (see §1.9.2). By restricting
such embedding to A, we get a fully faithful functor :

i: A — Cat.

The nerve functor is defined as the evaluation at i (notation of remark iii)) :

]N =i":Cat > sSet ¢ ([n] — Cat([n],%)). \

Hence, we have a natural bijection :
n% : Ob(€) = N(€)o
and for every n € N\ {0}, the n-simplexes of N (%) are the strings :
fi fo Ja

Xp = X1 T Xy
of n morphisms of €. Especially, we have a natural identification :
ngg : Mor(%) = N(%),
such that :
diony(u) =n(x)  diony(w) =ny(y)  Vx,y € Ob(%),Vu € €(x,y).
Remark 2.3.1. (i) From the foregoing description, we get a natural identification :
N(€P) = N(%€)®
where N(%)°P denotes the front-to-back dual of N(%) as in

(ii) Moreover, the composition law of the category % is determined by the datum of
Sky(N(%¥)), as follows. Let x,y,z € Ob(%€), u € €(x,y) andv € € (y, z). Then we get the
2-simplex of N(%) :

n2(wo) = (x > y—>2z) with nb(u)=d(n%wo) nk() =ddn% (o)

and notice that in the category (i.e. in the partially ordered set) [2], we have 13001 = 0_2>;

it follows that :
(%) Ng (v 0 u) = dy(n(u,0)).

(iii) A direct inspection of the definitions yields a natural identification :

| 7(N%) = 70(€) V¢ € Ob(Cat) |

where 79 (N%) is the set of connected components of the nerve of ¢, defined as in §2.1.11}
and 79 (%) is defined as in example

Lemma 2.3.2. The nerve functor is fully faithful.
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Proof. Let F : ¥ — %" be any functor between small categories. By a simple inspection
we get commutative diagrams of sets :

0b(%) — Ob(%”) € (x,y) —2 > %" (Fx, Fy)

n&;l lf??g nlgj lﬂ%, Vx,y € Ob(%)
N(F)o N(F);

N(®)o — " N(%") N@) — o Ny,

whence the faithfulness of N. Next, let g : N(%") — N(%”) be any morphism of simplicial
sets. We define a functor G : € — %" as follows. The map Ob(G) : Ob(%) — Ob(%”) is
induced by go : N(%)y — N(%"), via the identifications n, and n2,,. Likewise, for every
x,y € Ob(%¥), the map Gy, : €(x,y) — €' (f(x),f(y)) is induced by g; : N(¥); —
N(%"); via the identifications r.. and 5.,

We need to check that G(1,) = 1, for every x € Ob(%) and G(v o u) = Gv o Gu for
every composable pair of morphisms x 5 y > z of €. However, notice that :

s0(ng (x) =nip (1) Vx € Ob(%).

Since g; o s) = s) © go, we then get the first stated identity. For the second stated identity,
in light of identity () of remark ii) it suffices to notice that :

9:(n% (1,0)) = nZ, (Gu, Go)
and to recall that d} o g, = g1 o d}.

Lastly, let us check that N(G) = g. To this aim, for every n € N \ {0} and every
i=0,...,n—1,1lett} : [1] — [n] be the unique morphism of A whose image is {i, i + 1}.

Now, let fo = (xo fl—) X1 i[2—> i[n—> Xn) be any n-simplex of N(%); notice that f, is

characterized as the unique n-simplex of N(%’) such that t5*(f,) = fi1 for every i =

. . Gfi Gl Gfn . .
0,...,n— 1. Likewise, Gf, := (Gxg — Gx; — -+ — Gxy,) is characterized as the

unique n-simplex of N(%¢”) with t*(Gf,) = Gfi4; for every i = 0,...,n — 1. But we have :
ta 0 gn(fo) = g1 0 £;°(fo) = g1(fir) = Gfina Vi=0,....,n-1
whence g,,(fs) = Gf., QED. This proves that N is a full functor. O

2.3.3. Recall that the category Cat is cocomplete (proposition|1.10.4); by virtue of theo-
rem i), the functor N admits therefore a left adjoint

T :=1i : sSet — Cat.

Then N preserves all representable limits of Cat ([13] Prop.2.49(i)]), and for every small
category %, the counit of adjunction is an isomorphism of categories :

ToN(¥) = ¢

in view of lemma and [[13] Prop.2.16(iii)]. Notice also that :

IN([n) =A"  VneN]

Lemma 2.3.4. For every simplicial set X we have natural bijections :

]Xo = 0b(zX)  and  m(X) = m(rX). \
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Proof. Recall that the functor Ob : Cat — Set is left adjoint to the functor ch : Set — Cat
that assigns to every set S the chaotic category structure on S (see remark [1.2.7); hence
Ob o 7 : sSet — Set is left adjoint to the functor N o ch : Set — sSet. The latter assigns
to every set S the simplicial set S* whose set of n-simplices is S**! = Set([n],S), for
every n € N, whose face and degeneracy maps are induced by the corresponding face
and degeneracy morphisms 9 and o7 in the category A, in the obvious way. Notice then
that the n-simplices of S® are determined uniquely by their images under the canonical
projections (z" : S"*! — S|i =0,...,n); moreover, each 7" : Set([n],S) — Set([0],S)
is induced by the morphism j : [0] — [n] such that 0  i. It follows easily that every
morphism u : X — S° of simplicial sets is of the form :

(%) x> (upoji'x,...,upo j x) Vn € N,Vx € X,

where j* : X;; — X, is the map induced by j7, for every i = 0,...,n. Conversely, every
map Uy : Xo — S determines a unique morphism X — S°® of sSet, via the rule (*) : the
details are left to the reader. Summing up, this shows that the evaluation functor

eo : sSet — Set X — Xp (Xi> Y) > (X 2, Yy)

is another left adjoint to the functor N o ch, and thus is isomorphic to Ob o 7 (see §1.6.7).

Next, recall that z; : Cat — Set is left adjoint to the functor dis : Set — Cat that
assigns to every set S the discrete category whose set of objects is S (remark[1.2.7). Hence
7y o T : sSet — Set is left adjoint to N o dis : Set — sSet; but it is easily seen that
N o dis = cpor (notation of §2.1.11), so 7o o 7 is isomorphic to 7y : sSet — Set. O

Remark 2.3.5. Notice that the counit for the adjoint pair (e, N o ch) assigns to every set S
the identity map 15 : (N o ch(S))y = S. Also, let 5} (resp. 52) be the unit for the adjoint
pair (7, N) (resp. for the adjoint pair (Ob, ch)); then the composition of the respective
adjunctions is an adjunction for the pair (Ob o 7, N o ch), whose unit is given by

nx N(nty)
nx : X — Nor(X) ——— NochoObor(X) VX € Ob(sSet).

By remark ii), the isomorphism ey = Ob o 7 of lemmais then given by
nx.0 = eo(nx) : Xo = Obo 7(X) VX € Ob(sSet).

However, notice as well that ey o N = Ob and Ob(q%) = 1op(y) for every small category
€ ’; hence the isomorphism 5x o coincides with

eo*nl:eo%Obor.

Example 2.3.6. As an application, we deduce a natural isomorphism of sSet :

| Aom(NBNE) = N(€%)  VB,% € Ob(Cat). |

Indeed, for every n € N we have natural identifications :
FHom(NB,NEC ), = sSet(A"XNAB,N€) = sSet(N([n]xH), N€¢) = Cat([n]xH,€)

since N preserves products (§2.3.3), and by virtue of lemma On the other hand, by
§1.3.3|(and again lemma [2.3.2) we have natural identifications :

Cat([n] x B, %) = Cat([n], %) <> sSet(A", N(£?)) => N(€%),

from which the sought isomorphism follows easily.
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2.3.7. For every finite totally ordered set E, we let
E.= N(E).
Thus, Al"] = A" for every n € N. Every morphism of finite totally ordered sets ¢ : E — F
induces a morphism of simplicial sets
A? = N(¢) : AF — AT,
In particular, every subset E’ C E is still totally ordered for the order induced by E, so we
get an induced inclusion A¥" ¢ AF of simplicial sets, and we say that A¥" is a face of AF.
e With this notation, we define the boundary of AF as the simplicial set :

OAE = U AE c AE
E'CE

=

(see example|1.8.11[ii) for the union of presheaves). If the cardinality of E is n, notice that
OAE = Sk,_1(AF), so this notation agrees with that of definition iii).

e For every k,n € N with k < n # 0, we define the k-th horn of A" as :

U AE c AP = U Al
keEC|[n] ie[n]\{k}

If 0 < k < n, we shall say that AZ is an inner horn of A™.
e For every n € N\ {0}, the spine of A" is the simplicial set :

Spn = U A{i,i+1} c An.

0<i<n

(A™)°P = A" induces by restrlctlon natural 1dent1ﬁcat10ns

’ (AZ)OP = AZ—k Vk=0,...,n (Sp")op o Spn

(ii) Also, for every finite totally ordered set E, we have natural identifications :

’ (AF)P =5 AE® (9AF)P =5 5(AE™)

where E°P denotes the set E, endowed with the reverse of the order of E.

Example 2.3.9. (i) (Standard presentation of the boundary) For every n € N we have a
natural diagram of sSet :

() Lo<icjen AV} — — Llosicn AlMME —L oan
T

where p is the morphism whose restriction to each face Al"\} is the natural inclusion,
and where j (resp Jj2) is the morphism whose restriction to A"} s the inclusion
APMETY 5 AInIMEY (resp, AlPIMETY 5 Al 1n light ofexampleu) diagram
(%) is exact, i.e. identifies 9A™ with the coequalizer of (ji, j2).

(ii) Likewise, for every k,n € N with k < n # 0, we get the exact diagram :

Ui jen]\ (k) AL} —— L. Licln]\ (k) AlrI\i} ﬁ.An

where p, j; and j;, are defined as in (i) : details left to the reader.
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Example 2.3.10. (i) (Canonical presentations) Let (E, <) be any partially ordered set.
For every n € N, the morphisms f : [n] — (E, <) of partially ordered sets are the
non-decreasing maps {0, ...,n} — E, and example i) says that such an f is a non-
degenerate simplex of N(E) if and only if it is a strictly increasing map, i.e. if and only
if f is a totally ordered chain of elements of E. Suppose now that E is a finite set, , and
denote by &) (E) the set of all maximal totally ordered chains of elements of E. We deduce
a diagram of simplicial sets :

,  N(O) N
(%) u A ——= A€ NP NE)
(C.C) ek (E)? NGD - cegyp)

where p, j and j’ are as in example [1.9.8iii). Clearly, every non-degenerate simplex of
N(E) is of the form 7*(C) for some morphism 7 of A and some C € &(E); then the same
holds in fact for every simplex of N(E), by Eilenberg-Zilber’s lemma |2.2.5 This amounts
to saying that N(E) is the image of N(p), and in light of example [1.8.11]ii), diagram ()
is then exact, i.e. p identifies N(E) with the coequalizer in sSet of N(j) and N(j’). We
call this diagram the canonical presentation of N(E).

(ii) Let us take p,q € N and E := [p] X [q], where the product is taken in the category
of partially ordered sets. Then it is easily seen that every maximal totally ordered chain
of E is of the form :

(@0, bo) :=(0,0) < (ay,b1) <+ < (apsg> bpiq) = (p:q)
such that either a;;; = a; and bjy; = b; + 1 or else a;4; = a; + 1 and by = b; for every
i =0,...,p+q. Such a maximal chain C is determined by the subset ¢ := {0 < i <
p+q|ais1 = a;} and we have |Z¢| = p for every such C. Hence |&([p] X [q])| = (p;q),

and A€ = AP*9 for every C € &([p] x [q]).
The following result will be useful in later sections :

Lemma 2.3.11. (i) Let € be a category, and consider a commutative diagram :
A—-B
k
C——D

in €, such that j, k and | have left inverses r, q and respectively p, with pk = ir. Then the
diagram 9 is cartesian.

(ii) For everyn > 2, the commutative diagrams of sSet :
AN o AlnING)
Dij l l VO<i<j<n
Aln\{i} Alnl

whose arrows are the natural inclusions, fulfill the conditions of (i).

Proof. (i): Let B £ x5 Chetwo morphisms of ¥ with ku = lv. We must show that there
exists a unique morphism w : X — A such that jw = v and iw = v. For the uniqueness,
notice that ru = rjw = w for any such w. So, set w := ru; we get :

v = plo = pku = iru = iw

u = gku = qlv = qliw = gkjw = jw
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whence the assertion.

(ii): Consider the commutative diagram of inclusions of totally ordered sets :

[n]\ (i, j} —— [n] \ {j}

Eij ﬂl ly

. 5
[n] \ {i} ———[n].

o If i = j, then « and f are identities, and y = &, so we get a diagram & as in (i) by
letting g = p be any left inverse of é.

o Ifi < j < n, we get a diagram % asin (i) withi :=«a, j := f, [ :=yand k := § ;
indeed, we may take for r (resp. for p) the unique left inverse of  (resp. of y) that maps
Jj to j+1, and for g the unique left inverse of § that maps i to i + 1.

e If j=nandi < n—-1, we get a diagram 2 with the same i, j, k, [ and q as in the
foregoing case, and with r (resp. p) the unique left inverse of f (resp. of y).

e If j=nandi=n-1, we get adiagram ¥ withi:=f, j:=a,k :=yand[ =9
indeed, we may then take for r (resp. for p) the unique left inverse of « (resp. of ) that

maps n — 1 to n — 2, and for g the unique left inverse of y.

In each case, we conclude that &; ; fulfills the conditions of (i), so the same holds for

9, , that is obtained by applying to & ; the functor A=) of O

2.3.12. For a first application, consider a finite totally ordered set (E, <); we set

Af= | ) AT coanf vIcE
ie[n\I

Hence, Ag = 9AF, and A&';(]} = A] for every n € N'\ {0} and every k € [n]. From lemma
2.3.11(ii), we easily deduce cartesian and cocartesian diagrams :

E\{e} £

AI AIU{e}

2t - l l VICEVecE\L
RO Y

We may use these diagrams to deduce :

m(Af) ={@}  VJe{ICE|I+o,E}

For the proof, we argue by induction on the cardinality ¢ of E \ J. If ¢ = 1, we have
Af = APMe} for some e € E, and the assertion holds by example Hence, suppose
that ¢ > 2 and that the sought identity is already known for all J such that the cardinality
of E\ Jis < c. Lete € E\ J; by applying the functor x, termwise to the diagram @fe we

obtain a cocartesian diagram of sets 7 ( 2¢ .) (since 7y commutes with all representable

colimits : see [13] Prop.2.49(i)]). But, by inductive assumption we have (Af\{e}) =

”O(Afu{e}) = {@}, and we know as well that 7,(AF\¢}) = {&}, whence ﬂO(Af) = {2},

as required. Especially :

() m(A) ={2}  VneN\{0}Vk=0,...,n
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Likewise, we may check that :

(oA = {o} U {2} and  m(dA") ={2} Vn>2.

Indeed, for the first identity it suffices to consider 7 (@g’]l) and notice that Ag]\{l} = Ag]
is the empty simplicial set, so ﬂo(Ag]) = @, and moreover (A"} = 7(A%) =
o (Am ) = {@} by (). Lastly, to compute 7y (9A") for n > 2, we consider ﬂo(@[g’f’],‘), and

1
argue similarly : the details are left to the reader.

2.4. Augmented simplicial sets, joins and slices. We denote by

A+
the category with Ob(A*) := Ob(A) U {@}, such that A is a full subcategory of A" and
& is the unique initial object of A*. It is convenient to set as well [—1] := &.

o The categories of augmented simplicial sets and of augmented bisimplicial sets are
sSet* == A7 and respectively bSet* := A* x A*.

Hence, an augmented simplicial set can be regarded as a datum X* := (X, E, ¢), where
X is a simplicial set, E is a set, and ¢ : Xy — E is a map, called the augmentation of X*.
We can also regard ¢ as a morphism X — cg of simplicial sets, from X to the constant
presheaf cg with value E (notation of §1.1.8). With this notation, restriction along the
inclusion functor i : A — A yields a well-defined functor

i* : sSett — sSet (X,E, ¢) — X.
We also define for every n > —1 the augmented n-simplicial set
A" = hyn)
where h : A* — sSet* is the Yoneda embedding, just like in the non-augmented case;
notice that the initial object of sSet™ is (i*A™1, &, 15), which is not isomorphic to A™1.
o The restriction functor i* admits left and right adjoints, denoted respectively

iy : sSet — sSett and iy : sSet — sSet™.

Namely, i assigns to every simplicial set X the augmented simplicial set (X, 7o (X), px),
where px : Xo — m(X) is the natural projection. The functor i, assigns to X the aug-
mented simplicial set (X, {@}, ax), where ax : Xo — {@} is the unique map, which can
be regarded as the unique morphism ax : X — A° of sSet (details left to the reader).
For instance, if @ denotes the initial object of sSet, then i, is the initial object of sSet™,
whereas i.@ = A™!, and i*A™! = @.

2.4.1. Joins of augmented and non-augmented simplicial sets. We consider the functor
¥ ATX AT — AY ([m], [n]) = [m] * [n] = [m+n+1]
that assigns to every pair of morphisms f : [m] — [m’], g : [n] — [n’] the morphism

@) ifi<m

f*g[m]*[n]_)[m/]*[n/] such that iH{l_'_m/_'_g(i_m_l) ifi > m.

By composing with the Yoneda embedding, we get a functor

* h
F:AYx At - A*Y — sSett
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and since sSet* is cocomplete (remark i)), F admits an extension by colimits
F, : bSet™ — sSett

(theorem 1,ii)), which we can compose with the functor — X — of remark iv), to
get a join functor for augmented simplicial sets, denoted again by

-X- F
* : sSet™ x sSett —— bSet* — sSet® (X,Y) > X*xY
and fitting into the essentially commutative diagram :

ATxAT—- s At

2 hxhl lh

sSett X sSet* ——= sSet*.

Remark 2.4.2. (i) The restriction of the join functor to the image of h X h can be described
explicitly. Indeed, we have natural identifications :

A*([n], [p] * [q]) = |_| A*([i], [p]) x A*([j]. [g]) ~ Ymp.g>-1.
i+j=n-1
Namely, for every non-decreasing map f : [n] — [p+q+1] we let i+1 be the cardinality of
f1([p]), and set j := n—i— 1; the bijection assigns to f the pair ([i] 2, [p], [j] 2, [g])
where ¢, is the restriction of f, and g2(k) := f(k+i+1) —p —1foreveryk =0,...,].
The inverse bijection then is given by the rule : (g1, g2) — g1 * g2 for every i, j > —1 with

i+ j =n—1and every pair of non-decreasing maps ([i] 2, [p]. [j] 2z, [q])-
(ii) The natural identifications of (i) can be rewritten as :
(W AT, = | | APxA? vnpgz -t
i+j=n—1

Moreover, let u : [m] — [n] be any non-decreasing map, and for every i, j > —1 with

i+j=n-1,leti’ > —1 be the unique integer such that [i"] = u~1([i]), and set j’ :=
m—1i —1;welet ([i] 4, i1, [7'] Y, [j]) be the pair of non-decreasing maps given by

the rules : u;(k) := u(k) for every k € [i’], and : u;(k) := u(k +i’ +1) — i — 1 for every
k € [j']. Then it is easily seen that under the foregoing natural identifications, the map

(AP A7), = (AP % AT), — (AP x AT,
corresponds to the map

u AP x AL u AP x AT — |_| Af X A,

i+j=n—-1 i+j=n—1 i+’ =m—1

that assigns to every pair of non-decreasing maps ([i] a2, [p], [j] 2, [¢]) the pair
(g1oui,gaouj) € Af, X A?, : the detailed verifications are left to the reader.

Proposition 2.4.3. (i) For every X, Y € Ob(sSet*) we have a natural identification :

(X #Y), = u X;xY;  V¥nx -1
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(ii) Letu : [m] — [n] be any morphism of A*; then, with the notation ofremarkii),
the bijections of (i) identify the map (X * Y), : (X *Y), — (X *Y), with the map :

|| XuxYy: || xixv—> || X xv.

i+j=n-1 i+j=n—1 i"+j=m-1

(iii) Moreover, we have natural isomorphisms :

(A +X S X & XxA™' VX € Ob(sSet?). |

Proof. (iii) follows easily from (i) and (ii). To prove (i) and (ii), let us consider the functor
© : sSet” x sSet™ — sSet* X, Y)»X0Y

where (X®Y), := |j1j=p—1 Xi XY} for every n > —1, and with transition maps (X @Y)y :
(X0oY), = (XOY), given by the expression of (ii), for every morphism u : [m] — [n]
of A*; then © assigns to every pair of morphisms f : X — X’, g : Y — Y’ of augmented
simplicial sets, the morphism f ©g: X © Y — X’ © Y’ such that

(fogn= || fixg Vnz-1
i+j=n-1
By construction, both * and © commute with small colimits; hence, in light of proposition
[1.7.3] it suffices to exhibit an isomorphism between the compositions of these two functors
with the square of the Yoneda embedding h x h : A" x A" — sSet* X sSet*. The latter is

provided by remark O

Remark 2.4.4. (i) Notice that the image of the Yoneda embedding A* x A* — bSet" is
the full subcategory of bSet* whose set of objects is {A? K A?| p,q > —1}. It follows that
the data of Fi and of the join functor * are essentially equivalent : given F; we define =,
but conversely, given * we retrieve F; up to isomorphism, as the extension by colimits of
the functor A* x A* — sSet* given by the rule : ([p], [q]) — AP * A9. Hence, since F,
is determined only up to isomorphism, the same holds for *. We can then simply declare
that we shall represent the join functor by the functor © exhibited in the proof of proposition
with this choice, the natural identifications of part (i) and (ii) of the proposition is
just an identity. This very explicit choice will simplify some verifications.

(ii) For instance, we can deduce explicit natural identifications :
(%) X*«Y)*Z S5 X+ (Y*Z) VX,Y,Z € Ob(sSet)
expressing the associativity of the join functor. Indeed, by proposition i), the evalua-
tion at [n] of both terms in () is naturally identified with | |, j1x=p—p XiXY;XZt. We need
to check that these natural identifications are compatible with morphisms u : [m] — [n]
of A*. However, according to proposition ii), in order to compute ((X *Y) * Z),, we
need to calculate first the pairs (ujjs1, ux) for every i, j k > -1 with i+ j+k = n - 2;
then we let v := )4, and we need to further compute (v;,0;). With this notation,
(X *Y)*Z), is given by | iy jix=n—2 Xo; X Yo, X Zy,. Likewise, to compute (X * (Y x Z))y
we calculate first (u;, k1), then with w := uj,141 We compute (wj, w), and at last
(X* (Y *2Z)), is given by | |, jsk=p—2 Xu; X Yo; X Zyy,. However, a direct inspection yields:
(vi 0, uie) = (s, wj, W)
whence the sought isomorphism ().

Definition 2.4.5. The join of simplicial sets X and Y is the simplicial set
XY = i"(i.X *i,,Y).
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Remark 2.4.6. (i) Just as in the augmented case, any two morphisms of simplicial sets
f:X —>X',g:Y — Y induce a morphism

frg=i"(if*ig) : XY > X =Y.
Hence, the join operation yields a well-defined functor
x : sSet X sSet — sSet (X,Y) > X=*Y.

(ii) By virtue of proposition i), we get a natural identification :

(X #Y)y = X, U Y, L U X;xY;  VX,Y € Ob(sSet),Vn € N.

i+j=n—1

Notice that in the foregoing expression, the indices i, j run over the values 0,...,n — 1,
whereas in the corresponding expression of proposition|[2.4.3[i) for augmented simplicial
sets, the same indices run over the values —1,...,n. This difference accounts for the
presence of the extra term X, L1 Y,, in the non-augmented case. The inclusion of this extra
term then yields a natural transformation :

’XuY—>X*Y VX,YeOb(sset).\

(iii) Likewise, from proposition ii) we get natural isomorphisms of sSet :

(05X S X E X2 VX € Ob(sSet) |

where @ denotes the initial object of sSet. For every simplicial set X, let also jx : @ — X
be the unique morphism of sSet; then, every given simplicial set T induces two functors

ixx*T
() L T:sSet > T/sSet X > (T 5 @+T 25 X 1)
T+j
T T (=) :sSet — T/sSet XH(T%T*@&T*X).
Lemma 2.4.7. Both functors (=) | T and T T (—) preserve small colimits.

Proof. Tt suffices to consider (=) | T. Let us first check that this functor preserves all
small connected colimits. To this aim, since the target functor tr : T/sSet — sSet reflects
all small connected colimits (corollary ii)), it suffices to check that the functor

sSet — sSet X X*T=i"(i,X #i.T)

preserves small connected colimits. However, since the colimits of sSet and sSet* are
computed termwise (remark[1.6.2(i)), it is clear that i* preserves all representable colim-
its, so we are reduced to checking that the functor sSet — sSet* such that: X — i, X *i,.T
preserves small connected colimits. However, by construction the join functor for aug-
mented simplicial sets preserves all small colimits, so we are further reduced to check-
ing that the functor i, preserves small connected colimits. Again, this can be checked
termwise, so we need to show that the functors (F, : sSet — Set|n > —1) given by the
rules : X — (i,.X), preserve connected colimits. This is trivial if n € N. Lastly, F_; is
none else than the constant functor with value {&}, and it easily seen that every constant
functor preserves all connected colimits : the details are left to the reader.

According to remark [1.5.10[ii), it remains only to show that (=) | T preserves initial
objects. The latter follows immediately from remark iii). O
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2.4.8. By virtue of lemma [2.4.7)and theorem[1.7.5[iii), the functors (=) | Tand T T (-)

admit right adjoints, called slice functors over and under T, and denoted respectively
—/T : T/sSet — sSet and T\—: T/sSet — sSet.

Hence, —/T (resp. T\—) attaches to every (X,t : T — X) € Ob(T/sSet) a simplicial object
(X,t)/T (resp. T\ (X, t)) that we may also denote more simply by X/t (resp. t\X).

Example 2.4.9. (i) A simple inspection shows that the functors (-) | @ and @ T (-) are
naturally isomorphic to the identity of sSet, under the natural isomorphism of categories
& /sSet = sSet, so the same holds for the functors —/& and @\—.

(ii) Let us take T := A%; then a morphism ¢ : A’ — X is the same as an element ¢ € Xj;

moreover, for every n € N we have natural identifications :

n 0
(X /1)y > sSet(A™, X /1) <> AY/sSet((A® 2225 An 4 A%, (A2 X)),

Recall that A" x A® = A™1; by inspecting the definitions, we see that A" | A® corresponds
to the map j, : [0] — [n + 1] such that 0 — n + 1. Also, every non-decreasing map
f : [m] — [n] induces the morphism Af | A® : A™ | A° — A™ | A of A%/sSet,
and by tracing the natural identifications, we see that A/ | A° corresponds to the map
f=*[0]:[m+1] - [n+1] withi f(i)fori=0,...,m,and m+ 1+ n+ 1. Hence, let
7n = Xj, : Xus1 — Xo be the map induced by j,; summing up, we get natural bijections :

X/t = w1 (t) Vn e N
that identify the map (X/t)r : (X/t), — (X/t),, induced by f : [m] — [n] with the
restriction 7, 1(t) — x,!(t) of the map Xp41 — Xu41 induced by f = [0].
(iii) Likewise, for every n € N let j;, : [0] — [n + 1] be the map such that 0 +— 0, and
7y, = Xjr + Xpp1 — Xo be the map induced by j;; we have natural bijections
(t/X), = 7 (t) VneN

that identify the map (t/X)s : (t/X), — (t/X)n induced by f : [m] — [n] with the
restriction 7,71 (t) — 7,71(t) of the map Xp4; — Xine1 induced by [0] = [f] : [m+1] —
[n + 1], where the latter is the map given by the rules : 0 +— 0 and i — f(i — 1) + 1 for
i=1,...,m+1: the detailed verification shall be left to the reader.

(iv) Especially, let us take X := N(%) for some small category %, and let t € N(%)o,
i.e. t is an object of €. Then the explicit descriptions of N(%')/t and t/N(€’) given by (i)
and (ii) boil down to natural isomorphisms of simplicial sets :

N(%)/t = N(€/t) and t/N(€) = N(t/€)
showing that the slice functors generalize the construction of the slice categories of

Lemma 2.4.10. (i) For every pair of monomorphisms K — L, U — V of simplicial sets,
the commutative diagram :

KxU——=K=x*V

Lo

L+U——LxV

is cartesian, and all its arrows are monomorphisms; hence it induces a monomorphism :

K«VULxU > LxV.
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(ii) We have the following identities of subobjects of A™ x A™ = A1+ ;
OA™ 5 A" U A™ 5 9A™ = 9A™HH

A ATUA™ 0N = AT Yk =0,...,m

OA™ 5« A" U AT x AR = AT Yk =0,...,n.

m+k+1

Proof. (i): The assertion boils down to the trivial identities : (K; xV;) N (L; xU;) = K; X Uj
for every i, j € N.

(ii): The identification of A™ x A™ with A™*"*! is as detailed in remark i) : namely,
toeveryi, j > —1with k := i+j+1 € N and every pair of non-decreasing maps ¢g; : [i] —
[m], g2 : [j] — [n], we attach g1 * g3 : [k] — [m+n+1] (the pairs withi=—-1or j = -1
correspond to A" LI A} in the explicit expression for (A™ * A"), given by remark ii)).
Now, recall that the k-simplices of 9A™"*1 are the non-surjective maps [k] — [m+n+1];
however, it is easily seen that g; * g, is non-surjective if and only if the same holds for
either g; or g, whence the first stated identity. Likewise, for every [ € N, the [-simplices
of AZ”"” are the maps [l] — [m+ n+ 1] that omit some value different from k; then the
last two identities are easily verified. O
2.4.11. Augmented front-to-back duality. Clearly the involution (—)°? : A = A of
extends uniquely to an involution (=)° : A* = A*, which is again the identity map on
objects. Then (—)°P induces a front-to-back duality on augmented simplicial sets :

(—)°P : sSet* = sSet* X XP:=Xo (-)P u:X—->Y)>u® =ux(-)P.
We also consider the involution

o A PR

() : At x At 2 A A" x A*

where ¢ is the flip automorphism that swaps the two factors : ([n], [m]) — ([m], [n]).
Then, we get again an induced front-to-back duality on augmented bisimplicial sets :

(=)°P : bSet* => bSet* X XP:=Xo (-)® (uW:X>Y) u®:=ux(-)%.

With this notation, a direct calculation yields the commutative diagram :

ATXAT—2 s A

(—>°Pl l(—)“?

AT X AT — > A

Lemma 2.4.12. (i) We have a natural isomorphism in sSet* :

[(X# )P = Y® 4« XP VXY € Ob(sSet"). |

(ii) The natural isomorphism of (i) also exists for every X, Y € Ob(sSet).
(iii) For every T € Ob(sSet), the isomorphisms of (ii) induce isomorphisms in TP [sSet :
(X | T)® = TP T X® VX e Ob(sSet).
Proof. (i): The existence of such a natural isomorphism can be shown by juggling with
adjunctions, by purely categorical nonsense; however, since we have selected an explicit

join functor (see remark [2.4.4), we can exhibit a natural isomorphism in a more direct
manner. Namely, for every n > —1 we have :

XeVF=Xe¥)a= | | Xixy,  (0Pex®),= | | PxxP= | | vixX

i+j=n-1 i+j=n—1 i+j=n—1
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and every non-decreasing map u : [m] — [n] induces the maps
(X#Y)P = (XY )yor + (X#Y)y = (X5Y)pp (YPxXP), « (YPXP), — (YPxXP),,

where (X * Y)yop and (Y°P % X°P), are given by proposition ii). However, a direct
inspection shows that (notation of §2.4.11) :

((uP);, (u®®);) = (uj, u;)® Vi,j > —-1withi+j=n-1.

It follows that the sought natural isomorphism is given by the system of maps

|| oxy s || xixv; > | ] vixX vaz-1

i+j=n-1 i+j=n-1 i+j=n-1

where, for every pair of sets S, T, we denote by wsr : S X T = T X S the bijection that
swaps the two factors : (s, t) — (2, s).

To show (ii), it suffices to notice the obvious identities :
(i*S)°P = i*(S°P) (i.T)% =i, (T°P) VS € Ob(sSet™), VT € Ob(sSet)
and apply (i). Assertion (iii) follows by direct inspection. O

Remark 2.4.13. (i) For every T € Ob(sSet), the natural isomorphism of lemma [2.4.12[iii)
induces a natural identification in sSet :

(X/t)%P = t°P\X°P V(X,t) € Ob(T/sSet).
(ii) Let f : S — T be any morphism of sSet; the commutative diagrams :
S——=FxS——=Xx*S
fl lx*f VX € Ob(sSet)
T—>o+«T 2% X7

induce a system of natural morphisms (zx : T Ug (Y *S) — X = T | X € Ob(sSet)) that
amount to a natural transformation

te:flo(=18)= (=17

where f' : S/sSet — T/sSet is the left adjoint of the functor f; : T/sSet — S/sSet (see
remark [1.4.2(ii)). Then, the adjoint of 7, is a natural transformation

) (=/T) = (=/S) o fi X, t:T—X)— (T(\/X’t) : X/t = X/tof).
Explicitly, under the natural identifications :
(X /)y = sSet(A™, X /t) = T/sSet(A" | T, (T % X))
(X[t o f)n <> sSet(A™, X/t o f) = S/sSet(A" | S, (S —L5 X))

the map 7, (T(X on ((X/t)y— (X/tof), | neN) corresponds to the system of maps

x.n'

T/sSet(A" | T, (T -5 X)) — §/sSet(A" | S, (S <5 X)) VneN
given by the rule :

A™|T A"|S tof
/ \ ‘/(A”\

AT —2 =X



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 110

(iii) Combining (i) and (ii), we obtain as well natural transformations

peiflo(ST)=(T1-)  and ' (T\-) = (S\-)of
which can be described explicitly as in (ii) : the details are left to the reader.

2.5. Simplicial sets as generalized categories. Lemma allows to regard Cat as a
full subcategory of the category of simplicial sets, and motivates the following definitions
and[2.5.4] that extend to arbitrary simplicial sets some standard terminology relating
to categories :

Definition 2.5.1. (i) Let X be a simplicial set. An object of X is an element x € X, or
equivalently, a morphism x : A° — X of simplicial sets.

(ii) An arrow of X (also called a morphism, or a map) is an element f € Xj, or equiva-
lently, a morphism f : A' — X of simplicial sets. Such an arrow has a source d} (f) and a
target d%(f) in X, :

! 9
a0 S Lx g aLx

For an arrow f of X with source x and target y, we also write f : x — y; we set

X(xy) = {f € X11di(f) = x and d] (f) = y}.

(iii) Given an object x of X, the identity of x is the arrow

0
lep
1, :=sg(x):x—>x ie. 1X:A1—0>A0i>X.

(iv) A functor f : X — Y is morphism of simplicial sets. The fibre of f over a given object
y: A — Y of Y is the fibre product f~!(y) := A® xy X.

(v) Let f,g : X =2 Y be two given functors; a natural transformation h : f = g from f
to g is a morphism of simplicial sets

h:XxA'—>Y suchthat ho(Xxd;)=f and ho(Xxd) =g

Remark 2.5.2. (i) Let € and ¢” be any two small categories; by lemma|[2.3.2] every functor
N(%) — N(%") is of the form N(F) for a unique functor F : € — %”.

(i) Let F,G : ¥ = ¥’ be two functors. On the one hand, notice that the nerve
functor N commutes with products, since it is a right adjoint (see , and on the
other hand, recall that A! is naturally isomorphic to N([1]); it follows that every natural
transformation from N(F) to N(G) is of the form

N(h) : N(€) x Al = N(€ x [1]) — N(¢")

for a unique functor h : ¢ X [1] — ¢” such that ho (¢’ x ;) = Fand ho (¢ x ;) =G.
In turn, the datum of A is equivalent to that of a natural transformation F = G.

(iii) By remark[2.3.1]i), the front-to-back duality of §2.1.4|generalizes the functor (—) :
Cat — Cat that assigns to every small category ¢ its opposite category € °P. Indeed, for
every simplicial set X, by definition the objects of X°P are the same as the objects of X,
x — y in X°P coincides with the set of morphisms y — x in X, for every pair of objects
x, y; furthermore, the identity of any object x in X°P coincides with the identity morphism
of x in X. Consequently, we shall sometimes denote by f°P : y°? — x°P the arrow of X°P
corresponding to a given arrow f : x — y of the simplicial set X, generalizing
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Example 2.5.3. (i) A triangle of X is a morphism ¢ : 9A? — X; this is then the datum of
3 objects x, y, z and 3 arrows f, g, h of X fitting into a diagram :

(f.gh) f/{\g\\

X———> 2.

Namely, f (resp. g, resp. h) corresponds to the restriction of ¢t to At} (resp. to A{12}
resp. to A{®2}). Notice that for every i, j € N with 0 < i < j < 2, there exists a unique
isomorphism [1] = {i, j} of ordered sets, so there is no ambiguity on which object is the
source and which is the target of each of these arrows. Moreover, notice that (f, g, h) is a
triangle of X if and only if (¢°F, f°P, h°P) is a triangle of X°P.

(ii) Likewise, a morphism Sp? = A — X can be regarded as a diagram :
y
AN
x z.
Definition 2.5.4. (i) We say that a triangle (f,g,h) : dA> — X as in example i)
commutes (or is commutative) if it extends to a morphism A? — X:

gh
OA2 (f9.h) X

! /
(ii) Given a pair (f,g) of morphisms of X as in example [2.5.3(ii), we say that a given
arrow h : x — z of X is a composition of f and g if the resulting triangle (f, g, h) commutes.

(iii) We say that a morphism f : x — y of X is left invertible if there exists a left inverse
of f, i.e. amorphism ¢ : y — x in X that makes commute the triangle :

y
VN
1x
X ———>x.
Likewise, we say that f is right invertible if f°P is left invertible in X°P, and then we also

say that g is a right inverse of f, whenever g is a left inverse of f°P. We say that f is
invertible if it admits both a right and a left inverse.

(iv) A functor F : X — Y of simplicial sets is conservative, if for every arrow f : x — x’
of X that is not invertible, the arrow Ff : Fx — Fy is not invertible (cp. remark[1.1.11{iii)).
We say that a natural transformation h : F = G is invertible if for every object x of X, the
induced arrow h, : Fx — Gx (given by restriction of h to {x} X Al =5 Al) is invertible.

Remark 2.5.5. (i) If X = N(%) for a small category ¥, it is easily seen that a triangle of
X commutes & it commutes when regarded as a diagram of %, and a composition of a
pair of arrows of X is just their composition in ¢". These assertions can be summarized
by saying that the inclusion Sp? C A? induces a bijection :

sSet(A%, N (%)) = sSet(Sp?, N(%)).

Indeed, the meaning of such bijection is that every composable pair of arrows of N(%)
has a unique composition. More generally, it is clear that, for every integer n > 2, the
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inclusion Sp™ c A" induces a bijection :
sSet(A", N(%)) = sSet(Sp", N(%)).

For n = 3, this bijection expresses the associativity of the composition law of € : see the

proof of proposition [2.5.10]

(ii) For any simplicial set X, and any arrow f : x — y of X we get commuting triangles

(L. f.f)  and  (fi1yf)

since the (degenerate) 2-simplices s (f) and s (f) extend (1, f, f), respectively (f, 1, f).

(iii) Moreover, example [2.1.5(ii,iii) implies that a triangle (f, g, h) of X commutes <
the corresponding triangle (g°P, f°P, h°’) commutes in X°P (notation of remark [2.5.2{(iii)).

We deduce from remark [2.5.5|the following characterization :
Lemma 2.5.6. For every simplicial set X and every small category €, the datum of a mor-
phism X — N(%) of sSet is equivalent to that of a map u : X; — N(%); such that :

(a) u(1y) is an identity morphism of €, for every x € X,

(b) for every commutative triangle (f, g, h) of X we have u(h) = u(g) o u(f).
Proof. Clearly any morphism X — N(¥) of simplicial sets yields, by restriction, a map
X; — N(%); verifying (a) and (b).

Conversely, let u be such a map; for every x € X, we let ug(x) € N(%)o = Ob(%) be
the source (which is also the target) of u(1).
Claim 2.5.7. For every arrow f : x — y of X, the source and the target of u(f) are
respectively uy(x) and ug(y).

Proof : By remark [2.5.5[ii) we have commutative triangles (1, f, f) and (f,1y, f), and by
(b) it follows that u(f) = u(f) o u(1x) = u(1,) o u(f), whence the claim. &

Next, let n > 0 be an integer, and x, : A" — X any n-simplex of X; the restriction of

fi fo Jn -
X to Sp™ amounts to a connected sequence of arrows x; S5 x, andin light

of claim [2.5.7] we may set
u(fi) u(fz) u(fn)
ttn (x0) 1= (uo(x0) = to(x1) == +++ == up(xn)) € N(€).

It remains to check that the system of maps (u, : X, —» N(%),|n € N) thus defined
yields a morphism of simplicial sets, and to this aim it suffices to show that

d

i
n
i

OUy =uUp_10d, Vn>1,VYi=0,...,n

Sp, O Uy = Upy1 O Sy Vn>0,Vi=0,...,n.

The identity s) o uy = u; o s follows immediately from (a). Next, let ¢ : [m] — [n] be
any morphism of A; clearly, the composition :

AP
Sp™ — A" — A"
is the unique morphism of sSet whose restriction to A{%*!} is induced by the unique
surjection of ordered sets {i,i + 1} — {#(i),p(i+ 1)}, foreveryi=0,...,m— 1.
Hence, let n > 0 and x, be as in the foregoing; it follows that the restriction of s/, (x.)
to Sp™*! is the sequence of arrows :

h fo fi Lx; fin In

Xo—™X1 — ' —=>Xj X —> " —>Xp
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and likewise we may describe s’ (u,(x.)), for every i = 0,...,n. Invoking again (a), we
get the desired identity s’ o u, = up4; 0 s..
Likewise, the restriction of d%(x.) and d”(x.) to Sp™~! are the sequences :

fo Jn f fa Ja-1

X1 s > Xy and Xo > Xp — - — Xy
and a corresponding description applies to d9 (u,(x.)) and respectively d” (u,(x.)), whence
dl,ou, =uy_qod, fori=0,n. Lastly,letn > 2and 0 < i < n; we get a 2-simplex :
Yo i= A2 = AlimLLiHL} o An Xoo 5
whence a commutative triangle (f;, fi+1, h) with h := d; (ye) : xi—1 — xi41, and it is easily
seen that the restriction to Sp"~! of d,(x,) is given by the sequence :
fi fa fim h fin Jn

Xp = X T Xmg D Xl 0 T X

Likewise, d’ (u,(x.)) is given by the sequence :

u(fi) u(fi-1) u(fir1)ou(f;) u(fir1) u(fn)
ug(xg) — -+ — up(xi—1) ——— ug(xir1) — -+ — up(xp)
whence u,_; o d’(x.) = d. (un(x.)), by virtue of (b). ]

Proposition 2.5.8. With the notation of §2.3.3, for every simplicial set X, the inclusion
i : Sky(X) < X induces an isomorphism of categories :

]T(Skz(x» = 7(X). \

Proof. For every small category 4 we have a commutative diagram :

Cat(r(X), ) — sSet(z(Skz(X)), %)

| |

sSet(X, N(%)) —= sSet(Sk,(X), N(%))

whose vertical arrows are bijections, and whose horizontal arrows are induced by i.
Lemma easily implies that the bottom horizontal arrow is bijective as well, so the
same holds for the top horizontal arrow. The assertion then follows from Yoneda’s lemma.

O

Remark i) motivates the following definition :

Definition 2.5.9. Let X be a simplicial set. We say that X satisfies the Grothendieck-Segal
condition, if the inclusion Sp” € A" induces a bijection :

X, = sSet(A", X) = sSet(Sp", X) Vn > 2.

Proposition 2.5.10. The essential image of the nerve functor is the class of simplicial sets
that satisfy the Grothendieck-Segal condition.

Proof. Remark [2.5.5i) shows that every simplicial set in the essential image of N satis-
fies the Grothendieck-Segal condition. Conversely, let X be a simplicial set verifying the
Grothendieck-Segal condition. We attach to X a small category €x such that :

e Ob(%¥x) =Xo

e Ex(x,y) is the set of f € X; with source x and target y, for every x,y € X,.
By the Grothendieck-Segal condition, every composable pair of arrows x — y 2, 2 admits

a unique composition & : x — z, and we set g o f := h. From remark ii) we know
that 1, is a left and right identity for this composition law, for every x € X,. It remains
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h
to check that the composition law is associative. Hence, let x L y 225 whe any
composable sequence of 3 arrows; the datum (f, g, k) amounts to a morphism Sp> — X
of simplicial sets, which by assumption extends to a unique morphism ¢ : A> — X. Then

&B(t) (1)
N N 25 X (resp. O — A* -5 X)

is the unique triangle whose first two arrows are f and g (resp. g and h), so that :
gof=dyodi(t) hog=dyodi(n).
Since dy o d} = d5 o d} and d} o dJ = dj) o dZ, it follows that

di(t) d; (1)
N > N 25 X (resp. I — A* =5 X)

is the unique triangle whose first two arrows are g o f and h (resp. f and h o g), so that :
ho(gof)=dyods(t)  (hog)of=dyodi(t)
But we have d} o d} = d; o d3 (proposition i)), whence the contention.
By construction, we have a natural identification
up : X = N(6x)h

that satisfies conditions (a) and (b) of lemma [2.5.6] whence a morphism of simplicial sets
X — N(%x), and since both X and N (%) verify Grothendieck-Segal condition, the
bijectivity of u; implies that u is an isomorphism, as required. O

Proposition 2.5.11. A simplicial set X satisfies the Grothendieck-Segal condition if and
only if the inclusion Aj. C A™ induces bijections :

(%) sSet(A”, X) = sSet(A?, X) Vn>2,YVk=1,...,n—1.

Proof. Suppose first that X satisfies the Grothendieck-Segal condition; by proposition
we have an isomorphism X = N(%) for some small category %, and for every
simplicial set Y we get a commutative diagram :

sSet(Y, X)

|

sSet(Sky(Y), X) —= Cat(z(SkyY), %)

Cat(z(Y),%)

whose horizontal arrows are bijections, and whose vertical arrows are induced by the in-
clusion Sk, (Y) <= Y. Inview of proposition[2.5.8] also the right vertical arrow is bijective,
so the same holds for the left vertical one. Thus, the inclusions A} C A", Skz(A") C A"
and Skz(A}) C A} induce a commutative diagram :

sSet(A", X) —— sSet(A”, X)

sSet(Skz2(A"), X) — sSet(Sk2(A), X)

whose vertical arrows are bijections. Now, suppose first that n > 4; we have

Sk(Ay = () ABHE o Am= ] AT
]

0<i<j<l<n keEC|[n
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and notice that for every sequence 0 < i < j <l < n, the subset E := {i, j, 1, k} is strictly
contained in [n], since the cardinality of the latter is n + 1 > 5. Hence, A5/} ¢ Sk, (A})
for every such sequence, i.e. :

Skz(A™) = Sky(AT)  Vn= 4 V0 <k <n.

Hence, the bottom horizontal arrow of the diagram is bijective for every n > 4 and every
0 < k < n, so that the same holds for the top horizontal arrow.

Next, for n = 2, the sought bijection is clear, since A3 = Sp®. Lastly, we have :
A:;) - A{O,I,Z} U A{0,1,3} U A{1,2,3} A% - A{O,l,z} U A{0,2,3} U A{I’Z’S}.

Hence, the datum of a morphism x, : A3 — N() of simplicial sets amounts to that of a
diagram in ¢ of the following shape :

whose 3 triangles containing the vertex x; commute. But then, clearly the sequence of
morphisms xy — x; — x2 — x3 is the unique 3-simplex of N(%’) whose restriction to A?
agrees with x,, as required. The same argument applies to morphisms A3 — N(%), and
concludes the proof.

Conversely, suppose that we have the bijections (*). Since A? = Sp?, we see in par-

ticular that every composable pair x i) Yy 2, 2 of arrows of X admits a unique compo-
sition, so we may define a composition law for the set of arrows of X, as in the proof of
proposition and remark [2.5.5(ii) shows that 1, is a right and left identity for this
composition law, for every x € Xj. In order to obtain a category ©x with Ob(%x) = X
as in loc.cit., it remains only to check the associativity of the composition law. Hence,

let xo L X1 ER Xy LN x3 be any composable sequence of arrows in X; after adding
gof:ixg— xa,hog:x; — x3and (hog)o f : xp — x3, we obtain precisely a diagram of
arrows of X of the shape of (++), i.e. a morphism A} — X, which by assumption extends
uniquely to a morphism A*> — X. The existence of such extension means that every tri-
angle of () commutes, which yields the sought associativity property. Arguing as in the
proof of proposition[2.5.10} we deduce a morphism of simplicial sets u : X — N(%x), and
we are reduced to showing that u is an isomorphism. We check, by induction on n, that
up : X, = N(%Gx)n is a bijection for every n € N. The assertion is clear for n < 1; let then
n > 2, and suppose that u,, is bijective for every m < n. We consider the commutative
diagram, whose left vertical arrow is bijective by assumption :

sSet(A", X) —— sSet(A", N(%x))

l l

sSet(A”, X) —— sSet(A", N(%x))

and whose right vertical arrow is also bijective, by the foregoing. Hence, we are further
reduced to proving the bijectivity of the bottom horizontal arrow. However, by example
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ii), we get a natural identification of sSet(A”, X) (resp. of sSet(A”, N(%))) with the
set X, (resp. X)) of all sequences of elements of X,_; (resp. of N(€x)n-1) :

(x;lie[n]\{1}) such that d,’;_l(xj) = diil(xl—) Vi, je[n]\{1}.
By inductive assumption, u,_; induces a bijection ¥, = ¥,_1, QED. |

Remark 2.5.12. The proof of proposition [2.5.11implies in particular that we have natural
isomorphisms of categories :

T(A3) = [2] T(A}) = [3] < (A)) and T(A}) = [n] Yn>4V0<k<n

On the other hand, 7(A2) and 7(A3) are not isomorphic to [2], and 7(A?}) and 7(A3) are
not isomorphic to [3].

2.5.13. Localizations of simplicial sets. In §I.11]and §1.12]we explained how to invert given
morphisms of ordinary categories; we now wish to discuss a homotopical version of these
constructions, that applies to all simplicial sets. To begin with, for a given arrow f : x — y
of a simplicial set X (see definition[2.5.1{ii)), let us form the push-out :

slx
Aﬁ (f1x) X

b,k

A2 Y X(gf = 1]

where (f,1,) denotes the unique morphism whose restriction to At} and to A1%%} are
respectively f and 1, (notation of §2.3.7); hence the restriction of L/ to A{?} is an arrow
g:y — x of X[gf = 1] that is a left inverse for the image f of f in X[gf = 1].

S

Lf
o To explain the universality of the resulting pair of functors X X lgf = 1] < AZ,
consider any functor u : X — Y (i.e. any morphism of sSet : see definition iv)), and
suppose that we have a commuting triangle in Y :

u(y)

(W(f). 1, Tugx) ) '

1u(x)

u(x) u(x)
that is the boundary of a given 2-simplex H : A> — Y. Then there exists a unique functor
v:X[gf=1] >Y such that vonfzu and o(L)=H

and clearly v(g) = t. So, g provides a suitably universal left inverse for ]_‘

o In order to add a universal right inverse for f, we then perform the previous operation
on the arrow f°P of the front-to-back dual X°P of X (see §2.1.4); hence we let

X[fh=1]=XPAPfP=1))® v =@/")?  RO= (@70
Explicitly, this comes down to forming the push-out :

1y,
A% (1y.f)

l |
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where (1, f) denotes the unique morphism whose restriction to A®2} and to A1 are

respectively 1, and f. Then the restriction of Rf to A1} is a universal right inverse

h : y — x for the image of f in X[fh = 1] : the reader can spell out the corresponding
f f

universal property for the pair of functors X = X[fh=1] & a2,

e We can combine the two foregoing constructions to add universal right and left
inverse arrows to the given arrow f; indeed, let us set

X[f1 =Xlgf =1l[fh=1]

r N
and define pf : X — X[f~!] as the composition X z, X[gf = 1] — X[f"!]. The
image of f in X[f~!] has then a left inverse g (or rather, the image of g in X[f~!]) and a
right inverse h; the triangles (f, g, 1) and (A, f, 1,) are the boundaries of the 2-simplices

_ ’ 7 _ -
Lf:AzL_>X[gf=1]—>X[f_1] and RS :=Rf:A2—>X[f_1].

e More generally, we wish to formally invert every element of a given subset ¥ C X;.
To this aim, we proceed as in the proof of proposition [1.11.4]: suppose first that ¥ =
{fi,- .-, fn} is a finite subset; then we set :

Y() =X and Yi:= Yi—l[fi_l] Vi=1,...,n
where ]_”i denotes the image of f; in Y;_; for every i = 1,..., n. Then we let
X[z =Y, and denote by X - X2

the composition of the localizations (y?i Y- Yli=1,...,n).

e Lastly, if 3 is an arbitrary subset of X;, we let &(2) be the set of all finite subsets
of 3, partially ordered by inclusion of subsets; by the foregoing, for every A € % (X) we
get a localization y*X2 : X — X[A~!], and we have

PN = XIATLANA o XA A N e Py(3) with A cC A
Thus, we have a well-defined functor
X[-]: Py(Z) > sSet A X[AT] (A cA) e XA
and we denote by X[Z7!] the colimit of X[~]. If (85 : X[A™!] — X[Z7!]|A € (D))
is a universal co-cone, we set as well > := 65 : X = X[@7'] — X[=7!].

o The simplicial set X[%~!] comes equipped with a distinguished system of pairs of
2-simplices :

_ y x _
_ 0 — nf f
LA f/4 X Rf /1u\ V(f:x—>y) el
1y M

where f denotes the image of f in X[=7!], for every f € 3. The datum (4> L°,R*)
enjoys the following universal property : let u : X — Y be any functor such that u(f) is
invertible in Y for every f € 3, so that we have commuting triangles :

u(y) u(x)
u(f) u(f)

/ \ /1u(y) \ VfeX
u(x) u(x) u(y) u(y)

Tu(x)




00-CATEGORIES AND HOMOTOPICAL ALGEBRA 118

that are boundaries of 2-simplices H, K/ : A = Y. Then there exists a unique functor
v:X[2] > Y such that vop*=u o@H=H o®)=kf VfeX.
2.5.14. Let (7o, &) be the unit and counit of the adjunction for the adjoint pair (z, N)
(see §2.3.3); then 7x : X — N o 7X consists of a system of natural maps :
Nx.n : Xn — Cat([n], 7X) VX € Ob(sSet),Vn € N.

The naturality of the maps nx , means that we get commutative diagrams of sets :

Xy —2 o Cat([m], X) Y, —>" o Cat([n], zY)
f*l/ lCat(f,rX) unl lCat([n],f(u))
Xn e Cat([n], zX) X, T Cat([n], tX)

for every morphism f : [n] — [m] of A and every morphism u : Y — X of sSet.

e Especially, let x € X, for some n € N; if we take Y := A" and let u, : A" — X be the
unique morphism of sSet such that u, ,(1[,]) = x, we see that

UX,n(x) =7(uy) o UA",n(I[nJ)~

However, recall that ¢, is an isomorphism; then, since A" = N([n]), the triangular iden-
tities for (1., &) yield : nan,(1[4)) = N(en))y'(in) = 5[_nl] : [n] S A" (see [13]
Prob.2.13]). In the following we will identify [n] with TA” via the (unique) isomorphism
5[_”1], and we shall use for nx , the notation :

x> 1(x) = 1(uy) 0 s[_nl] Vn € N,Vx € X,,.

e Hence, to every n € N and every subset £ C X,,, we may attach the image 7,% of ¥
under the map 7,,; e.g. for n = 1, we have 1,2 € Mor(7X) for every such X, and for every
arrow f : x — y of X, the source and target of 7; (f) are respectively 7, (x) and 7y (y). Also,

for every x € Xy, the identity 1, : x — x corresponds to the 1-simplex A! — A° 5 X, so

71(1y) is the morphism corresponding to the functor [1] — [0] ﬂ 7(X), i.e. we have

71(1x) = 15(x) for every x € X,. The maps 7, are bijections for n = 0 (remark2.3.5), but
for n > 0 they are, in general, neither injective nor surjective.

Proposition 2.5.15. Let X € Ob(sSet), ¥ C X; and p* : X — X[=7!] the localization
functor of With the notation of the pair (r(X[=71]), 7(u*)) is a localization

of the category X along the subset 713; i.e. we have a natural identification of categories :

[e(X[27]) > X[(m2) ).

Proof. In view of remark [1.11.3[iv), it suffices to check that for every small category Z,
the functor y* induces a bijection :

a: Cat(r(X[Z71]), 2) = {F € Cat(zX, 2) | F(;Z) C Isom(2)} G G o r(4%)

where Isom(%) denotes the set of isomorphism of Z. By adjunction, we have natural
bijections :

wx(s-11 : Cat(t(X[Z71]), 2) = sSet(X[E7',ND) wx : Cat(rX, Z) = sSet(X,N2)
that identify « with the corresponding map
B :sSet(X[27!],ND) — sSet(X,N2) v o
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and notice that an arrow f : a — b of N9 is invertible if and only if it is an isomorphism
-1 -1

of Z; moreover, the sequences a L b f—> aandb f—> a L b are the unique 2-simplices
of N9 bounding the commuting triangles

b a
f £ ! f
/ ) \ and resp. , /lb \

a

b.

a
The universal property of X [2!] then says that 8 induces a bijection :
Y :sSet(X[27'],N2) = {v € sSet(X,NZ) |v(Z) C Isom(Z)} v vop,

Hence, we need to check that wx identifies the target of a with the target of y. To this aim,
let j : Dy — 2 be the inclusion of the subcategory with Ob(%,) = Ob(2), and whose
morphisms are the isomorphisms of Z; also, for every x € 3, let u, : A" — X be the
corresponding morphisms of sSet, as in Then, a morphism v : X — NZ lies in
the target of y if and only if vou, : A — N factors through a morphismo, : A' > N,
for every x € %, and by adjunction, v, corresponds to a functor Fy : 1A' — % such that
joF,=egot(vouy) : TA! = tNZ =5 2. On the other hand, a functor F : X — & lies
in the target of « if and only if F o 7(uy) : TA! — 2 factors through a functor 7A! — %,
for every x € . To conclude, it suffices now to notice that a);(l(o) = ¢4 o 7(v) for every
morphism v : X — N2 of sSet. O

2.6. co-categories and their homotopy categories.

Definition 2.6.1. (i) An co-category (resp a Kan complex) is a simplicial set X such that
for every integer n > 2 and every 0 < k < n (resp. for every integer n > 1 and every
0 < k < n), the inclusion AZ < A" induces a surjection :

sSet(A", X) — sSet(A?, X).

(if) An co-groupoid is an co-category in which all morphisms are invertible.

Example 2.6.2. (i) By virtue of propositions and [2.5.11] the nerve of every small
category ¢ is an co-category. Moreover, a morphism of N(%) is invertible if and only if

it is an isomorphism of &, hence ¥ is a groupoid if and only if N(%) is an co-groupoid.

(if) Since the product of any family of surjections is a surjection, we see that the
product in sSet of any small family of co-categories is again an co-category. Then it also
follows easily that the product of any small family of co-groupoids is again an co-groupoid.

Proposition 2.6.3. Every Kan complex is an co-groupoid.

Proof. Clearly every Kan complex X is an co-category. For every morphism f : x — y
of X, there exists a unique morphism u : AZ — X of simplicial sets whose restriction
to A%} agrees with f, and whose restriction to A{®?} agrees with 1,; by assumption, u
extends to a morphism A? — X, whose restriction to dA? yields a commutative diagram
exhibiting a left inverse for f. Likewise one may exhibit a right inverse for f. O

Remark 2.6.4. (i) We shall see that the converse of proposition[2.6.3|holds as well.

(ii) The notion of co-category was introduced by Boardman and Vogt in order to un-
derstand the theory of algebraic structures up to (coherent) homotopies, under the name
of weak Kan complexes. They were developed by Joyal under the name of quasi-categories,
and then by Lurie under the name of co-categories.
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(iii) With remark [2.3.8{i), it is easily seen that the front-to-back dual X°P of any co-
category X is an oo-category, which we also call simply the opposite of X. Also, X is an
oo-groupoid if and only if the same holds for X°P.

2.6.5. The Boardman-Vogt construction. Let X be an co-category; the rest of this section
is dedicated to giving an explicit description of the associated category 7(X) (notation of
§2.3.3). To this aim we will have to study morphisms of the form

Xe : Ski(A%) — X.

Such a morphism amounts to the datum of a diagram of arrows of X of the shape :

Yo

Xo —> X1

S

in which none of the triangles is required to commute. Such a diagram consists of four
triangles (dixe : N> — X|i=0,...,3), corresponding to the restrictions of x, to the
subsimplicial sets Sk (AF7), where E; := {0,...,3} \ {i} fori=0,...,3.

Lemma 2.6.6. (Joyal’s coherence lemma) With the notation of suppose that the
triangles d°x. and d°x. commute. Then d'x, commutes < the same holds for dx..

Proof. As already observed in the proof of proposition the commutativity of d°x,,
d?*x, and d*x, amounts to the assertion that x, is the restriction of a morphism A? — X,
which in turn extends to a morphism A* — X, since by assumption X is an co-category,
whence the commutativity of d'x,. Likewise, the commutativity of d°x., d'x, and d*x,
means that x, is the restriction of a morphism A3 — X, which extends to a morphism
A3 — X, whence the commutativity of d?x,. O

2.6.7. Given three arrows f, g, h of the co-category X, we shall write :
gf ~h
if the triple (f, g, h) is a commutative triangle of X.

Lemma 2.6.8. Letx,y € Xy, and f,g : x = y two arrows of X. We have :
(i) fix ~ fand1,f ~ f.
(i) fiy~ge1,f~ge gl ~fo 1,9~ f.
(iii) Let us write f ~1 g if f1x ~ g. Then ~1 is an equivalence relation on the set X (x, y).
Proof. (i) follows from remark [2.5.5(ii). For (ii) we consider the diagrams :

In view of (i) and lemma the first diagram shows that 1, f ~ g & f1, ~ g. Likewise,
the second diagram shows that 1,f ~ g = g1, ~ f. After exchanging the roles of f and
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g we get as well the equivalence : 1,9 ~ f & g1, ~ f and that 1,9 ~ f = f1, ~ g,
whence (i).

(iii): The reflexivity of ~; holds by virtue of (i), and the symmetricity follows from (ii).
For the transitivity, suppose that f ~; g and g ~; h, and consider the diagram :

We already know that g ~; f and h ~; h, so lemma[2.6.6]yields 1, f ~ h, which, according
to (ii), is equivalent to f ~; h, as required. O

2.6.9. Let X be an oo-category; for any arrow f : x — y of X, we let [f] be the equiva-
lence class of f in the quotient

ho(X)(x,y) = X(x,y)/~
for the equivalence relation ~; provided by lemma [2.6.8iii).

Lemma 2.6.10. (i) Letx L y 2 zand h k' : x =2 z be four arrows of X such that gf ~ h.
Then we have gf ~ k' if and only if [h] = [R'].

(ii) In the situation of (i), let x f—> y 2, 2 be two more arrows of X such that [f] = [f']
and [g] = [g']. Theng'f’ ~ h.

Proof. (i): By applying lemma [2.6.6]to the diagram :

we get 1,h ~ b’ & gf ~ I’, whence the assertion, in view of lemma ii).
(ii): Let us check first that g’ f ~ h; to this aim, we apply lemma to the diagram :

and recall that [g] = [¢'] © 1.9 ~ ¢/, again by lemma [2.6.8[ii). Next, by arguing with the
opposite co-category X°P, the foregoing implies that gf’ ~ h (see remark [2.5.5(iii)). The

assertion follows by combining these two cases. O
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2.6.11. Lemmal2.6.10]implies that for every x,y, z € X, we get a well-defined map
ho(X)(x,y) x ho(X)(y,2) = ho(x,2)  ([f].[g]) = [g]l o [f]=1[go f]

where g o f : x — z denotes any composition of f and g in X (the existence of g o f is
assured by the assumption that X is an co-category).
Theorem 2.6.12. (Boardman and Vogt) Let X be any co-category. We have :

(i) There exists a well-defined small category :

ho(X)

whose set of objects is Xy, and such that the set of morphism x — y in ho(X) is given by
ho(X)(x,y), for every x,y € Xo; the composition law of ho(X) is given by the system of
maps as in We call ho(X) the homotopy category of X.

(ii) There exists a unique morphism ux : X — N(ho(X)) of simplicial sets which is the
identity map on objects, and which sends every arrow f of X to its class [f].

(iii) The adjoint of the morphism ux is an isomorphism of categories :

[7(X) = ho(X).|

Proof. (i): From lemma [2.6.8[i) it is already clear that [f] o [1,] = [f] = [1,] o [f] for
every arrow f : x — y of X. The verification of the associativity of the composition
law of ho(X) is analogous to that in the proof of proposition [2.5.10]: given a sequence

fo 9 _h - o\
x = y— z — t of arrows of X, we fix a composition g o f of f and g, and a composition

h o g of g and h, and we consider the resulting diagram :

hog

which, by virtue of lemma shows that any composition of g o f and h is also a
composition of f and h o g, as required.

(ii): The assertion follows immediately from lemma|2.5.6]

(iii): Invoking again lemma [2.5.6] we see that for every small category ¢, every mor-
phism of simplicial sets X — N(%) is the composition of u and a morphism of the form
N(F) : N(ho(X)) — N(%¥), for a unique functor F : ho(X) — %. In other words,
(ho(X), u) is a universal couple for the functor :

Cat — Set % +— sSet(X,N(%))

whence the assertion. O

Corollary 2.6.13. Let X be an co-category. We have :
(i) X is an oco-groupoid if and only if ho(X) is a groupoid.

(ii) An arrow f : x — y of X is invertible & [f] is an isomorphism of ho(X) & there
exists an arrow g : y — x of X such that gf ~ 1, and fg ~ 1.
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Proof. Clearly (ii)=(i). To show (ii), suppose first that f is invertible in X; then there exist
arrows g,h : y — x of X such that gf ~ 1, and fh ~ 1,, so that [g] o [f] = [1,] and
[f]1o[k] = [1,], and therefore [ f] is an isomorphism of ho(X). Next, if the class [ f] of f
is an isomorphism in ho(X), there exists an arrow g : y — x of X such that [gf] = [14]
and [fg] = [1,], whence gf ~ 1, and fg ~ 1,, by lemma [2.6.10i). Lastly, clearly the
latter condition implies that f is an invertible arrow of X, and the proof is concluded. O

Remark 2.6.14. (i) Let F : X — Y be any functor between co-categories; for every pair
f,9 : x = x’ of morphisms of X, it is clear that f ~; g = Ff ~; Fg. Hence, F induces a
functor ho(F) : ho(X) — ho(Y) that makes commute the diagram :

x—F -y

uxl luy
(F)

Nho(X) —_ Nho(Y)

where ux and uy are the morphisms of theorem [2.6.12{ii). It follows easily that the iso-
morphisms 7(X) = ho(X) and 7(Y) = ho(Y) of theorem iii) identify ho(F) with
7(F) : t(X) — 7(Y).

(ii) Let (X;|i € I) be any small family of co-categories, and recall that X :=[ |, X; is
again an co-category (example[2.6.2ii)); from the construction of the category ho(X), it is
easily seen that the universal cone (X — X;|i € I) induces an isomorphism of categories
ho(X) =5 [];c; ho(X;). Then, by virtue of (i) and theorem iii), also the functor
commutes with arbitrary small products of co-categories.

(iii) From corollary [2.6.13[ii) we also see that a functor F : X — Y of co-categories is
conservative if and only if the same holds for the induced functor ho(F) : ho(X) — ho(Y)
between homotopy categories (see definition iv)).

(iv) With theorem [2.6.12(iii) and §2.3.3 we get natural isomorphisms of categories :
wg : € = ho(NF) V& € Ob(Cat).

Explicitely, w¢ is the identity on objects, and maps every morphism f : x — y of € to
the class [ f] of the corresponding 1-simplex f : x — y of N¥.
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3. BASIC HOMOTOPICAL ALGEBRA

This chapter is a review of the basic results of D.Quillen’s seminal treatise [12].

The first section starts out with a study of certain left and right lifting properties for
pairs of morphisms in an arbitrary category € : these notions - isolated first by Quillen -
abstract some general patterns that are ubiquitous in classical algebraic topology, and set
the stage for the introduction of weak factorization systems, consisting of pairs (&, &)
of classes of morphisms of ” that are stable under retracts, such that every element of .#
has the left lifting property relative to every element of &7, and such that every morphism
of € can be written as p o i, for some i € .# and p € Z.

After these preliminaries, we come in §3.2]to the central notion of this chapter and of
Quillen’s homotopical algebra : that of model category, of which there exist in the litera-
ture several variant definitions, all essentially — though not quite completely — equivalent
to the original one found in [12]; for us, it will be the datum of a finitely complete and
finitely cocomplete category % together with three classes of morphisms : the classes #
of weak equivalences, Fib of fibrations, and éof of cofibrations, fulfilling a pair of ax-
ioms, the first of which basically says that % resembles the class of isomorphisms of %’;
the second axiom requires that both (%of, #ib N %) and (6of N W, Fib) form weak
factorization systems for . It was Quillen’s insight, that such a structure captures all
that is needed in order to recover, in an abstract setting, most essential constructions and
several main results of the classical homotopy theory of topological spaces : notably, one
has suitable cylinder and cocylinder objects in model categories, with which one can for-
mulate a well-behaved notion of homotopy equivalence for morphisms, and then prove
a generalization of Whitehead’s theorem, stating that a morphism of fibrant and cofibrant
objects is a weak equivalence if and only if it is a homotopy equivalence (theorem i)).

An essential feature of model categories is that one can localize them by inverting
weak equivalences : the resulting homotopy categories can be regarded as wide-reaching
generalizations of the derived categories associated to abelian categories with enough
injective or projective objects. Whereas derived categories provide a natural framework
for the construction and investigation of derived functors of additive functors, homotopy
categories fulfill the same role with respect to arbitrary functors on model categories.

This theme is developed comprehensively starting with §3.4]: while we do not strive
for maximal generality, we present enough of the theory to convey Quillen’s vision of
homotopical algebra as a non-abelian generalization of homological algebra, though focus-
ing on those aspects that will be useful in later sections of our text. So, we first explain
how to derive functors defined on model categories, in rather general situations; espe-
cially, we treat in detail Quillen adjunctions and their induced derived adjoint pairs. Next,
§3.5]studies some elementary classes of homotopy limits and colimits, and lastly, §3.6|adds
some further complements for the special cases of homotopy push-outs and pull-backs.

3.1. Lifting properties and weak factorisation systems.

Definition 3.1.1. Let € be a category, and A 2 B, X 2, Y two morphisms of %

(i) We say that i has the left lifting property with respect to p, or equivalently, that p
has the right lifting property with respect to i, if every commutative square :

A—X

T

B——sY
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has a diagonal filler, i.e. can be completed to a commutative diagram :

A—sX

1

B——Y.

(ii) Let .Z be a class of morphisms of %’; we say that a morphism f of € has the left
(resp. right) lifting property with respect to %, if f has the left (resp. right) lifting property
with respect to every element of .%.

(iii) We denote by (%) (resp. r(%)) the class of morphisms of ¥ that have the left
(resp. right) lifting property with respect to .%.

(iv) Suppose that ¥ has an initial object &; then we say that X is .% -projective, if the
unique morphism @ — X is in [(.%). Dually, in case % has a final object e, then we say
that X is .% -injective, if the unique morphism X — e is in r(.%).

Remark 3.1.2. (i) In the situation of definition[3.1.1] the morphism i : A — B has the left
lifting property with respect to p : X — Y & the morphism i°? : B — A in ¥°P has the
right lifting property with respect to p°? : ¥ — X.

(ii) Let & be the class of epimorphisms of &, and suppose that ¢ has an initial object
; then X is a projective object of ¢’ & X is &-projective.

(iii) Dually, let .# be the class of monomorphisms of ¥, and suppose that € has a final
object e; then X is an injective object of € & X is .# -injective.

Definition 3.1.3. Let € be a category, X,U € Ob(%), and .% C Mor(%).
(i) X is a retract of U, if there exists a commutative diagram in % of the form:

1x

/\

X—U—X.

(i) Let f: X —» Yand g : U — V be two morphisms of €’; we say that f is a retract of
g if there exists a commutative diagram in & of the form :

1x
me
I
y—¢ sv—2 oy
\h/

(iii) We say that the class .# is stable under retracts, if every retract of every element of
Z liesin &.
(iv) We say that . is stable under push-outs, if for every cocartesian square :

X —X
1)
Y —Y

in ¢, such that f € .#, we have f” € .#. We say that .% is stable under pull-backs, if #°P
is stable under push-outs in €*°P.
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(v) Let A>0 be an ordinal. An (# 1)-sequence is a functor F:A— % such that
L; = lim F(j) Vie A" =21\ {0} and Ly = lmF(j)

Jj<i Jj<A
are representable in ¥ and the induced morphism L; — F(i) is in % for all i € A*.

(vi) F is stable under transfinite compositions, if it contains all the isomorphisms of ¢,
and for every ordinal A > 0 and every (%, 1)-sequence F : A — %, the induced morphism
F(0) — L, lies in .%.

(vii) We say that a class .% of morphisms of € is weakly saturated, if it is stable under
push-outs and under transfinite compositions. We say that .7 is saturated, if it is weakly
saturated and stable under retracts.

Remark 3.1.4. (i) In the situation of definition[3.1.3(i,ii), X (resp f) is a retract of U (resp.
of g) in € & X (resp. f°P) is a retract of U (resp. of g°P) in €"°P.

(i) Let X 5> U 2, X be two morphisms of the category ¢ such that p o i = 1x; then
for every Z € Ob(%), the rule f +— f o p establishes a bijection from € (X, Z) to the set
of g € €(U,Z) such that g = g o i o p. In other words, X represents the coequalizer of
the pair (1y,i o p), and p gives the universal co-cone for such coequalizer. Likewise, if

f:X — Yisaretractof g : U — V, so that we have also morphisms Y L v vasin
definition [3.1.3(ii), then Y represents the coequalizer of (1y, j o g), and f is characterized
as the unique morphism such that fop =qog.

(iil) Let ¥, & be two categories, and F : 4 — 2 a functor that preserves all small repre-
sentable connected colimits of €. With (ii), we see that for every saturated (resp. weakly
saturated) class .# C Mor(2), the class F~1.% is saturated (resp. weakly saturated).

Lemma 3.1.5. For every category €, the classes . of isomorphisms of € and & of epi-
morphisms of € are saturated.

Proof. Clearly .7 is stable by push-outs, and the same holds for & (see [13] Exemp.2.26(v)]).
Next, consider a diagram as in definition[3.1.3[ii), and suppose that g € .#; then, it is easily
seen that bg~1c is a left and right inverse for f, so f € .#. In case g € &, notice thatd € &
as well (see [13] Exerc.1.119(i)]), and then the same holds for dg; now, if @, f : Y =% Z are
two morphisms of € such that af = ff, we get adg = afb = ffb = fdg, whence a = f,
and this shows that f € &.

Thus, it remains only to check that .# and & are stable under trasfinite compositions.
Let A be an ordinal, and F, : A — % either an (.#, 1)-sequence or an (&, 1)-sequence; we
let (¢ : F; — L|j € A) be a universal co-cone, and extend F, to a functor F, : A+1 — &
by Fj := L and Fj; := ¢; for every j € A. If F, is an (&, 1)-sequence, let us show, by
transfinite induction, that Fy; : F; — F; is an isomorphism for every i < A. This is clear
for i = 0. Next, let i > 0, and suppose that the assertion is already known for every
J < i; then it is easily seen that the system (Fo‘j1 : F; = Fy|j < i) is a universal co-cone
F,|; = cf, (where F,|; : i — ¢ denotes the restriction of F,). As F, is an (.#, A)-sequence,
the induced morphism Fy — F; is then an isomorphism; but the latter is precisely Fy;.

Lastly, if F, is an (&, 1)-sequence, let us check, again by trasfinite induction, that the
morphism Fy; : Fy — F; is an epimorphism for every i < A. This is clear for i = 0.
Next, let i > 0, suppose that the assertion is already known for every j < i, and let
(trj : F; = L;| j < i) be a universal co-cone 7, : F,; = cr,; then F; is the composition
of 7y with the induced morphism L; — F;, and the latter is an epimorphism, since F,
is an (&, A)-sequence. Thus, it suffices to check that 7y : F; — L; is an epimorphism.
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Hence, let o, f : L; = X be two morphisms of € with ary = fro; it follows that az;Fy; =
Pr;Fy; for every j < i, whence ar; = fr; for every such j, since by inductive assumption
Fyj is an epimorphism. By the universality of 7,, this implies that « = f, so 7; is an
epimorphism. O

Proposition 3.1.6. Let € be a category, and % C Mor (%) a subclass. Then there exists a
smallest saturated (resp. weakly saturated) class . containing % . We call ./ the saturation
(resp. the weak saturation) of 7.

Proof. We prove the existence of the saturation of .%; mutatis mutandis, the same ar-
gument applies to the weak saturation. Clearly, the intersection of any finite family of
saturated classes of ¢ is saturated; hence, it is tempting to define the saturation of .#
simply as the intersection of all the saturated subclasses of Mor(%’) containing .%. How-
ever, such a definition runs into set-theoretic difficulties, since it is expressed by a first
order formula that requires quantification over variables denoting classes, which is not
admissible in many set-theoretic frameworks, and especially, not in the Bernays-Godel
axiomatisation (though it would be admissible in, e.g. Kelley-Morse set theory).

Instead, we use the following argument, proposed by Gabber. Let &/ C ¥ be any
subcategory, and i : &/ — % the inclusion functor. For every cardinal «, let us say that
o/ is relatively k-cocomplete, if i is full and for every k-small category I (see definition
[1.1.6[ii)) and every functor F : I — 7, the following holds :

o the colimit of F is representable in .of' & the colimit of i o F is representable in €

o if the colimit of F is representable in 7, then i preserves such colimit.

Claim 3.1.7. For every infinite cardinal k, every small subcategory ./ C % is contained
in a small relatively k-cocomplete subcategory of %
Proof : Let .# be the set of all xk-small categories I with Ob(I) C x and I(x,y) C « for
every x,y € Ob(I). We construct by transfinite induction a family of small subcategories
27, indexed by the class & of all ordinals, as follows. We set .27, := <7 next, let A > 0
be any ordinal, and suppose that the family (%7, | 1 < A) has already been constructed.
If A is a limit ordinal, we set @ := U,y #,. If A = p+ 1, denote by i, : &, — ¢ the
inclusion functor, and by ., the set of all functors F : I — .27, with I € .# and such that
the colimit of i, o F is representable in ¢’; also, let .7, be the set of all functors G : I — =7,
with I € .# that admit a universal co-cone 7€ : G = cL(G), but such that the colimit of
iy o G is not representable in €. For every F € ., and every G € .7, we let :

e Z(F) be the class of all objects of ¢ that represent the colimit of i, o F

o Z(G) be the class of all objects X of ¢ inducing a non-bijective map
%(L(G),X) > €' (Gex)  frocporl.
Then, for every F € ./, U .7, we set
e pr:=min(r(X)| X € Z(F)) and % (F) :=r1(pr) N ZL(F)
where r : Z — 0O is the rank function on the class % of all sets (see [13} Rem.2.9(ii)]).
We define 7 as the full subcategory of ¢ with :
Ob() =0b(e4) U | ] Z(F).
Fe#,UT,
It is easily seen that the sequence (27 |4 € ©) thus obtained is stationary : indeed we

have o7) = o7+ for every A > k" (and even for every A > «, if k is a regular cardinal : see
definition [1.1.1); it follows easily that 7+ is relatively k-cocomplete. O
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Now;, for any category 2/ and any class ¢4 ¢ Mor(2), let us say that :

o 4 is stable under x-small compositions, if for every ordinal A < k and every (¥4, 1)-
sequence F : A — &7, the induced morphism FO — lim Fi lies in ¢4

Ter
o ¢ isk-saturated, if it is stable under retracts, push-outs, and k-small compositions.

Next, let o/ C € be a small relatively k-cocomplete subcategory; we define the relative
K-saturation %l:‘ o of & in o/ as the intersection of all the x-saturated subsets of Mor (<)
containing ¢. Lastly, let .# c Mor(%) be any subclass, and denote by & the class of all
small relatively k-cocomplete subcategories of €’; we define the k-saturation of % as

T = U (F N Mor ()L .
deE

In light of claim and remark ii), it is easily seen that .# is indeed the smallest
k-saturated subclass of Mor(%’) containing .7, for every infinite cardinal k. To conclude,
let Q be the class of all infinite cardinals; it suffices now to observe that :

U T
K
KEQ

is the smallest saturated subclass of Mor(%’) containing 7. O

Lemma 3.1.8. Let € be a cocomplete (resp. finitely cocomplete) category, F a weakly
saturated class of morphisms of € that contains all isomorphisms. Then .% is stable under
small (resp. finite) coproducts, i.e. for every small (resp. finite) family (u; : X; — Y;|i € I)
of elements of F, the induced morphism | |;c;u; : | ier Xi = Lier Vi lies in 7.

Proof. Let c be the cardinality of I; recall that c is the smallest ordinal number with a
bijection w : ¢ = I, so we may as well replace I by c. For every ordinal j < c let us set

E;i=| |vu] |x.
i<j i>j

In particular, Ey = | |;.. X; and E, = | |;.. Y;. For every pair of ordinals j < k, we have a
unique morphism

vjk : Ej — Ex
characterized as follows :
e fori > k, the restriction X; < E; 2K, Ey is the natural morphism X; < Ej
o fori < j, the restriction Y; — E; 2, Ej is the natural morphism Y; < Ej
e for j < i <k, the restriction X; — E; z]J—'k>Ek is the composition X; 4, Y; — Ey.

It is easily seen that vy o0 = vj; for all ordinals j < k < [, so the system (E,, v,,) defines
a functor

E:c+1—> .

Moreover, it is easily seen that for every limit ordinal / < ¢ the induced morphism

limE; — E

j<l
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is an isomorphism, and in particular it lies in .%. Lastly, for every ordinal j < c we get,
by simple inspection, a cocartesian diagram :

Xj%Ej

uj l l 0j,j+1

Y; —> Ejur
50 0 j+1 lies in F as well. Summing up, we conclude that the natural morphism
E() - EC = l_lg Ej
j<c
is in .%; but the latter is none else than | |;c; u;. O

Proposition 3.1.9. Let ¢ be a category, and .F,.F’ two classes of morphisms of €. The
following holds :
(i) F cr(F) o F cl(F).

(ii) If F c F', thenr(F') Cc r(F) and (F') C (F).

(iii) r(F) =r((r(F))) and I(F) = (r(1(.F))).

(iv) I(F°P) = r(F) and r(F°P) = I(F)°P (notation of@.

(v) I(F) is saturated in € and r(F )P is saturated in €°P.

(vi) Every isomorphism of € lies in [(F) N r(%F).
Proof. (i) and (ii) and (vi) follow straightforwardly from the definitions, and (iv) follows

from remark i). Then, by virtue of (iv) the two assertions of (v) are equivalent, and
likewise for the two identities of (iii). Now, we have :

94 cr(l(9)) and 94 cl(r(9)) for every class ¢ c Mor(%)
again by a direct inspection of the definitions. Combining with (ii) we then get :
r(F) cr(l(r(%))) cr(F)

whence (iii). In order to check that [(.%) is stable under retracts, consider a commutative
diagram :

1x

RN
X U X A

Yt

1y
with p € % and g € I(.%). Then we have a diagonal filler h : V' — A for the square
formed by U, A,V and B. It follows easily that ho i : Y — A is a diagonal filler for the
square formed by X, A, Y and B, whence f € ..
Similarly, to show that [(.%#) is stable under push-outs we consider a commutative
diagram :

i

X—a>X'L/>A
T
y—2-y Y. B

with p € # and f € I(.¥), and whose left square is cocartesian. Hence, we have a
diagonal filler d : Y — A for the square formed by X, A,Y and B. Then, there exists a
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unique morphism d’ : Y/ — A such thatd’ o f' = a’ and d’ o b = d; it is easily seen that
d’ is a diagonal filler for the diagram formed by X’, A, Y’ and B.

Lastly, let A be an ordinal and F, : A — % an (I(.%#), A)-sequence; we extend F, to a
functor denoted again F, : A + 1 — %, by setting

Fy = lim F;
iex

where the morphisms F;) : F; — F, are given by the universal co-cone. Suppose we are
given an element p : A — B of .# and a commutative diagram :

f

Fb—A

(+) F‘”l lp
g

F, —B.

We construct for every ordinal < A + 1, a co-cone hﬁ”) :Fop = ca such that :
. hé”) =fandp0h§”) =goF; foreveryi < p
. h;”) = h;v) forevery i < v < p.
where F,|,, denotes the restriction of F, to u C A+1. Clearly the morphism hﬁ)m) :Fp —> A

shall be the sought diagonal filler for ().
We argue by transfinite induction : for p = 0, we have the empty co-cone, and for p = 1

we take h(()l) := f. Next, let 4 > 1, and suppose that hﬁv) has already been exhibited for
every ordinal v < p. If p is a limit ordinal, it is easily seen that the rule :

iR =" iy

yields a co-cone hf” ) with the sought properties. Lastly, if 1 = v+1, fix a universal co-cone
7o : Fojy = ¢, so that h{") induces a unique morphism b : L — Awithbo r; = hgv) for
alli < v. Then pobor; =go Fj for every i < v. We deduce a commutative diagram :

b

L—A

al/ lp
gOFVA

F,—"2-B

where a is the unique morphism of ¢ such that aoz; = F;, for every i < v. By assumption,
a € I(.%), so this diagram admits a diagonal filler d : F, — A. We set

R =h" Vi<v and AW =d.

It is easily seen that the resulting system (h;‘u) | i < v) yields the sought co-cone WP o

Proposition 3.1.10. (Retract lemma) Let € be a category, and X Ly Ztwo morphisms
of €. Suppose that f := p oi has the right (resp. left) lifting property with respect to i (resp.
top). Then f is a retract of p (resp. of i).

Proof. If f € r({i}), pick a diagonal filler d : Y — X for the commutative square :
_X —_— _X
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We deduce a commutative diagram :
1x

X—1>Y—d>X

i

which exhibits f as a retract of p. The case where f € [({p}) is reduced to the first case,
by considering the opposite category, by virtue of remarks[3.1.2{i) and 3.1.4i). O

3.1.11. For any category ¥ and any class .% C Mor(%), set (notation of
F X =s(F) ={f/X € Mor(€/X) | f € F} VX € Ob(%).
Likewise, we shall set X /.7 := (.F°P /XP)°P =t !(.F) for every X € Ob(%).

Lemma 3.1.12. (i) We have r(%/X) = r(F)/X and (F)/X c I(F/X) forall X €
Ob(%). If moreover % is stable under pull-backs, then I(F | X) = I(F)/X.

(i) I(r(F X)) = 1(r(F))/X for every class # C Mor(%) and all X € Ob(%).

(iii) Dually, (X | F) = X/I(.F) and X [r(F) C r(X/F) forall X € Ob(¥). If moreover
Z is stable under push-outs, then r(X/.F) = X [r(F).

(iv) If F is saturated (resp. weakly saturated), the same holds for X | %, and if moreover
% is cocomplete, then also & [X is saturated (resp. weakly saturated).

Proof. (i): The first assertion is clear from the definitions. Suppose next that .% is sta-
ble under pull-backs, and consider an element /X : (K,k) — (L,I) of [(%#/X) and a
commutative diagram of ¥ with p € % :

K—2svY

o)

L——7Z.

In order to check that I(.% /X) c I(#)/X, we need to exhibit a diagonal filler L — Y for
2. The latter is equivalent to giving a diagonal filler for the diagram 2’ obtained from
 after replacing p by the base change morphism q : L Xz Y — L; however, g € % by
assumption, so we may replace & by 2’ and assume from start that Z = L and b = 1;.
Then Z is of the form s;x (2/X) for a square diagram /X whose left vertical arrow is
f/X and whose right vertical arrow p/X lies in .# /X; but then 2/X admits a diagonal
filler, and hence the same holds for Z.

(ii) follows from (i), since r(.#) is stable under pull-backs, by virtue of proposition

[3.1.9(v). Likewise, (iii) follows from (i), by duality.

(iv): By corollary[1.4.6[ii), the functor tx preserves all representable connected colimits,
so the assertion for X/.% follows from remarkiii). Likewise, if € is cocomplete, the
functor sy preserves all small colimits (corollary [1.4.6[iii)), so by the same token we get
the assertion for .7 /X. O

Example 3.1.13. Let € be an abelian category, and & (resp. .#) the class of epimor-
phisms (resp. of monomorphisms) of ¢’; then [(&) is the class of monomorphisms with
projective cokernel. Dually, r(.#) is the class of epimorphisms with injective kernel.



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 132

e Indeed, suppose first that i : A — B is a monomorphism with projective cokernel
C; for a given epimorphism p : X — Y, consider a square diagram in % :

A—f>-X

(+) il l"
g9

B——Y.

Since C is projective, the projection q : B — C has a section C — B, so we get a decom-
position o : B = A & C ([13] Rem.2.99(iii)]), and we may as well assume that B=A @ C,
and that i is the natural monomorphism A — A @ C. Let then r : B — A be the natural
projection, and set h := pfr —g : B — Y; then hi is the zero morphism, so h factors
through ¢ and a unique morphism k : C — Y. Next, since C is projective, there exists a
morphism ¢ : C — X with pt = k. Then fr — tq : B— X is a diagonal filler for (x).

e Conversely, suppose that i : A — B lies in [(&); since the unique morphism A — e
is an epimorphism, it follows easily that i admits a left inverse B — A, so it is a split
monomorphism ([13] Exerc.1.119(1)]). Next, let p : X — Y be an epimorphism of %,
and u € €(C,Y); then we get a square (*) with f the zero morphism and g = ug. By
assumption, such diagram admits a diagonal filler d : B — X; since di = 0, the morphism
d factors through ¢ and a morphism d’ : C — X, and since pd = uq, we have pd’ = u,
which shows that C is projective.

o The assertion for r(.#') follows by duality from that for /(£), in light of proposition

iv), since .Z °P is the class of monomorphisms of ¢°P, and since €°P is an abelian
category ([13, Rem.2.81(ii)]).

Example 3.1.14. (i) For ¥ = Set, and i : @ — {&}, the class r(i) is the class of
surjections, while a reformulation of the axiom of choice is the assertion that I(r(i)) is
the class of injections. Since any small set is a small coproduct of sets with one element,

lemma [3.1.8]implies that the saturation of {i} is the class I(r(i)).

(i) Let o7 be any small category; since the colimits in o are computed termwise (re-

marki)), it follows from (i) that the class .# of monomorphisms of o is stable under
push-outs and transfinite compositions. Moreover, .Z°P is the class of epimorphisms of
(42/7\)"?, which is stable under retracts (lemma , so ./ is stable under retracts as well
(remark [3.1.4[1)), i.e. A4 is saturated.

(iii) Let .o/ be a small Eilenberg-Zilber category, and consider the class
F = {9ha — ha|a € Ob(=/)} € Mor(&).

By lemma and theorem|2.2.8] the saturation of .% contains the class .# of monomor-
phisms of &7; but .# is saturated, due to (ii), and .# C .#, so .# is the saturation of 7.

(iv) Let &7 be a small Eilenberg-Zilber category, and .% a given class of morphisms of
o/ such that for every (f : X — Y) € .F the presheaves X and Y have only finitely many
non-degenerate sections. Then the class r(.%) C Mor(,ga?j is stable under small filtered
colimits (here we regard r(.%) as a class of objects of the category T of morphisms of
o7, and the assertion is that the colimit in </T!! of every filtered system of elements of
r(%) lies again in r(%#)). Indeed, let u : K — L and p : X — Y be any two morphisms
of o; thenu € r({p}) © the induced map

W' p.) : A (LX) = (K.X) X g7y, ¥ (LY)
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is surjective. Hence, for every fixed (K 5 L) € % consider the functor

Fy: @™ Sseth  ps (' py)

that assigns to every morphism (X LN Y) - (X’ z, Y’) of M e to every commuta-
tive diagram of o7 :

X—=X
I
J ,

the commutative diagram of sets :

FULX) —P) TR X) x F) 7 (LY)
J(L’i)l lﬂKﬁ)xﬁ,ﬂK.ﬂJ(L,j)
77 ’ w".p) iy ’ iy ’
(LX) T (K X)X g1y & (LY,

Now, let I be a small filtered category, and consider any functor
peI— M i G Y)  withp er(Z)Viel

Let X 2 Y be the colimit of pe (recall that T is cocomplete, since the same holds

for of : see . Since the colimits of Set!!! are computed termwise, and since finite
limits in Set!'! commute with all small filtered colimits (example ii)), the colimit of
F, o po : I — Set!'] is naturally identified with the induced map :

(%) Ipx, = Ik x, Xigy, Iy,
where :
lzx, =lime/(Z.X))  lzy, =lime/(Z.Y)  VZeOb().
iel iel
On the other hand, by corollary [2.2.11} we have as well natural identifications :
Lix. > d(2,X)  lzy. > d(ZY) VYZe{KL}.

Under these identifications, the map () then corresponds to (u*, p.); however, the colimit
of any system of surjections of sets is a surjection ([13} Exerc.2.34(ii)]), so finally (u*, p.)
is a surjection, whence the contention.

Example 3.1.15. Let R be a ring, and denote by C(R) the category of (unbounded) chain
complexes of R-modules (see [13| §2.5]). For every n € Z, let (D", dP") be the chain
complex with D} := Rfor k = n — 1,n and Dy := 0 for every k € Z \ {n — 1,n}; the
differential d,?" : D, — D, is the identity of R. Let also 0, be the zero chain complex,
and R[—n]. the chain complex concentrated in degree n, with R[—n], := R; for every
n € Z we have two obvious morphisms of C(R) :
0. 5 pr Ri-nle B Dr with ¢, =1k R[1 =l — DI,

Let moreover & be the class of epimorphisms of C(R), and denote by # the class of
quasi-isomorphisms of C(R), i.e. of morphisms f, : Xo — Y, inducing an isomorphism
H,(fs) : Hy(Xe) = Hp(Ys) for every n € Z (see [13} §2.5.1]). We claim that :

’é":r({gbﬂneZ}) and gﬂWzr({I//ﬂnEZ}).‘




00-CATEGORIES AND HOMOTOPICAL ALGEBRA 134

Indeed, by [13| Exerc.2.98(ii)], C(R) is cocomplete and its colimits are computed degree-
wise; hence, a morphism p, : (X, dX) — (Ya,dY) of C(R) is an epimorphism < the codi-
agonal morphism Vy, x, : YaLlx, Yo — Y, is an isomorphism in C(R) ([13] Exerc.2.66(iii)]),
and the latter holds if and only if the codiagonal morphism Vy, ;x, : Y, Ux, ¥, — Yy is
an isomorphism for every n € Z, i.e. if and only if p, : Y, — X, is a surjection for every
n € Z ([13| Exerc.1.119(vi)]). Now, consider commutative diagrams of C(R) :

e

0 — X, R[1-nle — X,
o Dli)yl o ‘#Dlgyl

It is easily seen that we have natural bijections :
CR)(D{. Xe) > Xn  CR)D.Ye) > Yo foo ful1)

so, for a fixed morphism p, : X, — Y,, every diagram (D) admits a diagonal filler if and
only if p, is surjective, whence the first stated identity.

e Next, it is easily seen that, for a fixed p., the diagrams (D’) are in bijection with the
set S, == {(y,2) € Y, ® Z,-1Xs | dY (y) = pn-1(2)}, where Z,_1X. C X,_; denotes the
submodule of cycles of X, in degree n — 1 (see [13] §2.5.1]), and if (D”) corresponds to the
pair (y, z), then the diagonal fillers for (D) correspond to the elements x € X, such that
pn(x) = y and dX (x) = z. Now, suppose that p. € r({y? |n € Z}), and let y € Z,Y,; then
(y,0) € Sy, so there exists x € X,, with p,(x) = y and dX(x) = 0, i.e. x € Z,Xs, and this
shows that H,(p.) is surjective. Next, for every y € Y, we have d? (y) € Z,_1Y., so by the
foregoing there exists z € Z,_1 X, with p,_1(z) = d! (y), and then (y,z) € S,, so again,
there exists x € X, with p,(x) = y, and this show that p,, is surjective. Lastly, let z € Z, X
such that p,(z) = drfﬂ(y) for some y € Yy1; then (y,z) € Sy41, so there exists x € X,41
with dffﬂ(x) =z, i.e. Hy(ps) is injective, and summing up, we see that p, € # N &.

o Conversely, suppose that p. € # N &, and let (y,z) € S,; since p, € &, we have a
short exact sequence of C(R) :

0—>K.—>X.—p'—>Y.—>O

and since p, € #/, by considering the associated long exact homology sequence we de-
duce that H,(K,) = 0 for every n € Z (see [13] §2.5.2]). Pick w € X}, with p,(w) = y; then
dX(w) =z € Zy-1(Ka), since po-1(dX(w)) = d¥ (y) = pa-1(2) and dX_ (@X () — 2) =
dff_l o dX(w) = 0. Thus, there exists v € K,, with dX (v) = dX (w) — z; with x := w — 0 we
get p,(x) = y and dX (x) = z. This shows that p, € r({yZ | n € Z}), as stated.

Definition 3.1.16. Let € be a category. A weak factorization system for € is a pair
(F, P) of classes of morphisms of €, such that :

(a) # and & are stable under retracts
(b) & C I(P), or equivalently, & C r(#) (proposition [3.1.9(i))
(c) Any morphism of ¢ is of the form p o i, for some i € . and p € Z.

Example 3.1.17. Let . (resp. &) be the class of injective (resp. surjective) maps in Set,
and let i : @ — [0] be the unique map. From example [3.1.14{i) we know that .# = [(2)
and & = r(i), so both .# and & are stable under retracts (proposition v)), and
moreover every map of sets f : X — Y admits a factorization f = poi, wherei: X — Iy
is the natural inclusion of X in the graph of f, and p : Ty — X is the natural projection.
Hence, (A, &) is a weak factorization system for Set.
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Lemma 3.1.18. Let (&, &) be a weak factorization system for 6. We have :
(i) £ =1(P) and P =r(.7).
(it) (PP, F°P) is a weak factorization system for € °P.
(iii) (F /X, P |X) is a weak factorization system for € | X, for every X € Ob(%).
(iv) (X/I,X] D) is a weak factorization system for X /€, for every X € Ob(%).
Proof. (i): Let f € I(Z?) (resp. f € r(¥#)), and write f = poiwithi € £, p € Z; by

proposition [3.1.10] f is a retract of i (resp. of p), whence f € . (resp. f € Z7). This
shows that [(£?) c .Z and r(.¥) C &, whence (i).

(ii) follows directly from (i), remark i) and proposition iv).
(iii): Indeed, we have &2/X C r(.#)/X = r(.#/X) by lemma [3.1.12[i), and if f,g €
Mor(%/X) and f is a retract of g, then s/x (f) is a retract of s;x(g).

(iv) follows from (ii) and (iii), by duality. O
Proposition 3.1.19. Let F : € = ¥’ : G be an adjoint pair of functors. Let also (¥, &),
(I, ") be weak factorization systems for € and respectively €”; then :

F(¥)c 9 o G(P)c 2.
Proof. Any adjunction J.. for (F, G) yields bijections between diagrams of the type :
/ L

FA—;X A
Fil y'd g lp and il
B

FB/—g>Y

GX
7
Iy lcp
———=GY

9(9)

whence the assertion, in light of lemma 3.1.18(i). O

3.1.20. The following more special result, in the same vein as proposition(3.1.19] will be
useful in and Consider two categories €, ¢, two adjoint pairs of functors

(F;:¢=2%":Gy) i=1,2
with corresponding adjunctions (9, | i = 1,2), and a natural transformation
Te : F1 = F,.

Recall that the adjoint transformation 7,) : G, = G; is independent, up to natural iso-
morphism, of the choice of adjunctions (see §1.6.10); suppose moreover that all the fibre
products of ¢ and all the amalgamated sums of ¢ are representable. Then, for every
morphism f: X —» Y of €,and g : X" — Y’ of €”, the commutative diagrams :

F; G
X —T gy GoX' — 2 = G,y
A
F. G
X —1 gy GX —2 o Gy

induce morphisms of 4" and respectively € :
fOiRYURx BEX 5> BY  go:GX' — GiX X,y GY'.
For every subclass ./ C Mor(%), let us also set .#° = {f°| f € S}
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Proposition 3.1.21. (i) For every morphism f : X — Y of € andg: X" — Y’ of €’ we
have a natural bijection between commutative diagrams of the form :

’

FY Upx BbX —4— X’ X 2 G2 X'
(Do) fol lg and (Do) fl lgo
BY —————Y’ Y ———GiX' X,y G’

(ii) Moreover, the diagonal fillers F,Y — X' for (D°) are in natural bijection with the
diagonal fillers Y — G, X’ for (D). Therefore :

felg) e felg) @gerf) g er(f)]
(iii) With the notation of §3.1.2, for any subclass ¥ C Mor(%) we have:
|7 Cl(r(2)° 1 (). |

Proof. (i): Indeed, let us fix a universal co-cone and a universal cone :

FY S EREYUpx BX SBX  GX & GiX %6,y GY' D G,Y'.
Then, to every given diagram (D°) we attach the diagram (D,) where :

e ¢’ is the adjoint of a o e : F,X — X’ (relative to the adjunction §?2,)
e b’ is the unique morphism such that pod’ : Y — G,Y’ is the adjoint of b (relative
to 92,)and p’ o b’ : Y — G, X’ is the adjoint of ao e’ : F;Y — X’ (relative to 9},).

Indeed, let us check the commutativity of (D) : we need to show that
pogooa =pobof and p'ogooa =p ob of.

However, since e o 7x = ¢’ o F; f, we may compute :

P'goa’ =1y, 0 9%y (ae) = 95 ., (ae o 1x) = 9y v, (ae’ o Fif) = 9y v, (ae’) o f =p'b' f

and on the other hand :
pged’ = Gygo 8 . (ae) = 9 y/(gae) = Iy, (bf°e) = 9y, (boFyf) = 85y, (b)o f = pb'f.
Conversely, to every diagram (D) we attach the diagram (D°) where :

e a is the unique morphism such that a o e is the adjoint of a’ (relative to §2,), and
ao ¢’ is the adjoint of p’ o b’ (relative to 9},)
e b is the adjoint of p o b’ (relative to §2,).
(ii): To every diagonal filler h : F,Y — X’ for (D°) there corresponds the diagonal
filler #’ : Y — G,X’ for (D,) given by the adjoint of h, relative to 92, : we leave the
verifications to the reader.

(iii): The first inclusion is obvious, since . C [(r(.¥’)). Next, it follows from (ii) that :

() ger(s) &g, er(S).
Applying (*) with . replaced by I(r(.¥)), we then get :
(%) ger(l(r(#)°%) & go € r(l(r(£))).

As (&) =r(I(r(-#))) (proposition 3.1.9iii)), we combine (x) and (sx) to conclude :
r(7%) =r(l(r())°)
whence I[(r(.))® c I(r(1(r())%)) = [(r(.7°)), as stated. O
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3.2. Model categories.

Definition 3.2.1. (i) A model category is the datum (%, #, % ib, 60f) of a category €
and three classes #, % ib, 6o f of morphisms of %, such that :

(a) € is finitely complete and finitely cocomplete.

(b) # has the 2-out-of-3 property, i.e. for any composable pair X L Y 5 7 of
morphisms of €, if two among the morphisms f, g,g o f lie in #, then the same
holds for the third one.

(c) (Gof, FibNW) and (6of N W, Fib) are weak factorization systems for €.

We call the elements of # (resp.of .7 ib, resp. of 6o f) weak equivalences (resp. fibrations,
resp. cofibrations). A morphism that is both a weak fibration and a fibration (resp. and a
cofibration) is called a trivial fibration (resp. a trivial cofibration).

(ii) Let & (resp. e) be an initial (resp. final) object of &’; an object X of ¥ is fibrant
(resp. cofibrant) if the unique morphism X — e (resp. @ — X) is a fibration (resp. a
cofibration).

(iii) We denote by % (resp. ) the full subcategory of 4" whose objects are the cofi-
brant (resp. fibrant) objects of €, and we set as well :

W =W N Mor(%,) and Wr =W N Mor(%y).

Remark 3.2.2. (i) In the situation of definition [3.2.1] notice that every isomorphism of &
is both a trivial fibration and a trivial cofibration (proposition vi)). In particular, the
initial object is cofibrant, and the final object is fibrant.

(ii) By lemma3.1.18{i), the fibrant (resp. the cofibrant) objects of ¢ are precisely the
of N -injective objects (resp. the (Fib N -projective objects).
(% W) b ( he (FibNW) b )

Example 3.2.3. (i) Every finitely complete and finitely cocomplete category ¢ admits
a model category structure, for which the weak equivalences are the isomorphisms of &,
and with Zib = 6of = Mor(%).

(ii) If ((Gx, #3, Fiby, Gofy) | A € A) is any small family of small model categories, then
(TTxea G Maea #a. Taen Ziba, [ €0f2) is a model category (see remark [1.2.4fiv,v)
for our general conventions about families of categories).

Proposition 3.2.4. Let (¢, W, % ib, 60f) be a model category, and X € Ob(%)).
(i) (B°P, WP, Gof°P, Fib°P) is a model category.
(i) (€/X, W |X, Fib|X,Cof |X) is a model category (notation of §3.1.11).
(iii) (X/C, X/ W ,X|Fib,X[Gof) is a model category.
Proof. (i) follows from lemma [3.1.18[ii). For (ii) we invoke lemma [3.1.18[iii), and remark

that ¢'/X is finitely complete and finitely cocomplete, by lemma [1.4.7(i) and corollary
[1.4.6[iii). Assertion (iii) follows from (i) and (ii), by duality. m|

Remark 3.2.5. With the notation of proposition notice that the fibrant objects of
(X/€,X|W,X]|Fib,X|60of) are all the morphisms X — Y of ¢ with Y € Ob(%y),
whereas the cofibrant objects are all the cofibrations X — Y of 4" with source X. Dually,
the cofibrant objects of (¢'/X, # | X, Fib/X,of /| X) are all the morphisms Y — X with
Y € Ob(%.), whereas the fibrant objects are all the fibrations Y — X of € with target X.

Proposition 3.2.6. For every model category (¢, W, % ib, 6of), the classes W, Fib and
Gof are stable under retracts.
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Proof. (This argument is due to André Joyal and Myles TierneyEl and it seems to origi-
nate in [9 Prop.A.3.1]) This is already known for .Zib and 6o, by lemma [3.1.1§(i) and
proposition[3.1.9(v). Next, let f : A — B be a retract of a weak equivalence g : X — Y, so
that we have a commutative diagram :

K;\’*

A
f

A
/|
B

F<Q
o[

e Suppose first that f € Zib, and factor g as a composition g : X L 72 % ¥ with
JEW NGof and q € Fif. Then q € #, by the 2-out-of-3 property of #'; moreover, the
commutative diagram :

X A

jl lf

Z—>Y—2-B

admits a diagonal filler d : Z — A. We deduce a commutative diagram :

1a
AL Lz Ay
L LA
B—* sy—2 +B
\_/f
1B

which exhibits f as a retract of ¢ € #ibN'#; but notice that #ibN'# = (% ib) is stable
under retracts, by proposition[3.1.9(v), so f € ¥, as stated.

o Next, let f be an arbitrary retract of g, and factor f as a composition f : A SEL B
withi € # N6of and p € Fib. We get a commutative diagram :

A—> o x—L o4
i

R CR
E—2sFu,X—_>E
”l lk l"
B—* Y ° - B

where (ey, €7) is the universal co-cone for the push-out ELI4 X, and r (resp. k) is the unique
morphism E Ly X — E such that re; = it and re; = 1g (resp. the unique morphism
E Uy X — Y such that ke; = up and ke; = g). We then have e; € # N %of, since
i € # N Gof (proposition[3.1.9(v)); since g € #/, it follows that k € #/, by the 2-out-of-3
property of # . Lastly, by the foregoing case, we conclude that p € %, and finally f € #
as well. O

1T have borrowed this proof fromhttps://ncatlab.org/nlab/show/model+category
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Lemma 3.2.7. Let (6, W, Fib,60f) be a model category; we have :

(i) Every morphism f : X — Y between cofibrant objects of € admits a factorization
f =pog, whereg is a cofibration and p is a left inverse of a trivial cofibration.

(ii) Dually, every morphism f : X — Y between fibrant objects of € admits a factoriza-
tion f = h o g, where h is a fibration and q is a right inverse of a trivial fibration.

Proof. (i): We consider the cocartesian diagram :

g——Y

L,

X —=XxUuyY

Since Gof is saturated (lemma [3.1.18[i) and proposition v)), the morphisms i and j
are cofibrations, so X LI'Y € Ob(%,) (any transfinite composition of cofibrations is a cofi-
bration, by proposition [3.1.9(v), and likewise for transfinite compositions of fibrations).
The pair (f, 1y) determines a unique morphism X LI'Y — Y, that we may factor as a
cofibration k : X UY — T followed by a trivial fibration p : T — Y. We thus have the
commutative diagrams :

ki kj
X — T Y —— T
N N S
Y Y

and notice that T € Ob(%;). Since both 1y and p are weak equivalences, the same holds
for kj, so the latter is a trivial cofibration, and we may take g := ki.

(ii) follows by applying (i) to the opposite model category (€°P, # °P, 6o f°P, .7 ib°P)
(proposition [3.2.41)). i

Proposition 3.2.8. (Ken Brown’s lemma) Let (¢, W, Fib, 6of) be a model category, F :
6. — €’ afunctor, W’ C Mor(%€") a class containing the isomorphisms of ¢’ and enjoying
the 2-out-of-3 property. Suppose that F maps every trivial cofibration between cofibrant
objects to W' ; then F also maps every weak equivalence between cofibrant objects to W .

Proof. Indeed, let f : X — Y be a weak equivalence between cofibrant objects of €. By
lemma [3.2.7(i), we have f = p o g where g : X — T is a cofibration, and p : T — Y
is a left inverse of a trivial cofibration h : Y — T; then also T is a cofibrant object, so
by assumption, F(1y),F(h) € %", whence F(p) € #" as well. Moreover, since f and
p are weak equivalences, the same holds for g, so the latter is another trivial cofibration
between cofibrant objects, and therefore F(p), F(g) € #", whence F(f) € #". O

Definition 3.2.9. Let (€, %, Fib, 60f) be a model category, and A, X € Ob(%).
(i) A cylinder of A is a factorization of the codiagonal V 4 (see [13} Exerc.2.66(iii)]) as a
cofibration (dy, 9;) followed by a weak equivalence o :

Va
AUA—DW _ja @ 2y

If (A S AUA |i=0,1) is the universal co-cone, then 9; := (dy, d;) o e; fori =0, 1.
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(ii) Dually, a cocylinder (also called a path object) of X is a cylinder of X in the oppo-
site model category € °P, i.e. a factorization of the diagonal Ax as a weak equivalence s

followed by a fibration (dy, d;) :

Ax
m
X s ooxl P v ex.

If (X xX Px | i =0,1) is the universal cone, then d; := p; o (dy, d;) fori =0, 1.

(iii) Let fo, fi : A = X be two morphisms of €’; a left homotopy from fy to fi is the datum
of a cylinder for A as in (i), and a morphism h : A — X of ¢ such that h o 9; = f; for
i = 0,1. Dually, a right homotopy from f; to f; is a left homotopy from f;* to f;* in €,
i.e. the datum of a cocylinder for X as in (ii), and a morphism k : A — X! of % such that
diok=fifori=0,1.

(iv) With the notation of (iii), we shall write :

Hth (esp. fo £ fi)

if there exists a left (resp. right) homotopy from f; to f;.

Remark 3.2.10. Let (¢, W, 7 ib,60f) be a model category, and A, X € Ob(%); consider

99,0 dy,d
a cylinder AI_IALS)%IA 2 AofAanda cocylinder X S x! LL)—>X><X of X.

(i) For every f € € (A, X), the morphism fo : TA — X (resp. sf : A — X) is a left
(resp. right) homotopy from f to f. We say that fo (resp. sf) is a constant left (resp. right)
homotopy.

(ii) Letz: ALUA = AU A be the isomorphism that swaps the two copies of A; let also
fo. fi € €(A,X) and h : IA — X a homotopy from f; to fi. Then (1, d) = (dp,01) o T :
AU A — TAis still a cofibration with o o (9y,dy) = V4, so that h is also a left homotopy
from f] to f;, relative to the cylinder diagram

AUAZ2 14 %A

We denote this homotopy by h¥ and we call it the inverse homotopy of h.

(iii) If A is cofibrant, the morphisms (9; : A — IA) are trivial cofibrations. Indeed, by
virtue of the 2-out-of-3 property, the morphisms J; are weak equivalences. Moreover, the
components of the universal co-cone (e; : A — AUA|i = 0, 1) are cofibrations, since they
are obtained by push-out from the cofibration @ — A. But then, each 9; = (9o, 91) o €; is
a cofibration as well, whence the assertion.

(iv) Suppose that A is cofibrant; consider u, v, w € % (A, X), as well as cylinders:

90,0 .9 ,
AUAL 4% 4 AuAa22 1A A

and left homotopies h: JA — X, b’ : I'A — X with hdy = u, ho; =v = W9 and h'9;] = w.
We form the cocartesian square :

A— " A

(%) a[’]l l

FA—S>1"A:= AL, A
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There exists a unique morphism ¢’ : I’ A — A such that ¢’’e = 0 and ¢”’¢’ = ¢/, and we
claim that we get a cylinder :
%'-9) 7" o’ . 77 2 7 A1

AUA——T"A— A with 9y’ := edy and 9" := €’9].
Indeed, it is easily seen that ¢’ o (9], 9;") = V4. Next, by (iii), 9] is a trivial cofibration,
so the same holds for e; since moreover o is a weak equivalence, it follows that ¢’ is a
weak equivalence as well. It remains to check that (g}, 9)’) is a cofibration. To this aim,
we decompose () as two adjacent commutative squares :

e (90,01)
A— s AUA————JA

a(l)l/ lAl_la(/)l le‘
’ / (a(’)',e') 17
J'A—AUl'A——T"A.
Since the left square is obviously cocartesian, and since the same holds for (x), it fol-
lows formally that the right square is cocartesian as well; thus, (9, e’) and 14 LI 9] are

cofibrations, whence the same for their composition, which is (9}, 8;’).
Lastly, we let h”” : I’ A — X be the unique morphism such that h”e = hand h”’e’ = I’;

it follows easily that ”’9;" = u and h"'9]" = w, whence u L w. We call h”’ the composition
of h and h’, and we denote it by :

h=h":=h".

(v) Dually, if X is fibrant, and if we have cocylinders
dy,d. ’ , (d).d;
x5 xS, wwx x Dx WY, xwx

and right homotopies k : A — X', k' : A — X! with dok = u, dik = v = dJk’ and
dik’ = w, then we may form the cartesian square :

XI// P XI
p’l ldo
;o
X' —X.
We set dj := dyp and di’ = d]p’, and we obtain the cocylinder :
sy (o) ' P _ o
X—=X —XxX where ps” = sand p's” =s’.

Then the unique morphism k” : A — X" of € with pk” = k and p’k”" = k' is a right
homotopy from u to w. As in (iv), we call k”” the composition of k and k’, and denote it
k«xk' =k".
Lemma 3.2.11. (i) Let (¢, %, Fib,6of) be a model category, A € Ob(%,), X € Ob(%)
and fo, fi € € (A, X). Consider the following conditions :
@ f~ fi
do.d
(b) For every cocylinder X ENS'Y (—Oi)—> X x X there exists k € € (A, X") such that
diok=f;fori=0,1.
© fo~ fi.
(d) There exists a cocylinder X > X x X such that s is a trivial cofibration,
andk € €(A, X") such thatd; o k = fi fori=0,1.
(e) go fo ~ go fi foreveryY € Ob(%) and everyg € €(X,Y).

X! (do,d1)
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Then * is an equivalence relation on € (A, X), and we have : (a)=(b)=(c)=(d)=(e).
(ii) Dually, let A € Ob(%), X € Ob(%), and consider the following conditions :
@ fo~ fi.
(b) For every cylinder A LI A M 1A 5 A there exists h € % (1A, X) such that
hoo; =f; fori=0,1.
© f~ fi
(90,91)

(d) There exists a cylinder ALA —— IA 2, Asuch that o is a trivial fibration, and
h € €(IA, X) such thatho 9; = f; fori =0, 1.

(e) focg L fi o g forevery B € Ob(%) and every g € € (B, A).
Then ~ is an equivalence relation on € (A, X), and we have : (a)=(b)= (c)& (d)=(e).
(iii) IfA € Ob(%.),X € Ob(%y), and fo, fi € € (A, X), then f; L fief~Ah

(iv) Suppose either that A € Ob(6.) and f, L fi, or else that X € Ob(6¥) and fy ~ f,.
Thenfoe W & fieW.

Proof. (i): The reflexivity, symmetricity, and transitivity of L follow respectively from

3,0
parts (i), (ii) and (iv) of remark Next, to see that (a)=(b),let AU A LQ)—) A5 A

be a cylinder of A with a left homotopy A : IA — X from f; to fi. Since (do,d;) is a
fibration and 0, is a trivial cofibration (remark|(3.2.10(iii)), the commutative diagram :

sfi

A———X!
all l(d()’dl)
1AL xxx
has a diagonal filler K : IA — XI. To conclude, set k := K9, : A — X!, and notice that :
dok = dyKdy = hay = fo and dik = d1Kdy = fiody = fi.
Clearly, (b)=(c)<=(d); to see that (c¢)=(d), pick a cocylinder X Lx M> X x X of

X with a right homotopy k’ : A — X’ from f; to f;, factor t as the composition of a trivial
cofibration s : X — X! and a trivial fibration f : X! — X’, and setd; :==d o f : X! — X

do.d . . .
fori=0,1;then X 2 xI m) X x X is a cocylinder, and the commutative square :

o ——-Xx!

L,

ALX'

admits a diagonal filler k : A — X It suffices then to notice that d; o k = f; for i = 0, 1.

(d)=(e) : Pick any cocylinder Y Loyt BP0y oy and a diagonal filler h : X! — Y!
for the commutative square :

XLYI

sl l(}’o,ﬁl)

od.god
X! (godo.god) Y XY,

Then ho k : A — Y' is a right homotopy from g o fy to g o fi.
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(i)=(ii), by considering the opposite model category €°P, and clearly (i,ii)= (iii).

(iv): If A € Ob(%,) and f; L f1, resume the notation of the proof of (i); since f; = ho 9;
for i = 0, 1, the 2-out-of-3 property of # yields: fo e # © he W & fi € W, since 9,
and 9, are trivial cofibrations. One argues likewise if X € Ob(%}) and f; ~ f;. O
Definition 3.2.12. Let (¢, %, .7 ib, 60f) be a model category, and A, X € Ob(%).

(i) We denote by A (resp. by ;) the equivalence relation on %’ (A, X) generated by L
(resp. by ~), and we set :

[AX] = C(AX)/~  (esp. [AX], = C(AX)/%).

(ii) If A is cofibrant (resp. if X is fibrant), we have 1L (resp. L=%) by lemma(3.2.11(,ii).
Moreover, if A is cofibrant and X is fibrant, then [A, X]; = [A, X], by lemma [3.2.11[(iii);
in this case, we denote this common quotient by [A, X]. It is clear that the relation of
right homotopy is compatible with compositions to the right, whereas left homotopy is
compatible with compositions to the left; we obtain therefore a well-defined functor

[--]: (fCOP X %f — Set.

(iii) Let moreover é;f := €. N €r; then we obtain a category ?cf with :

Ob(%.f) =Ob(%.p)  and  G.(AB) = [AB] VA BeOb(%y)

with the composition law deduced by restriction from the foregoing functor [—, —]. Clearly
we have a functor which is the identity on objects

7T Cep — _cf
and maps every morphism u : A — B of Gy to its equivalence class [u] in [A, B].

(iv) We have furthermore two categories €, and ?f with :

Ob(¢,) :=0b(%¢,) and  %.(AB):=[AB], VA BecOb(¢E,)
Ob(%y) = Ob(%y)  and  Gf(AB):=[AB]; VYA B e Ob(%f)

with functors

.6 —C, nf:%fegf
that are identities on objects, and that map every morphism u : A — B of ;. (resp. of €)
to its equivalence class [u], in [A, B], (resp. its equivalence class [u]; in [A, B],). Hence,
the composition law of . is given by the rule :

[0],0[ul, :==[oou]l, VA B,CeOb(%.),Yuc € (A B),Yoe%€(B,C).

To check that this rule yields a well-defined law, it suffices to recall that right homotopies
are compatible with compositions to the right, and also to left, for morphisms of cofibrant
objects, by virtue of lemma i). Likewise one determines the composition law of .

Remark 3.2.13. (i) In the situation of definition[3.2.12 endow 4"° with the opposite model
category induced by (€, %', Fib, 60f). Then we have natural identifications :

(E®)e = (Ep)®  (€F)f 5 (6P (EP)ey = (Gep)™.
ii) Also, the inclusions 6. «= 6.r — % ¢ induce fully faithful inclusion functors :
(ii) Al h 1 4 Cef ff duce fully faithful incl fi

Tl T
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Proposition 3.2.14. Let (¢, W, #ib,6of) be a model category, and A, X € Ob(%).
(i) If Ais cofibrant, and if f : X — X' is either a trivial fibration or a weak equivalence
of fibrant objects, then composition with f induces a bijection :

fo[AXL = [AX] [h] & [fh]

(ii) If X is fibrant, and if g : A" — A is either a trivial cofibration or a weak equivalence
between cofibrant objects, then composition with g induces a bijection :

g [AX], > [A,X], [h] — [hg].

Proof. By arguing with the opposite model category € °P, it suffices to check (i). To this
aim, we apply (the dual of) proposition[3.2.8|to the functor

[A,=]; : € — Set Y [AY];

and to the class #’ c Mor(Set) of bijective maps : we are thus reduced to the case where
f is a trivial fibration of €. For the surjectivity of f;, let b’ : A — X’ be any morphism of
¢, and consider the square diagram :

g—X

L,k

A X,
By assumption, we have a diagonal filler h : A — X, so f.[h] = [K].
For the injectivity, let go, g1 : A = X be two morphisms of €, and k’ : A — X’ aleft
homotopy from fg, to fg; (for some cylinder IA of A). We get a commutative square :

AUA (90,91) X

(90,01) l/ \Lf

A— > x
which admits a diagonal filler k : JA — X. The latter is a left homotopy from g, to g,
whence the assertion. O

3.3. The homotopy category of a model category. Let (¢, #,.7ib, 6of) be a model
category, with initial and final objects @ and e. For every X € Ob(%’) the unique mor-
phism @ — X (resp. X — e) is the composition of a cofibration @ — Y and a trivial fibration
Y — X (resp. of a trivial cofibration X — Z and a fibration Z — e), so Y € Ob(%;), and
Z €0b(%F). Also, if X is fibrant (resp. cofibrant), then Y € Ob(%. ) (resp. Z € Ob(%,y)).

3.3.1. Fibrant and cofibrant replacements. We wish to define functors

— (D) (o) —
T e LT X X e Xy

To this aim, we first fix pairs of morphisms (using the axiom of global choice) :

X 2 x 2 X, X e 0b()

with X, € Ob(%.), Xr € Ob(%y), ax € # NGof, Px € # N Zib, and where :
Bx=1x VX e Ob(%,) and ax =1x VX e Ob((gf)
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Next, for every X,Y € Ob(%) and every g € € (X,Y), the square diagrams :

@ Y, x—sy- 2oy
) | | o] |
X, xSy Xf—————e

admit diagonal fillers g. : X — Y. and gr : Xy — Y respectively. Hence we define :
[Xp, Yeli = €5 (X7, Yp) — C(XY) = Col(Xe, Ye) = [Xeo Yelr [grli g [gc]r
(notation of definition [3.2.12fiv)). Notice that the class [gc], of g in [X,, Y], is indepen-
dent of the choice of g, by proposition [3.2.14(i) and lemma 3.2.11[i). Likewise, the class
[grli of gr in [XF, Yr]; is independent of the choice of g¢. We need to check that :
g h .
[((hg)rli = [helio [grli [(hg)elr = [helr o [ge]r VX —>Y—>Zin@.

However, by a direct inspection we get commutative diagrams :

2 Z x— .z 2 gz
/ /
/hcogc Bz ax /hfogf l
X, X z Xp e
Bx hg

whence the assertion. Lastly, obviously we may take (1x). := 1x, and (1x)f = 1x,, so
[(1x)c]r = 1x, in &, for every X € Ob(%), and likewise for [(1x)f];.

Lemma 3.3.2. (i) Let (¢, W, % ib,6of) be a model category, and F : €. — 2 a functor
that maps every u € ¥ to an isomorphism Fu of 2 (notation of definition[3.2.1(iii)). Then
F factors through n. : 6, — 6, and a unique functor F : 6, — 9.

(ii) Dually, let F : € — 2 be a functor that maps every u € # to an isomorphism Fu
of 9. Then F factors through rry : €5 — ?f and a unique functor F : ?f - 9.

Proof. By virtue of remark [3.2.13(i), it suffices to show (ii). The latter comes down to

checking that for every X, Y € Ob(%) and every g,g" € €¢(X,Y) with g L g’, we have
Fg = Fg'. Indeed, by lemma [3.2.11ii) there exists a cylinder of X in ¢’ :

9y, 0"
Xux 2% v % x

such that o is a trivial fibration, and a morphism k : IX — Y with hdy = g and ho; = ¢’;
we are therefore reduced to checking that Fgy = Fo;. But F(o) is an isomorphism, since
o € #,, and on the other hand, 0 0 9y = 1x = 6 0 9y, so F9y = (Fo)~! = Fo,. |

Remark 3.3.3. (i) The chosen X, Xf are fibrant and respectively cofibrant replacements for
X. Any such choice induces a corresponding choice of fibrant and cofibrant replacements
on the opposite model category 4°P (proposition [3.2.4i)) : namely, we take (X°P), :=
(X7)°P and (XP)f := (X,)°P; then axor = ﬁ;p and fxeor = a;p for every X € Ob(%). We
call (=) and () the fibrant and respectively cofibrant replacement functors for €.

(ii) Notice that both X ¢ := (X¢)r and Xy, = (Xf) lie in .. Hence, the restriction
G, — ?f of (=) factors through the inclusion ¢;r — ?f (remark ii)). Moreover,
notice that the resulting functor ¢, — ?Cf maps every u € # to an isomorphism [ur]
of?cf : indeed, ur € # by the 2-out-of-3 property of #/, so by proposition the




00-CATEGORIES AND HOMOTOPICAL ALGEBRA 146

class [ur] admits both a left and right inverse in %ch Likewise, the restriction 67 — ¢,

of (=) induces a functor ¢y — ?cf that maps every u € #J to an isomorphism [u.].
Then, by lemma [3.3.2] these latter functors in turn factor through unique functors :

— [y — [-]. —
TG —5 Ty 7
(iii) Furthermore, we get a further pair of functors 4 = %, by setting :
(Dep=1-1fo(=)e and (g :=[=]co(-)f.

Lastly, the weak equivalence ax : X — Xy induces a morphism 7x = (ax)cf : Xef —
Xf. We claim that the rule X — [7x] yields an isomorphism of functors :

[ze] : (Der = (e
Indeed, for every morphism g : X — Y of &, a simple diagram chase shows that :
By, o0 Ty 0 gep 0 atx, = @y 0 g © fix = Py, © g © Tx © ax, in € (X, Yr)
(details left to the reader). By proposition we deduce that [y o g.r] = [gpc © 7x]
in [ X, £ ch] for every such g, whence the naturality of [7,]. By construction, zx € #/, so
[zx] is an isomorphism in C.r, again by proposition whence the assertion.

(iv) Notice as well that [7x] = [1x.] = [1x,.] whenever X € Ob(%.) U Ob(%¥)
(details left to the reader). '

Example 3.3.4. In the situation of let X € Ob(%¥), and endow the slice cate-
gory X/¢ with the model structure provided by proposition [3.2.4{iii). In light of re-
mark our choice of fibrant replacements (ay |Y € Ob(%)) induces a system of
fibrant replacements for X/% : namely, for every (Y,g : X — Y) € Ob(X/%) we let
(Y,9)r = (Yy,ay o g), and set a(yq) = X/ay : (Y,g) — (Y,g)s. On the other hand, a
cofibrant replacement for (Y, g) is obtained by fixing a factorization g = k o h with a cofi-
bration h : X — Z and a trivial cofibration k : Z — Y; then one may set (Y, g). := (Z, h)
and B(yg) = X/k : (Y,g9)c — (Y,g). Likewise one may describe fibrant and cofibrant
replacements for ¢’/X (with the model structure of proposition [3.2.4{ii)).

Theorem 3.3.5. Forevery model category (¢, W , Fib, 6of), the localization (€' [# ~'],y)
of € along W exists, and the functor (=)cr : € — G.r is the composition of y : € —
€ [# '] and a unique equivalence of categories :

CIW 1 > %y

We call € [# ~!] the homotopy category of the model category ¢, and denote it :

ho(%) =€ 7).
Proof. Let ho(%) be the category with Ob(ho(%)) := Ob(%) and with
ho(4)(X,Y) = [X,f, Yer] VX,Y € Ob(%).

The composition law for ho(%) is the same as for the category %.¢, so that (=)cr is the
composition of an obvious functor that is the identity on objects :

yiE sho(®)  Xo X (XDY) e Xy 2D vl

and a unique equivalence of categories that is the identity on morphisms :

¢:ho(6) > Cr X Xy
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It remains to check that (ho(%),y) is a localization of ¢ along the class %#. We have
already remarked that if f € #/, then y(f) is an isomorphism of ho(%’) (remark 3.3.3[ii)).

Lastly, let 2 be a category, and F : ¥ — 2 a functor that maps weak equivalences
of € to isomorphisms of Z; also, let X,Y € Ob(%), and consider two morphisms f, f” :
X =3 Yep of Gy Notice that if [f] = [f'], then Ff = Ff’, by lemma [3.3.2} Then, let
FX := FX for every X € Ob(%), and for every [f] € ho(%)(X,Y) set :

F[f] :== FBy o (Fay,) ' o Ff o Fax, o (FBx)™' : FX — FY.
Clearly F[1x] = 15 for every X € Ob(%), and F[g o f] = F[g] o F[f] for every com-

posable pair X £> Y ﬂ Z of morphisms of ho(%). Also, for every g € €(X,Y) :

Fg=Fpy o Fg. o (Fpx)~" = FPy o (Fay,) ™" o Fgey o Fax, o (FBx) ™ = Foy(g).

This shows that F factors through y and a functor F : ho(%¥) — 2. To prove the
uniqueness of F, suppose that G : ho(%) — & is another functor with F = G o y,
and let again f € ¢'(X.f, Ycr); so f induces elements of ho(%)(X,Y), ho(%)(X,, Y;) and
ho(€)(Xf, Yer) that we denote respectively by [f], [fc] and [fcr]. We then have :
[flov(Bo=y(Brolf]  and  ylax) o [£] = [l o v(ax)

whence G[f] o FBx = Ffy o G[f.] and Fay, o G[fc] = G[fer] o Fax,, and corresponding
identities hold for F[f], F[f.] and ?[fcf]. Notice that FX = GX for every X € Ob(%),
since y is the identity on objects. But we have as well F[fcf] = G[fer], since ¢ restricts to
the identity on the full subcategory 74 of ho(%); moreover, Fax and Ffx are isomor-
phisms of 2 for every X € Ob(%), since ax, fx € #/,so F[f] = G[f]. O

Corollary 3.3.6. For every model category (¢, W, Fib, 6of), the localizations €, [ #, ']
and ‘ff[%:l] exist (notation ofdeﬁnitioniii)), and the inclusions of categories :

ra—

‘ff(—> 4

induce equivalences of categories :

Gop ——C[ W]

c

CrIN ] — ho(%).

Proof. The explicit construction of ho(%’) implies that the inclusion %,y — % induces

an equivalence ?cf = ho(%). Next, let ho(%.) be the full subcategory of ho(%’) with
Ob(ho(%.)) := Ob(%.), and denote by y. : €. — ho(%.) the restriction of the localization
Y : € — ho(%). Then y.(f) is an isomorphism of ho(%.), for every f € #, and the proof
of theoremcan be repeated verbatim, to show that (ho(%6,), y.) is a localization of &
along #.. Since, moreover, fix € # for every X € Ob(%), we deduce that the inclusion
%. — ¢ induces an equivalence 6.[#,"'] = ho(%).

In order to get the corresponding assertions for ¢r [V/f‘l], we argue with the opposite
model category 6°P, and invoke remark iii). O
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Remark 3.3.7. (i) With the notation of corollary [3.3.6] in the following we also set

ho(%.) =%.[#']  and  ho(%f) = €[],

By construction we have, for every X, Y € Ob(%;) and X’, Y’ € Ob(%7) :
ho()(X.Y) = [Xp. Y] ho(4p) (X', Y') = [XLY,].

Thelocalization y, : 6. — ho(%;) (resp. yr : €5 — ho(%F))is the identity on objects, and
maps every g€ 6.(X,Y) to [gr : Xy — Y] (resp. every he €7(X’,Y’) to [he : Xe — Y¢]).
Moreover, if F : 4. — 2 is a functor such that F(%#,) c Isom(2), then the unique
functor ho(F) : ho(%;) — 2 with ho(F) o y, = F is given by the rules : X +— FX for
every X € Ob(%,) and [g] — F(ay)™! o F(g) o F(ax) for every [g] € ho(%.)(X,Y).
Likewise, if G : ¢y — & is a functor such that F(%#}) C Isom(%), then the unique
functor ho(G) : ho(6f) — Z with ho(G) o yy = G is given by the rules : X’ — GX' for
every X’ € Ob(%%) and [h] — F(By’) o F(h) o F(fx)~" for every [h] € ho(€)(X",Y’).

(if) Furthermore, by lemma the localization functors y. and yy factor through
e : €. — G, respectively TG — ?f and unique functors

Y. : €. — ho(%,) Yy ?f — ho(%%).

Unlike the case for €, £ these functors are not necessarily equivalences of categories, but
they induce isomorphisms of categories :

CAN T S ho(6)  Crl#r '] <> ho(6r)

where % denotes the image of 7 in ?c and likewise for Wf Indeed, let F : ?C — 9
be a functor such that F (%) C Isom(2); there exists a unique functor F:ho(6,) — 2
with Fo Ye = F o ., whence Fo Y. o 7 = F o ., and since . is both full and the identity
on objects, we get F o Y. = F. Clearly F is the unique functor ho(%,) — 2 enjoying the
latter identity, so this shows that (ho(%:),7,) is a localization of . along #,,whence the
first stated isomorphism; likewise we obtain the stated isomorphism for ?f[%‘l]

(iii) Also, there exist unique functors (_—)c and Ef that make commute the diagram :

?f ) @ (=)e ?C

S

= -
ho(%f) < ho(%) — —*— ho(%,)

(where y is the localization) and they are quasi-inverse functors for the equivalences
ic : ho(%.) = ho(%) ir : ho(€r) = ho(%)
provided by corollary indeed, a direct inspection shows that mc 0ic = lho(,)
and (=) y o i = 1ho(¢,). Furthermore, the rules: X — y(fx) and X — y(ax) for every
X € Ob(%) define isomorphisms of functors
[Ba] ic 0 (=) = Lho() and [@te] : Tho(e) = if Omﬁ

Here, y(fx) € ho(€)(Xe, X) = [Xcp, Xer] is [1x,,], whereas y(ax) € ho(%)(X, Xy) =
[Xcr, Xre] is the class [zx] of remark iii). Also, for every g € (X, Y), the functor
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(_—)c (resp. mf) sends y(g) = [ger] : X — Y to [ger] : Xe — Ye (resp. to [gre] : X —
Yr). The detailed verifications shall be left to the reader.

(iv) Letu: W — X and v : Y — Z be two morphisms of ¢, with W € 4, and Z € €.
Then, for every ¢ € ho(%)(X,Y) there exists g € (W, Z) such that :
y(@) =y@ogoy(w)  inho(%)(W,2Z).

Indeed, recall that ¢ is by construction the class of some f € € (X,r, ch); then the same
f also induces ¢’ € ho(%)(Ye, X¢), such that the following diagram commutes in ho(%) :

X y(Bx) X, y(axe) ch
¢l lqﬁ' lY(f)
% y(By) Y, y(ay.) Yo

(details left to the reader). Next, since Z is fibrant and ay, is a trivial cofibration, there
exists t € € (Y.r,Z) such that t oy, = v o fly : Y. — Z. Lastly, since W, = W, the
morphism u induces a morphism u, € € (W, X;) such that fx ou, = u. With this notation,
we may then take g :=t o f o ax, ouc.

Definition 3.3.8. Let (¢, %, Fib, 60f) be amodel category, and f : X — Y a morphism
of €.r. We say that f is a homotopy equivalence if its class [ f] € [X, Y] is an isomorphism
of?cf, i.e. if there exists g € 6.7 (Y, X) such that 1y L fog L 1y and 1y L gof L 1x.

Theorem 3.3.9. Let (€, W, Fib,60f) be a model category, and f € Mor(%).

(i) (Whitehead) If f € Mor(%.y), then f is a homotopy equivalence & f € /.

(ii) f is a weak equivalence if and only if its image in ho(€) is an isomorphism.
Proof. (i): Let A,B € Ob(%.r) and f € (A, B); then by construction f is a homotopy
equivalence if and only if its image [f] in ho(%) is an isomorphism; in particular, if f

is a weak equivalence, then f is a homotopy equivalence, by virtue of proposition|3.2.14
We may then assume that f is a homotopy equivalence, and we check that f € #". To

this aim, pick a factorization of f : A 9, ¢ 2 Bwith ge W N%éof and p € Fib. Then
C € Ob(6,s), and therefore g is a homotopy equivalence, by the foregoing.

Let f” be a homotopy inverse for f, so that there exists a left homotopy H : IB — B
from ff’ to 1. Notice that the commutative square :

B .c
4
B—1.B

admits a diagonal filler H' : IB — C, since gy € # N %of (remark [3.2.10[iii)). Set
q:=H’ 09 : B— C;then pg = 15, and H’ is a left homotopy from gf” to g.

af’

—~

Let ¢’ : C — A be a homotopy inverse for g, i.e. g4’ L1cand g9 L 14; then :
1 ;1 / , 1 ’ ’ 1 v "1
p~p99 ~(pg)o(f'f)og ~(pg)o(fg’)=fg andthus: gp~(g9f’) o (fg') ~1c.

Hence, let K : IC — C be a left homotopy from 1¢ to gp; then 1¢ : C 2105 Cliesin
W , and the same holds for 9y, d; : C = IC (remark iii)), so the same holds for K,
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and then also for gp = K o 9;. Lastly, the commutative diagram :

CLCLC

|, b

B——C——8B

exhibits p as a retract of gp, so p € # (proposition [3.2.6), and finally, f = pg € #".

(ii): By the 2-out-of-3 property, it is clear that f € #' & f. € #' & f.r € # (notation
of ; thus, it remains only to check that a morphism f : X — Y of €, fisin W if and
only if [f] is an isomorphism of 6., and this is (i). O

Corollary 3.3.10. (i) The functory, : €. — ho(%.) admits a fully faithful right adjoint,
and the class #, admits a left calculus of fractions.

(ii) Dually, The functory  : ?f — ho(%r) admits a fully faithful left adjoint, and the
class Wy admits a right calculus of fractions.

Proof. (i): Recall that the restriction 4, — ?cf of the functor (=)r : ¢ — ?f factors
uniquely through a functor [~] : [ 74 (remark ii)). Let also j : % — %, be
the fully faithful inclusion of remark [3.2.13{ii); it follows easily that the rule : X > (ax :
X — Xy) for every X € Ob(%.) yields a natural transformation

A :l=jo [-1r.
On the other hand, clearly [~]foj = I%Tf’ and it is easily seen that ae x j = 1;. Next, a sim-
ple inspection shows that ae and l%pff verify the triangular identities of [13] Prob.2.13(ii)],
hence they are the unit and respectively the counit of a unique adjunction for the pair of
functors ([~]f, j). Lastly, y 0 j : €.y = ho(%.) is the equivalence provided by corollary

andy, *x & : Y. = ¥, © j o [~]f is an isomorphism of functors, whence the first
assertion. The second assertion now follows from example|1.12.2|and theorem ii).

(ii) follows from (i) by considering the opposite model category structure, in light of
remarks|3.2.13[i) and [1.11.5(iii). O

Remark 3.3.11. By corollary and example we see that the morphisms of
ho(%.) (resp. of ho(%%)) are given by left fractions t~1 o f (resp. right fractions f o ¢t™1)

with denominators t € #, (resp. t € Wf). In general, the class # of weak equivalences
of ¢ does not admit a calculus of fractions, so the morphisms of ho(%’) cannot always be
represented as fractions with denominators in #.

3.4. Derived functors and Quillen adjunctions.
Definition 3.4.1. Let (¥, %, .Zib, %of) be a model category, y : € — ho(%) its homo-

topy localization, and F : € — 2 a functor to a category 2.

() A left derived functor of F is a right Kan extension (LF, al) of F along y, i.e. the
datum of a functor

LF : ho(¥%) - 2 and a natural transformation af :LFoy=F

enjoying the following universal property. For every functor G : ho(%¢) — Z and every
natural transformation z, : G o y = F, there exists a unique natural transformation
fo : G = LF such that 7, = af o (f x y).
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(ii) Dually, a right derived functor of F is a left Kan extension (RF, bl) of F alongy, i.e.
the datum of a functor

RF : ho(¥¢) —» 2 and a natural transformation b :F=RFoy

such that for every functor G : ho(4) — 2 and every natural transformation r, : F =
G o y there exists a unique natural transformation g, : RF = G with 1, = (gs % y) o bf.

Remark 3.4.2. (i) Clearly (LF, af) is a left derived functor of F & ((LF)°, (af)°?) is a
right derived functor of FP : ¥°P — 2°P, where € P is endowed with its natural opposite
model category structure (proposition i)).

(ii) As usual, the left derived functor of F is determined up to unique isomorphism;
i.e. if (L'F,a,) is another left derived functor of F, there exists a unique isomorphism
of functors we : LF =5 L'F such that af = a o (w % y), and likewise for right derived
functors.

(iii) IfF sends every weak equivalence of € to an isomorphism of &, then it factors
through y and a unique functor ho(F) : ho(%4) — 2, and lemma|1.11.7(i) easily implies
that (ho(F), 1F) is both a left and right derived functor of F. Especially :

’LY =Ry = 1ho(%)- ‘

(iv) Let F,F’ : € = 2 be two functors that admit left derived functors (LF, af) and
respectively (LF’, al’), and let i, : F = F’ be a natural transformation. Then there exists
a unique natural transformation

Lye : LF = LF such that peoal =al o (Lys%y).

We call Ly, the left derived transformation of pe. Dually, if F and F’ admit right derived
functors (RF, bf) and respectively (RF’, b "), then Ue induces a unique natural transfor-
mation

Ry, : RF = RF’ such that bl o e = (Rpte % y) o bE.

We call Ry, the right derived transformation of u,.

3.4.3. Let (¢, %, %ib,%of) be a model category, F : € — Z a functor that sends trivial
cofibrations between cofibrant objects of € to isomorphisms of 2. By Ken Brown’s lemma
(proposition[3.2.8), F then also sends all elements of #; to isomorphisms of 7, so we get
unique functors F. and ho(F,) fitting into a commutative diagram :

¢ G L ho(%)
k lFM)
9

where F. is the restriction of F, and 7, and ¥, are as in remark ii). We set

LF := ho(F.) o (-), : ho(¢) —» 2

where me : ho(€) = ho(%,) is the equivalence of categories of remark iii).
Explicitly, LF is given by the rules : X +— FX, for every X € Ob(%), and [g] +—
F(ay,)™ o F(g) o F(ax,) for every [g] € ho(%)(X,Y) = [X.f, Yer]. Notice that :

LFoy =ho(F.) o (=), 0y =ho(F:) 0¥, 0 (=) = Fc 0 (-)c
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soLF oy : % — 2 is given by the rules : X — FX, for every X € Ob(%) and g — Fg,
for every g € ¥’ (X,Y). We have therefore a natural transformation

F,
al :LFoy=F XHaf(::(Fxcﬂ»FX).

Proposition 3.4.4. In the situation of §3.4.3 we have :
(i) The pair (LF,al) is a left derived functor of F.

(ii) More generally, for every functor F’ : 9 — @', the pair (F’ o LF, F’ % af) is a left
derived functor of F' o F: € — &'.

Proof. (i): Let G : ho(¥) > Z be a functor, 7, : Goy = F a natural transformation. Define
as in the proof of lemma i), the category 2! and the evaluation functors

eper: M =9
and recall that the datum of 7, is equivalent to that of a functor
T:¢ — gl such that eoT=Goy and e oT=F.

By assumption, the restriction %, — 21!l of T sends weak equivalences to isomorphisms
of 2111 o it factors through a functor

T. : ho(%.) — PN with eyoT.=Goi, and e oT,= ho(F.)

(where i, is as in remark iii)). Indeed, both identities for e; o T, (j = 0,1) can be
checked after composition with y. : ¢; — ho(%;), and then they follow by a simple

diagram chase. In turn, the composition T, o (—), : ho(%) — 2! is equivalent to the

datum of a natural transformation ¢, : G 0 i o (=), = LF, and we set
for=¢a o (Gx[B])"':G = LF.

Explicitly, for every X € Ob(%), fx : GX — LFX is the unique morphism of Z that
makes commute the following diagram, whose left vertical arrow is an isomorphism :

GX, —> ~ LFX = FX,
(%) Gy (px) l & lFﬁx

GX —2 = Fx.
Since af( = FPBx, we see that af o (f, x y) = .. It remains to check that f, is the unique
natural transformation G = LF verifying this identity; hence, let go : G = LF be another
natural transformation with af o (gs % y) = 7.. Then, recall that y(fx) = [1 x.] for the
morphism fx : X, — X of €¢’; so LFy(fx) = 1rx,, and we get the commutative diagram :

F

a
GX, — 2 L LFX, = FX, —* > FX,

orpo) H |
9x ax
GX —— LFX = FX, — FX.
Moreover, a)F(C = Ffx, and fx, = 1x,, s0 7x, = af(c o gx, = 9gx,, and we conclude that
diagram () commutes also after replacing fx by gx, whence go = fe.
(ii): A direct inspection shows that F/ o LF = L(F’ o F) and F’ x af = al'F so the
assertion follows from (i). O
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Remark 3.4.5. (i) Let (¢, % ,.Zib,60f) be a model category, F : € — & a functor that

sends trivial fibrations between fibrant objects of € to isomorphisms of 2. Then, as in
:, we have unique functors Fy and ho(Fy) that make commute the diagram :

Cr I ?f L ho (%)
k g%>

where Fy denotes the restriction of F, and 7y and }7f are as in remark ii). So we set

RF := ho(Fy) o (<) ; : ho(¥) - 2

and a direct computation shows that RF o y = Ff o (=), ie. RFoy: % — 9 is given by
the rules : X — FX for every X € Ob(%), and [g] + Fgy for every [g] € ho(%)(X,Y).
Then, together with the natural transformation

F!ZX

bf:F=>RFoy X by:=(FX — FXy)

we get, by the dual of proposition i), a right derived functor (RF, bf) of F, arguing
with the opposite model category ¢°P, and in view of remarks[1.11.5[iii) and [3.4.2(i).

(ii) Let (¢, %', Fib’,%of") be another model category, and F : 4 — %" a functor
that sends trivial cofibrations between cofibrant objects to weak equivalences. Then the
composition of F with the localization y’ : " — ho(%”) verifies the condition of
so it admits a left derived functor, that we denote by

(LF : ho(€) — ho(€"),af ==al " :LFoy =y o F)

and we call the total left derived functor of F. Hence, for every functor G : ho(%) —
ho(%”) and every natural transformation 7, : Goy = y’ oF, there exists a unique natural
transformation f, : G = LF with af o (fu xy) = ..

(iii) Let ¥ and €’ be as in (ii), and F : € — %" a functor that sends trivial fibrations
between fibrant objects to weak equivalences. Combining (i) and (ii) we then see that y’oF :
€ — ho(%¢”) admits a right derived functor, denoted by

(RF : ho(%) — ho(€"), pf = b),/F :yYoF = RFoy)
(notation of definition [3.4.1(ii)) which we call the total right derived functor of F.

Example 3.4.6. (i) In the situation of remark [3.4.5[ii), suppose that F sends every weak
equivalence of € to a weak equivalence of ”’. Theny’ oF : 4 — ho(%") factors through
y and a unique functor ho(F) : ho(4) — ho(%”), and by remark [3.4.2(iii), the pair
(ho(F),1,F) is both a left and right total derived functor of F.

(ii) Especially, L1 = Rlg = Tho(%)-

(iii) Keep the situation of remark 3.4.5[ii), and suppose that the restriction F. : €. — ¢”
of F reflects weak equivalences; then LLF is conservative. Indeed, let [g] : X — Y be any
morphism of ho(%) such that LF([g]) is an isomorphism of ho(%”); by definition, [g]
is the homotopy class of a morphism g : X.r — Y.r of €, and it follows easily that
YF(g9) : FX.f — FY,r is an isomorphism of ho(%”), i.e. Fg is a weak equivalence of ¢”
(theorem [3.3.9[ii)), so by assumption g is a weak equivalence of ¢, and hence [g] is an
isomorphism of ho(%’), whence the claim.
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(iv) Dually, in the situation of remark iii), if the restriction Fg : € — € reflects
weak equivalences, then RF is conservative.

Remark 3.4.7. (i) Let (€, W, Fib, 60f) be a model category, F, F’ : € = 2 two functors
that send trivial cofibrations between cofibrant objects to isomorphisms of Z, and p, :
F = F’ a natural transformation. Then, with the notation of we claim that :

’L,ux =pux. VX €Ob(%). ‘

Indeed, the proof of proposition i) shows that LF(fx) = 1px, for every X € Ob(%),
and that Luy is the unique morphism of & that makes commute the diagram :

Hxe

FX. LF’X =F'X,
H / l/F',BX
FX. X F'X.

L
F
Fpx %

This morphism is then clearly px..

(ii) Dually, if both F and F’ send trivial fibrations between fibrant objects to isomor-
phisms of &, then for every natural transformation p, : F = F’ we have :

R/JX = Hxp VX € Ob(%)

(iii) Let also (¢, %', Zib’,%0f’) be another model category, F,F' : € = €’ two
functors that send trivial cofibrations between cofibrant objects to weak equivalences,
and pte : F = F’ a natural transformation. Then the total derived functors LF,LF’ :
ho(%) = ho(%”) are both well defined, and we may form the left derived transformation
of y’ * p, that we denote

Lye : LF = LF’ such that (y % po) 0 al =af o (Lpe % y)

and we call the total left derived transformation of .. In light of (i), we see that :
Lux = [(ux.)er] VX € Ob(ho(%)) = Ob(7).

(iv) Dually, if both F and F’ send trivial fibrations between fibrant objects to weak
equivalences, then the total right derived functors RF,RF’ : ho(%) = ho(%”) are well
defined, and we may form the right derived transformation of y’ x y, that we denote also

Rpe : RF = RF’ such that b o (y % pte) = (Rpte % y) 0 bY

and we call the total right derived transformation of .. In light of (iv) we get :
Rpx = [(ux)efl VX € Ob(ho(%)) = Ob(%).

Remark 3.4.8. (i) Let €, %", %" be model categories, and € i> ¢’ F—> %" two functors.
Suppose that F preserves trivial cofibrations between cofibrant objects, and that F’ sends
trivial cofibrations between cofibrant objects to weak equivalences. Then the total derived
functors LF, LF’ and L(F’ o F) are well defined, and there exists a canonical natural
transformation

¢EF L LF o LF = L(F o F).
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Indeed, by definition we have (non-commutative!) squares :

F F'

% %/ %//
Yl afﬂ Y l al ,/? ly"

ho(¥%) — ho(¢”) — ho(¢"")

and we may then compose af and a!” to get a natural transformation
b = (af % F)o (LF % af) : LF’ oLFoy=y"oF oF.

Then, (/f " is the unique natural transformation such that

F/oF FF’ _ FF
aco O(¢. *Y)_ao .
(if) Dually, if F preserves trivial fibrations between fibrant objects, and if F* sends trivial
fibrations between fibrant objects to weak equivalences, then there exists a canonical natural
transformation

YyPF R(F' o F) = RF oRF

characterized by a corresponding uniqueness condition.

F F’
Proposition 3.4.9. Let €, %6’, 6" be three model categories, and ¢ — €’ — €" two

functors. The following holds :

(i) If F preserves cofibrant objects, and both F and F’ send trivial cofibrations between
cofibrant objects to weak equivalences, then the canonical natural transformation of remark

[3.4.8(i) is an isomorphism

[LF o LF > L(F o F)]

(ii) Dually, if F preserves fibrant objects, and both F and F' send trivial fibrations between
brant objects to weak equivalences, the canonical natural transformation is an isomorphism
q P

[R(F o F) = RF oRF.|

Proof. Assertion (ii) follows from (i), by virtue of remark [3.4.2[i).

(i): Clearly the natural transformation qﬁf F depends on the choices of left derived func-
tors for F, F and F’F, but it is easily seen that if replace a given set of choices by a different
one, the correponding canonical natural transformation is altered by composition with
some isomorphisms; hence, its categorical properties are intrinsic : in particular ¢2F s
an isomorphism of functors for a given set of choices if and only if the same holds for the
canonical natural transformation corresponding to any other such set of choices. Hence,
we may suppose that the total derived functors LF, LF’ and L(F’ o F) are calculated as
in after fixing cofibrant replacements :

(Bx : Xe = X | X € Ob(%)) and (By : Ye = Y|Y € Ob(%")).
Recall also that we take fx = 1x if X is cofibrant, and likewise for f3},. Let moreover
Yy : € — ho(¥) Y 1€ — ho(¥’) Y’ :€" — ho(€¢")

be the respective localizations; then a§ =y (Fpx) : F(X;) — FX for every X € Ob(%),
and LF’((X;;) =y'F ((FBx)c) : F'F(Xc) = F'((FX)c), where (Ffx)c : (FXc)e — (FX)c
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makes commute the diagram :

(FXo)e — 2P (Fx),

B l lﬁ’px
Fﬁx
F(X,) — 2 - FX.

Likewise, afy = y"F' B}, : LF'(FX) — F'FX, with LF'(FX) = F'((FX).), and af ¥ =
y'F'F(Bx) : FFF(X.) — F'FX. Hence :

ol =y F (Bpy © (FBx)e) : (FXo)e — FX VX € Ob(%)
and finally :

;F’ =V'F (Brx,))  F'((FXe)e) = F'F(X) VX € Ob(%).

However, under our assumptions, F(X,) is a cofibrant object of ¢” for every X € Ob(%),
hence ﬂ%(xc) =1p(x,) SO ¢fF is the identity automorphism of LF' oLF =L(F' o F). O

Definition 3.4.10. (i) Let 4 and ¢’ be two model categories. A Quillen adjunction is an
adjoint pair of functors
F:¢=2%¢":G
(so F is left adjoint to G) with F preserving cofibrations and G preserving fibrations.
(if) A left (resp. right) Quillen functor is a functor F (resp. G) admitting a right adjoint
G (resp. a left adjoint F), such that (F, G) is a Quillen adjunction.

Remark 3.4.11. (i) Let ¥ and 6"’ be two model categories, and (F : € = ¢’ : G) a
Quillen adjunction. Endow the opposite categories °P and ¢”’°P with the induced model
category structures provided by proposition [3.2.4{i); then it is clear that the induced pair
(G°P, F°P) is again a Quillen adjunction.

(if) For every X € Ob(%) and Y € Ob(%¢”) endow €¢/X, X/¥, €¢'/Y and Y/¥€¢' with

lemma [3.4.12[i), the Quillen adjunction (F, G) induces Quillen adjunctions :
Fiy :€/GY 2%€"]Y :G)y x/F:X/€ = FX|?¢" : x,G
Fix:6/X = €' |FX : G/x y/F:GY[E = Y|€" :y,G
given by the constructions of §1.4.8)and
Lemma 3.4.12. (i) Let € and €’ be two model categories, and (F : € = €’ : G) an
adjoint pair of functors. The following conditions are equivalent :
(a) (F,G) is a Quillen adjunction.
(b) F preserves cofibrations and trivial cofibrations.
(c) G preserves fibrations and trivial fibrations.
(it) In particular, for every Quillen adjunction (F,G), the functor F admits a total left
derived functor, and G admits a total right derived functor. Moreover :

F(€)c €  and  G(€)) CCp

(iii) Furthermore, if (F, G) is a Quillen adjunction, we have :
(a) F preserves weak equivalences between cofibrant objects.

(b) G preserves weak equivalences between fibrant objects.



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 157

Proof. (i) follows by applying proposition[3.1.19|to the adjoint pair (F, G) and both weak
factorization systems (% N %of, #ib) and (‘6of, W N Fib).

(ii): The first assertion is an immediate consequence of (i). For the stated inclusions,
it suffices to recall that F preserves initial objects, and G preserves final objects (see [13]
Rem.2.27(3,ii) and Prop.2.49]), and apply again (i).

(iii): Assertion (a) follows from (i,ii) and Ken Brown’s lemma (proposition [3.2.8); then
assertion (b) follows from (a), after passing to the induced model category structures

on the opposite categories (proposition i)) and considering the Quillen adjunction
(G°P, F°P) of remark3.4.11[i). O

Theorem 3.4.13. Let € and €’ be two model categories; every Quillen adjunction (F :
€ = €’ : G) induces an adjoint pair of functors :

[LF : ho(¢) = ho(¢”) : RG. |

Proof. To begin with, let us observe :
Claim 3.4.14. Let X€Ob(%,),Y € Ob(‘gf’); consider a cylinder and a cocylinder:

do,d
Xux 2 xS x oy iy ey oy

Then the induced diagrams :

Foy,Fo Gdy,Gd
FXUFX L2 paxy 25 px oy ©5 a(v!) 90N, Gy x 6y

are again a cylinder for FX and a cocylinder for GY, respectively.

Proof : Evidently, (Fdy, Fd1) := F(dy, d1), and likewise for (Gdy, Gd;), so the morphism
(Fao, Foy) is a cofibration, and (Gdy, Gd,) is a fibration. Also, IX € Ob(%,) and Y €

Ob(%}) by remarkul) and its dual; then, by Ken Brown’s lemma (proposmon-

Fo and Gs are weak equivalences, whence the claim.
Claim 3.4.15. The adjunction & for (F, G) induces natural bijections :
[FX,Y] = [X,GY] VX € Ob(%.),VY € Ob(%)).
Proof : Let f,g : FX =3 Y be two morphisms of 4, and suppose that f ~ g, so that we

d
have a cocylinder y Syl =25 (o) Y x Y for Y and a morphism k : FX — Y! with dok = f
and d; k = g. By adjunction, there follows a commutative diagram :

9(f) GY
9(k) b
X —GY
Gd,
9(g) GY

showing, in light of claim 3.4.14] that §(k) is a right homotopy from J(f) to 9(g); espe-
cially, 3(f) ~ 9(g). Likewise we check that for every f’, ¢’ € €’ (X, GY) with f’ L g we
have 971(f") Lyt (¢"), whence the claim, with lemmata iii) and ii). o

Recall now that LF and RG are respectively the compositions :

ho(%) 25 ho(4) YT ho(@)  ho(#) 25 ho(% ) —L 2V, bo(%)
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withy : € —ho(%), y’ : €’ — ho(%”) the localizations, and F, : 6. — %", Gy : %”Jﬁ -
the restrictions of F and G. Hence, for every X € Ob(%’) and Y € Ob(%”) we have :

ho(")(LFX,Y) = [(FXo)f, Yer]  ho(€)(X,RGY) = [X.f, (GYy).]-

ﬁ/ al
Let now (X, 25 X 5 X;| X € Ob(%)) and (Y, =5 Y <% Y; | Y € Ob(%")) be our cho-
sen fibrant and cofibrant replacements (see §3.3.1); by proposition [3.2.14] the morphisms
Ay FXe — (FXe)f, Bay; (GYf)e — GYy and arx, : X. — X.r induce bijections :

[(FXo)p, Yer] = [FXe, Yerl  [Xer, (GYp)e]l = [Xe, (GYp)e] = [Xe, GY].
Also, the morphism ﬂ;,f : Yre — Yy and the morphism 7y : Y.y — Yy, of remark iii)
yield bijections :

[FXc, Yer] = [FXc, Yec] = [FX, Yr].
By combining these bijections with claim[3.4.15] we obtain bijections :
ho(¢”)(LFX,Y) = ho(%€)(X,RGY) VX € Ob(%¥),VY € Ob(¥”)

and it is easily checked that these bijections are natural in X and Y. O

Remark 3.4.16. (i) The proof of theorem associates with every given adjunction
Jee for the pair (F,G) an explicit adjunction &}, for the derived pair (LF, RG); namely,
for given ¢ € [(FX.)r, Yrc] and ¢ € [Xcr, (GYf)c] we have :

¥ = 9% y() & Bey, oy o ax, = Ix,.v, (ﬁng o Ty 0 ¢ oapy ).
B ,

where (X, B oxo =, Xr|X € Ob(%)) and (Y. — Y &, Yr|Y € Ob(%")) are the
fibrant and cofibrant replacements, and (zy : Y.r — Yr.|Y € Ob(%”)) is the induced
system of weak equivalences, as in remark [3.3.3{(iii).

(ii) The unit of ;, is given by the morphism [#3,] := ;(,FXC(IFXC) € [Xer, GUFXe)p)c]
for every X € Ob(%). Recall also that ﬁ(pxc)f = 1(px.), and [7rx,] = [1px,.] (remark
iv)); in light of (i), [7}] is therefore characterized as the homotopy class of any

morphism 73, that makes commute the following diagram of ¢ :

lec

X, Xef

”Xcl l’?}
Glapy,) Bo(rxe) p)

GFX, ————— G((FX.)f) =<——— G((FX.)f)c

where nx, denotes the unit of J,..

Corollary 3.4.17. Let € and ¢’ be two model categories, (F : € = €’ : G) and (F' :
€ = ¢’ : G’) two Quillen adjunctions, and pie : F = F’ a natural transformation. Then :

(Lpa)” =Ry,

Proof. Here Ly, denotes the total left derived transformation of p., and Ry denotes
the total right derived transformation of the adjoint p) of p. (see and remark
[3.4.7{iii,iv)); likewise, (Lys)" denotes the adjoint of Lys. The construction of p1 depends
on the choice of adjunctions J.. and J,, for the pair (F, G) and respectively (F’,G’), and
similarly for the construction of (Ly.)"; hence, the stated equality is meant to hold when
we fix such adjunctions J. and &,,, and moreover we choose for the adjoint pairs (LF,RG)

and (LF',RG’) the induced adjunctions 9;, and respectively 9,5 explicited in remark[3.4.16}
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However, even for arbitrarily chosen adjunctions, the stated equality will at least hold up
to composition with suitable isomorphisms of functors.

The sought equality comes down to the identities (see :

9%y (f oLux) = Ruy 0 9%y (f) V(X,Y) € Ob(€¢ X €”’),Yf € ho(€")(F'X,Y)
which in turn, by remarks iii,iv) and is equivalent to the identities :

Boy, © [(ll;v/f)c] 0 Ixy(f) e ax, = Ix.v; (By, oty o f o [(ux.)r] 0 apx,)-
But notice that
Poyy o [(ny)el = py, 1o fory, and  Pory, 095 y(f)oax, = 9 vy (By otvofodpy,).
Hence, we are reduced to showing that :
[y, 1o 8% v, (By, o v o foapyx) = Ox.v; (By oty o f o [(ux.)r] © apx,).
But we have : [y [ o 8y y (By ety o foapy ) =dx.y (B otvofoapy opx,), and
on the other hand, [(ux, )] © apyx = ap.x_ © jix,., whence the sought equality. O
Corollary 3.4.18. Let ¢,%6’,€" be three model categories, and
F: 2% :G F:¢ =2¢":G

two Quillen adjunctions. Then (F'F : € = €' : GG’) is a Quillen adjunction, and we have
natural isomorphisms of functors :

ILF oLF S L(F oF) R(GoG') 5 RGoRG.

Proof. The first assertion is obvious from the definitions (see [[13| Exerc.2.17(i)]). Next,
we already know both F and F’ preserve cofibrant objects, and both G and G’ preserve
fibrant objects (lemma [3.4.12(ii)). Then the sought natural isomorphisms follow from

lemma[3.4.12|and proposition O

Example 3.4.19. Let (%, Fib, 6of) be a model category, x : X — X’ a morphism of %,
and endow X /% and X’/% with the model structures provided by proposition iii).
According to remark [1.4.2[ii), the morphism x induces an adjoint pair of functors

X X/C =X |C:x

and obviously x; both preserves and reflects fibrations, cofibrations and weak equiva-
lences, so (x', x) is a Quillen adjunction (lemma 3.4.12*1)), and Rx, = ho(x)) is conserva-
tive (example [3.4.6(i,iv)). Moreover, by example[3.3.4] any choice of fibrant replacements
@ = (ay : Y — Yr|Y € Ob(%)) for ¢ induces systems of fibrant replacements X /a, and
X' |ate for X /€ and respectively X’ /%€ ’; with these choices, it is also clear that x, preserves
fibrant replacements. Let 77, : 1x,% => xix' be the unit of the adjunction for (x',x); for
every (Y,g: X — Y) € Ob(X/%), the object x(x'((Y, 9f) = (ax' (Y, 9)c))r is cofi-
brant in X /%, so remark ii) characterizes the unit [rf(‘Y,g)] (Y, 9) = RxLx'(Y, g)

of the derived pair (Lx',Rx;) as the homotopy class of any morphism ry’{Y PR (Y,9)er —

(xx'((Y,9)e)) r making commute the diagram:

A(Y.9)

(Y’g)c (Y»g)cf

N(Y.9)c l \L’?zy,g)
xxl (Y.g)e

x0x' (Y, 9)e) ———— (u(x'((Y,9)o)s-
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In other words, we have :
iyl = (gl V(Y.g) € Ob(X/%).

3.5. Homotopy limits and homotopy colimits. Examples of useful derived functors
are provided by the total derived functor of basic categorical operations, such as limits
and colimits. Although we will not consider the general case here, we will need special
cases which can be dealt with elementarily.

3.5.1. Injective and projective model structures. Let (€, W, & ib, 6of) be a model category,
and I a small category; according to since % is finitely complete and finitely co-
complete, the same holds for €. We let #! (resp. .Zib") be the subclass of Mor(%7)
consisting of all natural transformations ¢ : Fe — G, such that ¢; € # (resp. ¢; € Fib)
for every i € Ob(I). Then, we also set : Gof! := [(#' n Zib") (notation of definition
[3.1.1]iii)). In general, it is not clear whether the datum

(", Fib!, €ofl)
is a model category, but when it is, we call it the projective model structure on €.

e Dually, the injective model structure will be the projective model structure on
%1 = (¢P)"

when the latter is well defined (where €°P is endowed with the opposite model structure
of proposition [3.2.4{i)). Hence, the weak equivalences (resp. the cofibrations) of the in-
jective model structure on %7 are given by #; = (#1)°P (resp. by %of;, defined as the
class of all natural transformations ¢ : Fe — G, between functors F,G : I — % such
that ¢; € Gof for every i € Ob()).

Remark 3.5.2. (i) In the situation of §3.5.1} since #; = (#1)°P, the natural isomorphism
(€1)°P =5 €] (see §1.3) induces, by remark 1.11.5(iii), an isomorphism :

[ ho(61)*P = ho(4)). |

(ii) Let I, J be two small categories, and suppose that the projective model structures
on ¢! and (%)’ are well defined; notice that the natural isomorphism

) RUEE

of §1.3.6|identifies (#1)/ and (Fib")/ with #'*/ and respectively .Zib"™/. Hence, the
projective model structure on 7>/ is well defined, and is identified via () with the
projective model structure on (%7)/. Likewise, if the injective model structures on ¢}
and (%7); are well defined, the same holds for that of %7, and () identifies it with the
injective model structure on (%7);.

(iii) We will consider a few basic examples of small categories I such that the projective
model structure exists for any model category €. E.g, if I is a small discrete category, then
the projective model structure exists and coincides with the product of model categories
as in example ii), i.e. the cofibrations are the natural transformations ¢, : Fe — G,
such that ¢; € Gof for every i € Ob(I); the axioms are simply verified termwise. The
following three propositions exhibit some more examples.

Proposition 3.5.3. (i) Let [1] be the category attached to the ordered set {0, 1} (see remark
[1.9.3(iii)); then, for every model category (€, W, Fib, €of), the projective and injective
model structures on €' and respectively ©11] are well defined.
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(ii) The cofibrant objects for the projective model structure on €11 are the cofibrations
between cofibrant objects of € .

Proof. (i): Since [1]°P is isomorphic to [1], it suffices to prove the existence of the projec-

tive model structure. To this aim, for any pair (X i>X1, Yo EN Y1) of objects of ¢ and
any morphism f, : x — y in €111, i.e. any commutative square of % :

XOéYO

(1) l ly

denote by (fi,y) : X; Llx, Yo — Y the induced morphism of €. We let .# be the class of
all morphisms f; : x — y of 1) such that f;, (f;,y) € Gof.
Claim3.5.4. (i) (., 7 n Zibl1) is a weak factorization system for ¢!,
(ii) .# = Gofl1l.
(i) #nGofll = 7" = {f, e 7| fo.(f,y) € #} = [(Fibl!]).
Proof : (i): Let go : (Ay — A1) — (Bo LA By) be an element of #11 n Zipl!l; a

commutative square in €1l of the form :

he
—sa

ig.

comes down to a commutative diagram of ¢’ of the form :

(*) £

e <=—-2=r

ke
—_—

Ao % By

N e

XoéYO

(D) a xl ly b

X1—1>Y1

A
g1

A1 Bl

and a diagonal filler d, : y — a for diagram (*) amounts to a pair of morphisms of € :
(d,' : Yl e Ai | i=0, l) with (Zd() = dly d,fl = hi gidi = ki (l =0, 1).

Now, if fy € 6of, then we may find a diagonal filler dy : Yy — A, for the commutative
square with sides f, ko, go, ho; since ad fo = ahy = h;x, there follows a unique morphism

(hl, ad()) ZXl |—|X0 YO — A1 such that k1 o (fl,y) =4J1° (hl, (,ldo).

If (fi,y) € 6of as well, the commutative square with sides (h1, ady), g1, k1, (f1, y) admits
a diagonal filler d; : Y1 — A;, and it is easily seen that the resulting pair (dy, d;) is the
sought diagonal filler d,, so f, € Gof!!. Next, since .#ib and # are stable under retracts
(proposition , it is easily seen that the same holds for Zib1) and 7 [1; to show that
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the same holds for .#, consider (a Z, b) € .# and a commutative diagram of ¢! :

1
7 T\
X—>=a—>x
et
y—b—=u.
\_/
ly
We deduce the commutative diagrams of ¢ :
1x, Lxyux, Yo
RN e
Xo—=A)—= X, X1 Lx, Yo — A LA, By — Xi Lx, Yo

ﬁl lgo lfo (ﬁ,y)l l(gl,b) l(ﬁ,y)

Yo —=By—=Y, Y B, Y
~_ 7 \_/
1Y0 lyl

where, by assumption, go, (91, y) € 60of, so fo, (fi,y) € Gof, by proposition

It remains to check that every morphism (1) of €11 factors as f, = p. o i, with p. €
w N Zib! and i, € .#. To this aim, pick first a factorization of fj : X, — Y as
a cofibration iy : Xy — Tp followed by a trivial fibration py : Ty — Yp; then form the
cocartesian square :

XOLTO

xl i, lt'

X, —=T/
and choose a factorization of the induced morphism (fi, ypo) : T/ — Y as a cofibration
j : T] — T, followed by a trivial fibration p; : Ty — Y;. Set iy := ji{ : X; — T; and
t = jt' : Ty = Ty; then iy = (ig, i) : x — t lies in Gof11, py := (po,p1) : t — y lies in
w N Zibll and f, = p. o i, as required.

(ii): This follows immediately from (i) and lemma i).

(iii): Mutatis mutandis, the argument of (i) shows that (.#’, Zibl!l) is a weak fac-
torization system for €111, so .7’ = I(Zibl!), again by lemma i); moreover, if
fo € W N 6of, then the induced morphism e : X; — Xj L, ¥, liesin # N Gof as well
(proposition[3.1.9(v)), and in this case, since f; = (fi, y) oe, the 2-out-of-3 property implies
that fi € # if and only if (fi,y) € #, whence the assertion. &

Claim [3.5.4] (and its proof) imply immediately (i).
(ii) follows straightforwardly from claim [3.5.4{ii). m]
Proposition 3.5.5. (i) Let'V be the full subcategory of [1] X [1] with
Ob(V) :={(0,0), (0,1), (1,0) }.

Then, for every model category (€, W, F ib, 6of), the projective model structure on 6" and
the injective model structure on Gyop are well defined.

(ii) The cofibrant objects of € are the diagrams x. := (X; i Xo SN X5), where x;
and x, are cofibrations between cofibrant objects of € .
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Proof. Again, it suffices to prove the existence of the projective model structure on €.
Now, the inclusion [0] — [1] induces an obvious restriction functor

p: M 5E (X - X)) - X
and we have a cartesian diagram of categories :

v _T coll]

€
ﬂz\L P
gl L

where 7;(x,) = (X SN X;) for every xo == (Xj il Xo =, X;) € Ob(¢V) and i = 1,2.
With this notation, it is clear that :

W =Wy, wand  Fib" = Fib x5y Fibl!
Claim 3.5.6. Gof " = Gof!M xeop Gof!!) and #V N Gof" = 1(Fib").

Proof : Set .7 := Gof 1! x4, r Gof!1]. The proof of claim i) shows that, in order to
construct a diagonal filler for a diagram (D) of €1 with f, € Gof!! and g. € 711 n
Zib!'l we may first choose a diagonal filler d; for the diagram p (D) obtained by applying
p termwise to (D); then, for every such choice dy we find a diagonal filler d, for (D) with
p(d.) = dy. This easily implies that .# c %of". Likewise, the proof of propositionm
shows that in order to factor a morphism f, of €[l as a cofibration followed by a trivial
fibration, we may first choose such a factorization for p(fJ), say p(fs) = go © ho; then
for every such choice we find a factorization f, = gs o he as sought, with p(ge) = ¢o
and p(hs) = hy. We deduce easily that every morphism of ¢ is the composition of
an element of .# followed by an element of #V N ZibY. Moreover, #V N Zib" and
%o 1] are stable under retracts (propositions i) and , so the same holds for .#;
summing up, (.Z, wV N ZibY) is a weak factorization system for &V,

In light of claim ii), a similar argument proves that (.# N %/, Zib") is also
a weak factorization system for %"V, and then both identities of the claim follow from

lemma [3.1.9(i). <&
Assertion (i) follows straightforwardly from claim[3.5.6| and its proof, and (ii) follows
immediately from claim and proposition ii). O

Proposition 3.5.7. (i) Let (¢, %, % ib,%0f) be a model category, and A > 0 an ordinal
such that € is p-cocomplete for every ordinal p < A. Then the projective model structure on
€ is well defined.

(ii) Dually, if € is i°P-complete for every ordinal up < A, then the injective model structure
on G)op is well defined.

(iii) A functor X, : A — € is a cofibrant object of €* & the induced morphism

L =limX; — X;

J<i

is a cofibration of €, for everyi € A (especially, every X; is cofibrant in € ).
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Proof. For every morphism f, : X, — Y, andeveryi € A, let L{ : LlX - LiY be the induced
morphism, so that we have a commutative diagram :

s
Li —>Xl~

L{l lfi
lY

and denote by (f,1Y) : X; L;x LY — Y; the induced morphism of %. We let .#* be the
class of all morphisms f, : Xo — Ye of € such that (f;,1¥) € of for every i € 1. Also,
for every two ordinals v < p < A we consider the restriction functor

Ty : € — €7 Xe= (Xjlj<w).

Claim3.5.8. (S, #* N .Zib") is a weak factorization system for €.
Proof : Let f, € .77, go € #* N .Fib’, and consider a commutative square of € :

he
Xoe —> A,

(D) f.l lg.
k

Y, —= B..

We wish to exhibit a family (d} | 1 < p < 1) such that d} is a diagonal filler for rau(D) and
ruv(dy) = d} for every 1 < v < y < A. We argue by transfinite induction on y > 1 : for
1 =1, we have ¢! = ¢, and we need a diagonal filler d 1Yy — A for the commutative
square formed by hyg, go, ko and f5; but notice that L3< and Lg are both the colimits of
the empty family, so LY = LY = &, and therefore (fy,I}) = fo, so fy € of, and since
go € # N Fib, such a d' can indeed be found.

e Next, let p < A be a limit ordinal, and suppose that d; has already been defined for
every v < ji; we then get the sought diagonal filler d} by setting dﬁl = d™*! forevery i € .

e Lastly, suppose that > y > 1, and that d4 has already been exhibited. There follows
a commutative diagram :

(D,u) 1 X \lly 12
Y,

N
Iy

and the morphism dj : rau(Ye) — 12, (A,) induces a diagonal filler LZ' : LZ — L;‘ for the

square with sides Lt , L’;, Lf, and LL‘. However, (D) can be regarded as a commutative

square of €11, and arguing as in the proof of claim i), we see that the condition
(fur l}f) € %of enables us to find a morphism d : Y, — A, such that the pair (Ll‘f, d)

defines a diagonal filler for the commutative square (D,) of €!!). We may then define
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it by setting df“ = df for every i < pand dﬁ“ := d. This concludes the construction
of the sequence (d4 | 1 < i < 1), and shows that f, € Gof".

e Next, clearly #/* N .Zib* is stable under retracts; to show that the same holds for
I, we argue as in the proof of claim i) : consider a commutative diagram of €* :

Ix,

Xoe —>Ae —> X,

d

Yy —= B, —>Y,
\_/

1y,
with g, € #*. We deduce for every i € A a commutative diagram :
1
—_— T
XiUpx L —= L g L —= Xi Lpx L
Skl )l l(g,-,lﬁ l(ﬁ-,liy )
Y; B; Y;

\—/

1

where, by assumption, (g;, [%) € Gof, sothat (f;, 1Y) € Gof as well, since Gof is saturated.

e Lastly, let us check that every morphism f, : X, — Y, of € factors as f, = h, © g,
with go € # and h, € #* N Fib*. To this aim, we exhibit, by transfinite induction, a
family (gh, hy |1 < p < 1) with :

(rau(Xe) i Ty e I (T i ru(Ys)) € #* N0 Fib! Yu<a
and K, o gl = r2u(fs), and such that moreover ruv(gh) =gl forevery 1 <v < p.

e For y = 1, the datum (g2, hl) is just a factorization fy = hg o go with gy € 6of and
ho € W N Fib. Next, if y < Ais a limit ordinal, and if (g}, h}) has already been exhibited
for every v < y, we get (g4, hb) by setting g/ := gi*! and B! := h*! for every i € p.

e Lastly, let A > p > 1, and suppose that the factorization (g, h}) has already been
given; we deduce a commutative diagram :

Lg Lh
iz iz
Ly L, Ly
X T Y
L l/ « l/eu v l/lu
e (ful¥ L)
’
Xy T# H

whose left square subdiagram is cocartesian. Let us then pick a factorization
(fllL}) =hyoiy with (iy: T, > T,) € 6of and (h,:T, > Y,) € # N Fib.
The required factorization (g’.”l, REYY s given by g/’ = g, = h for every i < p,

1 +1
and gZ =iy 0 eff 1 Xy — T, hﬁ = hy,. &

p+1
hi

Claim3.5.9. (i) #*n It = 74 ={(fo : Xo > Yo) € I (fi,IY) € # NGof Vi € A}.
(i) (7 A Fib) is a weak factorization system for €.
Proof : The proof of (ii) is, mutatis mutandis, the same as that of claimm
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i): Let (fo : Xoe > Y,) € ’1, and for every v < u < A, set Mf,l =X x, Y,; then, for
H H v
every v < p < u we have an induced morphism :

tup = (11, Yip) « My —> M,

where Y,, : Y, — Y, denotes the transition morphism for the functor Y,. Clearly the
system (MY, typ | v £ p < p) defines a functor MY : p — €. Notice also that :

1_191\4’; =Ly Lipx LY  V¥p<p and 1_1§M‘; =L,

v<p v<p

Moreover, it is easily seen that the natural commutative square :

(sl
XpUpx Ly ——— Y,

! |

X Y X
LY Upx LY —— L U, Y,

is cocartesian for every p < p. So, for every p < p the induced morphism :

h_n}Mff - MS

v<p

lies in % N 6of (proposition v)), in other words, M4 is a (u, # N %of)-sequence,
and since #' N %of is saturated, we conclude that the induced morphism :

X Y
(%) L, ux, Yo— L,
lies in # N 6of as well. Furthermore, we have a cocartesian diagram :

fo

Xo—Y

l |

LY — LY ux, Yo

and fy € # N %of, so by the same token, the induced morphism Lff — Lif Lix, Yo lies
also in # N 6of; therefore, the same holds for its composition with (x) :

forx Y
L :X—1y  vu<a
and finally, also for the composition :

X”LleL{,- (f ,IY)
ﬁ,:XH——”—aXFI_ILi(LZ—y—LYﬂ Vu < A

Hence : /’1 c #*N.#*. To show the converse inclusion, let (go: Xe — Y,) € wrin gt
by (ii), we find (is : Xo — Z,) € j’l and (p, : Zo — Ys) € Fib" with g, = p, o i, and
notice that p, € #, by the 2-out-of-3 property of # . Then the commutative square :

Xo L>Z'o

g.l lp.

Y,—=Y,
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admits a diagonal filler d, : Yo — Z,, by virtue of claim Hence, the following
commutative diagram exhibits g, as a retract of i, :

gLk

YoéZcéYo

50 g € _7* by (ii), proposition v) and lemma i). <

Assertions (i) and (ii) follow by combining claims and[3.5.9

(iii): The stated characterization of cofibrant objects of €* follows by direct inspection
of the description of %o f* provided in the proof of (i). Lastly, notice that this characteri-
zation amounts to saying that X, is cofibrant if and only if it is a (A, 6o f)-sequence; then
ru(Xe) is a (y, 6of)-sequence for every u < A, and since 6of is saturated, the induced
morphism Xy, — Lff must be a cofibration for every 1 < y < A, and moreover Xj is cofi-

brant, since Lg( = . Then also the composition & — X, — Lff — X, is a cofibration,
i.e. X, is cofibrant for every p < A. O

3.5.10. Derived limits and derived colimits. Let (¢, ,.%ib,%of) be a model category,
I a small category, and suppose that & is I-cocomplete, and that the projective model
structure on € is well defined. Recall that we have an adjoint pair of functors :

(*) l_im:%I:’Cg:cI

I

where ¢y denotes the functor that assigns to every X € Ob(%) the constant functor cx :
I — € of value X (see [13| Rem.2.58(i)]). Under the stated assumptions, it is clear that c;
preserves fibrations and trivial fibrations, so (%) is a Quillen adjunction, by lemma([3.4.12]
Moreover, c; preserves weak equivalences, so ho(cy) : ho(%) — ho(%”) is both a left
and right total derived functor of ¢, according to example [3.4.6{i), and combining with

theorem[3.4.13] we get an adjunction :
Llim : ho(¢?) = ho(%) : ho(c;).
I

e Dually, if 4 is I-complete, and if the injective model structure is well defined on %7,
then, by remark [3.4.2[i), we get an adjunction :

ho(cr) : ho(%) = ho(%)) : Rlim.
I

Proposition 3.5.11. In the situation of §3.5.10, let f, : Xo — Y, be a morphism of cofibrant
objects of € such that f; : X; — Y; is a weak equivalence of ¢, for everyi € Ob(I). Then
fe induces a weak equivalence of € :

lim f, : lim X, — limY,.

o o o
Proof. The image of f, in ho(%”) is an isomorphism, so

Llimf, : LlimX, — LlimY,
I I I

is an isomorphism as well. But since X, and Y, are cofibrant objects of ¢, the explicit
construction of the left derived functor in * shows that L limI X and L lin} Y, are
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represented by lirr} X. and lirr} Y,,and L lirr} fe isrepresented by Iirr} fo. Then the assertion
follows from theorem ii). O

Corollary 3.5.12. (i) Let (¢, %, %ib,%6of) be a model category, and I a set, regarded as
a discrete category. Suppose that € is [-cocomplete; then, every family (f; : X; — Y;|i € I)
of weak equivalences between cofibrant objects of € induces a weak equivalence :

| [x—] ]
iel iel iel
(ii) Consider also the following commutative diagram of €, whose horizontal arrows are
cofibrations between cofibrant objects :

x/ x//
X < X—X"

R

vy Ly Loy

Then, if f, f’ and " are weak equivalences, the same holds for the induced morphism :
X' ux X" ->Y uyY”.
(iii) Let A be an ordinal, and suppose that € is i-cocomplete, for every ordinal i < A. Let

furthermore f, : Xo — Y. be a morphism of €* and suppose that f; : X; — Y; is a weak
equivalence, and the natural morphisms of € :

limX; — X; limY; - Y;
— —
Jj<i Jj<i

are cofibrations, for everyi € A. Then f, induces a weak equivalence :

lim f; : limX; — lim Y;.
— — —
i<A i<A i<A

Proof. For (i), we have observed that the projective structure on ¢” is trivially well defined
(remark iii)), whence the assertion, in light of proposition|3.5.11| For (ii) and (iii) one

argues likewise, with propositions and respectively. O

The reader can spell out the duals of proposition [3.5.11]and its corollaries, concerning
limits of systems of weak equivalences between fibrant objects of an I-complete model
category €. In case A = w, the smallest infinite ordinal, part (iii) of corollary [3.5.12] can
be stated more explicitly as follows :

Corollary 3.5.13. Let (€, W, Fib,60f) be a model category, and suppose that € is w-
cocomplete. Consider the following commutative diagram of € :

X() X] ce Xn Xn+1
b oo
Yo Y] e Yn Yn+1

whose horizontal arrows are cofibrations between cofibrant objects of €. Then, if all the
vertical arrows are weak equivalences, the same holds for the induced morphism:

limX, — limY,,.

S
neN nelN

Proof. Tt is a special case of corollary|3.5.12(iii). O
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Definition 3.5.14. (i) Let (¥, %, %#ib,%of) be a model category, I a small category;
suppose that ¢ is I-cocomplete, and that the projective model structure on %7 is well
defined. Let X € Ob(%), F € Ob(%7), and 7, : F = cx a co-cone with vertex X and base
F. We say that 7, is homotopically universal, if the induced morphism :
LlimF — limF — X
I I

is an isomorphism of ho(%). In this case, we also call X a homotopy colimit of F.

(ii) Dually, suppose that % is I-complete, and that the injective model structure is well
defined on %], and let X € Ob(%), F € Ob(%]), and 7. : cx = F a given cone. We say
that 7, is homotopically universal, if the induced morphism :

X - limF — RlimF

— —
I I

is an isomorphism of ho(%7). In this case, we say that X is a homotopy limit of F.

Remark 3.5.15. (i) Keep the assumptions of definition [3.5.14{i). From the construction of
derived functors, we see that the following conditions are equivalent :

(a) the co-cone 7, : F = cx is homotopically universal

(b) there exist a cofibrant object F’ of " with a weak equivalence f, : F/ — F, such
that 7, o f, : F/ — X induces a weak equivalence limI F-X

(c) for every cofibrant object F’ of ¢’ with a weak equivalence f, : F/ — F, the
co-cone 7, © f, : F — X induces a weak equivalence limI F' - X.

(ii) Dually, in the situation of definition ii), the following are equivalent :
(a) the cone 7, : cx = F is homotopically universal

(b) there exists a fibrant object F’ of 67 with a weak equivalence f, : F — F’, such
that the cone f, o 7, : cx = F’ induces a weak equivalence X — }im F’

(c) for every fibrant object F’ of 47 with a weak equivalence f, : F — F’, the cone
fo 07 : cx = F’ induces a weak equivalence X — Ilim F.

(iii) Especially, if a functor F : I — % is cofibrant for the projective model structure
on %, then every universal co-cone F = cx is also homotopically universal, and the
colimit of F in & also represents the homotopy colimit of F. Dually, if F is fibrant for the
injective model structure on %], then every universal cone cx = F is also homotopically
universal, and the limit of F in ¥ also represents the homotopy limit of F.

(iv) Let F,F’ : I = ¥ be two functors, 7, : F = cx and 7, : F/ = cx’ two co-cones,
f : X — X’ a weak equivalence of %, and p, : F = F’ a weak equivalence of €’ (i.e.
pi : Fi — F'iis a weak equivalence of ¢, for every i € Ob(I)), and suppose that

(%) ¢ron =10
Then 7, is homotopically universal if and only if the same holds for z,. Indeed, from ()

we get a commutative diagram of ho(%) :

Llim F L Llim F’
I I
with pg = L1lim p,.
“ e 7
f
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By assumption, both y and f are isomorphisms in ho(%), so « is an isomorphism if and
only if the same holds for «’, which is the claim.

(v) Dually, if ro : cx = Fand 7, : cx» = F’ are two cones, f : X — X’ is a weak
equivalence of ¢, and . : F = F’ is a weak equivalence of 47 such that . 0 7, = 7, o c,
then 7, is homotopically universal if and only if the same holds for 7.

3.6. Homotopy push-outs and homotopy pull-backs.

Definition 3.6.1. (i) Let (¢, %, % ib, 6of) be a model category, and consider a commu-
tative square of ¢ :

X ==X
(D) fl lf’
Yy 2>
Then the pair (x, f) defines a functor F : V — %, where V is the finite category as in
proposition[3.5.5] and the pair (y, f’) can be regarded as a co-cone 7, : F = cy,. We then
say that (D) is homotopy cocartesian, if 7, is homotopically universal, and in this case we
also say that Y’ is the homotopy push-out of (x, f).

(if) Dually, the pair (y, f”) defines a functor G : VP — ¥, and (x, f) can be regarded

as acone 1, : cx = G. We then say that (D) is homotopy cartesian, if 17, is homotopically
universal, and in this case we also say that X is the homotopy pull-back of (y, ).

Example 3.6.2. (i) Any cocartesian diagram (D) as in definition|3.6.1] in which all mor-
phisms are cofibrations between cofibrant objects of %, is homotopy cocartesian.

(if) Dually, any cartesian diagram (D), in which all morphisms are fibrations between
fibrant objects of ¥, is homotopy cartesian.

(i) Set O := [1] x [1], where [1] := {0, 1} endowed with its standard total order. By
remark ii) and proposition i), the projective model structure on €5 and the
injective model structure on %1 are both well-defined, and (D) defines both an object of
%" and an object of 4. By inspecting the definitions, and in light of remark i),
we see that (D) is homotopy cocartesian < there exists a cocartesian square (E) in &
consisting of cofibrations between cofibrant objects, and a morphism (E) — (D) in ¢ =
that is an isomorphism in ho(#"). Dually, (D) is homotopy cartesian & there exists a
cartesian square (E) in & consisting of fibrations between fibrant objects, and a morphism
(D) — (E) in %1 that is an isomorphism in ho(%0).

Proposition 3.6.3. (i) Consider a commutative diagram of the model category € :

X—X>X,L-X”

ol

YAY’L-Y”

whose left and right squares (D) and (D’) are homotopy cocartesian (resp. homotopy carte-
sian); then the same holds for the composed square (D’”) with sides f,y’ oy, f’ and x’ o x.
(ii) If (D) and (D"") are homotopy cocartesian, the same holds for (D’).
(iii) Dually, if (D’) and (D”") are homotopy cartesian, the same holds for (D).
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Proof. (i): It suffices to consider the case where (D) and (D’) are homotopy cocartesian;
then, pick a cocartesian square consisting of cofibrations between cofibrant objects of €

A A

(E) gl ig'

B—tsp

with a weak equivalence w : (E) — (D) of %Y, as in example iii). In particular, ®
restricts to a morphism wyr : A” — X’ and wp : B — Y’; next, factor x" owys : A” — X"
as a cofibration @’ : A” — A" followed by a trivial fibration ws» : A” — X", and form
the cocartesian diagram of € :

,
A’ a A

o 4k
B/ L_ B/l'

The pair (f” ocwar, y’ cwp ) induces a morphism wp~ : B” — Y, and the four morphisms
war, war, wp and wpr yield another morphism «” : (E’) — (D’) of %Y. Now, b’ and g’
are again cofibrations, since 6o is stable under push-outs; according to remark [3.5.15[i),
the morphism wp~ is then an equivalence. Lastly, let (E””) be the composition of (E) and
(E”); by combining w and o’ we get yet another weak equivalence (E”") — (D”) of &4,
and (E”) is a cocartesian square of ¢ consisting of cofibrations between cofibrant objects,
so we may invoke example [3.6.2(iii) again, to conclude.

(ii): We construct (E), (E’) and (E”) as in the proof of (i); we have again a morphism
(E”) — (D”) of €1, and since (E”) is a cocartesian square of € consisting of cofibra-
tions between cofibrant objects, we deduce again with remark i) that wpg- is a weak
equivalence, since by assumption (D’’) is homotopy cocartesian. Hence, the morphism
o' : (E') — (D) is a weak equivalence of of ', and we conclude by invoking again
example [3.6.2[iii). Assertion (iii) follows as usual from (ii), by duality. O

Lemma 3.6.4. (i) In the situation of definition i), the commutative square (D) is
homotopy cocartesian (resp. homotopy cartesian) if and only if the same holds for the square

X——Y
b
x Loy
(ii) Suppose that the morphism x of the square (D) is a weak equivalence. Then (D) is
homotopy cocartesian if and only if y is a weak equivalence.
(iii) Dually, suppose that the morphism y of the square (D) is a weak equivalence. Then

(D) is homotopy cartesian if and only if x is a weak equivalence.

Proof. (i): By duality, it suffices to prove the assertion for the homotopy cocartesian case.
Now, define the partially ordered set (V, <) as in proposition [3.5.5(i); we have a unique
non-trivial automorphism ¢ : (V,<) = (V, <), namely the map that fixes (0,0) and
exchanges (0, 1) and (1, 0). Then ¢ induces an automorphism :

¢ .6V =¢"  (F:V—>%)—Fo¢
that obviously preserves weak equivalences and fibrations for the projective model struc-

ture, so it preserves cofibrations as well. Also, €% sends the object F := (Y i x5 X')
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of €V to F' = (X’ X L Y), and the co-cone 7, : F = cy given by (y, f’), to the
co-cone 7, : F/ = cys given by (f’,y). Hence, 7, is homotopically universal if and only if
the same holds for 7], whence the assertion.
(ii): Pick a weak equivalence fix : X, — X with X, € Ob(%.), and factor fofx : X, —
Y as a cofibration f; : X, — Y, followed by a trivial fibration fy : Y. — Y. We deduce a
cocartesian diagram of ¢ :
fe

X —Y,
(E) | |
Jfe

Xc;Yc

and a morphism y : (E) — (D) in % (notation of example iii)) given by the mor-
phisms fx, By, x o fx : Xc = X" andy o fy : Y — Y’. Then, if y is a weak equivalence
of ¢, the morphism y is a weak equivalence of 4’5, and therefore (D) is homotopy co-
cartesian, by example [3.6.2[iii). Conversely, if (D) is homotopy cocartesian, then y o fy
is a weak equivalence of ¢, by remark3.5.15(i), so the same holds for y, by the 2-out-of-3

property of weak equivalences. Assertion (iii) follows from (ii) as usual, by duality. O

Proposition 3.6.5. (i) In the situation of definition[3.6.1(i), suppose that (D) is cocartesian
in€ with X and X’ cofibrant, and that f is a cofibration of €. Then :
(a) If x is a weak equivalence, the same holds for y.
(b) (D) is a homotopy cocartesian square.
(ii) Dually, if (D) is cartesian in € with Y, Y’ fibrant, and if f’ is a fibration, then (D)
is homotopy cartesian; if moreover y is a weak equivalence, the same holds for x.

Proof. Clearly, it suffices to show (i). To prove (i.a), endow X /% and X’ /% with the model
structures provided by proposition [3.2.4{iii), and consider the adjunction associated with
x : X — X’ as in remark[1.4.2[ii) :

(%) X X/C =X |C : x
and notice that (Y, f) € Ob(X/%) and x'(Y, f) = (Y’, f’) (up to unique isomorphism of

X' [/%F), since (D) is cocartesian. Moreover, the discussion of remark shows that the
unit of the canonical adjunction for (x', x;) assigns to (Y, f) the morphism

X

f xof!
Xy : /
y

Y —M Y

of X/%. By example [3.4.19] the right derived functor Rx; = ho(x) is conservative, and
(%) is a Quillen adjunction which, by virtue of theorem|3.4.13] induces an adjunction :

Lx' : ho(X/%) = ho(X'/¥) : Rx..

The cofibrant objects of X /% are precisely the cofibrations of ¢ with source X (example
, hence Lx!(Y,f) = (Y,f’), and Rx; o Lx!(Y,f) = (Y’,x o f’); furthermore, by
example the unit 7} of the canonical adjunction for (Lx',Rx,) assigns to f the
homotopy class [(X/y)r] of (X/y)f in ho(X/¥'). The class [(X/y)r] is an isomorphism
of ho(X/%) if and only if X/y is a weak equivalence of X/% (theorem [3.3.9[ii)), and
the latter holds if and only if y is a weak equivalence of €. Recall also that Lx' is fully
faithful if and only if ] is an isomorphism of functors ([13] Prop.2.16(iii)]). Summing up,
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the functor Lx' is fully faithful & for every cofibration f : X — Y of ¢ the induced
morphism y in diagram (D) is a weak equivalence of .

Claim 3.6.6. Lx' is fully faithful if and only if it is an equivalence of categories.

Proof : We may assume that Lx' is fully faithful, and we check that it is an equivalence.
To this aim, let (5%, £X) be the unit and counit of the adjunction for (Lx', Rx)); we know
already that 5 is an isomorphism, and by the triangle identities (see [13] Prob.2.13(ii)]) it
follows that the same holds for Rx, % ¢}, and then also for ¢, since Rx; is conservative,
whence the assertion. &

With claim we conclude that Lx' is an equivalence of categories if and only if y
is a weak equivalence, for every cocartesian square (D) in which f is a cofibration. Next,
for every pair of morphisms x : X — X’ and x’ : X’ — X" of &, obviously we have
(x” 0 x); = x; o x|, whence natural isomorphisms of functors :

xtoxt 3 (x" 0 x)' and Lx" o Lx' = L(x" o x)'

by [13| Exerc.2.14(i) and 2.17(i)] and corollary[3.4.18] Moreover, if any two of the functors
Lx', Lx", Lx" o Lx' is an equivalence of categories, the same holds for the third one. We
may therefore argue as in the proof of Ken Brown’s lemma (proposition|3.2.8) to reduce to
the case where x is a trivial cofibration, in which case assertion (i.a) is clear, since trivial
cofibrations are stable under push-outs (proposition[3.1.9(v) and lemma [3.1.18[1)).

(i.b): Choose a factorization of x : X — X’ as a cofibration x” : X — X"’ followed by
a trivial fibration x” : X" — X’, and form the following commutative diagram with two
cocartesian squares :

X"

XL_XI/*XI

PR

y Loy Loy

Then, the left square is homotopy cocartesian, by example i), and the same holds for
the right square, by virtue of (i.a) and lemma ii), since f”’ is also a cofibration; so
(D) is homotopy cocartesian, by proposition i). O

Corollary 3.6.7. The conclusion of corollary|3.5.12(ii) still holds, if we assume only that x’
andy’ are cofibrations, and that f, f', f"’ are weak equivalences between cofibrant objects.

Proof. We apply proposition [3.6.5(i.b) to the two cocartesian diagrams formed by X, :=

0:¢ x5 X")and Y, = (Y’ Ly, Y”") respectively : then both such diagrams
are homotopy cocartesian, and f, f’, f” induce a weak equivalence X, — Y, in the model
category €' of proposition whence an induced isomorphism in ho(%) :
LlimX, = Llim Y,
I I

which is represented by the induced morphism X’ Lix X" — Y’ Uy Y”. Then we conclude

with theorem ii). O
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4. CONSTRUCTION OF MODEL CATEGORIES

Before we attack the problem of constructing model structures on categories of inter-
est, we need to be able to count on a reliable supply of weak factorization systems : this
task is addressed in dedicated to the so-called small object argument, a rather gen-
eral and versatile method with a long history : its earliest modern avatar can be found in
Grothendieck’s Téhoku paper [7]], where it is employed to construct injective objects in
abelian categories; further back, one can trace its origins to Baer’s paper [2] from 1940,
that deals with the special case of injective modules over associative rings. This section is
complemented by that develops some technical tools useful for checking the small-
ness conditions required to deploy the small object argument, especially when dealing
with categories of presheaves over small categories.

It turns out that most model categories that we will encounter in our discussion shall
be cofibrantly generated, meaning that their classes of fibrations and cofibrations are ob-
tained by suitably saturating certain sets of morphisms; of this type are all the model cate-
gories that are constructed via the small object argument. In §4.3|we introduce cofibrantly
generated model categories, and we study in detail two basic examples : first, the cate-
gory of complexes of modules over an (associative) ring, which we endow, via the small
object argument, with a model category structure whose weak equivalences are the quasi-
isomorphisms of complexes, and whose fibrations are the (termwise) epimorphisms. Our
second example is the category of small categories, which we endow with its canonical
model category structure, whose weak equivalences are the equivalences of categories,
and whose cofibrations are the functors that are injective on objects; though this canoni-
cal model category structure is cofibrantly generated, it is obtained by direct elementary
verifications that do not involve the small object argument.

The last three sections present Cisinski’s method for constructing model structures
on the category o of presheaves (of sets) over any small category 27, and is borrowed
from his PhD thesis [3]. Cisinski’s idea is to abstract Gabriel and Zisman’s work [6]
on the homotopy theory of Kan complexes, whose essential aspects are shown to apply
to much more general situations. Especially, Gabriel and Zisman’s theory of anodyne
extensions can be transposed to arbitrary categories of presheaves, and plays a central role
in Cisinski’s method and in our text, starting with The main result here is theorem
that associates with every homotopical structure on </ (see definition [4.4.6[ii)) a
cofibrantly generated model category structure on o/, the whole of ~. is occupied with
the proof of this theorem, and further useful complements are gathered in §4.6]: notably,
theorem[4.6.5/shows that Cisinski’s construction yields all the cofibrantly model category
structures on .7 whose cofibrations are the monomorphisms.

4.1. The small object argument.

Definition 4.1.1. Let « be a cardinal, € a cocomplete category, and X € Ob(%).

(i) We say that a partially ordered set (E, <) is k-filtered, if for every subset J C E of
cardinality < x there exists x € E such that x > j for every j € J.

(i) Let .# a subclass of Mor(6). We say that X is k-small relative to #, if for every
k-filtered ordinal A and every (%, 1)-sequence Y, : A — %, the natural map

lim € (X,Y;) = € (X, lim Y;)

JEA JeA
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is a bijection. We say that a morphism f : X — Y of € is x-small relative to .7, if the
same holds for X. We say that an object or a morphism of ¢ is k-small, if it is k-small
relative to the class of all morphisms of €.

(iii) We say that an object X (resp. a morphism f) of € is small relative to %, if there
exists a cardinal k such that X (resp. f) is k-small relative to .. We say that X (resp. f)
is small, if it is small relative to the class of all morphisms of %

Remark 4.1.2. (i) Keep the notation of definition [4.1.1{ii); then, in light of corollary
[1.4.6[iii), it is easily seen that if the morphism f of € is k-small relative to .7, then the
object f of €'/Y is k-small relative to .# /Y (notation of §3.1.11).

(if) Likewise, if g : X — Y is a morphism of ¢ such that both X and Y are k-small
relative to %, then g, regarded as an object of X/%, is k-small relative to X/.% : indeed,
X /€ is cocomplete (lemmall.4.7(ii)), so the assertion follows easily from corollary1.4.6{ii)
(details left to the reader).

(iii) If the partially ordered set (E, <) is k-filtered for some cardinal k, then clearly it
is also k’filtered for every cardinal ¥’ < x. If k = 1 (resp. if 2 < k¥ < ), then every
partially ordered set is x-filtered (resp. then x-filtered is the same as filtered). Moreover,
if X is k-small relative to .%, it is also k”’-small relative to .%#, for every cardinal k¥’ > k.

Example 4.1.3. (i) By remark iii), every ordinal is k-filtered for every cardinal
k < Ny. Also, every successor ordinal has a maximal element, so it is trivially x-filtered
for every cardinal «.

(ii) For every k € N\ {0}, the ordinal »* (the order type of N¥) is not N,-filtered. The
same holds for the limit cardinal 8, = (,;c,, Nn-

(iii) The successor x* of any infinite cardinal x is k-filtered. Indeed, let E C x* with
|E| <k, and for every x € Eset Sy := {y € x|y < x}; then |Sy| = x* < k for every such x,
and since k™ is regular (example ii)) we have | U,cg Sx| < k, whence the assertion.

Example 4.1.4. (i) Every set S is |S|-small (in the category Set; notation of example
[1.1.9(1)). Indeed, let T, : A — Set be any functor from an |S|-filtered ordinal A, and T the
colimit of T,. Let f : S — T be any map; for every s € S pick a(s) € Aand t(s) € Ty(s) such
that f(s) is the image of ¢(s) in T; by assumption there exists € A such that f > a(s) for
every s € S, so f factors through a map g : S — Tg. Moreover, suppose that f also factors
through another map h : § — Tg, for some ' € A; then, for every s € S there exists
y(s) € A such that the images of g(s) and h(s) agree in Ty (5), and again we find § € A such
that § > y(s) for every s € S, so that the images of g and h coincide in Set(S, Ts).

(if) Furthermore, let k > N, be any cardinal; then S is k-small if and only if |S| < k.
Indeed, by (i) and remark [4.1.2{iii) we know already that if |S| < , then S is k-small. For
the converse, without of loss of generality we may assume that S is a k-small cardinal;
suppose then, by way of contradiction, that S > k (so that k* c S), and let f : S — k™ be
the map such that f(s) := s for every s € k¥, and f(s) := 0 for every s € S \ x*. Since x*
is the colimit of the well-ordered system of ordinals A < k*, which is indexed by x*, and
since k* is x-filtered (example iii)), it follows that f factors through the inclusion
A — k¥, for some A < k*; but this is absurd, since f is surjective.

Example 4.1.5. (i) Let x > N be a cardinal, .7 a small category, and recall that Cat is a

cocomplete category (proposition|1.10.4); if o7 is k-small in the sense of definition|1.1.6{ii),
then it is a k-small object of Cat, in the sense of definition iii). Indeed, suppose first
that [Mor(«)| < k, and consider any functor

%, : A — Cat ji— G 7{0—>‘€],
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from any k-filtered ordinal A. Let also € be the colimit of %,, with universal co-cone
(tj : €5 — €1j € A),and F : &/ — ¥ any functor. According to remark
Ob(%) is the colimit of the induced functor Ob(%,) : A — Set, and (Ob(z;) : Ob(%;) —
Ob(%) | j € A) is a universal co-cone; then, by example[4.1.4] there exists j € A and a map
®; : Ob(a”) — Ob(%);) such that Ob(F) = Ob(r;) o ®;. Let us set ®; := Ob(%};) o ¥;
whenever j < i < A, so that Ob(F) = Ob(z;) o ®; for every such i.

For every A, B € Ob(«/), remark[1.5.12|shows moreover that 4’ (FA, FB) is the colimit
of the induced system of sets (%;(®;A, ®;B) | j < i < A), with universal co-cone (7; 45 :
G (P;A, ®;B) — € (FA FB)|j <i < A), and transition maps

Cik.a : Ci(DiA, ;B) = G (kA OkB)  f > Ci(f)
forevery j < i < k < A. Then, by invoking again example[4.1.4] we get for every such pair
(A, B) an ordinal iap < A with j < iap, and a map ¥ap : (A, B) = €, (Di, s A DixB)
such that Fap : & (A, B) — % (FA, FB) equals y; ap © ¥ap. Since |Ob(#)?| < k, we may
next find | < A such that [ > isp for every A, B € Ob(4/), and we set
W= Cnian © YA : C(A.B) o €(DA®B) VYA B e Ob().
By construction, we then have Fap = 7745 © ‘I‘AB for every such A, B. Next, since we have
7144 © ¥4 (14) = Faa(14) = 14 = 1144(19,4) VA € Ob()
it follows that for every A € Ob(.%) there exists I < m(A) < A such that

Cim(a).Aa © Ypa(14) = Clma).aa(1p,4) = 1o, A-
Again, we may then find m < A such that m > m(A) for every A € Ob(.«/), and with

Vs = Cimap © Vg : 7 (A, B) = Cp(PpA, @p,B) for every A, B € Ob(%), we get :
Fuap = Tm,AB © \IIXB and ‘PXA(IA) = 1<I>mA VA, B € Ob(.!Z{)

Lastly, since Fac(g o f) = Fpc(g) o Fap(f) for every A, B,C € Ob(&7) and every (f,g) €
o/ (A,B) x @/ (B,C), and since |Ob(%7)%| < x and | &/ (A, B) x &/ (B,C)| < «k for every
such A, B, C, we can argue as in the foregoing, to find m < n < A such that, with ¥/, :=
Cmn.aB o ¥,y A (A B) — €,(2,A, ®,B) for every A, B € Ob(7), we get :

Vii(g) o Vip(f) =¥yt (go f) VA,B,C € Ob(«),V¥(f,g) € /(A B) x o/ (B,C)

(the detailed verification shall be left to the reader). Summing up, we have obtained a well-
defined functor G : &/ — 6, with GA := ®,A and Gap = ¥}/, for every A, B € Ob(%/),
such that F = 7, o G; this proves the surjectivity of the natural map

liLnCat(M,‘gj) — Cat(,%).

jea
Lastly, let p < A and G’ : &/ — %, another functor such that F = 7, o G’; we need to
show that €, o G = 6, o G’ for some A > r > n, p. However, from examplewe
know that there exists g > n, p such that 6,; 0 GA = €},q o G’A for every A € Ob(&),
hence, after replacing G and G’ by 6,4 o G and 6,4 o G’, we may assume that n = p and
GA = G’Afor every A € Ob(7). Next, for every A, B € Ob(.%7) there exists gap > n such
that €,q,5 ©Gf = Gngas 0 G’ f for every f € o7 (A, B) (again, because |.27 (A, B)| < k), and
since |Ob(&)?| < k, we may find again r < A such that r > g4p for every A, B € Ob(&/);
then clearly 6, o G = €, o G’, as required.

(if) Conversely, if o7 is a k-small object of Cat, then A := |Ob(%7)| < k. Indeed, suppose

by way of contradiction, that A > k (so that k* C 1), and pick a bijection w : Ob(%7) = A;
we let ® : Ob(&/) — k" be the map such that ®(A) := w(A) for every A € v (x"), and



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 177

®(A) := 0 for every A € Ob() \ 0™ (k). We let # be the unique category that is
equivalent to the final object [0] of Cat, and such that Ob(.%¢") = k* (i.e. £ (A, p) := {&}
for every A, i1 € k); then there exists a unique functor F : &/ — J# such that FA := ®(A)
for every A € Ob(/). Notice also that Z" is the colimit in Cat of the well-ordered system
of categories (£ | A € k*), where %) is the full subcategory of .#" with Ob(.#)) = A, for
every A € k*. Arguing as in example [4.1.4ii), we deduce that F must factor through the
inclusion J#; — JZ, for some such A; but this is absurd, since F is surjective on objects.

Example 4.1.6. Let R be a ring, M a (left) R-module; we may find sets S;, S, and an R-
linear map ¢ : R — R with Coker(¢) isomorphic to M; set k := max(|S |, |Sz|), and
recall that the category R — Mod of (left) R-modules is cocomplete ([13] Exemp.2.44(i)]).
Then we claim that M is k-small in R — Mod. Indeed, let N, : A — R — Mod be a functor
from a x-filtered ordinal A, denote by N the colimit of N,, and consider any R-linear
map f : M — N. Let also (es|s € S;) and (e; |t € S;) be the canonical bases of RV
and R®?) and p : R — M the natural projection; we get a map g : S; — N with
q(s) := f o p(es) for every s € Sy, which, arguing as in example is seen to factor
through a map gz : S; — Npg, for some f§ € A. The map gy yields by adjunction an R-linear
map g : RV — Njp, and by assumption, the image of r(t) := g o ¢(e;) vanishes in N for
every t € Sy; then we may find again y € A such that the image of r(¢) vanishes already in
N, for every t € S;, and this means that g factors through an R-linear map g, : M — N,
whose composition with the natural map N, — N agrees with f. Lastly, if f factors as
well through another R-linear map g,» : M — N, for some y’ € A, arguing as in the
foregoing we find & € A such that the images of g, o p(es) and g, o p(e;s) agree in N for
every s € Sy, so that the images of g, and g,/ coincide in R — Mod(M, N5s).

Example 4.1.7. Let R be a ring, and recall that the category C(R) of (unbounded) chain
complexes of (left) R-modules is cocomplete ([13] Exerc.2.98(ii)]). We claim that every
(Xo,dX) € Ob(C(R)) is small in C(R). Indeed, by example for every n € Z we may
find a cardinal k,, such that X, is k,-small; let then x be any infinite cardinal larger than
every k,, and consider any x-filtered ordinal A and any functor

YWiA-CR) am (Y4

Let (L., dL) be the colimit of Y7, and f, : (X.,dX) — (L.,d%) any morphism of C(R).
Recall that L, represents the colimit of Y;; : A = R—Mod : @ = Y, for every n € Z ([13]
Exerc.2.98(ii)]); then, since k > k,, the map f, : X,, — L, factors through an R-linear
map g, : X, — Y»" and the natural map Y, — Ly, for some a, < A. Since « is infinite,
and since A is k-filtered, we may then find @ < A such that @ > «a,, for every n € Z, and
we get a system of R-linear maps (g, : X, — Y | n € N) such that the composition of g,
with the natural map 77 : Y,¥ — L, agrees with f;, for every n € Z. Next, set

h, ;:dgogn—gn_lodf:xn—)Y:_l YneZ.

Then ¢

o 9 hy + Xy — Ly is the zero map for every n € Z, and arguing as in the

foregoing we find f < A with f > a, such that the composition X;, — Yf of h, with
the transition map Y, b Y¥ — Yf is the zero map, for every n € N; hence, the system
(9, = Y,f’ﬁ ogy + Xy — Ynﬂ) is a morphism X, — Y,ﬂ of C(R), whose composition
with the natural morphism Y,’B — L, yields f,. Lastly, if y,y’ < A are two ordinals,
and ue : Xo — Y, ul : Xo — Y,Y, are two morphisms of C(R) whose images agree in
C(R)(Xa, L), we may find for every n € Z an ordinal §,, > y,y’ such that the images of
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u, and u;, agree in R — Mod (X, L,), and then for every ordinal § larger than every &y,
the images of u, and u), agree in C(R) (X, Y2).

Theorem 4.1.8. Let € be a cocomplete category, .# a subset of Mor(%) such that every
element of & is small relative to the weak saturation of .#. Then there exist a functor
L: ¥ — ¢ and a natural transformation As: 1y = L
such that for every X € Ob(%) the following holds :
(a) LX is an .7 -injective object of € (see definition[3.1.1(iv))
(b) Ax lies in the weak saturation of .# (see deﬁnitionvii)).
Proof. Let Q be the class of all ordinals, and for every @ € Q set a* := a + 1, the successor

of a; recall that « is the well ordered set of all ordinals < a. We regard as usual every
such well ordered set (a, <) as a category, and for every f,y € a with f < y, we denote

by /?;/ the unique element of a(f, y) (see *}

o We shall exhibit by transfinite induction a family of functors

(LY:a"xX€ > €|aeQ)

such that the restriction of L* to f* x € equals L?, for every f, @ € Q with § < a.

e To this aim, we let L° : 1 X 4 = € be the (trivial) projection. Next, set

oX)= | | €K X)  vXeOb(®)
(FKSL)es
and fix representatives in € for the direct sums
S(X) = KEEX)  7(X) = LEEX)
( ) (f:K—ITLI)Ef ( ) (f:K—ITLI)eJ

as well as universal co-cones :

f f
(Tfjc’g) K= S(X)| (K> L g ed(X)) (r]i;’g) L > TX)| (K> L,g)ed(X)).
We get unique morphisms X & S(X) = T(X) making commute the diagrams :
Xx—2 g7 L
| %) [ Vo co00.
X2 s(x) —X - T(X)

With this notation, we define FX as the push-out in the cocartesian diagram :

S(X) —2 > x
4k
T(X) —2 - FX.

Next, let h : X — Y be any morphism of . We attach to h the unique morphisms S(h) :
S(X) — S(Y) and T(h) : T(X) — T(Y) that make commute the following diagrams, for
every (f,g) € ®(X) :

T()J(‘iy) l lf(yfﬁy) ”();vg) l/ l/”(yfﬁg)
h h
sx) — L s(y) T(xX) — L 7(v),
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It is easily seen that the rules : X — S(X) and h — S(h) yield a well-defined functor
S : % — ¥, and likewise we deduce a functor T : ¥ — %. Moreover, it is easily seen
that the rules X +— pux and X +— vy yield natural transformations g : S = 1¢ and
ve : S = T. It follows that every morphism h : X — Y of 4 induces a unique morphism
Fh : FX — FY, such that the rules : X +— FX and h — Fh yield a functor F : ¥ — ¥,
and the rules : X — /1)1( and X — wyx define natural transformations A%! : 1 = F and
e : T = F, with Al o iy = w, o v,.

We then let L! : 2 X € — ¢ be the unique functor whose restriction to 1 X € agrees
with L, such that L!(1, X) := FX for every X € Ob(%), and

L'(01,1x) =A% L'(1,h):=Fh VX € Ob(%),Vh € Mor(%).

e Let now a € Q be an ordinal > 1, and suppose that L# has already been exhibited
for every f < a; if @ = * for some f§ € Q, define L* : a* X ¥ — % as the unique functor
whose restriction to f* x € agrees with L#, such that L*(, X) := F(L#(B, X)), and

L“(/%)c, 1x) = Aiﬁ(ﬁ,x) L“(14,h) = F(LP(15,h)) VX €Ob(%), Vhe Mor(%).

e Lastly, if @ is a limit ordinal, for every X € Ob(%’) we fix a representative LX for
the colimit of the functor
L3 . @ Bx .= P By Y(By
X s — p— L’X =L7°(4,X) By — LY (By, 1x)
and a universal co-cone 7 : L3® = crx. Then, every morphism h : X — Y of ¢’ induces
a unique morphism Lh : LX — LY that makes commute the diagrams :

LP (14,h)
LAX P By

,L,/)fl/ lfg VB < a.
Lh

LX ——— LY

It is easily seen that the rules X + LX and h +— Lh yield a functor L : € — %. Then
we let L% : @* X € — € be the unique functor whose restriction to f* x ¢ equals L” for
every f < a, such that L%(a, X) := LX for every X € Ob(%), and

L“(Ba1x) =75 L“(wh) =Lh  YX€Ob(%).Yf < @ VheMor(%).

e By remark [4.1.2[iii), under the stated assumptions, we may find a cardinal x such
that every element of .# is k-small relative to the weak saturation of .#. Pick a x-filtered
limit ordinal & (e.g. we may take A := k*, by example iii)), and let L : € — € be
the functor such that L(X) := L*(@, X) and L(h) := L*(14, h) for every X € Ob(%) and
h € Mor(%); let also A, : 1 = L be the natural transformation such that

X L%0a1x) VX € Ob(%).
We claim that the pair (L, A) fulfills conditions (a) and (b) of the theorem. Indeed, the

construction and lemma make it clear that (b) holds.

Lastly, let X € Ob(%), (f : A — B) € £ and g € % (A, LX); we need to exhibit
a morphism h : B — LX such that hf = g. However, our choice of « implies that

there exists some f < « and a morphism gg : A — LPX with g = gpg © L“(ﬂ_o)c, 1x). By
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construction, we have the commutative diagram :

Bx
Trap)
A S(LAX) _ Mk LAx
fl Bx l"Lﬁx lL“(,B—ﬁJZle)
Ns.9p) @y

B—— >T(fX)——= s 1F'x

and the composition of the top horizontal arrows is gg. Denote hg : B — LA" X the

—>
composition of the bottom arrows; then h := L*(f*a, 1x) o hy will do. O

Corollary 4.1.9. (Small object argument) Let 6 be a cocomplete category, and .# a set of
morphisms of €. Suppose that every element of . is small relative to the weak saturation

F of Z. Then we have :
(i) For every morphism f of € there existsi € 7 andg € r(¥) withf =goi.
(ii) The couple (I(r(.#)),r(.#)) is a weak factorization system for € .
(iii) I(r(.#)) is the saturation of .&.
Proof. (i): Let f : X — Y be any morphism of %, and let us regard f as an object of
€¢/Y.By lemmai,iv), r(F]Y)=r(F)/Yand 7Y is weakly saturated; moreover,
according to remark i), every element of .#/Y is small relative to ¢ /Y, so also

relative the weak saturation of .# /Y. Then the assertion follows by applying theorem
[4.1.8|to the cocomplete category €' /Y (corollary|[1.4.6(iii)) and the set .# /Y C Mor(%/Y).

(ii): Since ¢ C I(r(¥)) (proposition[3.1.9(v)), the assertion follows from (i).

(iii): By proposition [3.1.9(v), the saturation of .# lies in [(r(.#)). For the converse
inclusion, let f € I(r(.¥)), and write f = g o i as in (i); proposition [3.1.10| implies that f

is a retract of i, so it lies in the saturation of .#. O

4.2. Accessible functors. The considerations of this §, that originate in [1 Exp.I, §9],
will be used in together with the small object argument, in order to exhibit generat-
ing sets of trivial cofibrations for suitable model categories.

Definition 4.2.1. Let ¥, Z be two categories, X € Ob(%), and x a cardinal.

(i) We say that a functor F : € — 2 is k-accessible, if € is I-cocomplete and F
preserves I-colimits, for every k-filtered partially ordered set I.

(if) We say that X is x-accessible, if the same holds for the functor
hxo : € — Set Y %(X,Y).
The full subcategory of € formed by the x-accessible objects shall be denoted :
Acci (F).

(iii) We say that the functor F (resp. the object X) is accessible, if F (resp. X) is a-
accessible for some cardinal a.

(iv) We say that a presheaf S on € has size < k, if |SY| < « for every Y € Ob(%).
Remark 4.2.2. (i) In the situation of deﬁnitioni), if F is x-accessible, then it is also k’-
accessible for every cardinal ¥ > k. Notice also that F is 1-accessible (resp. k-accessible

with 2 < k < Ny) if and only if it preserves all colimits indexed by partially ordered sets
(resp. all small filtered colimits).

(ii) Clearly, every composition of k-accessible functors is k-accessible.
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(iii) Let J be a small category, ¢ any category, Z a J-cocomplete category, G : JX€ —
2 a functor, and for every j € Ob(J) denote G; : € — ¥ the restriction of G to the full
subcategory {j} x € = %. It follows from lemma that if each G; is k-accessible,
the same holds for the colimit colim} G:¢ — 9.

(iv) Let € be a category, ./ a small category, and F : ¥ — </ a functor. Since the
colimits are computed termwise in ;2’/\(remarki)), we see that F is k-accessible & the
composition e4 o F : € — Set with the evaluation functor e4 : o — Set is k-accessible,
for every A € Ob(#7) (see §1.3.2).

(v) In the situation of (iv), taking into account (i), we see that F is accessible & e4 o F
is accessible for every A € Ob(%7).

(vi) Clearly every k-accessible object is xk-small (see definition ii)); the converse
holds if 2 < k < Ny, by virtue of [[13] Prob.2.45] and remark iii), but for k > N, it is
unclear whether these two conditions are equivalent.

Lemma 4.2.3. For every small category ], the functor Lim; : Set/ — Set is x-accessible
for every cardinal k > |Mor(J)| (see definition i) and §1.3).

Proof. Let E be the category with Ob(E) =: {s,t} and with E(s,t) := {do, d;}. Also, for
every f € Mor(J), let s(f) and t(f) be the source and target of f. We have a functor

d
o:set/ > set” R ( [ Fjd:;° [ Fup)
Jjeob(J) ' feMor())

where dj (resp. d;) is the unique map whose composition with the natural projection

erMorm Fy(ry = Fy(r) equals the projection p;(r) : |_|jeOb(]) F; — Fy(p) (resp. equals
Fropg(r)) for every f € Mor(J). With this notation, we have an isomorphism of functors:

Lim = Limo®
J E

(see the proof of [13| Prop.2.40]). However, finite limits commute with all filtered colimits
in the category Set, so Limg is in particular x-accessible, and we are reduced to check-
ing that the same holds for the functor ® (remark [4.2.2{ii)). Moreover, since (limits and)
colimits are computed termwise in the categories of functors, we are further reduced to
showing that every set S of cardinality < k induces a x-accessible functor

Set® — Set (Xs|s€eS)— |_|Xs
seS
(here we regard S as a discrete category, so the objects of Set® are the sequences X, :=
(X5 |s € S) of sets, and the morphisms f, : X, — Y, are the systems (f; : X; — Ys|s € S)
of maps of sets). The assertion means that for every k-filtered partially ordered set I, and
every functor F : [ — Set’, the natural map :
©) C(lygmﬂF(z)j — |—| C(lyng(z)j
jes jes
is bijective. Now, for every i € I and x, := (x| j € S) € P; := |_|j55 F(i)j, denote by [x,]
the class of x, in colim;es P;, and for every i € I, j € S and y € F(i);, denote by [y]; the
class of y in C; := colim;e; F(i);. With this notation, (*) is the map such that :
[x] = ([x];1j€)) Vi€ I,Vx, € P;.
To check the surjectivity of (), let ([y;];|j € S) be any element of |—|jeS Cj; hence, for
every j € S there exists i(j) € I such that y; € F(i);, and since I is x-filtered, we can find
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[ € I such that! > i(j) for every j € S. For every such j, let then z; € F(I); be the image
of yj; then ([y;];1j € S) = ([z;]1;1j € S), and ([z;];|j € S) is the image of [z; | j € S]
under ().

Lastly, let i,i’ € I and x, € P;,x, € Py, and suppose that (x) maps [x.] and [x]] to
the same element of [ '] ;es Cj; this means that for every j € S there exists i(j) € I with
i(j) = i,7, such that x; and x} have the same images in P;(;y. Then we may find [ € I

’

such that [ > i(j) for every j € S, whence [x.] = [x.]. O

Proposition 4.2.4. Let € be a cocomplete category, J a small category, a a cardinal, and
F, : ] = € a functor such that F; is an a-accessible object of € for every j € Ob(J). Set
f := max(a, |Mor(J)|). Then F := colim; F, is a f-accessible object of €.

Proof. Let A be a f-filtered partially ordered set, G, : A — % a functor, and 7, = (7} :
G) — G| A € A) a universal co-cone for G,; we deduce natural bijections :
lim %' (F,G,) = lim lim % (F;,G,)
Ken AeR jeob()
= lim lim €(F;,G,) (by lemma [4.2.3)
JEOB()) AA
= lim %(F;,G) (since each F; is a-accessible)
JE0b()

= ¢(F,G)

whose composition is induced by the universal co-cone 7,, whence the contention. O

Corollary 4.2.5. Let € be a small category, and .7 a subset of Mor(%). We have :
(i) Every object F of < is Kk-accessible for every cardinal k > |Mor (% /F)|.
(ii) (I(r(H)),r(F)) is a weak factorization system for‘g.
(iii) 1(r(.#)) is the saturation of .Z.

(i): If F is representable, say F = hy for some A € Ob(%), then the functor (g(F, -)
is isomorphic to the evaluation functor : G + G, by Yoneda’s lemma, and the latter
preserves small colimits (see , so F is x-small for every cardinal «.

For a general F, by proposition there exists a functor F, : 4 /F — €. with F;
representable for every j € Ob(J), and such that F represents the colimit of F,; then it
suffices to invoke proposition [4.2.4]to conclude. m|

Example 4.2.6. Let o/ and % be two small categories, and (G : A= :F)an adjoint
pair of functors. Then we claim that F is accessible. For the proof, in light of remark
V), it suffices to check that the same holds for the composition eg o F, for every
B € Ob(ZA). However, Yoneda’s lemma yields a natural identification :

ep o F(X) = ZB(hg, FX) = 7 (G(hg),X) VX € Ob(&)

so that we are reduced to the assertion that G(hg) is an accessible object of JZ?: for every
B € Ob(#), which holds by corollary [4.2.5[i).

Corollary 4.2.7. Let € be a small category, and .# the class of all monomorphisms in <.
Then (A, r(A)) is a weak factorization system for €.
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Proof. For every a € Ob(%), let _#, be the set of all epimorphisms h, — K such that
K(b) is a quotient set of h,(b), for every b € Ob(%) (i.e. K(b) = ha(b)/~ for some
equivalence relation ~ on h,(b)). Let .# be the set of all monomorphisms of % of the
form L — K, with K € ,con(¢) Fa- We shall show that .# = I(r(.#)); it will follow
that r(.#) = r(.#) (proposition [3.1.9[iii)), whence the assertion, in view of corollary
E2ii,

Now, by corollary [4.2.5(iii), [(r(.#)) is the saturation of .#; in particular, [(r(.#)) C
M, in light of example [3.1.14[ii). For the converse, consider a commutative diagram :

a-Lsx

L

B—1>Y
where i € ./ and p € r(.#), and denote by Z the set of all morphisms h : B” — X with
A C B’ C B and such that h is a diagonal filler for the induced diagram :

A——X

N

B ———=Y.
Notice that ¥ # @, since f € Z. We endow 2 with the partial order such that
(h] : By —>X) < (hg : By —>X) < By C By andhl = h2|Bl-
Clearly, if (h; : B = X |i € I) is any totally ordered subset of &, then there exists a
unique (h : B® — X) € 9 with B’ := |J;¢; Bi, and such that h > h; for every i € I. By
Zorn’s lemma, & admits therefore a maximal element k : C — X, and we are reduced to

checking that C = B. To this aim, recall that there exists a small category J and a functor
F, : ] — % whose colimit is represented by B, and such that F; is a representable presheaf
for every j € Ob(J) (proposition[1.7.3). Hence, if C # B, there exists some j € Ob(J) such
that the image K of F; in B does not lie in C; with L := C N K we get a commutative
diagram :

L—Cc—tsx

it

K——sB—1>Y

that, by assumption, admits a diagonal filler k¥’ : K — X. Set C’ := CU K C B; then k

and k’ induce a morphism k” : C’ — X, and it is easily seen that k" € Y and k" > k, a
contradiction. m]

Remark 4.2.8. (i) Corollary [4.2.7also admits the following more constructive proof. Let
us first notice that for every X € Ob(‘g) there exists a monomorphism X — Y such
that Y is ./ -injective, i.e. Y is an injective object of ?\(remark iii)) : indeed, this
follows directly from lemma@‘ since 7 is cartesian closed and has a subobject classifier
(remark [1.7.8]ii) and proposition [1.8.4(i)).

Next, let f : X’ — X be any morphism of %; we regard f as an object of ‘JZ\/X,
which is equivalent to the category of presheaves over ¢'/X (lemmal[l.7.2{i)). Then, by the
foregoing, there exists a monomorphism j/X : (X', f) — (Y,g) in %Z/X such tAhat (Y, gl

is an injective object of ‘6?/)( Thus, f = g o j, and since the source functor /X — ¢
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preserves and reflects monomorphisms (corollary i)), it is then easily seen that j is
a monomorphism of ¥, and that g : Y — X has the right lifting property with respect to
the class of monomorphisms of €, as required.

(if) For every small category o7, corollary yields a model category structure on
o/ with # = Mor(«f), whose cofibrations are the monomorphisms of &7.

Proposition 4.2.9. Let « be an infinite cardinal, o/ an a-small category, and F € Ob(,@/f\).
Then we have :

(i) F is the a-filtered union of its a-accessible subpresheaves.

(ii) F is a-accessible if and only if it has size < a.

Proof. Let .# be the set of subpresheaves of F of size < a, endowed with the partial order
induced by inclusion of presheaves. Since « is infinite, we easily see that (%, <) is a-
filtered. Let U : (£#,<) — o be the inclusion; we have an obvious co-cone j, : U = cp,
whence an induced morphism
j: lig G—>F
GeF

and j is a monomorphism, by example [1.3.7(iii). Notice moreover that for every A €
Ob(47), the image of every morphism of presheaves hy — F lies in .%, since by assump-
tion [Mor(2/)| < a. On the other hand, F is the colimit of a system of representable
presheaves (proposition [1.7.3); furthermore, for every functor S : I — Set and every uni-
versal co-cone 7, : S = cr, we have T = U;cop(p) 7i(Si). Since the colimits of o are
computed termwise, we conclude that j is an isomorphism.

Now, if F is a-accessible, it follows that there exists G € .% and f € ﬁ?\(F G) such
that 1 is the composition of f with the inclusion j; : G — F; but then j; must be an
isomorphism, so F has size < a. Conversely, if F has size < «, then |Mor(«//F)| < «a

(remark [1.1.7), and therefore F is a-accessible, by corollary i) and remark i).
This concludes the proof of (i) and (ii). O

Corollary 4.2.10. Let @ be an infinite cardinal, &/ an a-small category, and F an a-
accessible object of o7 . Then :

(i) Every subobject and every quotient of F is a-accessible.
(ii) The category Acca(@ is finitely complete and finitely cocomplete.

Proof. (i): By proposition ii), F has size < a, and the assertion means that the same
holds for every subobject and every quotient of F, which is obvious.

(ii): Let I be a finite category and ¢ : I — o7 a functor such that ¢ (i) is a-accessible
for every i € Ob(I). Again by proposition ii), it is clear that the limit and colimit of
¢ are a-accessible, so we conclude with [13] Lemme 2.52]. O

Proposition 4.2.11. (i) Let <7, % be two small categories, F: o — B an accessible functor.
Then there exists a cardinal a such that for every cardinal f > a we have :

F(Accp(7)) € Accpe (5).
(it) In particular, if fo = o and f = 260 then :
F(Accs()) € Accs(5).
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Proof. (i Let y be a cardinal > max(No, |[Mor(47)|) such that F is y-accessible. Let
Acc® (d) be the full subcategory ofAccy(.raf) whose objects are the y-accessible presheaves
X on «f such that X(A) € y for every A € Ob(). Then Acc‘)),(.rz/) is a small category,
and the inclusion functor Acc?,(rz?j — Accy(sa//; is an equivalence of categories, by virtue
of proposition [4.2.9(ii). Taking into account corollary [4.2.5[i), it follows that there exists
a cardinal @ > y such that F sends every y-accessible presheaf on &7 to an a-accessible
presheaf on Z. Let now > a be another cardinal, X a S-accessible object of rz??and
denote by (I, <) the partially ordered set of y-accessible subobjects of X. Since X has size
< p and since each element of I has size < y (proposition |4.2.9(ii)) we easily see that
|Il] < pY¥. By proposition ul), (I, <) is y-filtered and X represents the colimit of the

inclusion functor (I, <) — &7 Since F is y-accessible, we get an induced isomorphism :
colim FY = FX.
Yel

Since f* > max(f’, &), we then conclude that FX is f*-accessible, by proposition [4.2.4]
and remark [4.2.2[1).
(ii): Notice that foa = fy, so p% = (2£0)% = 2h0® = 2P = B, and apply (i). O

4.2.12. Let us now specialize as follows the situation of theorem: we take ¢ = o/
for a given small category 7, and .# shall be a set of monomorphisms of A | (corollary
[4.2.5]1)); recall that Q denotes the class of all ordinals, and for every a € Q we let a* :=
a+ 1. The proof of loc.cit. attaches to .# a family of functors (L : a* x o > | | € Q)
such that the restriction of L* to f* x ¢ equals L?, for every § < . For every a € Q, let
us then denote also

Ly : @7\ — J
the restriction of L* to the full subcategory {a} X YA

Proposition 4.2.13. For every ordinal a, the following holds :
(i) Ly sends monomorphisms to monomorphisms.
(ii) Every pair of monomorphisms X - Z <Y of </ induces an isomorphism :
La(XNY) S Le(X) NLu(Y).
(iii) Ly is accessible.

Proof. We argue by transfinite induction on a. Since Lo =14, the assertions are trivial

for @ = 0. Next, define the functors S, T : o/ — o and the natural transformations
He : S = 1 and ve : S = T as in the proof of theorem so that we have a
cocartesian diagram :

sx Xo x
le l VX € Ob (7).
TX —> L,X

According to remark iii), in order to check that L; is accessible, it then suffices to
show that the same holds for the functors S and T Let us recall the constructions of these
functors : first, for every morphism u : X — Y of &7, let

Su:@/f\—n@?\ (resp.Tusza/f\ﬁ.sz?;
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be the composition of the functor hAxop : & — Set with the functor X~ (resp. with Yy,
notation of . We then have :

SX = |_| SX  TX = u T,X.
uey ue g

Now, the functor hyop is accessible for every X € Ob(@ (corollary 1)), and the same
holds for X(~), by virtue of remark i), hence S, is accessible for every morphism u
124

of o | (remark [4.2.2(1,ii)), and then the same holds for S, by remark iii). Likewise we
check that T is accessible. Next, let us observe :

Claim 4.2.14. (i) Let S; & So N Sz be maps of sets, and suppose that i; is injective. Then
S := (51 \i1(So)) U S, represents the amalgamated sum S; Li(; j) Sz, with universal co-cone

S 55, given by the natural inclusion e;, and by the map e; such that
e1(s1) ==s1 Vs; €51\ i1(So) and e1(i1(s9)) =1iz(s9) Vso € Sp.
(if) Consider a commutative diagram of e

thXO —>X2

(%) ill lio liz

S]<—Soé52

and suppose that both i; and the induced morphism k : X; Lix, Sy — S; are monomor-
phisms. Then the same holds for the induced morphism :

Xi Ux, X, > 5 Us, Ss.
(iii) Consider a commutative diagram of T

X1 X2
Xi=—Xg—>X;

SR

51 Sy
Sj=——85 ——=5

bt

Vi< Y Y,
and suppose that :

(a) x1, s1, y1 and all the vertical arrows are monomorphisms of 7
(b) the two square subdiagrams on the left are cartesian.
Then the induced morphism :

w (X1 Xs; Y1) Uxpxg, vy (X2 Xs, Y2) = (Xq Ux, X2) Xs,04,8, (Y1 Uy, Y2)
is an isomorphism.

Proof : (i): Let S £> X <f—2 S; be two maps of sets such that fii; = faip; let f : S — X be
the map such that f(s;) := fi(s1) for every s; € 51 \ i1(So) and f(sz) := fo(s2) for every
sz € Sp. It is easily seen that f is the unique map with fe; = f; for k = 1,2, whence the
assertion.
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(ii): We regard (=) as the composition of two diagrams :

Xi<=—Xo —>Xp

|

(%) XiUxy So=—5 —=52

"

Si=——5——=5;

and notice that both the top left and the bottom right square subdiagrams of (xx) are
cocartesian, and both i, and k are injective. Clearly, it suffices to prove the assertion
separately for the top two and the bottom two square subdiagrams; hence, after swapping
the left and right squares in the bottom subdiagram, we are reduced to the case where
the left square subdiagram of () is cocartesian. In that case, we need to check that if i,
is a monomorphism, then the same holds for the induced morphism

(1) X1 Ux, Xz — (X1 Ux, So) Us, S2 = X; Ux, Sa.
But () is the push-out X Llx, i, so the assertion follows from example ii).

(iii): The morphism w is induced by the pair of morphisms :

fi f2
X1 s, Vi = (Xi Ux, Xz) Xs,u,5, (Y1 Uy, Y2) = X; Xs, Y2
where (f; | i = 1,2) are in turn induced by the universal co-cones
(e :Xi > XiUx, X2|i=1,2)  (¢f :Yi > Yily, Yo|i=12).

Since the limits and colimits of .7 are computed termwise (see , we are then reduced to
checking the corresponding assertions, where o is replaced by the category Set. More-
over, notice that the assertion is an intrinsic property of w, i.e. it is independent of the
choices of representatives for the amalgamated sums and fibre products appearing in the
source and target of w. Then, since x1,s; and y; are monomorphisms of Set (i.e. injec-
tions), we may take representatives as in (i) :

XUy, Xo = (X1 \ Xo) UXy SilUs, So = (S1\S) LS, YUy Yo = (N \Yp)uY,
eX EX

with universal co-cone X; — (X1 \ Xo) UXp — X, given by the obvious inclusion map
eg(, and by the map ef( such that ef((a) := a for every a € X; \ X, and ef((a) = x9(a)
for every a € Xj; and likewise for the corresponding universal co-cone (eis |i=1,2) for
(51 \ So) LS, (resp. (el.Y |i=1,2)for (Y1 \Yy) UYs).

Furthermore, since the vertical arrows are monomorphisms of Set, we may regard X;
and Y; as subsets of S; for i = 0, 1, 2, and we have natural identifications :

Xixs Y S X;NnY;  Vi=0,1,2.
Also, since the two square subdiagrams on the left are cartesian, we have as well :
(1) Yo=Y1NnS Xo =X1 N So.
Thus, w comes down to the map :
(X1 NY1) Uxny, (X2 N Y2) = (X1 \ Xo) U Xz) X(sp\spyus, (Y1) Yo) U'Yz)
X S Y

induced by the universal co-cones e, e, e, . Notice as well that the maps

X\ X)) UXy = (S1\Sp)US; — (1\ YUY,
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restrict, by virtue of (1), to injective maps
X1\ Xy = 51\ S« 11\ Y Xy > S Y,
whence a natural identification :

(X1\ Xo) LX2) X (s)\80)us, (Y1\ Yo) LY2) = (X1\ Xo) X505, (Y1\ Yo) LI (X2 X5, V)
S (X \ X)) N (Y1 \Y)) U (XN Y2)
= (X1 N Y1)\ So) U (Xz NYo).
So finally o is naturally identified with a map :
o (X1 NY) Uxanns, (X2 NYz2) = (X1 NYp)\ So) U (X N Ya).

Lastly, (X; N Y1) Ux,ny,ns, (Xz N Yz) is represented as in (i) by ((X; NY1) \ So) LU (X2 N Y2),
and it is easily seen that o’ is just the identity map, under these identifications. <

suffices to show the following :
Claim 4.2.15. (i) Every monomorphism X 2, Y of & induces a cartesian diagram:

SX —XoTXx

ool

SY —X > TY

whose arrows are monomorphisms of ,537: and a monomorphism SY Ugx TX — TY.
(if) Every pair of monomorphisms X — Z <Y of </ induces isomorphisms :
S(XNY) S SXNSY  T(XNY) S TXNTY.

Proof : (i): In light of example iv), in order to show that & is cartesian and that its
arrows are monomorphisms, it suffices to check that the same holds for the diagram :

K AKX T (7kx)
Dy : KU l lL(m
KT KY) T 7KY))

for every monomorphism u : K — L of /. Since the limits and colimits of &/ are
computed termwise, we then come down to proving that the diagram of sets :

o (K,X)xuu

(K, X) x KA (K, X) x LA
j*xKAl lj*xLA
— 7 (K.Y —

FK,Y) x KA —ZEDX K Y)Y x LA

is cartesian and with injective arrows, for every A € Ob(/). But since both j. and ug
are injections, this follows by direct inspection. Lastly, in order to check that the induced
morphism SY Ligx TX — TY is a monomorphism, we can again reduce to the correspond-
ing assertion for a cartesian diagram of sets with injective arrows, which follows easily

from claim |4.2.14(i).
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(ii): In order to check that the natural morphism S(X N'Y) — SX N SY is an isomor-
phism, in light of example [1.3.7iv) it suffices to show that every monomorphism K — L
of o7 induces a cartesian diagram :

KT KXOY)) | p((KX))

} J

KT KX)o g(d(K2)

and reasoning as in the proof of (i), we are reduced to checking that for every A € Ob(%7)
the induced diagram of sets :

(K, XNY)x KA —— o7 (K,X) x KA

J !

F(K,Y) x KA —— o/ (K, Z) x KA

is cartesian. But it is clear that the diagram of sets :

F(K,XNY) —= (K X)

! J

A (K,Y) —— (K, Z)

is cartesian, whence the contention. The same argument, mutatis mutandis, shows that
the natural morphism T(X NY) — TX N TY is an isomorphism. <&

Next, let @ > 1be an ordinal, and suppose that the proposition is already known for Lg,
for every ordinal f < a. If we have & = " for some such f3, then L, = L; o Lg, and since
the proposition is known for L; and Lg, we deduce it for L, as well (remark i,ii)).
Lastly, if a is a limit ordinal, then L, = colimg., Lg, so L, is accessible, by virtue of

remark iii), and since the filtered colimits are exact in 7 (example iii)), we also
get (i) and (ii) for L. O

Corollary 4.2.16. In the situation of suppose moreover that, for every element
f:X > Y of S, the functor hxo : &/ — Set preserves all small filtered colimits. Then the
functor L, preserves all small filtered colimits, for every ordinal c.

Proof. 1t sufices to trace the proof of proposition[4.2.13 adding the condition that hxor is
2-accessible for every element X — Y of .#. Indeed, in this case we get that the same
holds for both S, and T,,, for every morphism u of 4&7\ then also for the functors S and T,
and hence also for L;. Then the assertion follows, by transfinite induction. O

4.3. Cofibrantly generated model categories. As explained earlier (see corollary[4.1.9),
the small object argument is one of the possible tools for constructing weak factorization
systems. When, in a model category structure, the weak factorisation systems (6of, # N
Fib) and (W N Gof, Fib) can be constructed out of the small object argument, we say
that the model category is cofibrantly generated. Here is a more formal definition :

Definition 4.3.1. We say thata model category (¢, #', .7 ib, 6of) is cofibrantly generated
if € is cocomplete and there exist subsets .#, ¢ C Mor(%’) such that :

e .7 is small relative to I(r(.#)) and _# is small relative to I(r(_#))

o Fib=r(f)and # N Fib=r(S5).
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We then say that .# is a generating set of cofibrations, and ¢ is a generating set of trivial
cofibrations.

Our first important example of cofibrantly generated model category is provided by
the following theorem, which is found in [8] Th.2.3.11] :

Theorem 4.3.2. Forevery ring R there exists a unique cofibrantly generated model structure
on the category C(R) of chain complexes of R-modules, whose weak equivalences are the
quasi-isomorphisms, and whose fibrations are the epimorphisms.

Proof. Recall that a quasi-isomorphism is a morphism f, : Xo — Y, of C(R) that induces
isomorphisms H, (f,) : H,X. = H,Y, in homology, for every n € Z. Moreover, a complex
X, is acyclic if H,X, = 0 for every n € Z.

For every n € Z, define the chain complex D} and the morphisms ¢? and ¢; of C(R)
as in example 3.1.15} and set .#" := {¢7 |n € Z}, ¢ := {yi |n € Z}; let also & (vesp. #)
be the class of epimorphisms (resp. of quasi-isomorphisms) of C(R), so that & = r(.#)
and &N =r(_#). By example[d.1.7/and remark [4.1.2[iii), .# and ¢ are small in C(R),
and both (I(&), &) and (I(& N W), & N W) are weak factorization systems, by corollary
ii); moreover, it is clear that % enjoys the 2-out-of-3 property, and it is known that
C(R) is complete and cocomplete ([13] Exerc.2.98(ii) and Exemp.2.44(i)]). Thus, it remains
only to check that (&) =# NI(&NW).

o First, let f, € &; by applying the long exact homology sequence to the short exact
sequence (see [13] §.2.5.2]) :

0—>Kerf.—>X.£>Y.—>O
we easily see that f, € §N# & f, € & and Ker f, is acyclic.

e Let us say that a chain complex X, is cofibrant if the unique morphism 0, — X,
is in [(& N #'); moreover, let us say that X, is termwise projective, if X,, is a projective
R-module for every n € Z, and that a morphism f, : X, — Y, is a termwise split injection,
if f, : X;, — Yy, is a split monomorphism of R-modules for every n € Z. We notice :

Claim 4.3.3. (i) If (X.dX) € Ob(C(R)) is cofibrant, then it is termwise projective.

(ii) If (X, dY) is termwise projective and bounded below, then it is cofibrant.

(iii) (X.,dY) is a projective object of C(R) & (0, — X,) € # NI(&).

Proof : (i): Let ¢ : M — N be a surjective R-linear map of R-modules; then the induced
morphism q ® D} : M Qg D} — N ®g D} lies in & N # for every n € Z. Every
R-linear map f : X,—1 — N induces a morphism f, : X, — N ®g D} with f,_; = f,
fp = fod¥X,and f; := 0 for every k # n,n—1. If X, is cofibrant, then f, lifts to a morphism
ge : Xe = M ®g D? with (q ®g DY) © ge = fo, and especially g, : X;,—1 — M is a lift of
f, so X,,_1 is projective.

(ii): Let pe : (Ma, d¥) — (N.,dY) bein &N ¥, and set (K., dX) := Ker(p.); this means
that p, : M, — N, is surjective for every n € N, and H,(K,) = 0 for every n € Z. Now, let
ny € Z such that Xj = 0 for every k < ng, and let f, : X — N, be a morphism of C(R); we
construct, by induction on k > ng, a system of R-linear maps go := (gi : Xk — My | k € Z)
such that g, is a morphism X, — M, of C(R) with p,oge = fi. Clearly, gi shall be the zero
map for every k < ng. Next, suppose that n > ny, and that g; has already been exhibited
for every k < n; since p, is surjective and X, is projective, we may find an R-linear map
h: X, — M, such that p,, o h = f,. Set

H=d"oh-g, 10d: X, —» M,_,.
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Then p,yoH=dY op,oh—py10gp10dX =dNof, — fo_1 0dX =0, and moreover
dM oH=-d" 0g, 10d) =—-g,p0d*  odf =0,soH factors through an R-linear
map H' : X, — Z,_1K, and the inclusion Z,,_1K, — M,,_; (where Z,,_;K, denotes the
submodule of (n — 1)-cycles of K,). Since K, is acyclic, we have Z,,_1K, = B,_1K,, where
B,-1K. denotes the (n — 1)-boundaries of K, (see [13| §2.5.1]). Since X, is projective,
we may therefore find an R-linear map G : X,, — K, such that dX o G = H’. Lastly, set
gn :=h-G: X, — My;thend¥og, = dMoh—H’ = g,_,0dX and p,0g, = f,—pnoG = f,,
as required.

(iii): In light of remark [3.1.2fii), it suffices to check that every projective object Y,
of C(R) is an acyclic complex. To this aim, let (P,,dl) be the chain complex such that
Py = Y, ® Yy for every n € Z, with d¥ (y,v') == (dYy,y — d’,,y’) for every n € Z and
every (y,y’) € P,. The system of natural projections (p, : P, — Y, |n € Z) is then an
epimorphism p, : Po — Y, of C(R); hence, since Y, is projective, there exists a morphism
Se : Yo — P, of C(R) such that p, 0 s, = 1y,. For every n € Z, let also g, : P, — Y41 be
the second natural projection, and set D,, := g, 0 s, : ¥;; — Yy41; notice that :

d¥ oqu+qn10d’ =p, Vn € Z.
Therefore :
dzﬂ oD, +D,_; Od,f = d}: O qn©Sy+qn-1 Odf osy =1y, Vn € Z.
In particular, if y € Z,Y,, then d};an(y) =y,s0y € B,Y,, so Y, is acyclic. <&
Claim 4.3.4. Let f, : (X,,dX) — (Y,,dY) be a morphism of C(R), with X, cofibrant and

Y, acyclic. Then f, is homotopically trivial (see [13| Def.5.4]).

Proof : Define the complex (P,, dY) and the epimorphism p, : P, — Y, of C(R) as in the
proof of claim[4.3.3{iii), and notice that Ker(p,) is isomorphic to Y, [1]. Especially, Ker(p.)
is acyclic, so ps € & N ¥ . Since X, is cofibrant, it follows that there exists a morphism
ge : Xe — P, of C(R) such that p, 0 ge = fo. The latter means that for every n € N there
exists an R-linear map h, : X, — Y41 such that g,(x) = (f,(x), hn(x)). The condition
d¥ 0 g, = gu—1 o dX then translates as the identity :

fu(x) = Yy hn(x) = hyoydi) (x) VnezZ

n+l
i.e. he := (hy | n € Z) is a chain homotopy from f, to the zero map. &
Claim 4.3.5. A morphism i, : (Xe,dY) — (Ya,dY) isin [(& N #) if and only if it is a
termwise split injection with cofibrant cokernel.

Proof : Suppose first that i, € [(& N #); consider the unique morphism

fo: Xo — X, ® D! such that fa=1x, and fo1= dx

n+l-

Since X, ®; D?*! is acyclic, there is a morphism ge : Yo — X,,®z D?*! such that ge0i, = fi.
In particular, i, is a split monomorphism. On the other hand, since [(& N#) is saturated
(proposition v)), the cocartesian diagram :

Xo — 0,

{ ]

Y, —— Cokeri,
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shows that Coker i, is cofibrant. Conversely, suppose that i, is a termwise split injection
with cofibrant cokernel, and consider a commutative square :

Xo LA.

I,

Y, —= B,

with p. € & N # . Set (K., dX) := Ker p., and (C.,dS) = Coker i, so that Y,, = X,, ® C,
and Cy, is a projective R-module for every n € Z, by Claim Then d) : X, ® C, —
Xn-1® Cy_1 and g, : X, ® C,, — B, can be expressed as blocs of matrices :

ax r,
d}::((’)’ ;C) gnz(pnfn O'n) VneZzZ

for certain R-linear maps z,, : C,, — X,,—1 and 0,, : C,, — By, and the conditions dr}:_IOd,f =
0and d? o g, = g,_1 o d¥ come down to the identities :

dff_l 0T, +Tp 10 df =0 and df 00y =Pn-10 fn-10Th +0p-10 d,f.
Likewise, a diagonal filler h, : Y, — A, for the square can be expressed as a system of

R-linear maps (h, : X,, ® C, — A, | n € Z), given by blocs :
hn=(fn va) VneZ
and the conditions p, o h, = g, and dﬁ oh,=h,_;0 d}l[ come down to the identities:
PnOVy =0y and d,‘?ovnzfnorn+v,10dg.
Now, since Cj, is projective, we find for every n € Z an R-linear map G, : C, — A,, with
pnGn = oy, Setry, == d;;‘G,, —Gn_ldf—fn_lrn :Cp — A, foreveryn € Z. Then p,_1r, =
0 for every n € Z, so ry, is the composition of an R-linear map s, : C, — K,_; with the
inclusion j,_1 : K,—1 — A, _1. Moreover, df_lrn = —df_lGn_ld,§+ﬁl_21’n_1d5 = —rp_1dS,
so the system (s, | n € N) defines a morphism s, : C, — %K, of C(R), where (2K,, d>¥)
denotes the chain complex with =K, := K,,_; and d>X := —dX__ for every n € Z. By claim
4.3.4] so is homotopically trivial, i.e. there exists a system of maps (D, : C,, — K, |n € Z)
such that —dX o D,, + D,,_1dS = s, for every n € Z. Let v, := G, + juDp, : C, — A, for
every n € Z; then p,v, = 0, and
dr?vn = dfGn + d?]nDn = d;‘llGn + jn—ldyIfDn = d;?Gn + jn—l(Dn—ldf - Sn)

= d;?Gn + (Un—l - Gn—l)ds —TIn

= vn_ld,f + faTn
ie. (hy == (fasvn) : Yy > Ap|n € Z) is the sought diagonal filler. <&

We may now conclude the proof’: let (fo : Xo — Y,) € I(&); then f, is a split monomor-
phism and Coker(f,) is a projective object of C(R), by example since C(R) is an
abelian category ([13| Exerc.2.98(ii)]); but then Coker(f,) is acyclic, by claim [4.3.3{iii), so
fo € W, by the long exact homology sequence arising from the short exact sequence

0— X, £> Y, — Coker(fs) — 0
([13} §2.5.2]). Conversely, suppose that fy € # N I(& N #'), and pick a factorization
fo = pe 0 is with p, € & and i, € [(&); then iy € # by the foregoing, so ps € # N &,
by the 2-out-of-3 property of #'. Hence, fo € [({p.}), so f. is a retract of i, (proposition

[3.1.10), and finally f, € [(&), by proposition[3.1.9v). O
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4.3.6. Let R be any ring, ./ any abelian category, and F : R — Mod — &/ any additive
functor. Then F extends naturally to an additive functor
C(F) : C(R) — C(«) (Xe,dX) > FX, == (FX,, FdX |n € Z)
where C(27) denotes the category of chain complexes of objects of .27. Let also X be the
class of quasi-isomorphisms of C(.<7), and suppose that the localization
D(&/) = C(«/)[27']

exists (this is the case, e.g. if o7 is a Grothendieck abelian category). Likewise, set D(R) :=
ho(C(R)), where we endow C(R) with the model structure provided by theorem[4.3.2] so
that also D(R) is the localization of C(R) that inverts quasi-isomorphisms. Denote by
Yo : C(&/) — D(&) the localization functor; then we claim that y,s o C(F) : C(R) —
D(/) admits a left derived functor

]LF :D(R) — D(;z/)‘

that we call the total left derived functor of F. For the proof, according to proposition
[3.4.4]i), it suffices to check that the functor C(F) sends trivial cofibrations of C(R) to
quasi-isomorphisms of C(). However, the proof of theorem [4.3.2) shows that the class
[(&) of trivial cofibrations of C(R) consists of the split monomorphisms i : Xe — Y, such
that C, := Coker(i,) is a projective object of C(R); especially, C, is acyclic and cofibrant
(claim [4.3.3[iii)), and therefore 1¢, is homotopically trivial (claim[4.3.4). But then we have
an isomorphism Y, = X, ® C, of C(R) that identifies i, with the natural monomorphism
Xe — Xo ® C,, so Fi, : FX, — FX, ® FC, is again (up to isomorphism) the natural
monomorphism ([13] Prob.2.76(i)]), and furthermore, 1p¢, is homotopically trivial ([13]
Rem.5.5(v)]); especially, FC, is acyclic, and so Fi, is a quasi-isomorphism, as stated.

4.3.7. The canonical model category structure on Cat. Our second example is a cofibrantly
generated model category structure on the category Cat of small categories; this example
will be relevant to our discussion of the Joyal model category structure on sSet in

Definition 4.3.8. Let o7, % be two categories. We say that a functor F : &/ — H is an
isofibration if for every A € Ob(¢7) and B € Ob(%), and every isomorphism g : FA = B
of A, there exists A’ € Ob(.%/) and an isomorphism f : A = A’ of .o/ with Ff = g.

Theorem 4.3.9. (i) There exists a cofibrantly generated model category structure
(Cat, W, Fib,6of)
called the canonical model structure on Cat, such that :
(a) W is the class of equivalences of categories
(b) Fib is the class of isofibrations
(c) Bof is the class of functors that are injective on objects.
(ii) Every object of Cat is both fibrant and cofibrant for the canonical model structure.

Proof. (i): We regard as usual the ordered sets @, [0] and [1] as categories, and denote
by I the category with Ob(I) := {0, 1} and such that the inclusion functor n : [0] — I
is an equivalence of categories. Let moreover S be the category with Ob(S) = {0, 1}
such that 5(1,0) = &, S(i,i) = {1;} fori = 0,1, and S(0,1) = {a,b : 0 == 1}. We let
9 = (9},9]) : [0] L [0] — [1], where 8] : [0] — [1] are the face maps (definition
[2.1.1]iii)), and denote by i (resp. j, resp. k) the unique functor @ — [0] (resp. the unique
functor [0] L/ [0] — [0], resp. the unique functor S — [1] that is the identity on objects).
We observe :
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Claim 4.3.10. (i) The class of essentially surjective functors of Cat is stable under retracts.
(ii) r(n) is the class of isofibration of Cat (notation of definition iii)).
(iii) r(i) is the class of functors of Cat that are surjective on objects.
(iv) r(j) is the class of functors of Cat that are injective on objects.
(v) r(9) (resp. r(k)) is the class of full (resp. faithful) functors of Cat.
i) # nFib=# nr(i) =r(ik,9).

Proof : We leave (ii)—(vi) to the reader. For (i), consider a commutative diagram :

P A . S
of

of Cat such that K o H = 1y and K’ o H’ = 14. Suppose that F is essentially surjective,
let B € Ob(#), and set B’ := H'B, so that B = K'B’; by assumption there exists A’ €
Ob(.«”) with an isomorphism f : FA” = B’, and then K’ f : K'FA’ = GKA” = Bis an
isomorphism of %, so G is essentially surjective. <&

o From claim[4.3.10(i,ii,iv,v) and proposition v) we see that %/, Gof and .Fib are

stable under retracts. Next, consider a commutative diagram of Cat :

o Ho @

oo

#—Ls9

where F € %of and G € .Zib. Suppose first that G € #; then G is surjective on ob-
jects (claim [4.3.10(vi)), and since F is injective on objets, we can find a diagonal filler
I : Ob(#B) — Ob(¥) for the induced diagram Ob(&’) formed by the underlying maps of
sets of objects. Then, for every morphism f : B — B’ of %, by assumption there exists a
unique morphism g : [B — [B’ of € such that Gg = Kf, and we set Lf := g. It is easily
seen that the rules B +— IB for every B € Ob(#) and f + Lf for every f € Mor(%)
yield a well-defined functor L : 28 — % that is the sought diagonal filler for & (details
left to the reader). This shows that $of c [(# N ZFib).

e Suppose next that F € #; then for every B € X := Ob(#) \ F(Ob(%/)) we can
choose (by the axiom of choice) an isomorphism ¢p : FAgp = B for some Ap € Ob(.27).
We deduce the isomorphism K(¢p) : GH(Ap) = KF(Ag) = KB of 2, and since G is
an isofibration, we then get Cg € Ob(%) with an isomorphism g : HAg = Cp of €
such that GCg = KB and G(¢¥5) = K(¢p). Let I : Ob(#HB) — Ob(¥) be the map such
that [(FA) := HA for every A € Ob(«/) and IB := Cg for every B € X. Moreover, for
every A € Ob(«f) set Apa = A, Cpa = HA, ¢ra = 1ps and Ypa = 1ga. With this
notation, for every morphism f : B — B’ of # there exist unique g € </ (Ap, Ap’) and
Lf € €(Cp, Cp) that make commute the diagrams :

Flgy) H(gy)
FAp —2 > FAg HAs — 5 HAp

#B \L lfﬁB’ VB \L \L 124
f Lf

B————F Cp ———Cp.
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It is easily seen that the rules B — [B and f + Lf for every B € Ob(#) and every
morphism f of & yield a well-defined diagonal filler L : 8 — ¥ for diagram & (details
left to the reader); this shows that # N %of c I(Zib).

o Lastly, let F : &/ — 2 be any functor; we set A := Ob(&/) U X (where X is as
in the foregoing), and let G : A — Ob(%) be the map such that GA := FA for every
A € Ob(¢7) and GB := B for every B € 3. We let € be the category such that Ob(%) := A
and € (X,Y) := Z(GX,GY) for every X,Y € Ob(%¥), with the composition law deduced
from the composition law of 4, so that G defines a functor 4 — % acting as the identity
map on the sets of morphisms. Then clearly G : € — 4 is fully faithful and surjective on
objects, so it lies in #'N.Z ib (claim[4.3.10[iii,vi)); moreover we have a functor H : & — ¢
such that HA := A for every A € Ob(.%/), and Hf := Ff for every f € Mor(&). Clearly
H e %f and GoH =F,so (¢of, # N Zib) is a weak factorization system for Cat.

e It remains to check that the same holds for (# N %of, % ib). To this aim, we define
now % as the full subcategory of Fo7 /% whose objects are the triples (A, B, f) where
f : FA 5 Bis an isomorphism of %, and let G : € — % be the restriction of the target
functor t : Fo/ |2 — 2B (see §1.4). Moreover, let H : &/ — % be the functor such that
HA = (A, FA, 1p4) for every A € Ob(«) and Hf := (f,Ff) for every f € Mor(</).
Clearly F=GoH,H € # N%of and G € .%ib, as required.

e By example i) and claim[4.3.10(ii,vi), {n} is a generating set of cofibrations and
{i,k, 3} is a generating set of trivial cofibrations; to conclude the proof of (i) it suffices

now to recall that Cat is complete and cocomplete (proposition[1.10.4), and to notice :

Claim 4.3.11. The class of equivalences % has the 2-out-of-3 property.
Proof : Recall that a functor F : &f — 4 is an equivalence if and only if it admits a
quasi-inverse, i.e. a functor G : 8 — o/ with isomorphisms of functors 1, = G o F

and 14 = F o G. Now, let &/ L B L % be two functors, and set F”/ := F' o F. If
F,F’ € W, pick quasi-inverse functors ¢ G—> B g o/ and set G” := G o G’; then we get
isomorphisms :

G'F'"=G(G'F')F = GF S 14 F'G" =F (FG)G = F'G = 14

G G//
so that F” € W .If F,F"” € W, pick quasi-inverse functors # — & and ¢ — ; we
then get isomorphisms :
F/(FG")=F'G" =14  (FG')F = (FG")F'(FG) =F(G"F")G = FG =5 14
so that F/ € # . Likewise, one shows thatif F/,F”" € #',then F € #'.

Assertion (ii) of the theorem is clear from the definitions. O

Corollary 4.3.12. The canonical model structure is the unique model category structure on
Cat whose weak equivalences are the equivalences of categoriesE]

Proof. Let (Cat, #, Zib,%0f) be the canonical model category structure on Cat, and
M = (Cat, #, Fib*,6of") another model category structure on Cat having the same
class # of weak equivalences; we need to check that .Zib* = Fib and Gof* = %of.
However, notice that it suffices to check that Gof* = %of, since then it follows that
Fib* =r(# NGof*) =r(W N6of) = Fib (lemma[3.1.18i)).

We shall call M-fibrant (resp. M-cofibrant) the fibrant (resp. cofibrant) objects relative
to the model structure M, and we shall call likewise M-fibrations (resp. M-cofibrations)
the elements of .Zib* (resp. of Gof™).

21 have borrowed this proof from an nlab webpage


https://ncatlab.org/nlab/show/canonical+model+structure+on+Cat
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Claim 4.3.13. (i) The final category [0] is M-cofibrant.

(i) # NnFib* c W N ZFib.

(iil) 6of c Gof* and Fib* c Fib.
Proof: (i): Let % be any non-empty category, and choose an M-cofibrant category % with
an equivalence of categories ZZ = € (see ; then Z is necessarily non-empty, so

we have a functor F : [0] — . The composition of F with the unique functor 4 — [0]
equals 1(o), i.e. [0] is a retract of %, so we conclude with proposition V).

(i)): Let G € # N Fib*; then G € r(%of*), and especially, G € r(i : @ — [0]), by
virtue of (i), and the assertion then follows from claim[4.3.10|vi).

(iii): The first inclusion follows from (ii) and proposition ii). From this first inclu-
sion, we then deduce that # N6of C # NGof*, whence, after invoking again proposition
ii), the second stated inclusion. &

Next, let I := ch([1]), where [1] := {0,1}, and ch : Set — Cat is the functor that
assigns to every set S the chaotic category structure on S; recall also that ch is right
adjoint to the functor Ob : Cat — Set, and let o : 1cat = ch o Ob be the unit of
adjunction for the pair (Ob, ch) (see remark|[1.2.7). Notice that, for every category ¢, the
datum of a functor F : I — % is equivalent to that of an isomorphism f : X = Y of ¢ :
namely, to every such f one attaches the unique functor F such that F(0) := X, F(1) := Y,

F(O_l)) := f and F(ﬁ)) := f~1 for the unique morphismso_l) (05 1and10:1 5 0 of I.

Claim 4.3.14. (i) The unique functor G : I — [0] is not an M-cofibration.
(ii) ne : € — ch o Ob(%¥) is an M-cofibration for every ¢ € Ob(Cat).

Proof : (i): Notice that G is an equivalence, so it suffices to check that G is not a trivial
M-cofibration. However, let 4 be an arbitrary small category, & any M-fibrant category
with an equivalence ¢ = % (see §3.3.1), h any isomorphism of %, and consider the
commutative diagram of Cat :

I—H><%’

of

[0] == 0]

where H is the unique functor associated with the isomorphism h. If G were a trivial
M-cofibration, then the diagram would have a diagonal filler; but the existence of such
a diagonal filler is equivalent to asserting that & is the identity morphism of an object
of A (details left to the reader); since h is arbitrary, we would then conclude that every
isomorphism of % must be an identity morphism. Especially, for every X € Ob(%), the
unique automorphism of X is 1x; then, since € is equivalent to %, the same property
would apply to the objects of €, which is absurd, since ¥ is an arbitrary small category.

(ii): Indeed, n¢ is the identity map of Ob(%’) on objects, so it lies in 6o f, whence the
claim, by virtue of claim [4.3.13[iii). &

In light of claim [4.3.13iii), we are reduced to checking that $of* C %of; suppose
then, by way of contradiction, that the functor F : &/ — % is an M-cofibration but does
not lie in %of, i.e. is not injective on objects. Hence, let A, A’ € Ob(&/) with A # A’ and
FA = FA’, pick aretractionr : Ob(2/) — {A, A’} of the inclusion map {A, A’} — Ob(&7),
and set J := ch({A, A’}); by adjunction, r corresponds to a unique functor R : &/ — ]
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such that Ob(R) = r. We then consider the commutative diagram of Cat :

ojufo] 2% o R .

\
[i] b l il ic " choOb(%)

whose central square subdiagram is cocartesian, and where (A, A’) is the unique functor
that maps the two objects of [0] LI [0] to A and A’; then B is of course the unique functor
that maps the unique object of [0] to FA. It follows that G is an M-cofibration (proposition
[3.1.9(v)), and taking into account claim[4.3.14{ii), the same then holds for T.

Lastly, we get a commutative diagram of Cat :

J J J

b s I |

[0] ———— ch o Ob(%) [o0].

Indeed, the diagram commutes on objects by construction, and then it commutes also
in Cat, since, by virtue of the adjunction (Ob, ch), any two functors J] =% ch o Ob(%)
coincide if and only if they coincide on objects. Summing up, the unique functor J — [0]
is a retract of T, so it is an M-cofibration as well (proposition v)). But the bijection
{A,A’} = [1] with A — 0 and A’ +— 1 yields an isomorphism of categories ] = I, so
the unique functor I — [0] is also an M-cofibration, contradicting claim [4.3.14(i). O

4.4. Cylinders and anodyne extensions. In this section and the following one, we
explain a general procedure for constructing cofibrantly generated model structures on
categories of presheaves of sets over a fixed small category, following [3]. The idea comes
from the early work of Fabien Morel on the homotopy theory of schemes [11]] : it consists
in following step by step most of the book of Gabriel and Zisman [[6] on the homotopy
theory of Kan complexes, and to see that a significant part of it makes sense in wide
generality. We begin with the following definition :

Definition 4.4.1. Let &/ be a small category. A cellular model for o is a set M of
monomorphisms of presheaves on .o/ such that I(r(.#)) is the class of all monomor-
phisms of presheaves on o7

Example 4.4.2. (i) The proof of corollary[4.2.7|shows that the set of all monomorphisms
of o7 of the form L <> K, where K runs over the quotients of representable presheaves,
is a cellular model for 7.

(ii) If & is an Eilenberg-Zilber category, the set & := {oh, < h,| € Ob(&/)}isa
cellular model for &7 : indeed, I (r(£)) is the saturation of Z (corollary iii)), so the
assertion follows from example [3.1.14{iii).

Definition 4.4.3. (i) Let o/ be a small category, and X an object of /. A cylinder of X
is a commutative diagram in &7 :

Vx
T

where Vyx is the codiagonal ([13} Exerc.2.66(iii)]) and (o, d1) is a monomorphism.
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(if) A functorial cylinder on </ is the datum of an endofunctor
1 — o
together with natural transformations :
80,81:1&7::'1 O':I:>IJ

X,010X o N
such that X U X (HeX8X) x 25 Xisa cylinder of X, for every X € Ob(.2/), where

the notation dy ® X and 9; ® X and 0 ® X is defined as in §1.1.5|

(iii) An exact cylinder on o is a functorial cylinder (I, ds, o) on 7 such that:

(DH1) I preserves small colimits and monomorphisms
(DH2) every monomorphism j : K < L of </ induces cartesian squares :
K—>1

3i®Kl la,@L Vi = 0’ 1.
.
IK —> 1L

Remark 4.4.4. (i) For any cartesian diagram of e

X—Y

oo

Z—T
in which every arrow is a monomorphism, the induced morphism
() YuxZ—T

is a monomorphism. Indeed, since the limits and colimits are computed termwise in 4;7\
and since monomorphisms (and epimorphisms) in o/ can be detected termwise (remark
[1.6.2), the claim is reduced to the corresponding assertion for cartesian diagrams of sets in
which all arrows are injective, and in this case we have a natural identification of Y Lix Z

with the union Y U Z c T. Then, for a diagram of 7 we shall denote likewise Y U Z the
image of (x), so that we have an inclusion

YuzcT.
(ii) In the situation of definition ii), notice that dp ® X and 9; ® X have the left

inverse o ® X, for every X € Ob(4/), so they are monomorphisms ([13] Exerc.1.119(i)]).
The subobject of IX determined by 9, ® X shall be denoted :

{e}®X VX €Ob(&),Ve=0,1.

Hence, condition (DH2) of definition iii) says that if (I, de, 0) is an exact cylinder,
then every inclusion K C L of presheaves over .27 induces inclusions :

{e} @ K CIKU{e}®LCIL Ve=0,1.

(iii) Since (dp ® X, 91 ® X) is a monomorphism, we have {0} ® X N {1} ® X = & (where
& denotes the empty presheaf); then we also set :

ARX ={0}®XU{1}®X CIX VX e Ob().
Clearly we have :

(PI®L)x IK=({0} ® L) x;p IK LI ({1} ® L) X1 IK.
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Indeed, these identites can be checked termwise, by evaluating the left and right side on
objects of .27, and since the evaluation functor preserves and reflects limits and colimits,
we are reduced to showing the corresponding identities in the category of sets, where
they are obvious. Combining with (DH2), we obtain a cartesian square:

aIgj
JIRK —90IQL

oo,

I
K— oL

where all arrows are monomorphisms, whence, again by (i), an induced inclusion :
IKUJI®L CIL

for every monomorphism K C L in </ and every exact cylinder (I, d, 0).

Example 4.4.5. (i) Let (J, ), o7) be any cylinder of the final object of Jz?\(one such final
object is the presheaf E such that E, := {@} for every a € Ob(7)). Then it is easily seen
that we get an exact cylinder on .2/ consisting of the functor :

I > XeoJxx Lo gxxZLixy
together with the natural transformations :

dhilr=>1 X (dxX)  (e=01) o:l=>1- X (0! xX).

We call (I, de, 0) the cartesian cylinder induced by (], a{ o).

(ii) If E is a final object of .@’7\ then J := E U E, with the natural monomorphisms
(8! :E — J|e=0,1) and the codiagonal ¢/ := Vg, forms a cylinder of E.
(iii) Let Q be a subobject classifier for o (proposition , and E a final object of .

For every X € Ob(sz?j we have two distinguished elements @x, 1x of Sub _AX) (where
Jx denotes the empty subobject of X, represented by the unique monomorphism & — X
from the initial object @ of 42?5 and the rules : X — @x and X +— 1x define morphisms
of presheaves on o
30,61 + hg = Sub

(where hg is the presheaf represented by E). By Yoneda’s lemma, §, and §; correspond to
unique morphisms dy, 01 : E = Q of ra Clearly we have 1x = @x in Subgy{X) if and
only if X = &, therefore 9y and 9; induce a monomorphism (9, d;) : ELLE — Q; we then
get a well-defined cylinder of E :

ELE- 2, 6%

whence, according to (i), an induced cartesian cylinder, that we call the Lawvere cylinder.
This cylinder will play a special role in
Definition 4.4.6. (i) Let .o/ be a small category, (I, de, 0) an exact cylinder on </, and

An a class of morphisms of . We say that An is a class of I-anodyne extensions, if the
following conditions hold :

(AnO) There exists a set A of monomorphisms of o7 such that An = [ (r(n)

(An1) For every monomorphism K < L of J and for ¢ = 0, 1, the induced morphism
IKU{e}®L — ILis An

(An2) For every (K — L) € An, the induced morphism IK U 9l ® L — IL is in An.
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(ii) A homotopical structure on o7 is the datum of an exact cylinder (I, de, o) on o/ and
a class of I-anodyne extensions in 7.

Remark 4.4.7. (i) In case (I, de, 0) is the cartesian cylinder induced by a cylinder (J, ol o/ )
of the final object of o (see example i)), we will also say that An is a class of J-
anodyne extensions.

(ii) Condition (An0) implies especially that An is the saturation of A (corollary[4.2.5(iii)),
and lies in the class of monomorphisms of %7 (example ii)).

(iii) The class of all monomorphisms of o isaclass of I -anodyne extensions, for every
exact cylinder (I, d, 0) on &7, by virtue of example i).
4.4.8. Given an exact cylinder (I, d, o) on & and a set S of monomorphisms of f;a’f\ let
us pick a cellular model .# for <7, and let us set

ANS, M) =SU{IKU{e}®L — IL| (K > L) € #,e=0,1}.
Next, let us define inductively :
AN S, M) ={IKUdl®L — IL| (K —> L) € A}(S,.#)} VYneN
and finally :
AL(S, ) = | AH(S, ) Ani(S) = L (AL(S, A1),
neN

Proposition 4.4.9. With the notation of §4.4.8 the class Anj(S) is the smallest class of

I-anodyne extensions in o/ containing S.

Proof. Clearly, every class # of I-anodyne extensions containing S, contains as well

I(r(_#)). Thus, it suffices to check that An;(S) is a class of I-anodyne extensions. Con-
dition (An0) holds with A := A;(S, .#). To show (Anl), notice first that, by virtue of the-
orem|[1.7.5[iii), the functor I admits a right adjoint. We then apply proposition [3.1.21](iii)
to the functors F; := 1 J(;\(whose adjoint is of course 1 ;ﬁ and F, := I, to the natural trans-
formation 9, : 1 ~— I, and to the subclass . := .#. Recall that [(r(.#)) is the class .%

of monomorphisms of 42?? and notice that, with the notation of loc.cit. we have
j°=UKU{e}®L — IL) V(j:K—L)e .z,
Hence, by construction we have as well .Z° C A? (S, A ); then we get :
I =1(r (M) CU(r(A°)) C U(r(ANS, #))) C Ani(S)
i.e. the inclusion j° is in An;(S) whenever j € .# and ¢ = 0, 1, which is (An1).

Next, it is easily seen that the functor a1 : o/ — <f admits as well a right adjoint, so
we may also apply proposition [3.1.21[iii) with F; := oI, F, := I, and with 7, given by the
inclusion oI < I. We also take . := A;(S, .#), and notice that in this case we have

j*=(UKUdl®L— IL) V(j:K—>L)e s.
In particular, notice that by construction we have .° C .%. Then we get :
Ang(S)° =1(r(#))° € I(r(#*)) € I(r(#)) = Any(S)

i.e. the inclusion j¢ is in An;(S) whenever j € An;(S), which is (An2). O
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Cori)llary 4.4.10. In the situation of let (J,0],07) be a cylinder of the final object
of &/, and suppose that :

(@) (1, e, 0) is the cartesian cylinder induced by (], al, o’) (see examplei))

(b) IKUAI®L — IL) € [(r(AY(S, .#))) for every (K — L) € S.

Then we have :

Anr(S) = I(r(AX(S, A))).

Proof. As l(r(A?(S, AM))) c Ang(S), it suffices again to check that l(r(A(I)(S, M))) is a
class of I-anodyne extensions. Condition (An0) holds with A := A?(S, M). To show
(An1) and (An2) we argue as in the proof of proposition : we apply proposition
[3.1.21{(iii) to the natural transformation 9, : F; = F, (for ¢ equal to either 0 or 1), where
Fy:=1_and F; := I, and we take . := .#. Then .7° C A?(@, M) C A}(S, M) and we
deduce again that .#° c I(r(°)) C l(r(A?(S, M))), where & = [(r(MA)) is the class

of monomorphisms of JZ?T this yields (An1). Next, we observe :
Claim 4.4.11. A}(S, M) C l(r(A?(S, M))).

Proof : In view of condition (b), it suffices to check that A}(@, M) C l(r(A?(S, M))).
However, for every (K — L) € .#, the morphism :

IX(JXKU{e} XL)UdJX(JXL) > JXJXL

is identified (by permutation of the first two factors) with the morphism :
IX(JXKUJJXL)U{e} X (JXL) > JXJXL

which lies in I(r(AY(S, .#))), by condition (An1). <&

We then apply proposition [3.1.21iii) to the natural transformation given by the in-
clusion oI — I, and we take . := AY(S, .#), so that .#° = A} (S, A ); combining with

claim[4.4.11] (and with proposition m)), we then get : [(r(.#))°  I(r(A}(S, .#))) C
1(r(A}(S,.#))), and this yields (An2). m]

4.5. Model structures on categories of presheaves. Henceforth, and until the end of
this section, we fix a small category o/ and a homotopical structure ((I, de, 0), An) on &/
(see definition [4.4.6(ii)). Hence, whenever we mention I-anodyne extensions, it will be
understood that we refer to elements of the class An.

Definition 4.5.1. (i) Let fo, fi : X =2 Y be two morphisms of /. An I-homotopy from f,
to fi is a morphism of presheaves h : IX — Y such that :

ho(0:®X) = f: Ve =0,1.
(ii) Forevery X,Y € Ob(;z?j, we set
[X,Y] = /(X, )/~

where £ denotes the smallest equivalence relation on .;z//\(X ,Y) such that f; S f1 whenever
there exists an I-homotopy from f; to fi. Two morphisms f,g : X =% Y are I-homotopic,
if their images [f], [g] coincide in [X, Y].

Remark 4.5.2. (i) In the situation of deﬁnition ii), clearly if fy L fi,thengo fy L gofi
for every morphism g : Y — Z of .o/. Moreover, the functoriality of the cylinder I easily
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implies that f; o ¢’ L fi o g for every morphism g’ : Z’ — X of o/ Hence, there exists a
well-defined category :

g
of presheaves on .7 up to I-homotopy, whose objects are the presheaves on o7, and with
(X, Y) = [X,Y] for every X,Y € Ob(7), with the unique composition law such that
the system of projections (nxy : @ (X,Y) — [X,Y] | X,Y € Ob(«/)) yields a functor :

g =i XX (f:X oY) e axy(f).

(if) We shall say that a morphism of o isan I -homotopy equivalence, if its image in
271 is an isomorphism.

Lemma 4.5.3. Forevery f € ;a/f\(X, Y), the following conditions are equivalent :

(a) f is an I-homotopy equivalence.

(b) There exists a morphism g : Y — X such that fg L 1y and gf L 1x.

(c) EveryK € Ob(&?; induces a bijection f. i : [K,X] = [K,Y].

(d) EveryK € Ob(@ induces a bijection f : [Y,K] = [X,K].
Proof. We have (a)&(b) by definition. If (b) holds, then g. x : [K,Y] — [K,X] is a left
and right inverse for f. x, whence (c). Conversely, if (c) holds, there exists a morphism
g : Y — X of presheaves such that f. y([g]) = [1y] in [Y, Y], i.e. fgis I-homotopic to 1y.

Then fgf is I-homotopic to f = f1x, and therefore [gf] = [1x], again by (c), whence
(b). Likewise one shows the equivalence (b)<(d). O

Definition 4.5.4. Let f : X — Y be a morphism of A
(i) We say that f is a strong deformation retract (resp. the dual of a strong deformation
retract) if there exists g€ ,Q//\(Y, X) such that :
* gf = 1x (resp. fg = 1y)
o there exists an I-homotopy h (resp. k) from 1y to fg (resp.from 1x to gf)
e holf =0,® f (resp. f ok = 0. ® f) (notation of §1.1.5).
(if) We say that f is a trivial fibration, if it has the right lifting property with respect to
the class of monomorphisms of .
(iii) We say that f is an I-fibration, if it has the right lifting property with respect to
the given class An of I-anodyne extensions. We say that a presheaf X is I-fibrant, if the
unique morphism X — e to the final presheaf e is an I-fibration.

(iv) We call f a weak I-equivalence, if every I-fibrant object K induces a bijection
f;? :[Y,K] = [X,K].
Remark 4.5.5. (i) By definition r(An) is the class of I-fibrations, and by corollary [4.2.5(ii)

and proposition [3.1.9(iii), (An,r(An)) is a weak factorization system for .o#. More pre-
cisely, by corollaries |4.1.9(i) and Mi), we see that if A is any subset of Mor(@ such
that An = I(r(A)), then every morphism f of o/ admits a factorization f =poi, where
p is an [-fibration, and i lies in the weak saturation of A. Also, the I-fibrant objects of '
are the same as the An-injective objects.

(i) From the definitions and lemma it is clear that every trivial fibration is an
I-fibration, and every I-homotopy equivalence is a weak I-equivalence.
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Proposition 4.5.6. (i) Any trivial fibration of o is the dual of a strong deformation retract,
and any section of a trivial fibration is a strong deformation retract. In particular, any trivial
fibration has a section, and is an I-homotopy equivalence.

(ii) Every strong deformation retract is an I-anodyne extension.
(iii) Every I-anodyne extension between I-fibrant presheaves is a strong deformation re-

tract.

Proof. (i): Let p : X — Y be a trivial fibration; since the unique morphism @ — Y
from the initial presheaf on &7 (the empty presheaf) is obviously a monomorphism, the
commutative diagram :

g —X
|l
Y=Y

admits a diagonal filler s : Y — X; this proves that p admits a section. Next, such a
section s is a monomorphism ([13} Exerc.1.119(i)]), so it induces a monomorphism j :
IYU Ol ® X — IX (remark iii)). Consider then the commutative diagram:

YUal®X —) +x

b, b

IX — Y

where f is the unique morphism whose restriction to IY agrees with o, ® s and whose
restriction to {0} ® X (resp. to {1} ® X) agrees with 1x (resp. with s o p). Again, this
diagram admits a diagonal filler k : IX — X. The latter is then an I-homotopy from 1x
tosop,suchthat pok =0, ® p and k o Is = g, ® s, which shows that p is the dual of a
strong deformation retract, and that s is a strong deformation retract.

(ii): Let i : K — L be a strong deformation retract, so that there exists a morphism
r: L — K of o/ with ri = 1k, and an I-homotopy h : IL — L from 1j to ir such that
holi = o, ® i. Since An = I(r(An)) (proposition iii)), it suffices to show that for
every [-fibration p : X — Y, every commutative square :

K—2-X

o)
b

L—Y

admits a diagonal filler. To this aim, notice that the two morphisms :

ge®a

IKZE5ExE e {1yelL

agree on IKN {1} ® L = {1} ® K, so they define a morphism u : IKU {1} ® L — X. Then
we get a commutative square :

IKU{1}® L —>X

| I

L—2 oy

whose left vertical arrow is an I-anodyne extension, so it admits a diagonal filler k :
IL — X. Letusset] :==ko(dy®L) : L — X. Thenli = (0, ® a) 0 (dy ® K) = a and
pl =bho (3 ®L) =b, sol1is the sought diagonal filler for (x).
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(iii): Let i : K — L be an I-anodyne extension, and suppose that K and L are I-fibrant;
then there exists a morphism r : L — K with ri = 1. Notice that the morphisms :

Oe®i (1L,ir) ~
IK— L——LUL&J9IQ®L

agree on IK N oI ® L = 9 ® K, so they induce a morphism u : IKUJI ® L — L, and since
L is I-fibrant, the diagram (where e denotes the final presheaf) :

IKUJIQL =1L

|

IL ———e

admits a diagonal filler 4 : IL — L. By construction, A is a homotopy from 1, to ir such
that h o Ii = 0. ® i, whence the assertion. O

Proposition 4.5.7. Consider a cartesian diagram of o
x —tox
p’l lp
Y ——7Y
where p is an I-fibration. If j is a strong deformation retract, the same holds for i.

Proof. Let us pick a retraction r : Y — Y’ and an I-homotopy h : IY — Y from 1y to jr
such that h o Ij = 0, ® j. Notice that the morphisms :

, Oe®i

X' 25 X & {0y e X

agree on {0}®X’ = IX'N{0}®X, so they induce a unique morphism f : IX'U{0}®X — X.
Then the commutative square :

IX'U{0} ®X — =X

| L, b

X ——

admits a diagonal filler k : IX — X. The morphisms u := ko (d; ® X) : X — X and
v:=rop:X — Y satisty the relation pu = jo (because ho (d; ® Y) = jr) and thus
define a unique morphism s : X — X’ such that p’s = v and is = u. We have si = 1x
because p’si=vi=rpi=rjp’ =p’andisi=ui=ko (s, ®X)oi=kolio(d;®X') =
(0o ®1i) 0 (9 ® X’) = i. Hence i is a strong deformation retract. O

Lemma 4.5.8. Let X,Y € Ob(.;z?j, f.ge ,Q’{\(X, Y), and suppose that Y is I-fibrant. Then
[f1=1[9] in [X,Y] & there exists an I-homotopy from f tog.

Proof. Let us write fa«g if and only if there exists an I-homotopy from f to g; clearly, it
suffices to check that A is an equivalence relation on JZ?EX ,Y).

o For the reflexivity of -, notice that g, ® f is an I-homotopy from f to f, for every
fedXY).

e Next, let u,0,w € C;z’[(X, Y), and suppose that we have an I-homotopy k from u to
v and an I-homotopy k from u to w; we wish then to exhibit an I-homotopy from v to
w. To this aim, notice first that the monomorphism 9 ® X < IX induces an I-anodyne

extension :
(%) IGI®X)U {0} ®IX — I(IX).
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On the other hand, since I preserves colimits, we get natural identifications :
I@I®X) = I(XUX) =S IXUIX {0} ®IX = IX

and moreover :
IPI®X)N{0} ®IX = {0} ® (9] ® X).

Then, a direct inspection yields a commutative diagram :

{0} ® (AI®X) —=I(I ® X) —=IX UIX

| o

T ®U

(0} @IX — > IX Y.

Hence, (h, k) and 0. ® u induce a unique morphism
Hy:I(0I® X) U {0} ® IX — Y.
Since Y is I-fibrant, Hy extends via (*) to a morphism
H:I(IX) ->Y.
In other words : Ho I(dy ® X) =h,Ho I(d; ® X) =k and H o (dy ® IX) = g, ® u. Let us
then set :
n=Ho(d,®IX):IX - Y.
We compute :
no(d®X)=Hol(dgp®X)0 (1 ®X)=ho(0;®X)=0v

and likewise, y o (d; ® X) = k o (91 ® X) = w, so 7 is the sought I-homotopy.

e For w = u and k = g, ® u, the constant I-homotopy from u to itself, this shows

that ~ is symmetric. The general case, together with the symmetricity of A, proves the
transitivity of ~. O

Proposition 4.5.9. (i) Every I-anodyne extension of o is a weak I-equivalence.

(ii) A morphism of </ between I-fibrant presheaves is a weak I-equivalence if and only
if it is an I-homotopy equivalence.

(iii) An I-fibration of o is a trivial fibration if and only if it is the dual of a strong
deformation retract.

(iv) AnI-fibration of o/ between I-fibrant presheaves is a weak I-equivalence if and only
if it is a trivial fibration.

Proof. (i): Let j : X — Y be an I-anodyne extension, and Z an I-fibrant presheaf on .27
we must check that j induces a bijection
i Z] - [X, Z].

Now, the surjectivity of j* is clear, since by assumption j already induces a surjection

JZ/(Y Z) — JZ%(X Z). Next, let fo, fi : Y =2 Z be two morphisms of & such that [foil =
[fij] in [X, Z]; then, by lemma [4.5.8] there exists an I-homotopy h : IX — Z from f;j to
f1j. Consider moreover the composition

k:ol@Y = YI_IY(fOf1 Z.

Clearly h and k agree on IX N9l ® Y = 9] ® X, so we deduce a morphism
(hk) :IXUJ®Y — Z.
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But since j is I-anodyne, the same holds for the induced morphism IX Udl ® Y — Y,
and then, since Z is I-fibrant, (h, k) extends to a morphism IY — Z. The latter is an
I-homotopy from f; to fi, whence [f;] = [fi] in [Y, Z], as required.

(ii): This is proved as the equivalence (b)&(d) of lemma[4.5.3]
(iii): The condition is necessary, due to proposition [4.5.6{i). Conversely, let p : X —
Y be an I-fibration that is the dual of a strong deformation retract, so that there exist
morphisms s : Y — X and k : IX — X such that:
ps=1y k(9 ® X) = 1x k(01 ®X) =sp pk =0, ®p.

Consider then a commutative diagram :

where j is a monomorphism of o/ we need to exhibit a diagonal filler [ : L — X.
To this aim, notice that the two morphisms :

KL xExiveraemer
agree on IK N {1} ® L = {1} ® K, so they induce a unique morphism :
u:IKU{1}® L — X.
On the other hand, j induces an I-anodyne extension IKU{1}®L — IL, so by assumption
the commutative square :
IKU{1}® L —=X

| I

Ce®b

IL ——Y
has a diagonal filler h : IL — X. We set [ := ho (3 ® L) : L — X. We then have :
pl=pho(dp®L)=(0e®b)o(dp®L)=b
lj=ho(dy®L)oj=holjo(d®K)
=kolao(dp®K)=ko(dy®X)ca=a
and this achieves the proof.

(iv): We already know that a trivial fibration is a weak I-equivalence, by proposition
[4.5.6[i) and remark [4.5.5(ii). Conversely, let p : X — Y be an I-fibration between fibrant
presheaves, and suppose that p is a weak I-equivalence; so p is an I-homotopic equiva-
lence, by (i). Then, by lemma[4.5.8] there exists a morphism ¢ : Y — X and an I-homotopy
k:1Y — Y from 1y to pt. We then get a commutative square :

e
31®Yl lp
v Koy,

But notice that d; ® Y is an I-anodyne extension, so by assumption the square admits a
diagonal filler k" : IY — X;sets =k’ 0 (dp® Y) : Y — X. Hence :

ps=pk’0(60®Y)=kO(ao®Y)=1y.
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Since p is an I-homotopy equivalence, we then have [sp] = [1x] as well in [X, X], and
by invoking again lemma [4.5.8| we get an I-homotopy h from 1x to sp.
Notice now that the two morphisms :

~ Ce®SP (h,sph) -
{I}®IX S IX —> X «——— IXUIX <& 1(0l ® X)

agree on {1} ® IX N I(dl ® X) = {1} ® (dI ® X), and therefore induce a morphism
u: {1} ®IXUII®X) — X.

We then get another commutative square :

(1}®IXUI(GI®X) —— X
| I
A h
1(Ix) —=20 i Py

whose left vertical arrow is again an I-anodyne extension, hence it admits a diagonal filler
H:I(IX) —» X.SetK :==Ho (9p ® IX) : IX — X. We compute:
Ko(®X)=Ho(a®IX)o(3®X)=ho(d®X) =1x
Ko(01®X)=Ho(d®IX)o (1 ®X)=spho(d®X)=sp
pK =pHo (3 ®IX) =pho (9 ®X)o (0e®X)=po (0e®X).

So, p is the dual of a strong deformation retract, and we conclude with (iii). O

Corollary 4.5.10. Leti: X — Y be a monomorphism of /. We have :
(i) If Y is I-fibrant, then i is an I-anodyne extension < i is a weak I-equivalence.

(ii) i is a weak I-equivalence & i has the left lifting property with respect to the class of
I-fibrations with I-fibrant target.

Proof. (i): We already know that every I-anodyne extension is a weak I-equivalence
(proposition [4.5.9(i)). Conversely, suppose that Y is I-fibrant, and that i is a weak I-
equivalence. Pick a factorization i = pj, where j is an I-anodyne extension and p is
an I-fibration (remark[4.5.51)); especially, j is a weak I-equivalence, so the same holds for
p. Moreover, since the target of p is I-fibrant, the same holds for its source. Then p is a
trivial fibration, by proposition[4.5.9(iv), i.e. i € I({p}). By the retract lemma (proposition
, i is then a retract of j, whence the assertion.

(ii): Pick a factorization p = qj for the unique morphism p : ¥ — e, where e is a
final object of;z’%-,\q 1Y’ — eis an [fibration and j : Y — Y’ is an I-anodyne extension
(remark [4.5.5(i)); hence, Y’ is I-fibrant. Suppose first that i is a weak I-equivalence, and
consider a commutative square :

X2 A

(+) "l lf
b

Y—B

where f is an I-fibration with I-fibrant target. Then there exists a morphism b’ : Y’ — B
with b = b’ o j. Since ji is a monomorphism with I-fibrant target, (i) says that there exists
amorphism I’ : Y/ — Awith fI'’ =b" andl'ji =a. Thenl :=1"j : Y — A is the sought
diagonal filler for ().

Conversely, if i has the left lifting property with respect to the class of I-fibrations with
I-fibrant target, choose a factorisation of ji into an I-anodyne extension k followed by an
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I-fibration (with fibrant target). Then the retract lemma implies that ji is a retract of k,
hence is I-anodyne. In particular, ji is a weak I-equivalence (proposition i)). But the
same holds for j, hence also for i. O

Corollary 4.5.11. Let j : K — L be a monomorphism in of between I-fibrant presheaves.
The following conditions are equivalent :

(a) j is a weak I-equivalence

(b) j is an I-anodyne extension

(c) j is a strong deformation retract.

Proof. (a)&(b) is a special case of corollary and the equivalence (b)<(c) follows

from proposition ii,iii). O

4.5.12. Let us denote by #7, 77 and .# respectively the class of weak I-equivalences,
of I-homotopy equivalences, and of monomorphisms of 27. We then have :

Proposition 4.5.13. There exists a cardinal ay such that the following holds for every car-
dinal & > . For every morphismi: X — Y in .4 N #; and every 2%-admissible subobject
Y’ C Y, there exists a 2% -accessible subobject Y’ C Y withY’ C Y, such that the restriction
XNY" — Y ofi liesin 4 N H].

Proof. By assumption, there exists a subset A C An such that An = I(r(A)), and notice
that every I-anodyne extension lies in .# N #7, by proposition[4.5.9(i). Let Q be the class
of ordinals, and consider the family of functors

(Lp: o - |feQ)
associated with the set A, as in By theoremand corollary i), there exists
an ordinal y such that L, X is A-injective for every X € Ob(ﬂ?}, ie. L X is I-fibrant for
every such X, since r(A) = r(An) (proposition [3.1.9(iii)); moreover, there exists a natural
transformation Ae : }&7 = L, such that Ax : X — L,X is an I-anodyne extension,
for every X € Ob(%/). We set L := L,; by virtue of proposition i,ii), L sends
monomorphisms to monomorphisms, and every pair X — Z « Y of monomorphisms of
</ induces an isomorphism

L(XNY) S LXNLY.

Furthermore, by propositions [4.2.9(1), [4.2.11(ii) and [4.2.13[iii), there exists an infinite car-
dinal ¢y such that for every cardinal @ > « we have :

(a) the functors L and I are a-accessible, and send 2%-accessible presheaves to 2%-
accessible presheaves
(b) every presheaf on .« is the a-filtered union of its a-accessible subpresheaves.

Consider then a morphism i : X — Y in .# N #}; we get a commutative diagram :

A
X X 1x
il lu
Ay
Yy =Ly,

We have Ax, Ay € #; by proposition i), so Li € .4 N #; as well; since LX and LY
are I-fibrant, corollary[4.5.11] then says that Li is a strong deformation retract. Hence, we
have morphisms r : LY — LX and h : I(LY) — LY such that:

roli=1x ho(d®LY)=1y ho(d,®LY)=L(i)or hol(Li)=(0.®LY)oI(Li).
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Now, let @ > ap; recall that a* is a-filtered (example iii)), and at < 2%. Let &
be the set of all 2%-accessible subobjects of Y, and Y’ € .%; we shall exhibit a family
{jp:Yg = Y|Bea"} C.F suchthat

(c) Yo=Y and Y5 C Yg whenever § < ff < a*

(d) for every € a* we have a commutative diagram :

kg
I(LYﬁ) — LYpy

I(Ljg) l l Lip+
I(LY) —Ly.

Notice that kg is uniquely determined, since Ljg,; is a monomorphism. We proceed by
transfinite induction : for § = 0, we set Yy := Y’; suppose then that a* > f > 0, and
that we have already exhibited Ys for every § < f. According to proposition the
subobject Z := [ Js.p Ys is still 2-accessible, and then the same holds for I(LZ), by (a). By
(b), # is 2%-filtered and Y = |Jpe & F; since L is 2*-accessible and preserves monomor-
phisms, we deduce that LY = (Jpe & LF. Hence, the restriction I(LZ) — LY of h to the
subobject [(LZ) — I(LY) factors through a morphism I(LZ) — LF for some F € .%; we
have Ys := Z U F € .% by proposition ii), and this completes the construction of the
family Y,.

By proposition the subobject Y := (Jge,+ Yp of Y is 2%-accessible. Since L and I
are a-accessible, we have natural identifications :

limLY; = LY”  lim I(LYg) = I(LY”).
Beat Peat
Hence, the colimit of the system of morphisms (ks |f € a¥) yields a morphism k :

I(LY"”) — LY” fitting into the commutative diagram :

I(LY”) 5> Ly”
I(Lj)l le
I(LY) —*~ Ly
where j: Y” — Y is the inclusion. Moreover, for every € a* we have :
L(i)oroL(jg) = ho (3, ®LY)oL(jg) = hoI(Ljg) o (3 ® LYy) = L(jgs1) 0 kg o (3 ® LYp)

whence a unique morphism sg : LYg — LX N LYp,; making commute the diagram:

LYﬁ kﬁ0(¢91®LYﬁ)
K\

LX N LYﬁ+1 I LYﬁ+1

roL(jg) l \LLjﬁ .

IX— oy

Since the colimits are universal in <7 ( (example |1.6.19(ii)), and since L is a-accessible, we

have natural identifications :

U (XNY)=XNY’  limLXNLY; S LXNY”).

Peat Beat
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Hence, the colimit of the system of morphisms (sz | f € a*) yields a morphisms : LY” —
L(X NY”) fitting into the commutative diagram :

LY” ko(2,8LY")
N
LXNY”) - Ly

roL(j) Lj/l/ lL]

X —H oy

where X L XxXny” iR Y’”" are the inclusions. We compute :
L(j")osoL(i") =roL(j) o L(i") = r o L(i) o L(j") = L(j")
L(j) ok o (9 ®LX) =hol(Lj)o(dp®LX)=ho(dh®LY)oL(j)=L())
L(j) ok oI(Li") = hoI(Lj) o I(Li") = ho I(Li) o I(Lj")
=(0e ®LY) o I(Li) o I(Lj") = (66 ® LY) o I(Lj) o I(Li")
=L(j) o (e ® LY") 0 I(Li")
and since L(j) and L(j’) are monomorphisms, we then deduce :
soL(i") = 1xny~ ko(d®LX) =1Ly~ kolI(Li") = (ce ® LY") o I(Li")

which shows that Li’ : L(X N'Y””) — LY" is a strong deformation retract, and therefore
a weak I-equivalence (corollary[4.5.11). Then, the commutative square :

Axn

XNy — 1 (XNY")
i’l/ lu/
y” Ayr LY”
shows that i’ lies in .#Z N #}. m]

Theorem 4.5.14. (i) There exists a unique cofibrantly generated model category
(e, W1, Fibr, Gofi)
with €ofi := M (notation of §4.5.13).
(ii) Every fibration for this model structure is an I-fibration.
(iii) A presheaf X is fibrant relative to this model structure & X is I-fibrant.
(iv) A morphism f with fibrant target is a fibration & f is an I-fibration.

(v) Every presheaf is cofibrant; every I-anodyne extension is a trivial cofibration.

Proof. (i): By definition, the class of trivial fibrations is r(.#), and we know already that
(A ,r(A)) is a weak factorization system for 27 (corollary . It is also clear that %}
enjoys the 2-out-of-3 property. Moreover, < is cocomplete (remark MQ)

Claim 4.5.15. (i) r(A#) = Wi O r( A N H]).

(ii) . N W7 is a saturated class of morphisms of o
Proof: (i): The inclusion r(.#) C r(.# N#7) is trivial, and we have r(.#') C .77, by virtue
of proposition[4.5.6(i); but obviously .#7 C #;. Hence, let (p : X — Y) € #iN\r(MNH});
we may then factor p = j with j € .# and q € r(.#), and by the 2-out-of-3 property,
J € A N W1, since we have just shown that g € #;. By the retract lemma (proposition
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3.1.10), p is then a retract of q. But r(_#) is stable under retracts (proposition and
remark 3.1.4{i)), so p € r(.#).
(ii): This follows from corollary [4.5.10[ii) and proposition V). <

The class r(.# N #;) shall therefore be our designated class of fibrations; we know
already that the candidate class .# of cofibrations admits a generating set (see the proof
of corollary [4.2.7); to conclude, it then suffices to exhibit a generating set of trivial cofi-
brations, since then corollarywill imply that (#Z N W1, r(# N H)) is a weak fac-
torization system for </, and claim i) will identify r(.#) with the class of trivial
fibrations. To this aim, let o be an infinite cardinal fulfilling the condition of proposition
and @ > a such that o7 is a-small; let also .% be the set of all presheaves X on
o/ such that X(A) € 2% for every A € Ob(2/), and ¥ the set of all elements K — L
of .# N ¥ such that K,L € .#. According to propositions [4.2.9[ii) and [4.5.13] for every
elementi: X — Y of .# N #] and every 2*-accessible subpresheaf Y’ C Y there exist an
element j : K — L of ¢ and a 2%-accessible subpresheaf Y C Y containing Y’ and with
isomorphisms ¢ : K = X NY”, ¢ : L = Y” making commute the diagram :

K—21 o1

g v
ilXﬁY’/

XNy ———Y”.

We have r(.# N #7) C r(¥) (proposition ii)); in order to show the converse inclu-
sion, consider any commutative diagram :
.o x

/jl

B——Y

!

with p € r(¥) and i € .# N W1, and denote by & the set of all morphisms h : B — X
with A € B’ C B and such that h is a diagonal filler for the induced diagram :

A———X
| I
9|8
B ———Y.
Notice that ¥ # @, since f € Z. We endow 2 with the partial order such that
(hI:Bl—)X)S(hzsz —>X) =14 By € B, and hlth\Bl'

Arguing as in the proof of corollary [4.2.7} we see that & admits a maximal element k :
C — X, and we are reduced to checking that C = B. However, B is the filtered union
of its 2%-accessible subpresheaves (propositions [4.2.9(i)); hence, if C # B there exists a
2%-accessible presheaf B’ C B such that B’ ¢ C, and then we can find a 2%-accessible
presheaf B” ¢ Bwith B’ ¢ B” and (j : K — L) € ¥ fitting into a commutative diagram :

Kicnp

KL-COB"ﬁ-X

1, b

L B” B Y
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where ¢ and ¢ are isomorphisms of o/ Since p € r(¥), we then get a diagonal filler
k' : B” — X for the right square subdiagram. Set C" := C U B”; then k and k’ determine
an element k" : C’ — X of 9 with k”” > k, a contradiction.

Hence, ¢ is the sought generating set of trivial cofibrations.

(ii,v): Since the initial object of o is the empty presheaf, every presheaf is cofibrant.
For the second assertion, it suffices to recall that An ¢ .# N #} (proposition i)), so

that r(.# N #1) C r(An) (proposition [3.1.9ii)).

(iii,iv): Corollary [4.5.10[ii) shows that every I-fibration with I-fibrant target is a fibra-
tion for the model structure on &7 given by (i). Especially, every I-fibrant presheaf is
fibrant; so, every I-fibration with fibrant target is a fibration, whence the assertions, in
view of (ii). O

Set Fiby := r(.# N¥1); by theorem[4.5.14] we then have a well-defined model category
(,Q’{T W1, F iby, M), whose homotopy category we denote by :

hOI(JZ?S.
Corollary 4.5.16. (i) %1 is the smallest subclass ofMor(@ containing An and enjoying
the 2-out-of-3 property of definition[3.2.1(b).

(ii) The localization ,Q//\[An_l] of of exists, and the natural functor T — hO[(,&;
factors through an isomorphism of categories :

AN = hoy ().

(iii) For every fibrant object Y of,gaz\ we have natural identifications :

hor(7)(X,Y) = [X,Y] VX € Ob(«)

where [X, Y] is the set of I-homotopy classes of maps X — Y (definition[4.5.1)(ii)).

Proof. (i): Let f : X — Y be any morphism of </ The proof of proposition exhibits
an [-anodyne extension j : Y — Y’ with fibrant target. Moreover, let A C An be a
subset such that An = [(r(A)); by applying corollary [4.1.9(i) with .# = A, we obtain a

commutative diagram :
X — X’

fl_lp

y Loy

such that i and j are [-anodyne extensions, and p an I-fibration. Then p is a fibration
of o, by theorem iV). If f is a weak equivalence of </, the same then holds for
. therefore p is the dual of a strong deformation restract (proposition [4.5.9(iii)), and in
particular it admits a section s : Y/ — X’. Hence, s lies in .# N #, so it is an I-anodyne

extension (corollary [4.5.11), whence the claim.

(ii): IfF : o/ — Bis any functor such that Fg is an isomorphism for every g € An,
then (i) implies that Ff is an isomorphism for every f € #}; since An C #/, the assertion
follows.

(iii): Since every object of o is cofibrant, the assertion follows from lemma [3.2.11[i),
proposition|3.2.14(ii), and the explicit construction of the homotopy category in the proof
of theorem [3.3.5] m]
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Proposition 4.5.17. Endow </ with the model structure given by theorem and let ¢
be another model category, and F : o =% :Gan adjoint pair of functors, such that F sends
monomorphisms to cofibrations. Let moreover A C An be a subset such that An = [(r(A)).
The following conditions are equivalent :

(a) (F,G) is a Quillen adjunction.

(b) F sends every I-anodyne extension to a trivial cofibration of €.

(c) F sends every element of A to a trivial cofibration of €.

Proof. We have (a)=(b)=/(c), by lemma and proposition i).

Next, recall that the class .% of trivial cofibrations of Z is saturated (proposition
v)), so F~L.Z is a saturated class of ¢ (remark iii) and [13| Prop.2.49(ii)]); on
the other hand, An is the saturation of A (remark [4.4.7[ii)), so (c)=(b).

Lastly, suii ose that (b) holds, and let i : X — Y be a trivial cofibration; the proof of

proposition |4.5.13|exhibits a commutative diagram of o

A
X 21X

| . Ju

Y —LY

where LX and LY are [-fibrant, Ax and Ay are I-anodyne extensions, and Li is a monomor-
phism, since the same holds for i; hence Li is a trivial cofibration of 42?? and so it is an
I-anodyne extension (corollary [4.5.11). Then F(Li), FAx and FAy are isomorphisms, so
the same must hold for Fi, whence (a), again by lemma[4.5.14] O

4.6. Localizers and absolute weak equivalences. This section complements theorem
with some further useful observations. To begin with, for any small category 7,
we wish to characterize the subclasses # C Mor(m?j that can occur as classes of weak
equivalences for some model category structure on </ obtained via theorem To
this aim, we make the following :

Definition 4.6.1. Let ¥ be a category, .# C Mor(%) the class of monomorphisms of
€, and W C Mor(%) another class. We say that # is a € -localizer, if the following
conditions hold :

(L1) # satisfies the 2-out-of-3 property (see definition [3.2.1(i.b))

(L2) r(.#) c W (notation of definition [3.1.1iii))

(L3) # N . is weakly saturated (see definition [3.1.3(vii)).

Lemma 4.6.2. Forevery category ¢ and every subclassC C Mor(€), there exists a smallest
€ -localizer W (C) containing C. We call # (C) the € -localizer generated by C.

Proof. The only difficulties in proving this assertion are due to set-theoretic issues : we
would like to just take the intersection of all the €’-localizers containing C, but it is not
clear whether that is a legitimate operation, since it involves quantifications over classes.
Instead, we argue as in the proof of proposition [3.1.6]

Obviously we may assume that r(.#) C C, where .# denotes the class of monomor-
phisms of €. Next, for every category <7, every class B C Mor(¢/), and every infinite
cardinal k, we say that B is weakly k-saturated if it satisfies the 2-out-of-3 property, and
is stable under push-outs and k-small compositions (where the latter are defined as in the
proof of proposition . If o7 is small, we also define the weak k-saturation B, of B
in o7 as the intersection of all weakly k-saturated subclasses of Mor(%7) containing B.
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Let Q be the class of all infinite cardinals, and for every x € Q let & be the class of all
small relatively x-cocomplete subcategories of € (defined as in the proof of proposition

[3.1.6); we set

C = U (CNMor(#)):,,  #(C):= U C:.
deE KEQ
With claim[3.1.7] it is easily seen that #/(C) is the smallest €-localizer containing C. O

Definition 4.6.3. Let % be a category, and # a ¢-localizer. We say that # is accessible,
if it is the @-localizer #(S) generated by a subset S of Mor(%).

Proposition 4.6.4. (i) Let o/ be a small category, ((I, de, 0), An) a homotopical structure
on o/, and W the class of weak equivalences for the model category structure induced on <f
by ((I, 9, 0), An) via theorem Then W is an accessible <f -localizer.

(ii) More precisely, if A is a subset ofMor(ﬂ?j such that An = [(r(A)), then W = W (A).

Proof. Since .# and W N ./ are the classes of cofibrations and respectively of trivial
cofibrations for the model category structure on </ induced by ((I, de, o), An), it is clear
that % verifies conditions (L1) and (L2) of definition condition (L3) also follows,
by virtue of proposition V). Hence # is a /-localizer, and clearly #'(A) c W, for

any A as in (ii), by theorem[4.5.14(v). For the converse, let f : X — Y be any element of
W, and denote by E the final object of <7; by corollary i), we can factor the unique
morphism h : Y — E as the composition goi, where i : Y — Y’ lies in the weak saturation

S of A,and g € r(A), so Y’ is a fibrant object of fﬁzy\(theorem iv)). By repeating the
same argument with h replaced by i o f, we get a commutative diagram of . :

X s x
f l lf ’
y Loy
with i, j € ., and f’ is an I-fibration with fibrant target. But then i, j € #(A), and on

the other hand f” is a trivial fibration of ;a/f\ i.e. an element of r(.#), again by theorem
[4.5.14{i,iv); hence f” € # (A), by condition (L2) of definition[4.6.1} With (L1), we conclude
that f € # (A). O

Theorem 4.6.5. Let o7 be a small category, and W a subclass of Mor (7). The following
conditions are equivalent :
(a) W is an accessible o ~localizer.
(b) There exists a homotopical structure (., An), where £ = (L, de, 0) is the Lawvere
ﬁ(

cylinder on J(see example|4.4.5(iii)), such that W is the class of weak equivalences for the

model category structure induced by (£, An) via theorem
(c) There exists a homotopical structure (I, ds, 0) on o7 such that W is the class of weak
equivalences for the model category structure on < induced by (I, d., o) via theorem

(d) There exists a cofibrantly generated model category structure on o/ whose class of
weak equivalences is W', and whose cofibrations are the monomorphisms of <7 .
Proof. (This is [3| Th.1.4.3]). Obviously, (b)=(c)=(d).

(a)=(b): Say that # = #/(T) for a subset T C Mor(;z?i; by corollary for every
f € T we can find a monomorphism i and a trivial fibration pr such that f = proif, and
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we set S := {ig | f € T}. Clearly # = #/(S). Let An C Mor(@ be the smallest class of
L-anodyne extensions containing S, where . := (L, d, 0) denotes the Lawvere cilinder

on 7. Pick a cellular model M for ,Q’Zand define the subset Ar (S, M) as in ~., by
proposition [4.6.4{ii), the class of weak equivalences of the model category structure on
</ induced by (Z,An) is #" = W (AL(S,M)). Clearly, # c #’, so we are reduced to
checking the converse inclusion. The latter follows from part (ii) of the following :
Claim 4.6.6. 1) L(#)cCW.

(i) AL(SSM) cW.
Proof : (i): Recall that LX = Q X X for every X € Ob(.sz?S, where Q denotes a subobject
classifier for 7; since Q is an injective object of Jzﬂlemma iii)), it is easily seen that
the projection oy : Q X X — X lies in r(.#) for every X € Ob(m?;, where .# denotes
the class of monomorphisms of o Especially ox € # for every such X, and then the
same holds for the morphisms 9; ® X : X — Qx X, for i = 0, 1, by the 2-out-of-3 property
of #'; however, for every morphismu : X — Y of &/ we have a commutative diagram :

X—Y% oy
30®Xl/ la()@Y
LX 2oy

sou € W & Lu € W, again by the 2-out-of-3 property.
(ii): Since S C 7/, it suffices to check that conditions (An1) and (An2) of definition
i) hold with An replaced by #" N .#. Hence, let X — Y be any monomorphism of

o/ ; we get a commutative diagram :
{e} @ X ——— {e} ®Y

af®xl 2:,®Y

LX —=LXU {g}
\

whose square subdiagram is cocartesian. We know already that 9, ® X € #' N ., so the
same holds for a, by condition (L3) of definition then, since 9, ® Y € #/, we get
B e W N ., by condition (L1), and this shows that (An1) holds for # N .# .

Lastly, let u : X — Y be an element of % N .#; we get a commutative diagram :

ALeXx L. oLey

| V 5

IX—2 > LXUJQ®Y

whose square subdiagram is cocartesian. Since u € # N .#,wehave dL®u € #' N A,
by (L3) (lemma[3.1.8), and then @ € # N ./, again by (L3); on the other hand, Lu € #/,
by (i), so y € # N .#, by (L1). This shows that (An2) holds for # N .. &

(d)=(a): Let . be the class of monomorphisms of o by assumption, # N .4 =
I(r(A)) for some subset A of #' N .#, and we show more precisely that # = # (A).
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Indeed, it is clear that # is a Jlocalizer, since r(.#) is the class of trivial fibrations
of the given model category structure on .27, and since [(r(A)) is saturated (proposition

B.1.9(v)), so #'(A) C # . For the converse, let f : X — Y be any element of #; by
corollary i) we can write f = g o i, where i lies in the weak saturation of A, and
g € r(A) = r(l(r(A)) = r(# n .«) (proposition [3.1.9(iii)). Hence, i € #'(A), and
g is a fibration for the given model category structure; then g is a trivial fibration, i.e.

ger(A)cW(A),sofinally f € #(A). O

4.6.1. Absolute weak equivalences. Let o/ be a small category, and . := ((I, de, 0), An) a
homotopical structure on .27 in general, it is not possible to recover the selected class An
of anodyne extensions solely in terms of the model category structure associated to .#;

however, we wish now to explain that .# induces on each slice category 457\/ S a natural
model category structure, and An can be described purely in terms of the classes of weak
equivalences of all such model categories.

e Indeed, for any S € Ob(;z?j , recall the natural equivalence of categories :
(%) ]S ]S
provided by lemma i). Especially, we may regard a functorial cylinder on o7 /S as the
datum of an endofunctor Is : 2/ /S — &7 /S together with suitable natural transformations

8€,af:1£7/5=>15 and 05:15:>197/5'
e Any functorial cylinder (I, de, 0) on & induces such an endofunctor, by the rule :
X, f:X—>8)=(IX,0.®f:IX>S)  V(X,f)cOb(/S).
Then clearly we get the corresponding natural transformations, by setting :
% x. £ = 0x/S (X, f) = Is(X. f) (i=1,2) afx’ ) = 0x/S

for every (X, f) € Ob(,;z’ﬂ S) (notation of . Moreover, corollary iii) shows that
the coproduct of any small family ((Y;,g;) |i € I) of objects of o//S is represented by

(Y,g), where Y := | |;c; ¥; with universal co-cone (¢; : Y; — Y|i € I), and where
g : Y — S is the unique morphism such that g o e; = g; for every i € I; then, taking into
account corollary i), we see that for every (X, f) € Ob(47/S) the pair (8;g li=1,2)

induces a monomorphism of JZ?\/ S
(33(X,f),515,(x,f)) = (aO,X» al,X)/S : (X’f) U (X:f) - IS(X’f)-

Hence, (Is, 33, %) is a functorial cylinder on .7 /S, under the equivalence ().

e Moreover, suppose that (I, de, o) is an exact cylinder, and let
F:J— ]S  j (Fjfj:Fi—S)

be a functor from a small category J; pick a colimit L for sso F : ] — o and let 7, :
ss o F = ¢, be a universal co-cone; since I preserves small colimits, the induced co-cone
Ixt, : IosgoF = ¢ is still universal. Moreover, there exists a unique morphism
f: L — Ssuch that f o z; = fj for every j € Ob(J), and corollary [1.4.6[iii) implies that
the systems of morphisms

7;/S : Fj — (L, f) I(7j)/S : (IFi,00 ® f;) = (IL,04 ® f)
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yield universal co-cones 7/so : F = c(r,5) and Is * 7/s¢ : Is o F = cy,1. Hence Is pre-

serves small colimits; in light of corollary i), we also see that Is preserves monomor-
phisms, so axiom (DH1) of definition iii) holds for (Is, 83, ¢°). Furthermore, for every

monomorphism j/S : (K, f) — (L,g) of ;2/7\/5, the underlying morphism j : K — Lisa
monomorphism of <7 (corollary i)), so the induced diagram :

K—j>L

ai®K\L \L 9;®L

Ij
IK ——=1IL

is cartesian in 7, for i = 0,1, and since the source functor sg reflects fibre products
(corollaryi)), we deduce that axiom (DH2) holds for (Is, 35, 0°) as well, i.e. (Is, 93, o°
is an exact cylinder on ;fﬁ

o Next, let An be a class of I-anodyne extensions, and A C An a subset such that An =
I(r(A)); by lemma [3.1.12[ii), we have An/S = [(r(A/S)), and it is then clear that An/S is
a class of Is-anodyne extensions. We may then apply theorem [4.5.14]to the homotopical
structure ((Is, 33, 0%), An/S) to obtain a model category

(]S, Wiys, Fibys, €ofiys)

whose cofibrations 60f;/s are the monomorphisms, and whose fibrant objects are the
I-fibrations of &/ with target S. By construction, we have :

%Oﬁ/s = %oﬁ/S gib[/s N 7/}/5 = (Zibyn#p)/S
WI/S CW]/S %Oﬁ/sﬂ%/s C (%of]ﬂ%)/s L%ﬁlb[/.sc<g\lbl/5

Indeed, the first equality follows from corollary [1.4.6{i), and the second one follows from
the first and from lemma[3.1.12[i); the first inclusion follows from corollary [4.5.16[i), the
second one follows from the first and lemma[3.1.12{i), and the third one follows from the
second and from proposition [3.1.9(ii).

Definition 4.6.7. (i) We shall call S-weak equivalences the elements of #7/s.

(ii) Let f : X — Y be any morphism of . We say that f is an absolute weak equiva-
lence, relative to the given homotopical structure ((I, d, o), An), if for every S € Ob(;z?;
and every morphism g : Y — S, the morphism /S : (X,go f) — (Y,g) is an S-weak
equivalence.

Proposition 4.6.8. A monomorphism of </ is in An if and only if it is an absolute weak

equivalence. A morphism of < is is a trivial fibration if and only if it is both an I-fibration
and an absolute weak equivalence.

Proof. If (f : X — Y) € An, then f/S € An/S for every morphism ¥ — S off;a/fjsof is
an absolute weak equivalence, by corollary[4.5.16(i). Conversely, if the monomorphism f
is an absolute weak equivalence, then f/Y : (X, f) — (Y, 1y) is a trivial cofibration with
fibrant target in ﬁ?\/ Y, so f € An, by corollary i).

Next, we know already that every trivial fibration is both an I-fibration and an absolute
weak equivalence; conversely, if f : X — Y is both an I-fibration and an absolute weak
equivalence, then f/Y : (X, f) — (Y, 1y) is both an Iy-fibration with fibrant target and a
weak equivalence in 42?\/ Y, so f/Y is a trivial fibration (theorem iv)), and then the
same holds for f. O
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Proposition 4.6.9. (i) The absolute weak equivalences of Jform the smallest class W* C

Mor(fxz’f-j containing An and verifying the following condition : for every pair X L vyLz
of morphisms of &/ with f € #'°, we haveg e W * & gf e W

(ii) Moreover, a morphism of </ is an absolute weak equivalence if and only if it admits
a factorisation into an I-anodyne extension followed by a trivial fibration.

Proof. Let us check first that #¢ fulfills the conditions of (i) : indeed, by construction
An C W% next, for f and g as in (i), and any morphism h : Z — S, we get an S-weak
equivalence /S : (X, hgf) — (Y, hg), and then clearly g/S : (Y,hg) — (Z,h) is an
S-weak equivalence if and only if the same holds for gf/S : (X, hgf) — (Z, h), whence
assertion.

Next, let us show (ii) : indeed, by (i) and proposition any composition of an I-
anodyne extension and a trivial fibration is in #'“. Conversely, let f € #%; by remark
4.5.5(i), we may write f = p o i, with i € An and an I-fibration p. By (i), it follows that
p € #%, and then p is a trivial fibration, by proposition [4.6.8]

We can now complete the proof of (i): let F C Mor(ﬁ?—; be a subclass fulfilling the
conditions of (i); taking into account (ii), in order to see that #'¢ c .7, it suffices to show
that .% contains every trivial fibration p : X — Y. However, p has a section s, and s is
a strong deformation retract, so it is an I-anodyne extension (proposition i,ii)); then
both s and ps = 1y € An, so by assumption p € 7. O

Corollary 4.6.10. Let X L Y5 S be two morphisms of /. We have :

(i) If g is a monomorphism and f € An, theng € An & gf € An.

(ii) If g is an I-fibration and f/S : (X,gf) — (Y, g) is an S-weak equivalence, then f is
an absolute weak equivalence.

Proof. (i) follows straightforwardly from propositions and[4.6.9]

(ii): Let us factor f as a cofibration i : X — X’ followed by a trivial fibration g :
X’ — Y; then gq : X’ — S is an [-fibration, i.e. a fibrant object of JZ?\/S, so i/S :
(X, gf) — (X’,gq) is an S-weak equivalence if and only if i € An (corollary [4.5.10[i)). On
the other hand, since q is a trivial fibration, the same holds for q/S, so i/S is an S-weak
equivalence if and only if the same holds for f/S. Hence, if f/S is an S-weak equivalence,
f is the composition of a I-anodyne extension followed by a trivial fibration, and is thus
an absolute weak equivalence (proposition [4.6.9[ii)). m]
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5. THE HOMOTOPY THEORY OF SIMPLICIAL SETS

In this chapter, we first construct the classical Kan-Quillen model category structure
on simplicial sets, using the general method of the previous chapter. This method gives
that the fibrant objects in sSet are the Kan complexes, but more work is needed to check
that the fibrations are precisely the Kan fibrations : this will be achieved using Kan’s sub-
division functor. Since Kan complexes will be later reinterpreted as the co-groupoids, this
precise understanding of the homotopy theory of Kan complexes will play a fundamental
role throughout this work.

5.1. Kan fibrations and the Kan-Quillen model structure. We have an obvious cylin-
der in the category sSet :

ALy p0 2N,

0
9

Al = A

where 9], 9; are the face morphisms and o} is the degeneracy morphism, as in definition
V). Since A° is a final object of sSet, example i) says that the cartesian product
functor A! x (=) defines an exact cylinder on sSet. Following remark ii), we denote
by {¢} c A! the image of 9;_,, for & = 0, 1; then the image of 9] _, ® X = 9;_, x X shall be

1-&

likewise denoted by {¢} X X, for every X € Ob(sSet).

Remark 5.1.1. Recall also that we have a cellular model for sSet, consisting of the system

of boundary inclusions .# = {dA" < A" | n € N} (see §2.3.7]and example ii)).
Definition 5.1.2. (i) An anodyne extension in sSet is an element of
sAn := Anp1 (D)

i.e. the smallest class of A! X (—)-anodyne extensions (see proposition [4.4.9).

(i) A weak homotopy equivalence in sSet is a Al X (—)-weak equivalence (see definition
iv)). We say that a simplicial set X is weakly contractible, if the unique morphism
X — A% is a weak homotopy equivalence.

(iii) A morphism f : X — Y of sSet is a simplicial homotopy equivalence, if there exists
a morphism g : Y — X and homotopies A! x X — X, Al X Y — Y respectively from 1x
to gf, and from 1y to fg.

Example 5.1.3. Notice also that for every simplicial set X and every morphism f : x — y
of X, both the left and right localizations 5/ : X — X[gf = 1] and ¢/ : X — X[fh =1] of
are anodyne extensions, so the same holds for the localization p/ : X — X[f~1].

Proposition 5.1.4. (i) The following subsets have the same saturation in sSet :

S:={A"xA"U{1}xA" > A'XA" |[n €N} and T:={A} > A"|n>1k=1,...,n}

(ii) Dually, the same holds for the subsets :
{A'xoA" U {0} x A" = A'x A" |[n e N} and {Af > A"|n>1,k=0,...,n—-1}.
Proof. (i): Let us check first that the saturation of S contains the inclusion
(%) A xKU{1} xL - A'xL for every monomorphism K — L of sSet.

To this aim, in light of remark[1.7.8{ii), we may apply proposition[3.1.21{(iii) to the functors
Fi, F, : sSet — sSet with F; := {1} X (=) and F, := A! X (=), to the natural transformation
T, : F; = F, induced by the inclusion {1} — Al, and to the cellular model .# of remark
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5.1.1} notice also that F;L N F,K = F;K for every monomorphism f : K — L, so that ° is
precisely the inclusion (). We get :

I(r(A))° cl(r(°))
and on the one hand, [(r(.#)) is the class of monomorphisms of sSet, on the other hand,
I(r(.#°)) is the saturation of S (corollary iii)), whence the contention.
Next, for every n € N'\ {0} and every k = 1,...,n we define two maps :

as follows :
k ifi<k
sT(i) == (0,i rt(0,i) ;=i rit(1,i) == Vi=0,...,n.
§ (D) = (0,1)  (0,1) x (1,1) {i ik
Endow [1] X [n] with the product of the orderings of [1] and [n]; then clearly s and r}/
are morphisms of partially ordered sets, and since the nerve functor N preserves products
(see §2.3.3), they induce morphisms of sSet that we denote again :

s n

A" S AU x A 25 am,
Recall that for every m € N, the m-simplices of A} are all the non-decreasing maps ¢ :
[m] — [n] whose images miss some j # k; obviously, the image of the restriction A} —
A' x A" of s¢ lies in {0} X A, and since 0 < k < n, it is easily seen that :
rE(AY X AR U {1} X A") C A},

Moreover, it is clear that r]’: os;: = 1y, for every such n and k; hence, we get a commutative

diagram whose vertical arrows are the inclusions :

1zn
A

/\
An

k—)Al X AP UA{1} X A" —=A]
T
AP —F S AL AT —E s Am
N
But we have just seen that the central vertical arrow is in the saturation of S, so the same
holds for the inclusion AZ — A", This shows that the saturation of T lies in that of S.
Claim 5.1.5. There exists a finite filtration :
A =A"XoAN"U{1} XxA" CAyC--- CA,=AxA"

and a system of cocartesian diagrams of sSet whose vertical arrows are the inclusions :

n+l1
Ai+1 - Ai—l

*) | | vion
An+1 LA,
Proof : We consider, for every n € N and i = 0, ..., n, the unique strictly increasing map

¢! : [n+1] — [1] x [n] whose image contains (0,i) and (1,i). Again, we denote by

¢ : A" — Al X A" the corresponding morphism of sSet. We set

L
A_; =A'x9A" U {1} x A" and A; = A1 UIm(c}) Vi=0,...,n.
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The canonical presentation of example [2.3.10(ii) shows that A' X A" = Im(c]) U --- U
Im(c?) = A,. Moreover, by direct inspection we find :

Im(cf 0 9f*") c {1} x A"
Im(cf 0 ) C A" x 9A" Vi=0,...,n,Vj#ii+1

fodt=c' 0™  Vi=1,...,n
and on the other hand, Im(c] o a;’:ll) ¢ Aj_q forevery i =0,...,n. Summing up, we get :
Im(c!) NA;—y = (AT} Vi=0,...,n
whence a diagram (=) of sSet for every i = 0,...,n. The cocartesianity of (*) can be
checked after evaluation on [k], for every k € N (remark i)), and then it follows
easily from claim [4.2.14(i). <&

By claim|5.1.5] each inclusion A;_; C A; is in the saturation of T, hence the same holds
for the composition A_; C A, of these inclusions, so the saturation of S lies in that of T.

(ii) follows from (i), by considering the front-to-back duals of the sets S and T, and by
noticing that the saturation of the front-to-back dual of any class C € Mor(sSet) coincides
with the front-to-back dual of the saturation of C (details left to the reader). O

Corollary 5.1.6. (Gabriel and Zisman) The following subclasses of Mor(sSet) are equal :
(a) the class sAn of anodyne extensions
(b) the saturation of the subset {A! x A" U {e} x A" — Al x A" |n e N,e = 0,1}
(c) the saturation of the subset {A] — A" |n > 1,k =0,...,n}.
Proof. Let ./ be the cellular model of sSet given by the boundary inclusions (9A" —
A™|n € N); with the notation of the class sAn is [(r(A[(@, .#))), where I is the

functor A! x (-), and the class of (b) is l(r(A?(@, M))), by corollary iii). Then the
equality of the classes of (a) and (b) is given by corollary

The equality of the classes of (b) and (c) follows directly from proposition m|

Remark 5.1.7. In this § only corollary[5.1.6| will be needed, but the more refined proposi-
tion [5.1.4 will be of crucial importance, starting from
Definition 5.1.8. Set .% = {AZ - A"|n>1,k=0,...,n}.

(i) A Kan fibration is a morphism of sSet that lies in r(.%).

(ii) A Kan complex is an .Z -injective object of sSet (see definition [3.1.1iii,iv)).

Remark 5.1.9. (i) Definition ii) agrees with our previous definition i).
(if) Example i) shows that if the nerve of a category % is a Kan complex, then ¢
is a groupoid. Especially, A" is not a Kan complex, except for n = 0.

(iii) In view of (i), we cannot invoke proposition [4.5.6{i) in order to deduce that any
section of the unique morphism p : A" — A° is a strong deformation retract. However,
let ¢ : [0] — [n] be the map such that ¢(0) = n; then we can at least check that the
morphism A? : A® — A" is a strong deformation retract. Indeed, consider the map

k ifa=0

n ifa=1.

¥ [1] x [n] — [n] Y(ak) = {

Then it is easily seen that h := AY : Al x A" — A" is a homotopy from 1 to A? o p
fulfilling the conditions of definition i). See also lemma5.1.17]
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Theorem 5.1.10. There exists a unique cofibrantly generated model category structure on
sSet whose weak equivalences are the weak homotopy equivalences and whose cofibrations
are the monomorphisms. Moreover, the fibrant objects are the Kan complexes, every object
is cofibrant, every anodyne extension is a trivial cofibration, and the fibrations with fibrant
target are precisely the Kan fibrations between Kan complexes.

We call this model category the Kan-Quillen model category structure on sSet.

Proof. This follows directly from corollary and theorem [4.5.14] applied to the exact
cylinder A! x (=) on sSet, and the class of anodyne extensions of sSet. O

Proposition 5.1.11. (i) For every anodyne extension K — L and every monomorphism
U — V of sSet, the induced inclusion K X VUL XU — L XV is anodyne.

(ii) For every simplicial set X, the functor (=) X X : sSet — sSet preserves anodyne
extensions.

(iii) The classes of Kan fibrations and of trivial fibrations of sSet are stable under small
filtered colimits.

Proof. (i): Let j : U — V be a monomorphism; by remark [1.7.8[ii), the functors F; :=
(=) x U and F, = (—) x V admit right adjoints, so we may apply proposition [3.1.21iii)
to F; and F,, to the natural transformation F; = F, induced by j, and to the subset
S = {A' x JA" U {e} x A" — A' X A" |n € N, ¢ = 0,1}. With corollary[5.1.6] we get :

sAn® = [(r())° c I((r(F°)))
and notice that, for every monomorphism i : K — L, we have F;L N F;K = F;K, whence :
i®=(KXVULXU—LxYV).

We are then reduced to checking that .° C sAn, i.e. that for every n € Nand ¢ = 0,1,
the inclusion i : A X 9A" U {e} x A" — Al X A" induces an anodyne extension i®. To this
aim, set K := Al x 9A" U {e¢} x A" and L := A! x A"; then :
KXVULXU=A"X (A" xVUA" xU) U {e} X A" XV
LXV=A"XA"xV

so the inclusion i® : K X VUL X U — L X V is indeed an anodyne extension.
(ii): It suffices to apply (i) with U = &, the initial object of sSet, and V := X.

(iii): The class of trivial fibrations is r({9A" < A™|n € N}) (example [4.4.2[ii)), and
by definition, the class of Kan fibrations is r({AZ — A"|n > 1,k = 0,...,n}), so the
assertion follows from example [3.1.14[iv). m|

Corollary 5.1.12. (i) Letp : X — Y be a morphism of sSet. The following conditions are
equivalent :

(a) p is a Kan fibration.
(b) Every monomorphismi:U — V of sSet induces a Kan fibration
(i, px) : Hom(V,X) — FHom(U, X) Xromu,y) sCom(V,Y).

(c) (i*, p+) is a trivial fibration of sSet for every anodyne extensioni : U — V.
(it) Fom(A, —) preserves Kan complexes and Kan fibrations, for every A € Ob(sSet).
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Proof. (i): According to every A € Ob(sSet) induces an adjoint pair of functors :
(=) X A : sSet = sSet : Ffom(A, -).

We consider the functors F; := (=) XU and F, := (—) XV, and the natural transformation
To : F; = F, induced by the inclusion i; hence, the adjoint transformation 7’ is precisely
i*: Hom(V,—) = H#om(U,—). Notice also that F{A = F,A N F;B for every monomor-
phism j : A — Bof'sSet, so that the morphism j* of §3.1.20]is the induced monomorphism
AXVUBXU — BXYV,and on the other hand p, is precisely the morphism (i*, p.).
We let then j be the inclusion AZ — A" foranyn > 1and k = 0,...,n, and invoke
propositions [3.1.21(ii) and [5.1.11{i) to see that (a)=(b). For the converse, we take for i
the unique monomorphism @ — E, where & and E denote the initial and final objects of
sSet; then j° = j, and the assertion follows easily again from proposition [3.1.21[(ii).

Likewise, we let j : A — B be any monomorphism of sSet, and conclude again with
propositions [3.1.21[ii) and [5.1.11[i) that (a)=(c). For the converse, we take j to be the
inclusion @ — E, so that j® =i : details left to the reader.

(ii): To see that ##om(A, —) preserves Kan fibrations, we apply (i.b) withi : @ — A;
then we also take p : X — A°, to deduce that S#om(A, —) preserves Kan complexes. 0O

Corollary 5.1.13. (i) Every simplicial set X induces a Quillen adjunction :

’ (=) X X : sSet = sSet : Hom(X, -) ‘

for the Kan-Quillen model category structure on sSet.

(ii) The class of weak homotopy equivalences is stable under finite products.

Proof. (i): By construction, the functor /#om(X, —) is right adjoint to (—) X X (see §2.1.6),
and clearly (—) x X preserves cofibrations (i.e. monomorphisms), so it suffices to check
that (—)xX also sends every anodyne extension of sSet to a trivial cofibration (proposition
[4.5.17), which holds by proposition [5.1.11[(ii).

(ii): It suffices to check thatif f : X — Y and f/ : X’ — Y’ are two weak homotopy
equivalences, the same holds for f X f/ : X x X’ — Y x Y’. However, f X f' = (Y X
f") o (f X X”), so we are reduced to checking that the functor (—) X X preserves weak
homotopy equivalences. But by (i) and lemma [3.4.12(i), the functor (-) x X preserves
trivial cofibrations; since every object of sSet is cofibrant, the assertion then follows from
Ken Brown’s lemma (proposition 3.2.8). O

Proposition 5.1.14. Let &/ be a small category, F : sSet — o a functor, and for every
n €N, let j® : 9N" — A" be the inclusion. We have :
(i) If F is right exact, then Fj" is a monomorphism for everyn # 1.
(ii) If F preserves all small colimits, the following conditions are equivalent :
(a) Fj' is a monomorphism.
(b) F preserves all monomorphisms of sSet.

Proof. (i): For n = 0, notice that dA° = &, the initial object of sSet, so F(dA°) is the
initial object of A (remark ii)), i.e. the empty presheaf, and the assertion is clear.
Suppose then that n > 2, and notice that for every pair of subsets C ¢ C’ C [n], the
induced inclusion A€ c A€ is a split monomorphism of sSet, so FAC — FAC is a split
monomorphism of 7. Hence (FAM\IY | € [n]) is a family of subpresheaves of FA™; on
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the other hand, since F is right exact, example [2.3.9(i) implies that F(9A™") represents the
coequalizer of the pair of morphisms

|_| FA[n]\{i’j}j |_| FAlrIM}

0<i<j<n 0<i<n
and example [1.8.11[(ii) reduces to checking that :
(%) F(A[U]\{i,j}) - F(A["]\{i}) ﬂF(A["]\{j}) Yo<i<j<n

(where the intersection is taken within F(A") = F(A!"])). However, lemma easily
implies that the diagram

F(AlNMETYy o F(AlIUY

F(Z,)) - l l
F(Al"NMiy 5 p(Aln]y,

is cartesian, whence ().
(ii): Obviously (b)=(a); conversely, if (a) holds, then by virtue of (i), Fj" is a monomor-
phism for every n € N. However, the class of monomorphisms of &7 is saturated (example

3.1.14(ii)), so the class of all morphisms f of sSet such that F f is a monomorphism, is satu-
rated as well (remark iii)), and then the assertion follows from example(3.1.14(iii). O

Proposition 5.1.15. Let (6, ,.%ib,60f) be a model category, and #'* the class of ab-
solute weak equivalences of €. Let F, G : sSet — € be two functors that preserve all small
colimits and send the monomorphisms of sSet to cofibrations of €. Let moreovert, : F = G
be a natural transformation; the following conditions are equivalent :

(a) (FA" 2, GA™) € W (resp. tan € W'?) for everyn € N,

(b) (FX = GX) € W (resp. tx € W'?) for every X € Ob(sSet).
Proof. Set # = {X € Ob(sSet) | tx € #'} and .#* := {X € Ob(sSet) | x € #'*}.
Claim 5.1.16. (i) FX and GX are cofibrant for every X € Ob(sSet).

(if) % and .#“ are subclasses of Ob(sSet) saturated by monomorphisms.

Proof : (i): Both F and G send the empty simplicial set & to the initial object of ¢, since
they preserve small colimits (remark|1.1.11(ii)); since they also send every monomorphism
& — X to a cofibration, the assertion follows.

(ii): We need to check that .% and .# fulfill conditions (a)-(c) of definition[2.2.9] Thus,
let (X;|i € I) be a small family of elements of .%, set X := | |;c; X;; by virtue of (i) and
corollary [3.5.12fi), the induced morphism of ¢

BERIREIRE:

iel iel iel
is a weak equivalence. However, | |;c; FX; is naturally identified with FX, since F pre-
serves colimits, and likewise for | |;c; GX;; moreover, under these identifications, | |;; 7,
corresponds to 7x, whence condition (a) for .%. Next, let g : GX — S be any morphism
of €,set f .= gorx : FX — S, and for every i € [let g; : GX; — S be the com-
position of g with the natural morphism GX; — GX, and f; = g; o 7x, : FX; — S;
suppose that zx,/S : (FX;, g;) — (GXj, ¢g;) is an S-weak equivalence for every i € I. By
corollary [1.4.6[iii), (GX, g) and (FX, f) represent in 4’/S the direct sum of the families
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((GXi,g;) |i € I) and respectively ((FXj, f;) |i € I), so 7x/S : (FX, f) — (GX, g) is again
an S-weak equivalence. This shows that .% ¢ fulfills condition (a).

To check condition (c) for .7, let X, := (X 2, X EiN X, 2z ) be a countable system
of monomorphisms of sSet, such that X; € .% for every i € N, and X the colimit of X,.
By (i), Fj; is a cofibration between cofibrant objects of & for every i € N, so corollary
says that the colimit of the system (zy, | i € N) lies in #/; but the latter is naturally
identified with 7y, since F and G preserve colimits. This prove that .% enjoys condition (c).
Next, let g : GX — S be any morphism of €, set f := gorx : FX — S,and foreveryi € N
let g; : GX; — S (resp. f; : FX; — X) be the composition of g (resp. of f) with the natural
morphism FX; — FX (resp. GX; — GX); suppose that zx,/S : (FX, f;) — (GXj, ¢;) is an
S-weak equivalence for every i € N, and notice that Fj;/S : (FXj, fi) — (FXi+1, fir1) is
a cofibration between cofibrant objects of €’/S, and likewise for Gj;/S, for every i € N.
Then the colimit of the system (zx,/S |i € N) is an S-weak equivalence; but the latter is
naturally identified with x /S, again by virtue of corollary[1.4.6{iii). This proves that .7¢
fulfills condition (c).

Lastly, let X, X', Y € .#, and consider a cocartesian diagram of sSet :

X s X

‘I

Yy —Y

whose vertical arrows are monomorphisms. There follows a commutative diagram of ¢ :

Fy <22 px L4 px’
(+) i o lfx,
Gy <2 Gx 4 Gx7
where Fb and Gb are cofibrations, and the vertical arrows are weak equivalences of 4.
Then, by (i) and corollary 3.6.7} (+) induces a weak equivalence of ¢’ :
FY Upx FX' — GY Ugx GX'.

But the latter is naturally identified with 7y, x» = 7y’, whence condition (b) for .%. To
get condition (b) for .#¢, one argues as in the verification of (c) : the details shall be left
to the reader. O

Now, by assumption {A"|n € N} lies in % (resp. in .#%), and recall that A is an
Eilenberg-Zilber category (example [2.2.2[i)); then the proposition follows from corollary

and claim [5.1.16{ii). m]
Lemma 5.1.17. Let &/ and 9 be two small categories that have final objects. Then :

(i) Every morphismu : Nof — N2 in sSet is an absolute weak equivalence.

(ii) The unique morphism N/ — A is a simplicial homotopy equivalence.
Proof. (i): For e = 0,11let &, : & — [1] X &7 be the functor such that A — (i, A) for every
A € Ob(&), and f +— (1;, f) for every morphism f of 27; let moreover E be any final
object of 7, and for every A € Ob(.</) denote by t4 : A — E the unique morphism of
/. Consider the functor
A ifi=0

h:[1|x o - i, A
[1]% - g )H{E ifi=1
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such that for every ¢ € o/ (A, A”) we have (notation of :

h(1o,4) =¢  h(11,8) =1  h(0L,¢) := ta.

Let furthermore f : [0] — < be the functor such that 0 +— E, and g : &/ — [0] the
unique functor. We have :

hody=1y and hoéy=fog

and notice that ho([1]Xxf) : [1]X[0] — 7 is the composition of f with the unique functor
[1] X [0] — [0]. Then,setw := Nf : A - N/ and ¢ := Ng : N — A it follows that
Y ow = 150 and since N commutes with products (see , A:=Nh:A'XNo — No/
is a homotopy from 1y to @ o ¥, such that 1 o (Al X w) = w o 0'8 (notation of ; ie.
w is a strong deformation retract, and hence, an anodyne extension of sSet (proposition
[&5.6i).

e Let us check next, that every morphism n : A — N.o/ is an anodyne extension.
Indeed, we have = N(f”) for a unique functor f’ : [0] — &/ (lemma [2.3.2), and we
consider the unique functor :

k:[1] >« such that 0+ f(0) 1+ E.

Clearly p := N(k) : A —» N.o/ is a homotopy from 5 to . On the other hand, recall that
both face morphisms d¢ : A° — A! are anodyne extensions (corollary ; combining
with proposition[4.6.9(i) we deduce first that 4 is an absolute weak equivalence (since  is
an anodyne extension), and then that the same holds for 5. Then the claim follows from
proposition |4.6.8

e Let now u : N/ — N2 be any functor; choose any morphism 7 : A° — N.&7 and
notice that both # and u o 57 are absolute weak equivalences, by the foregoing, so the same

holds for u (proposition [4.6.9(1)).

(ii): The assertion follows immediately from the proof of (i). O

5.2. The model structure of bisimplicial sets. Notice that A’ X A is a final object of
the category bSet of bisimplicial sets (see §2.1.8), and we have a cylinder in this category:

(A"Ka}, AR} ) R0
_—

A
A RAY AT AL AORAY —5 AP A°,

Then, invoking again example [4.4.5(i) we get an exact cylinder on bSet, given by the
cartesian product functor I := A’ XIA! x (-). We shall denote by bAn the smallest class of
I-anodyne extensions in bSet. Also, the weak homotopy equivalences of bisimplicial sets
shall be defined as the I-weak equivalences.

e Theoreml4.5.14]yields as well a unique model category structure on bSet whose weak
equivalences are given by the weak homotopy equivalences, whose cofibrations are the
monomorphisms, and such that every object of bSet is cofibrant. Moreover, the fibrant
objects of bSet are the I-fibrant objects.

e Foreveryn € N, let j” : 9A" — A" be the inclusion; to every morphism f : X - Y
of bSet and every such n we attach the unique morphism of sSet

£ (A" X) — (A", X) X (annyy (A", Y)
whose composition with the projection to (dA", X) (resp. with the projection to (A", Y))
equals (%, X) (resp. equals (A", f)).

o Lastly, we shall say that f is a levelwise weak homotopy equivalence (resp. a levelwise
trivial cofibration, resp. a levelwise anodyne extension), if the morphism f, , : Xon — Yo
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is a weak homotopy equivalence (resp. a trivial cofibration, resp. an anodyne extension)
of sSet for every n € N.
Lemma 5.2.1. Let f : X — Y be a morphism of bSet. We have :

(i) f is a trivial fibration fnT is a trivial fibration of sSet for everyn € N.

(ii) bAn is the saturation of the class :

F ={KKA"ULXJAN" - LKA"| (K — L) € sAn,n € N}.

(iii) f is an I-fibration & ﬁj is a Kan fibration for everyn € N.

(iv) Every anodyne extension of bSet is a levelwise anodyne extension.

(v) For every monomorphism A — B of sSet and every (K — L) € sAn, the induced
morphism KIIBULX A — L X B is in bAn.

(vi) Let A € Ob(sSet); if f is an I-fibration (resp. a levelwise weak homotopy equivalence,
resp. a trivial fibration), then (A, f) : (A, X) — (AY) is a Kan fibration (resp. a weak
homotopy equivalence, resp. a trivial fibration), and if X is a fibrant object of bSet, then
(A, X) is a Kan complex.

(vii) X is a fibrant object of bSet & (j",X) : (A", X) — (dA", X) is a Kan fibration for
everyn € N.

Proof. (i): By examples ii) and ii), the system of monomorphisms :

J™T AT KA UoAT KA — AT A™ Vm,n e N
is a cellular model for bSet, so r({j™" |m,n € N}) is the class of trivial fibrations of
bSet (definition ii)). On the other hand, by virtue of proposition for every

morphism f : X — Y of bSet we have a natural bijection between commutative diagrams
of the form :

AM K A" U 9A™ K AP —= X N ——— (A", X)
l / lf and J‘"‘l / lfJ
AMRA"T — S Y A™ T (A", X) X (annyy (A", Y).

Since {j™ | m € N} is a cellular model for sSet, the assertion follows.
(ii): For every m,n € N and ¢ € {0, 1}, the monomorphism
X =T(A" X oA" UdAT A" U {e} @ (A" K A") — Y™ .= (AT K A™)
lies in bAn. However, by virtue of remark [2.1.9(ii) we have :
X™" = (A' x 9A™ U {e} x A™) K A" U (A x A™) K 9A"
Y™ = (AT x A™) KA
But the saturation of {A! X A™ U {e} x A™ — A X A™|m € N, e = 0,1} is sAn (corol-

lary [5.1.6), so .# C bAn. For the converse inclusion, it suffices to notice that bAn is the
saturation of {X*" — Y™" |m,n € N, ¢ = 0,1} (corollary|4.4.10).

(iii) follows immediately from (ii), arguing as in the proof of (i).

(iv): For every n,m € N, let U™ and V™™ be the simplicial sets with :

U™ = oAy, and v = AL VieN

1
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n.m ¢* n.m n.m ¢* n,m . pr .
and such that Ut — U and V.*" — V™™ are the identities, for every morphism
¢ : i = jof A. The inclusion 0A}, ¢ A}, induces a monomorphism U™™ — V™™, and
for every monomorphism K — L of sSet we have :

(KRA"ULROA)ym =KXV ULXU™  (LKA"),,=LX V™™

In light of proposition [5.1.11{i), we deduce that every element of the class .7 of (ii) is a
levelwise anodyne extension. However, since the colimits of bSet are computed termwise
(remark [1.6.2[i)) it is easily seen that the levelwise anodyne extensions form a saturated
class, so the assertion follows from (ii).

(v): Since the set {JA" — A" |n € N} is a cellular model for sSet (example [4.4.2[ii)),
the assertion follows easily from (ii).

(vi): As a special case of (v), we see that for every (K — L) € sAn and every A €
Ob(sSet), the induced morphism K X A — L X A lies in bAn; by applying proposition
[3.1.19]to the adjoint pair of proposition[2.1.10] we deduce that if f is an I-fibration, (A, f) is
aKan fibration. By the same token, since the functor —X A preserves monomorphisms, we
see that if f is a trivial fibration, the same holds for (A, f). Next, let f be a levelwise weak
homotopy equivalence; by virtue of remark [2.1.9(i), it follows that (A", f) : (A", X) —
(A", Y) is a weak homotopy equivalence for every n € N. Let us then endow sSet°P with
the model category structure induced by the Kan-Quillen model category structure on
sSet (proposition [3.2.4{i)); since the functors (=, X),(—,Y) : sSet — sSet’ preserve all
small colimits, proposition [5.1.15|implies that (A, f) is a weak homotopy equivalence.

In order to prove the last assertion, it now suffices to check that if Y is the final object
of bSet, then (A, Y) is the final object of sSet. The latter follows from proposition
(13| Prop.2.49(i)] and remark [1.1.11{ii).

(vii): Let Y be the final object of bSet, and f : X — Y the unique morphism; we have
just observed that (A", Y) and (A", Y) are final objects of sSet, so f,, = (j",X); since
the fibrant objects of bSet are the I-fibrant objects, the assertion is then a special case of
(iii). O
Theorem 5.2.2. Every levelwise weak homotopy equivalence f : X — Y of bisimplicial
sets induces a weak homotopy equivalence of simplicial sets :

diag(¢) : diag(X) — diag(Y).
Proof. To begin with, we remark :

Claim 5.2.3. The functor diag preserves weak homotopy equivalences.

Proof : Since the colimits of sSet and bSet are computed termwise (remark [1.6.2{i)), it is
clear that the functor diag preserves all small colimits; hence, the class ¢ of all morphisms
¢ of bSet such that diag(¢) is a trivial cofibration of the Kan-Quillen model category
structure is saturated (remark [3.1.4(iii)). Notice as well that :

diag(K K A" ULK A" — LR A") = (KX A" UL X dA" — L x A")

for every monomorphism i : K — L of sSet (remark [2.1.9(ii)); especially, if i € sAn, the
induced morphism K A" ULXJA" — LK A" lies in ¢. With lemma5.2.1ii), we deduce
that bAn C ¢. Notice moreover that diag preserves all monomorphisms and admits a
right adjoint, since sSet is cocomplete (theorem [1.7.5[iii)); then, proposition and
lemma [3.4.12 imply that diag preserves trivial cofibrations, and since all objects of bSet
are cofibrant, we conclude with proposition 3.2.8] <&
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On the other hand, since every element of sAn is a weak homotopy equivalence (theo-
remf4.5.14(v)), lemmal 5.2.1(iv) implies that every anodyne extension of bSet is a levelwise
weak homotopy equivalence. Now, we may find a commutative diagram of bSet

X—suU

i

Yy L=V
whose horizontal arrows are in bAn, and where p is an I-fibration with fibrant target
(see the proof of corollary [4.5.16i)); since levelwise weak homotopy equivalences enjoy
the 2-out-of-3 property, we deduce that f is a levelwise weak homotopy equivalence if
and only if the same holds for p. Also, we already know that diag(i) and diag(j) are
weak homotopy equivalences of sSet; by the 2-out-of-3 property for weak homotopy
equivalences, we see that diag(f) is a weak homotopy equivalence if and only if the
same holds for diag(p). Since the fibrant objects of bSet are the I-fibrant objects, we see
that both X and Y are fibrant; summing up, we may replace f by p, and assume that f
is also a fibration of bSet between fibrant objects. Hence, (A, f) : (A X) — (A Y)isa
trivial fibration between Kan complexes in sSet, for every A € Ob(sSet) (lemmal5.2.1[vi)).

For every n € N we have the commutative diagram of sSet :

(A", X) 2" (9A", XY X (onn vy (A", Y) — (9A", X)

- l” l (on)
m <j",Y>

(AMY) (0A™Y)

and we know that (j", Y) is a Kan fibration of Kan complexes (lemma5.2.1[vi,vii)); espe-
cially, it is a fibration of sSet. Moreover, (9A", f) is a trivial fibration, so the same holds
for 7 (propositions[3.1.9(v) and [3.6.5(ii)); especially, this shows that every term in the di-
agram is a Kan complex, and since (A", f) is a trivial fibration, the 2-out-of-3 property

implies that f,j is a weak homotopy equivalence, and so it is a trivial fibration as well, by
lemma iv). We conclude that f is a trivial fibration of bSet (lemma i)), and then
the assertion follows from claim[5.2.3] m|

5.3. Subdivision and extension functors. To every partially ordered set (E, <) we at-
tach the set £(E) of totally ordered non-empty chains of elements of E, of arbitrary finite
length; we endow &(E) with the partial order given by inclusion of chains. Every map
f:(E, <) — (F, <) of partially ordered sets induces a map

E§f):EE) = EF) Crm f(O)
of partially ordered sets. Hence we obtain a functor
& : poSet — poSet C Cat.

We compose it with the nerve functor (see §2.3) to get a functor N¢ : poSet — sSet, and
we consider the restriction of N¢& to the full subcategory A, that we denote

o: A — sSet [n] — NE&([n]) Vn e N.

Next, the subdivision functor is defined as the extension by colimits of ¢ (see theorem

1,ii)), and denoted

Sd := 01 : sSet — sSet.



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 230

Thus, Sd is left adjoint to the extension functor
Ex := 0" : sSet — sSet X +— ([n] — sSet(N&([n]), X)).
e For every (E, <) € Ob(poSet), we have a natural epimorphism of poSet
ug: E(E) > E C — max(C).

Notice that if E is finite and totally ordered, then pug is a split epimorphism : indeed, for
every such E we may define the morphism of poSet :

Ag : E — &(E) e— {xeE|x<e} so that Hg o Ap = 1g.
Recalling that N([n]) = A", we deduce that y, induces a natural transformation
Nxpys:0=nh

where h : A — sSet denotes as usual the Yoneda embedding; moreover, (N * yis)[n] =
N (p1[n)) is a split epimorphism for every n € N. Since h; is isomorphic to 1gse; (remark
1.7.8[1)), there follows a natural transformation

Qe := (N K o)1 : Sd = 1get
(remark iii)) whence an adjoint natural transformation (see §1.6.10)
ﬁ. s 1550t = Ex.

Explicitly, for every X € Ob(sSet), the morphism fx : X — Ex(X) is the system

sSet(aan,X)
_—

Bxn: X = sSet(A", X) sSet(Sd(A™), X) = Ex(X), Vn € N.

This explicit description shows especially that fx , is injective for every such X and n,
since apn : SA(A") — A" is naturally identified with the split epimorphism N (y[p))
(corollary [1.7.9(i)); hence, Bx is a monomorphism for every X € Ob(sSet), and in light of
corollary [1.7.9(ii), we also see that ax is an epimorphism for every such X.

Example 5.3.1. (i) Clearly £([0]) = [0] and &([1]) = {{0},{1},{0,1}}. There follow
cocartesian diagrams of poSet and sSet :

(0] — & (1] po b p
N
[1] ——&([1]) A' ——Sd(AY).

(ii) With (i), we deduce natural identifications, for every X € Ob(sSet) :
Ex(X)o = X Ex(X)1 = Xy X(grq) X1 = {(a,b) € X?|d%(a) = d2(b)}.

Under these identifications, the map fx : Xo — Ex(X), corresponds to 1x,, and Bx 1 :
Xi — Ex(X); is the map such that a — (a,s)d}(a)) for every a € X;. Also, the map
d? : Ex(X)1 — Ex(X)o (resp. dl : Ex(X); — Ex(X)o) is given by : (a,b) — d!(a) (resp.
(a,b) — dj (b)) for every (a,b) € Ex(X);.

(iii) Recall that 7(X) is naturally identified with the coequalizer of d?,d} : X; =% Xo,
for every X € Ob(sSet) (see §2.1.11); in light of (ii), we easily deduce that fx induces a

natural bijection :

] 70(Bx) : m(X) = m(Ex(X)) VX € Ob(sSet). \
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Lemma 5.3.2. For every (E, <) € Ob(poSet) there exists a natural isomorphism:

ISdON(E);Nog(E)\

that makes commute the diagram :

Sd o N(E) ——————— N o (E)

R

Proof. Recall that, by construction, Sd(N(E)) represents the colimit of the functor:
A/N(E) — sSet ([n], A > N(E)) — N&([n])

(see the proof of theorem [1.7.5(i)). However, since N is a fully faithful functor (lemma
2.3.2), and since A" = N([n]) for every n € N, the category A/N(E) is naturally isomor-
phic to the category A/E, defined as the full subcategory of the slice category poSet/E
whose objects are the morphisms X — E of poSet with X € Ob(A). Then, Sd(N(E))
represents also the colimit of the functor :

Fg : AJE — sSet ([n] = E) — NE&([n]).

With this notation, the rule : (f : [n] — E) — NZ(f) yields a co-cone Fr = cne(k),
whence a morphism ¢z : Sd o N(E) — NE(E) of sSet, and it is easily seen that the rule
(E, <) + ¢ is natural in E. We need to check that ¢ is an isomorphism for every such E.
Now, for every k € N, the k-simplices of N¢(E) are the sequences of inclusions Sy C S; C

-+ C Sk of non-empty subsets S; C E that are totally ordered for the ordering induced by
E. Thus, for every (f : [n] — E) € Ob(A/E), the morphism N&(f) : N&([n]) — NE(E)
is given on k-simplices by the rule :

Se:=(SocSiCc---CcSccn]) fSe:=(fSoC fS1C---C fSk CE).

Hence, let T, := (Tp ¢ Ty C --- C T) be any k-simplex of N¢(E); denote by n + 1 the
cardinality of Ty, and let j : Ty — E be the inclusion map. We have a unique isomorphism
u : [n] = Ti of poSet; then T, = N&(u)x(S.) for a unique So € NE&([n]), whence
NE(j o u)g(Se) = Ts. The surjectivity of ¢ easily follows.

For the injectivity, consider morphisms f : [n] — E, g : [m] — E of poSet and
k-simplices S,,S, of Né([n]) and respectively N&([m]) such that fS. = ¢S, in N¢(E);
we need to check that the images of S, and S, agree in Sd(N(E)). We have a unique
n’ < nsuch that f factors as a surjective morphism u : [n] — [n’] of A and an injective

morphism f” : [n'] — E of poSet, and u/E : ([n] L E) — ([n] I—) E) is a morphism
of A/E; then the k-simplices S, and uS, of N¢([n]) and respectively N&¢([n’]) have the
same image in Sd(N(E)), and obviously fS. = f’(uS.) in N¢(E). Thus, after replacing f
and S, by f’ and uS,., we may assume that f is an injective map, and likewise for g. Next,
let ¢ + 1 be the cardinality of S; we easily find a unique morphism v : [¢] — [n] and
a unique k-simplex T, of N¢([c]) such that vT, = S, and Ty = [c], whence a morphism

0/E : ([c] m E) — ([n] L E) of A/E; then again, T, and S, have the same images
in Sd(N(E)), and after replacing f and S, by f o v and T,, we may assume as well that
Sk = [n], and likewise, S; = [m]. But then clearly n = m, and since both f and g are
injective, the condition fSx = gS; implies that f = g; we have then fS. = fS;, whence
Se = S., again by the injectivity of f, and the proof is concluded.
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It remains to check that N(ug) o ¢ = ang. To this aim, for every partially ordered
set (E, <) choose a universal co-cone nf : Fy = csd(NE); by corollary i) (and by the
proof of theorem[1.7.5(i,ii)), we get a commutative diagram :

[n]
NE[n] — o sa(N[n]) =20 sa(nE)

N,u[n]l laN[n] laNE
f

N
N[n] =———=N[n] ———— > NE

for every (f : [n] — E) € Ob(A/E), and moreover Sd(Nf) o q{?n]] = ]If for every such
f. On the other hand, by construction we have ¢g o ry}’f = N&(f); summing up, we are
reduced to verify the commutativity of the diagram :

NE&(f)
Né[n] ——— NE(E)
Niyn) l \LNHE
N

N[n] ——~—~ NE
for every such f, which follows from the naturality of y,. O
Proposition 5.3.3. (i) Sd preserves monomorphisms and anodyne extensions.

(ii) The functor Ex preserves trivial fibrations and Kan fibrations.

(iii) ax : Sd(X) — X is an absolute weak equivalence for every X € Ob(sSet).
(iv) The subdivision and extension functors form a Quillen adjunction

’ Sd : sSet = sSet : Ex. ‘

Proof. (i): Clearly po) : £[0] — [0] is an isomorphism, so the same holds for the mor-
phism apo : SA(A®) — A”, since the latter is naturally identified with N(u[1) (corollary
[1.7.9(i)). Moreover, Sd preserves all representable colimits ([13} Prop.2.49(ii)]), so we get
a commutative diagram :

sd(A® U A% —2Y) _ sq(al)

AA0LA0 l/ l/ ap1
1

AN — A
where j! : 9A! — Al is the inclusion, and a0 is an isomorphism. It follows that Sd(j!)
is a monomorphism, and then proposition [5.1.14(ii) implies that Sd preserves monomor-
phisms.

e Let .# be the class of all morphisms f of sSet such that Sd(f) is an anodyne ex-
tension; by lemma|5.1.17(i) and proposition [4.6.8] we know already that every monomor-
phism j : A™ — A" lies in .#, for every m,n € N, since Sd(A") is the nerve of the
category &[n], that has [n] as its unique final object, for every n € N, and since we have
just shown that Sd() is a monomorphism, for every such j.

o We also know that Sd preserves all small colimits ([I3} Prop.2.49(ii)]), so .% is satu-
rated (remark[3.1.4{iii)). Combining with corollary|[5.1.6] we are thus reduced to checking
that the inclusion A} — A" lies in .7 for every n € N \ {0} and every k € [n]. We
proceed by induction on n; the case n < 1 is already known. So, let n > 1; for every

proper non-empty subset I C [n] we define AE"] as in so that Am\{k} = Im(d¥)



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 233

[n]
and A{k}

that the inclusion j? : Agn] — A" lies in .%. For ¢ = 1, the assertion is already known,
hence suppose that 2 < ¢ < n, and that ji? € .# when either m < nand K C [m] is an ar-
bitrary non-empty subset, or else m = nand K C [n] is a non-empty subset of cardinality
< n-—c.Pick k € [n] \ I; according to §2.3.12| we find, for a suitable subset K C [n—1], a

cocartesian diagram in sSet :

= A for every k € [n]. We check, by induction on the cardinality c of [n] \ I,

[n—1] [n]
Ag = Apoiky

]Ki Ji

[n]

A" Al

By inductive assumption, j;_l lies in %, so the same holds for the inclusion i; moreover,
jInU{k} = jf oi,and jInU{k} € 7, whence ji' € .7, by proposition i).
(ii) follows from (i) and proposition [3.1.19

(iii): By proposition[5.1.15] it suffices to check that aa» : Sd(A™) — A™ is an absolute
weak equivalence for every n € N, and this follows from lemma i).

(iv): By (i), Sd preserves cofibrations, and (iii) easily implies that Sd preserves weak ho-
motopy equivalences (the details are left to the reader), so it preserves trivial cofibrations

as well, and the assertion follows from lemma [3.4.12[i). O

Corollary 5.3.4. Foreveryn € N and everyk =0, ...,n, endow

o®@" == &([n) \ {[n]}  and @} :=0®" \ {[n]\ {k}}
with the partial orderings induced by their inclusions in £([n]). Then the isomorphism
Sd(A™) = N¢[n] oflemma restricts to natural identifications :
Sd(oA™) = N(od") and Sd(A}) = N(@}).

Proof. Recall that Sd commutes with all representable colimits of sSet, since it a left ad-
joint ([13] Prop.2.49(ii)]), and Sd preserves monomorphisms, by proposition i); then
the diagram of example [2.3.9(i) and the isomorphisms of lemma identify Sd(oA™)

with the image of the natural morphism:
| | Ne(n] \ {k}) - Né([n]).
0<k<n

On the other hand, clearly 9®" = (J;_; £([n] \ {k}), so it remains to only to check that
the induced injective map

| NEn\ (K} — N(ao™)
k=0

is surjective. However, for every p € N, the p-simplices of N(a®") are the chains of
inclusions Cy € C; C --+ C C, of proper subsets of [n]; hence, for every such chain
C, there exists k € [n] with C, C [n] \ {k}, and then clearly C, lies in the image of
NE&([n] \ {k}). A similar argument proves the stated identity for Sd(A}) : the details shall
be left to the reader. O

Proposition 5.3.5. (i) Ex preserves and reflects weak homotopy equivalences.
(ii) (Kan) fx : X — Ex(X) is a weak homotopy equivalence, for every X € Ob(sSet).
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Proof. (i): To every simplicial set X we attach the bisimplicial set E(X) such that
E(X)m.n = sSet(A™ x Sd(A™), X) Vm,n € N
and with E(X)g y = sSet(¢ x Sd(1), X) for every pair of morphisms ¢, 1 of A.
The projections A& Am % Sd(A™) 4, Sd(A™) induce natural morphisms of bSet :

xxA L E(X) KXY Ex(X).
With the notation of notice moreover that :
(XRA., = X = Hom(A°,X)  E(X)en = Hom(Sd(A"),X)  VneN
and under these identifications, p; ,, : (X X A)en — E(X).p corresponds to
w, == Hom(up, X) : AHom(A°, X) — s#om(Sd(A™), X) VneN
for the unique morphism u, : Sd(A™) — A° of A.

Claim 5.3.6. Let f,g : K = L be two morphisms of sSet, h : Al Xx K — L a homotopy
from f to g, and X € Ob(sSet). Let f*, g* : Hom(L, X) = #om(K, X) be the morphisms
of sSet induced by f and g. Then h induces a homotopy from f* to g*, and a homotopy
from Ex(f) to Ex(g).

Proof : Indeed, h induces the morphism
h* : Hom(L,X) — Hom(A' X K, X) = Hom(A', #om(K, X))
which, by adjunction, corresponds to a morphism
A' x AHom(L, X) — Hom(K,X)

and it is easily seen that the latter is the sought homotopy from f* to g*. Next, since Ex
preserves products [13] Prop.2.49(i)], 4 induces as well the morphism

XEx(K) Ex(h
A' x Ex(K) Lar &0, Ex(A) x Ex(K) = Ex(A' X K) iON Ex(L)

and it is easily seen that the latter is a homotopy from Ex(f) to Ex(g) : the details shall
be left to the reader. &

Since u,, is a simplicial homotopy equivalence (lemma [5.1.17(ii)), claim implies
that the same holds for u}, for every n € N; especially, p* is a levelwise weak homotopy
equivalence, so it induces a weak homotopy equivalence :

(%) X = diag(X ¥ A°%) — diag(E(X))
by theorem Likewise, the unique morphism v, : A™ — A is a simplicial homotopy

equivalence for every m € N, hence the same holds for v}, : X = Som(A°, X) —
Jtom(A™, X). However, notice the natural identifications :

E(X)?, = Ex(Aom(A™, X)) (A’ KExX(X)?,, = (Ex(X) B A%, = Ex(X)
where (—)¢ denotes the flip automorphism as in §2.1.8] Under these identifications, the
morphism (q*)fm (A" Ex(X))fm - E(X)ffm corresponds to

Ex(v},) : Ex(X) — Ex(fom(A™, X))

and invoking again claim [5.3.6] we see that Ex(v},) is a simplicial homotopy equivalence
as well. Summing up, (¢*)? is a levelwise weak homotopy equivalence, so it induces a
weak homotopy equivalence

() Ex(K) = diag(A° K Ex(K)?) — diag(E(X)?) = diag(E(X)).
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Now, for every morphism f : X — Y of sSet we get a commutative diagram :
X —— diag(E(X)) =— Ex(X)
fl ldiag(E(f) lEX(f)
Y —— diag(E(Y)) =—— Ex(Y)
whose horizontal arows are the weak homotopy equivalences (*) and (*x). Hence f is a

weak homotopy equivalence if and only if the same holds for Ex(f).

(ii): Notice that La, : LSd = 1pg(sset) is an isomorphism of functors, by proposition

5.3.3{iii), example ii) and remark iii). Then, by proposition iv), corollary
3.4.17|and the discussion of §1.6.10] the same holds for

RB. = (Lata)" : 1ho(ssety = REx.

Since Rfx = [(fx,).] for every X € Ob(sSet) (remark iv)), Whitehead’s theorem

i) and lemma ii) then imply that (Bx). is a weak homotopy equivalence for
every fibrant object X of sSet (i.e. every Kan complex), hence the same holds for S, for

every Kan complex X.

For a general simplicial set X, we may find a trivial cofibration i : X — Y with a Kan
complex Y (see §3.3.1); we deduce a commutative diagram :

X—1 oy
/3xl/ lﬁy
Ex(i)

Ex(X) — Ex(Y)

where fy is a weak homotopy equivalence, by the foregoing, and the same holds for Ex(i),
by virtue of (i); so fx is a weak homotopy equivalence as well. O

5.3.7. For every simplicial set X we define inductively :
ExX’(X) =X  Ex"(X) := Ex(Ex’(X)) VneN.

Hence we get a sequence of functors

’ Ex™ : sSet — sSet Vn e N‘

which preserve trivial fibrations and Kan fibrations (proposition [5.3.3[ii)), and both pre-
serve and reflect weak homotopy equivalences (proposition [5.3.5(i)); moreover, we have
natural transformations

Bl = B x EX" : EX" = EX"*!  VneN

such that g is a trivial cofibration for every X € Ob(sSet) (proposition ii)). Thus,
for every such X we get a natural system of morphisms of sSet :

B Bx B5

(%) X5 EXN(X) S5 B (X) =5 -

and we set

Ex*(X) := lim Ex"(X) VX € Ob(sSet).

neN

The colimit of (*) is then a natural transformation

ﬁfo : lsSet = EXOO.
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Lemma 5.3.8. (i) B3 : X — Ex*(X) is a trivial cofibration for all X € Ob(sSet).
(ii) Ex*™ preserves Kan fibrations and weak homotopy equivalences, and is left exact.

(iii) B is a bijection on objects B3 : Xo = Ex™(X)o, and induces a natural bijection :

mo(BY) : m(X) = m(Ex™(X)) VX € Ob(sSet). \

Proof. (i): This is clear, since trivial cofibrations form a saturated class (see proposition
V)), and since B is a trivial cofibration for every n € N.

(ii): Since Ex" preserves Kan fibrations for every n € N, proposition [5.1.11fiii) implies
that the same holds for Ex™; moreover, with (i) and the 2-out-of-3 property of weak homo-
topy equivalences we see that Ex™ preserves weak homotopy equivalences. Next, since
Ex is a right adjoint, it is left exact ([13] Prop.2.49(i)]), so the same holds for Ex", for every
n € N; taking into account example ii), we deduce that the same holds for Ex™.

sentable colimits ([13} Prop.2.49(ii)]). O
Theorem 5.3.9. (Kan) Ex*(X) is a Kan complex, for every X € Ob(sSet).

Proof. For every n € N, recall that £([n]) is the set of non-empty subsets of [n], ordered
by inclusion of subsets; likewise, £(£([n])) is the set of strictly increasing chains C, :=
(@ #CyC---CCpyC [n]) of arbitrary length p > 0, with ordering such that C, < C; :=
(B#Cyc---C CEI C [n]) & forevery i =0,...,p there exists j < q such that C; = C;..
For every n € Nand k = 0,. .., n consider the map

YpEE([]) > E([n]) (@#Cyc---CCpc[n]) > {cf(C)|i=0,....p}

where :

VS € &([n]).

n max(S) ifS e @}
Cr (S) = ,k
k otherwise

Clearly ; is a morphism of poSet. Now, define ®} as in corollary we have :

Claim 5.3.10. Im(y') C ®; for every n € N and every k = 0,...,n.

Proof : We need to check that y;'(C.) # [n], [n] \ {k} for every chain C, € &(£([n])).
Thus, suppose first that ¢ (C.) = [n]; especially, the length of the chain C, must equal n
(since this is also the maximal length of any chain of £(£([n]))). Moreover, C,, = [n], so
g (Cp) = k, and therefore ¢} (C;) # k forevery i = 0,...,n—1, so that ¢} (C;) = max(C;) >
iforeveryi <n-—1.if¢/(Cp-1) =n—1,thenn ¢ {c/(C;) i =0,...,n— 1}, and therefore
n=c}(Cn) = k. But then C,—y = [n] \ {k} € @, so that c}(C,-1) = k, a contradiction.

o Next,if ¢} (Cn-1) = n, thenk = ¢}/ (Cy) # n,s0{c(Ci) |i=0,...,n-2} = [n—1]\{k}.
Hence, C,—; = [n—1]\{k} (since Cy C - - - C Cp,_, is then a maximal chain in [n—1]\ {k}),
and therefore C,—; = [n] \ {k} (since c}(Cy-1) = max(C,-1)); but then ¢} (Cp—1) = k as
well, again a contradiction.

e Lastly, suppose that §'(Cs) = [n] \ {k}, and let p < n be the length of C,. Then
cZ(Ci) = max(C;) fori =0,...,p,and p > n — 1; moreover, the cardinality of C, must be
> n,and Cp # [n], so C, = [n] \ {j} for some j # k. Consequently, ¢}'(C;) # i for every
i=0,...,p,and then i ¢ lﬁg (Cs), so j = k, a contradiction. &

By claim[5.3.10} lemma 5.3.2] and corollary[5.3.4] the morphism N(y!) induces a mor-
phism of sSet

uf : Sd*(A™) — Sd(A}).
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Claim 5.3.11. Let j : A — A" be the inclusion; the following diagram commutes :

Sd(O!An)
Sd?(Al) —— > Sd(A")

Sd2 () l /
Uk

Sd?(A™M).

Proof : We come down to checking the commutativity of the diagram :

sd2(ar) LU @2 (am) - NE2[n]
Sd<aAn>l lN(l//;’)
sd(Am) —22L L sd(Am) — =~ Ng[n)

where the unmarked horizontal isomorphisms are given by lemma However, the
composition of the top and bottom horizontal arrows are respectlvely

S (AD) 5 NE@) U N2[n] and  sd(A7) S Nt 2L N[

where j* : ®; — &[n] is the inclusion, and the unmarked isomorphisms are again the
natural identifications of lemma which make commute the diagram :

Sd*(A}) —— NE(®})
Sd(a/\z)l lNﬂ@z
Sd(AY) —_— NO}

Thus, we are reduced to checking the commutativity of the diagram :

@) —LL gy

-, I

o — 1 ¢[n]

which follows by simple inspection. <&

Now, let x : A} — Ex®(X) be any morphism; since A} has finitely many non-
degenerate simplices, there exists m € N\ {0} such that x is the composition of a mor-
phism x' + A} — ExX™(X) and the natural morphism Ex™(X) — Ex¥(X) (corollary
1). By adjunction, x” corresponds to a morphism y : Sd(A}) — Ex™ 1(X), and we let
z: Sd(A") — Ex™(X) be the adjoint of y’ := y o u}] : Sd?(A") — Ex™"1(X); notice that
y oSd*(j)=yo Sd(aar), by clalm 1} By adJunctlon, we deduce first a commutative
diagram :

(XAn

SA(AT) ——— A"

Sd(j)l lx'

Sd(A") —> Ex"(X)
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and then a second commutative diagram :

ﬂn

A
A —— Ex!(AT)

jl lExl ()

AP # EXm+1 (X)

where w is again the adjoint of z (see §1.6.10). But Ex!(x’) o Bar = Pexm(x) 0 x’, so finally
we arrive at the commutative diagram :

Al . Ex™(X) —— Ex®(X)

| ]

A _W> Exm+l (X)
and the proof is concluded. O

5.4. Fibrations and weak equivalences in the Kan-Quillen model category. In this
§ we exploit the functor Ex® to derive useful properties of the class of weak homotopy
equivalences, and of the fibrations of the Kan-Quillen model structure. In the last para-
graph, we also add some complements for the model category of pointed simplicial sets.

Corollary 5.4.1. Consider a Kan fibration p : X — Y and a cartesian square of sSet :

X’LX

)

y 2o,

(i) If p (resp. g) is a weak homotopy equivalence, the same holds for p’ (resp. for f).
(ii) D is homotopy cartesian for the Kan-Quillen model category.

Proof. (ii): We apply termwise the functor Ex™ to D, to deduce another cartesian square
Ex*(D), by lemma [5.3.8ii), all of whose terms are Kan complexes, by theorem|5.3.9] and
where Ex®(p) is a Kan fibration, again by lemma [5.3.8[ii), so it is a fibration between fi-
brant objects for the Kan-Quillen model category (theorem([5.1.10). Also, by lemmal5.3.8{i),
the natural transformation S;° yields a weak equivalence 7 : D — Ex*(D) of
the category sSet of example iii) (endowed with the injective model structure in-
duced by the Kan-Quillen model structure on sSet), hence it suffices to check that Ex* (D)

is homotopy cartesian (remark [3.5.15(v)); the latter holds by proposition [3.6.5(ii).

(i): Lemma [5.3.8{i) (and the 2-out-of-3 property for weak equivalences) easily implies
that if p (resp. g) is a weak homotopy equivalence, the same holds for Ex*(p) (resp. for
Ex*(g)). Next, if Ex*(g) is a weak homotopy equivalence, the same holds for Ex*(f), by
virtue of proposition [3.6.5[ii), since we have already remarked that Ex*(D) is cartesian
and that Ex®(p) is a fibration between fibrant objects for the Kan-Quillen model category;
if Ex*(p) is a weak homotopy equivalence, then it is a trivial fibration of sSet (theorem
[5.1.10), and therefore the same holds for Ex*(p’) (proposition v)). Lastly, if Ex™(f)
(resp. Ex™(p’)) is a weak homotopy equivalence, the same holds for f (resp. for p’), once

again by lemma i). O
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Proposition 5.4.2. Consider a commutative triangle of simplicial sets :
f
X———Y
N S
S.

(i) If for every n € N, every n-simplex A" — S induces a weak homotopy equivalence
A" Xs X — A" Xg Y, then every morphism S — S of sSet induces a weak homotopy
equivalence S’ Xs f : S" X¢ X — §’ Xs Y (especially, f is a weak homotopy equivalence).

(ii) If moreover, p and q are Kan fibrations, the following conditions are equivalent :
(a) f is a weak homotopy equivalence.

(b) S’ Xs f is a weak homotopy equivalence for every morphism S’ — S of sSet.
(c) f restricts to a weak homotopy equivalence f; : p~1(s) — q~1(s) for everys € Sy.

Proof. (i): Recall that A/S is an Eilenberg-Zilber category, by example [2.2.2[iii); more-
over, we have a natural equivalence of categories E/TS' = sSet/S that identifies each
representable presheaf h([,].) on A/S with the object (A", u : A" — S) of sSet/S (lemma
. Hence, let ¥ ¢ Mor(sSet/S) be the class of all morphism S” — S of sSet such that
S’ Xs f is a weak homotopy equivalence; by assumption, ¥ contains all the representable
presheaves of E/\S, so we are reduced to checking that ¥ is saturated by monomorphisms
(corollary @ However, condition (a) of definition holds for 3, due to corol-
laries [3.5.12fi) and [1.4.6[iii). Lastly, since all small colimits of sSet are universal (§2.1.6),
corollaries [3.5.13|and [3.6.7] imply that also conditions (b) and (c) hold for .

(ii): (In (c), p~1(s) and g~ *(s) denote the fibres of p and g over s : see deﬁnitioniv).)
Obviously (b)=(c). In order to check that (a)=(b), consider the commutative diagram :

S’ S’
S xg X — 5 gy 28 g
X / Y 1 S

whose left and right squares D and D’ are cartesian, and we let D"’ be the composition of
D and D’, i.e. the square whose two horizontal sides are p and S’ Xsp : S" xs X — §’. By
corollary ii) and the dual of lemma|3.6.4(i), both D’ and D”” are homotopy cartesian,
hence the same holds for D (proposition 3.6.3(iii)); then the assertion follows from lemma
[3-6.4[ii). Lastly, we check that (c)=(a) : to this aim, (i) reduces to showing that for every
n € N, every n-simplex i/ : A" — § induces a weak homotopy equivalence f; := A" X f :
A" xg X — A" x5 Y. However, let ¢ : [0] — [n] be the map such that 0 — n; recall that
the induced morphism A? : A° — A" is a strong deformation retract (remark iii)),
and set s := 1y o A? : A® — S. We get cartesian squares of sSet :

P L Arxs X pis) — L g i) g (y) L A x Y
l l/A"XSP ﬁxl l/ﬁy l lA"XYCI
0 A? n n f n 0 AP n
A — A7 A A" xs X —L o A" x5 Y AN — 2 A

where A" Xg p and A" Xg q are Kan fibrations (proposition v)), so that Sx and Py are
strong deformation retracts (proposition [4.5.7), hence they are weak homotopy equiva-
lences (proposition ii)); the same holds for f;, by virtue of (c), so also for fy. O
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Corollary 5.4.3. Consider a commutative diagram of sSet :
X —=X
D : f’l l f
Y —=Y
where f and f’ are Kan fibrations. The following conditions are equivalent :

(a) D is homotopy cartesian for the Kan-Quillen model category.

(b) Everyy’ €Y, induces a weak homotopy equivalencevy : f''(y') — f~(u(y’)).
Proof. From corollary [5.4.1{ii) and theorem [3.3.9ii) it follows easily that (a) holds if and
only if the induced morphism g : X’ — Y’ Xy X is a weak homotopy equivalence (details
left to the reader). Notice that Y/ Xy f : Y’ Xy X — Y’ is a Kan fibration (proposition

[3.1.9(v)); then, by virtue of proposition [5.4.2(ii), g is a weak homotopy equivalence if and
only if every object ¢’ : A — Y’ induces a weak homotopy equivalence

gy =A%y g: f7HY) = A xy (Y xy X) = ().
But g,/ = vy, so this is precisely condition (b). O

Theorem 5.4.4. (Quillen) A morphism of sSet is a fibration (resp. a trivial cofibration) for
the Kan-Quillen model category & it is a Kan fibration (resp. an anodyne extension).

Proof. It suffices to check the assertion concerning trivial cofibrations, and since every
anodyne extension is a trivial cofibration, we need only verify the converse assertion.
Now, by factoring a trivial cofibration as the composition of an anodyne extension fol-
lowed by a Kan fibration, the retract lemma (proposition reduces to showing that
every Kan fibration f : X — Y that is a weak homotopy equivalence is a trivial fibration.

Claim 5.4.5. We may assume that Y = A" for some n € N.

Proof : Indeed, consider a commutative diagram of sSet :

N —— X

(%) | s

A" —Y.

We need to find a diagonal filler for (x), and by corollary[5.4.1]i) and proposition[3.1.9(v),
we may replace Y by A" and X by A" Xy X, whence the claim. <&

Thus, let f : X — A" be a Kan fibration which is a weak homotopy equivalence. Let
¢ : [0] — [n] be the map such that #(0) = n, and consider the cartesian diagram :

F—j>X

f’l lf

A AT A,
Recall that A? is a strong deformation retract (remarkiii)); then, by proposition
the same holds for j, so the latter is an anodyne extension (proposition ii)). On the
other hand, f” is both a Kan fibration and a weak homotopy equivalence (corollary[5.4.1i)
and propositionv)), and since A° is fibrant, it follows that f” is a trivial fibration (the-
orem[5.1.10); then f” is an absolute weak equivalence (proposition[4.6.8). By proposition
we then see that f is an absolute weak equivalence, and finally, f is therefore a
trivial fibration, again by proposition m]
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Proposition 5.4.6. (i) The functor my : sSet — Set (see §2.1.11) sends weak homotopy
equivalences to bijections, and preserves finite products.

(ii) For every A, X € Ob(sSet), the set my(7¢om(A, X)) is naturally identified with the
set [A, X] of A'-homotopy classes of morphisms A — X.

(iii) We have a Quillen adjunction :

’71'0 : sSet =2 Set : cpop

where cpor denotes the constant simplicial set functor of §2.1.11, and where Set is endowed
with the model category structure of example[3.2.3(i).

Proof. (ii): Recall that mo(#0om(A, X)) is naturally identified with the coequalizer of
d0,d} : Hom(A X); = Hom(A X), (see , and by definition, J#om (A, X), is the
set sSet(A” x A, X), for every n € N. Under such identifications, the map d; corresponds
to sSet(a}, X) : sSet(A', X) — sSet(A°, X), for i = 0, 1, whence the assertion.

(i): Let f : X — Y be a weak homotopy equivalence; if X and Y are Kan complexes,
then the induced map [A% X] — [A, Y] is a bijection, by corollary iii). For the
general case, we consider the commutative diagram :

X -2 Ee(x)
f l lEx"" f)
Y ﬂ- Ex*(Y)
whose horizontal arrows are weak homotopy equivalences, by lemma|5.3.8[i), so that the
same holds for Ex®(f); by theorem|[5.3.9]and the previous case, it follows that 7o (Ex* (f))

is a bijection, and the same holds for 7(fY) and 7o (/5’), by lemma iii), so finally
also for 7o (f).

It remains to check that x, preserves finite products. To this aim, let first X and Y be
any two Kan complexes; we consider the map

©: (X XY)o=XoxYo = m(X)Xm(Y)  (ab)+— ([a],[b])

where [a] denotes the class of a in 7y(X), and likewise for [b]. If h : Al —» X x Y is
any A'-homotopy from (a, b) to (a’,b’), then the composition of h with the projection
p:XXY — X (resp. g: X XY — Y) is a Al-homotopy from a to a’ (resp. from b to b’),
hence w factors through the projection (X X Y)y — 7m(X X Y) and a unique surjection

 : ﬂ()(X X Y) - 7T()(X) X JT()(Y)

so it remains only to verify the injectivity of w. Hence, let (a, b), (a’,b") € Xy XY, such that
[a] = [@’] and [b] = [b']; according to lemmathere exist Al-homotopies h : Al — X
from ato @’ and k : A — Y from b to b’, and we let H : A' — X X Y be the unique
morphism such that p o H = h and q o H = k. Clearly H is a A'-homotopy from (a, b) to
(@, b"), whence the assertion.

Lastly, let X, Y be any two simplicial complexes, and recall that the functor Ex™ is left
exact (lemma ii)); we then get a commutative diagram :

Te(X XY) ——— mp(Ex® (X X Y)) ——— 7m0 (Ex®(X) X Ex®(Y))

l |

7o (X) X mo(Y) 7o (Ex* (X)) X o (Ex™(Y))
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and taking into account (ii) and lemma i), we see that all the arrows of this diagram
are bijections, except possibly for the left vertical arrow. But then also the left vertical
arrow must be bijective, and the proof is concluded.

(iii): Recall that, with the model category structure of example[3.2.3[i), the weak equiv-
alences of Set are the bijections, and every map is both a fibration and a cofibration. Now,
by virtue of proposition and corollary it suffices to check that the inclusion
A} — A" induces a bijection 7o(A}) = m(A"), for everyn € N\ {0} andk = 0,...,n.
The latter holds by example[2.1.13]and §2.3.12] O

5.4.7. Kan-Quillen model structure on pointed simplicial sets. Recall that we denote by
sSet, the category of pointed simplicial sets (see §2.1.14); following proposition iii),
the Kan-Quillen model structure on sSet induces a model structure on sSet,, that we call
the Kan-Quillen model category structure on pointed simplicial sets. The weak equivalences
(resp. the fibrations, resp. the trivial fibrations) of sSet, are called pointed weak homotopy
equivalences (resp. pointed Kan fibrations, resp. pointed trivial fibrations) : hence, these are
the morphisms (X, x) — (Y, y) of sSet, whose underlying morphism X — Y of simplicial
sets is a weak homotopy equivalence (resp. a Kan fibration, resp. a trivial fibration of sSet).
Likewise, the fibrant objects of sSet, are called pointed Kan complexes; again, these are
the pairs (X, x) where X is a Kan complex.

Remark 5.4.8. (i) Since the cofibrations of sSet are the monomorphisms, the same holds
for the cofibrations of sSet, (corollary[1.4.6{ii)). Moreover, clearly the initial object of sSet.
is A’ so the unique morphism A” — X is a monomorphism, for every X € Ob(sSet.); i.e.
every object of sSet, is cofibrant for the Kan-Quillen model category structure.

(ii) Let us endow the finitely complete and finitely cocomplete category of pointed sets
Set, := {@}/Set

with the model structure provided by example i), and sSet, with its Kan-Quillen
model structure; then, according to remark [3.4.11(ii), the Quillen adjunction of proposi-
tion iii) induces a Quillen adjunction that we denote again :

’ 7o : sSet, = Set, : cpop. ‘

Explicitly, for every (X,x) € Ob(sSet,) we have mo(X,x) := (m(X), [x]), where [x]
denotes the class in 7 (X) of the base point x. And for every pointed seti : {@} — S, we
have cpor (S, i) := (A9 : A — (A%)S)) (notation of §1.2.14).

(iii) Moreover, since the target functor t : sSet, — sSet preserves fibrations and trivial

fibrations, by lemma i) we have as well the Quillen adjunction :

’ (=)o : sSet = sSet, : t ‘

where the left adjoint (). is defined as in Especially, (—), sends weak homotopy
equivalences to pointed weak homotopy equivalences (lemma [3.4.12[iii)).

Proposition 5.4.9. (i) For every pairX — Y, X’ — Y’ of pointed weak homotopy equiv-
alences, the induced morphisms X VY - X' VY and X NY — X' A Y' are pointed weak
homotopy equivalences.

(ii) Stom(X,Y) and Fom.(X,Y) are pointed Kan complexes, for every X € Ob(sSet,)
and every pointed Kan complex Y (see example[2.1.15(ii)).
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(iii) Let ho(sSet,) be the homotopy category of the Kan-Quillen model category structure
on sSet,. Then, for every pointed Kan complex X, we have natural isomorphisms of Set, :

myomo (A, X) = (ho(sSets) (A, X), [0ax]) VA € Ob(sSet,)
where [04x] denotes the class of 04x : A — X in ho(sSet,) (A, X).

Proof. (i): By virtue of the natural isomorphisms X VY = YV Xand XAY S5 YA X
(proposition ii)), it suffices to check that the functors — vV Y and — A Y preserve
pointed weak homotopy equivalences. Now, say that Y = (Y,y), and let X = (X,x) —
X" := (X’,x") be a pointed weak homotopy equivalence; we get a commutative diagram :

XY =——{(x.9)} ——= X x {y}

| | l

'} xY =—A{("y)} — X" x{y}

whose vertical arrows are weak homotopy equivalences. Then the same holds for the
induced morphism X VY — X’ V'Y, by corollary 3.5.12(ii). Likewise, we have the com-
mutative diagram of sSet :

AMe—XVY ——=XXxY

I !

ANN——XVY—=X'XY

whose central vertical arrow is a weak homotopy equivalence, by the foregoing; the same
holds for the right vertical arrow, by corollary [5.1.13(ii), and then also for the induced
morphism X A Y — X’ A'Y, by virtue of corollary[3.6.7}

(ii): The assertion for #om(X,Y) is clear, from corollary [5.1.12[ii). Next, say that
X =(X,x)and Y = (Y,y); we apply corollaryi) to the monomorphism x : A — X
and the Kan fibration p : Y — A° to deduce that x* = (x* p.) : Hom(X,Y) —
Hom(A°,Y) X yzom(no p0y Hom(X,A’) = Y is a Kan fibration. Then the unique mor-
phism #om.(X,Y) — A’ is a pointed Kan fibration, by proposition v), as stated.

(iii): Notice first that (A%), = dA! (notation of example i)), and moreover, for
every A € Ob(sSet,) we have a natural identification in sSet, :

AA(aAY), = AUA

(details left to the reader). Combining with proposition [2.1.16{ii), we deduce that the
inclusion i : JA! — A! and the projection p : A — A® induce morphisms of sSet, :

ANi, 1 ANApo 1 ~
(+) AUAZE An (A 2B anont =4

whose composition is the codiagonal V4 : AL A — A. Recall that p is a weak ho-
motopy equivalence (lemma [5.1.17ii)), so p. is a pointed weak homotopy equivalence
(remark [5.4.8iii)), and then the same holds for A A p,, by virtue of (i). Thus, the two
morphisms of (x) form a cylinder for A, in the sense of definition i). Since A and
X are respectively cofibrant and fibrant in sSet, (remark i)), combining with lemma
[3-2.11](i), proposition[3.2.14{ii), and the explicit construction of the homotopy category in
the proof of theorem we deduce that ho(sSet,)(A, X) is naturally identified with
the set of equivalence classes [A, X] := sSet, (A, X)/~, for the equivalence relation such
that f ~ g © there exists a morphism h : A A (Al), — X with ho (A A (8)),) = f
and h o (A A (9}).) = g. Then the assertion follows, in light of corollary and the
discussion of O
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Corollary 5.4.10. Let X, X’ be pointed Kan fibrations, and A, A’ € Ob(sSet,). Every pair
of pointed weak homotopy equivalences X — X', A’ — A induces an isomorphism of Set, :

mHome (A, X) = myHoms (A, X').
Proof. This follows immediately from proposition iii). O

Corollary 5.4.11. (i) For everyY € Ob(sSet,), the adjoint pair (— A Y, 7om,(Y, -)) of
proposition[2.1.16(i) is a Quillen adjunction.
(ii) Fom. (Y, —) preserves pointed Kan fibrations and pointed trivial fibrations.

Proof. (i): By proposition i), we know that the functor — A Y preserves pointed weak
homotopy equivalences, so we need only check that it also preserves cofibrations, i.e.
monomorphisms (lemma i)). However, for every monomorphism X — X’ of sSet.,
it is easily seen that (X X Y) N (X’ VY) = X VY (details left to the reader); the assertion
follows easily from this identity.

(ii) follows immediately from (i) and lemma [3.4.12(i). m]
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6. THE HOMOTOPY THEORY OF 0O-CATEGORIES
6.1. Inner anodyne extensions.

Definition 6.1.1. (i) The class of inner anodyne extensions :
inAn C Mor(sSet)

is the saturation of the set of monomorphisms {A] — A" |n>2k=1,...,n-1}.

(if) An inner fibration is a morphism of simplicial sets which has the right lifting prop-
erty with respect to the class of inner anodyne extensions.

Example 6.1.2. (i) A simplicial set X is an co-category if and only if the unique morphism
X — AYis an inner fibration (see definition i)). More generally, it is easily seen that
if X — Y is an inner fibration and if Y is an co-category, then the same holds for X : the
details are left to the reader.

(ii) Let X be an co-category, and Y a simplicial set verifying the Grothendieck-Segal
condition; it follows easily from proposition[2.5.11|that every morphism X — Y of simpli-
cial sets is an inner fibration (detail left to the reader).

(iii) For every simplicial set X there exists an inner anodyne extension X — X’ such
the composition of an inner anodyne extension X — X’ and an inner fibration X’ — A°,
so the assertion follows from (i).

(iv) In light of remark 1), it is easily seen that a morphism p : X — Y of sSet is an
inner fibration if and only if the same holds for p°P : X°P — Y°P.

Remark 6.1.3. (i) In the following we shall deal with simplicial sets of the form
A" x A"

for some n,r € N, and with their simplicial subsets. Let us then note that A" x A" is the
nerve of the partially ordered set [n] X [r] (where the product is formed in the category
poSet : see §2.3.3); hence the m-simplices of A" X A" are the non-decreasing maps

(%) o:[m] = [n]lx[r]  j (a;b))

for every m € N. Such a map o is a non-degenerate simplex if and only if it is injective.
Moreover, ¢ induces a morphism N (o) : A™ — A" X A" of simplicial sets, whose image
is the smallest simplicial subset A, of A" X A" containing o¢. It is easily seen that the t-
simplices of A, are the non-decreasing maps [t] — [n] X [r] whose image lies in the image
of o, for every t € N (details left to the reader). Clearly, the image of ¢ is a totally ordered
subset of [n] X [m], so A, is isomorphic to A? for some p < m (and with p = m if and only
if o is non-degenerate). Furthermore, there exists a unique isomorphism w : A? = A,
so we shall say that a simplicial subset I' C A, is a face (resp. a horn, resp. an inner horn)
of Ay if 0™ 1(T) is a face (resp. a horn, resp. an inner horn of A? : see ; likewise, we
define the boundary oA, of A, as the unique simplicial subset such that @~ (9A,) = IAL.

(i) Recall that for every m € Nand 0 < k < n, the m-simplices of A" (resp. of A})
are the non-decreasing maps [m] — [n] whose images miss some j € [n] (resp. some
Jj € [n]\{k}); then, the discussion of (i) implies that the m-simplices of A} X A"UA"x9A" C
A™ x AT are the maps o as in (), satisfying either one of the following conditions :

(Co) j ¢{aog,...,am} for some j € [n] \ {k}
(C1) {bo,....,bm} # [r].
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(iii) The discussion of (i) also implies immediately that the simplicial subset A, is de-
termined by the (totally ordered) set Ay of its objects (see definition i)), which is
naturally identified with the image of o. By the same token, for every pair of simplices
o,0” of A" x A", the simplicial subset A, N A, is again of the form A~ for a simplex ¢’
whose set of objects is Ay 9 N Ay o; especially, Ay N Ay is a face of both A, and A,
Proposition 6.1.4. (Joyal) The following four classes of morphisms of sSet are equal :

(a) the class inAn of inner anodyne extensions
(b) the saturation of the subset {A* x OA™ U Af X A" — A2 x A" |n € N}
(c) the saturation of the subset {A" X A" UAT X A" — A"XA" |r € Nyn 2 2,0 < k < n}

(d) the saturation of the class {A* x K UA? XL — A* X L| (K — L) € .4}, where .#
denotes the class of monomorphisms of sSet.

Proof. Obviously the class (b) lies in the class (d). For the converse, recall the functors
Fy := A>X (<) and F, := A% X (-) admit right adjoints (remarkii)), so we may apply
proposition [3.1.21[iii) to F; and F,, to the natural transformation F; = F, induced by the
inclusion A? — A?, and to the set of monomorphisms . := {dA" — A" |n € N}; we get
I(r())° < 1((r(7)))
and notice also that F{L N F,K = F;K for every monomorphism K — L, so that
J = (A*xKUAIXL— A*xL) V(K-> L)e . A.

Hence, I[(r(7))? is the class (d) (example ii)) and [((r(.7°))) is the class (b), which
shows that the classes (b) and (d) coincide.

e Next, let us check that the class (a) lies in the class (d). To this aim, for every n > 2
and k = 1,...,n — 1 we consider the morphisms of A :

n n
Sk Tk

[n] = [2] x [n] = [n]

such that :
(0,j) ifj<k min(j, k) ifi=0
sp(j) =9q(Lj) ifj=k re(i, j) =1k ifi=1
(2,j) ifj>k max(j, k) ifi=2.

Clearly ri’ o s = 1, for every such n and k, and we denote by the same letters the
associated morphisms of sSet :

sn rn
A" =5 AP x A" 55 A
Claim 6.1.5. We have a commutative diagram of sSet :

Al — > AP X AT UAZ X AT — AT

Lo

k
A" ——— > A2 AT ———— > A"
whose vertical arrows are the natural inclusions.

Proof : Recall that for every m € N, the m-simplices of A} are the non-decreasing maps
¢ : [m] — [n] whose images miss some j # k, in which case Im(s;’ o) N ([2] X {j}) = &,
so s o ¢ fulfills condition (C1) of remark ii), and then the image of the restriction of
s,’C’ to AZ lies in A2 x AZ U A? X A", i.e. s is well defined.
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Next, in order to check that r is well defined, we need to show that for every ¢ : [m] —
[2] x [n] verifying either (CO0) or (C1) of remark ii), the map r} o  skips some j # k.
Now, if Im(y) N ([2] X {j}) = @ for some j # k, then it is easily seen that r! o ¢ skips j.
Lastly, if Im(y/) N ({2} X [n]) = @ (resp. if Im(y) N ({0} X [n]) = @), then the image of
r¢ oy lies in [k] (resp. in [n] \ [k — 1]), whence the assertion. <&

The monomorphism i of claim lies in the class (c), so the inclusion A} — A" is a
retract of an element of the class (d), hence the class (a) lies in the class (c), as stated.

o Lastly, obviously the class (b) lies in the class (c); to conclude, we check that the class
(c) lies in the class (a), following the argument of [5, Lemma A.1]; indeed, set Y := A" X A"
and Y° := AL X AT UA™ x 9A". For every simplex o of Y and every (a,b) € [n] x [r], we
shall say that o meets (a, b) if (a, b) is an object of the associated simplicial subset A, (i.e.
if (a, b) lies in the image of the map o : see remark [6.1.3i,iii)). For every i = 1,...,r +1
we then define inductively Y* as the smallest simplicial subset of Y containing Y*~! and
all the simplices o of Y meeting (k, i — 1). Notice that for every simplex of Y, either meets
(k, j) or is a face of a simplex meeting (k, j) for some j € [r], so that Y"*! = Y.

e We are then reduced to showing that the inclusion Y? — Y**! is an inner anodyne
extension for every i = 0,...,r; to this aim we let Yi(n — 1) := Y, and for every t =
n,...,n+r we define inductively Y(t) as the smallest simplicial subset of yi+l containing
Yi(t — 1) and every non-degenerate t-simplex of Y meeting (k, i).

Notice that for m < n — 1, every m-simplex of Y meeting (k, i) lies in Y°, since it
satisfies condition (C0) of remark[6.1.3[ii); moreover, for m > n +r, every m-simplex of Y
is degenerate, and then it is easily seen that every m-simplex of Y*! lies already in Y(t)
for some t < n+r; ie. Y*' = Yi(n 4 r). Now, for every t = n,...,n+r, let 3; be the
set of non-degenerate t-simplices of Y*! meeting (k, i) and not contained in Y'(t — 1).
For every o € 3, let A, C Y¥(t) be the smallest simplicial subset containing o, and set
Ag = Ay N Yt — 1); by remark i), A, is isomorphic to A’. We are further reduced
to proving that the inclusion Y(t — 1) — Y(t) is an inner anodyne extension for every
t =n,...,n+r. The latter is a consequence of lemma[3.1.8]and the following more precise:

Claim 6.1.6. For every t = n,...,n +r, the following holds :
(i) Ac is an inner horn of A, for every o € 3.

(ii) The induced commutative diagram :

ugezt Acr I Yi<t - 1)

| |

Lses, Ae —=Y(2)
is cartesian and cocartesian in sSet.

Proof: (i): By construction o is not a simplex of Y!(t—1), so A, C dA, (notation of remark
[6.1.3[i)). Moreover, by assumption we have o(j) = (k, i) for some j € [n]; however, if
either j = 0 or j = n, then clearly ¢ fulfills condition (C0) of remark ii), soo €Y
a contradiction. Let then [ € [n] \ {j}; the I-th (¢ — 1)-dimensional face of A, is the
simplicial subset A;, for the non-decreasing map 7 : [t — 1] — [n] X [r] whose image
is o([n] \ {I}). Hence, r meets (k, i), so that 7 € Y(t — 1); this shows that A, contains
the j-th horn of A,. Lastly, let v : [t — 1] — [n] X [r] be the non-decreasing map whose
image is o([n] \ {j}); to conclude, it suffices to check that v is not a simplex of A,.
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To this aim, say that v(j — 1) = o(j — 1) = (a,b); then a < k, and in case a = k we
must have b < i, so that ¢ is a simplex of Y, a contradiction. Hence, a < k, and in case
a < k — 1, we see that o fulfills condition (C0) of remark[6.1.3{ii), so o would be a simplex
of Y°, again a contradiction. So, finally a = k — 1; now, if we had b < i, then ¢ would be a

face of the (t + 1)-simplex ¢’ of Y such that

o(i) ifi=0,...,j—1
o' (i) =4 (k,b) ifi=j
o(i—1) ifi=j+1,...,t+1.

But ¢’ is a simplex of Y5 ¢ Y!, and therefore the same would hold for o, a contradiction.

So, we see that v(j — 1) = (k — 1,i); since o does not verify condition (C1) of remark
ii), it then follows immediately that neither does v. Moreover, since o does not fulfill
condition (CO0), it is clear that neither does v, so v is not a simplex of Y°.

Now, suppose that v is a simplex of Y?; this comes down to asserting that v is a simplex
of a simplicial subset A, for some simplex 7 of Y that meets some pair (k,[) with [ < i.
But v cannot be a simplex of any such A;, since we have neither (k — 1,i) < (k,[) nor
(k,1) < (k—1,i). So, vis not a simplex of Y’. Lastly, suppose that v is a simplex of Y{(t—1);
since v is not a simplex of Y?, it follows that v is a simplex of A., for some s-simplex 7
that meets (k, i), with s < t. But since v is a non-degenerate (¢ — 1)-simplex of Y, it would
follow that s = t — 1 and 7 = v; but this is absurd, since v does not meet (k, i). So v does
not lie in Y?(¢ — 1), and the proof is concluded.

(ii): The diagram is cartesian by construction; the cocartesianity assertion comes down
to checking the identities :

Yit)p =Yt = 1)p U Llses, (Aop \ Acp)  VpeN.

Thus, consider a p-simplex 7 of Y(t) that does not lie in Y?{t—1); by construction, r must
be a p-simplex of A, for some non-degenerate ¢-simplex o that meets (k, i). Moreover,
o cannot lie in Y/(t — 1), since 7 ¢ Y'(t — 1),, so o € %, and then clearly 7 € Aop \ Ao p.
We still need to check that o is the unique element of X, such that 7 € A, ,; so, suppose
that 7 € Ay, for some other ¢’ € X;. Then 7 is a simplex of A; N Ay, and the latter is of
the form A,~ for some s-simplex ¢’ of Y, where s < t (see remark iii)); moreover,
since both o and ¢’ meet (k, i), the same holds for ¢’/, and then A+ C Yi(s) c Yi(t —1),
sor € Yt - 1)p, a contradiction. O

Corollary 6.1.7. (i) For every inner anodyne extension K — L and every monomorphism
U — V, the induced morphism K X VUL XU — L XV is an inner anodyne extension.

(ii) For every simplicial set X, the functor (=) X X : sSet — sSet preserves inner anodyne
extensions.

Proof. (i): Let us consider first the case where K — L is the inclusion A} — A" for a
givenn € Nand 0 < k < n. To this aim, notice that the functors F;! := A7 X (-) and G" :=

A™ x (—) admit right adjoints (remark1.7.8[ii)), so we may apply proposition|[3.1.21[iii) to
F ,? and G", to the natural transformation F, I? = G" the induced by the inclusion AZ — A",
and to the cellular model . := {9A” — A" |r € N}; we get :

M CU(r ()

where .7 is the class of monomorphisms of sSet. Notice also that F'Y N G"X = FX for
every monomorphism i : X — Y of sSet, whence :

i =(ALXYUA"XX - A" XY).
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It then suffices to notice that .° C inAn, by proposition

Next, we fix a monomorphism i : U — V of sSet, and we apply again proposition
[3.1.21]iii) to the functors F := (=) X U and G := (=) X V, to the natural transformation
F = G induced by i, and to the set .# := {AZ — A'|n>2k=1,...,n—1}; we get :

inAn® c I(r(7°)).

Again, we have FL N GK = FK for every monomorphism K — L, so we are reduced to
checking that 7° C inAn. The latter is already known, by the foregoing case.

(ii): It suffices to apply (i) to U := @ and V := X. O
Corollary 6.1.8. Let p : X — Y be a morphism of sSet. The following conditions are
equivalent :

(a) p is an inner fibration.

(b) Every inner anodyne extension i : K — L induces a trivial fibration of sSet :
stom(L, X) — Jom(K, X) X spomk,y) sCom(L,Y).
(c) The restriction along the inclusion A> — A? induces a trivial fibration of sSet :
Hom(A* X) — Hom(A3, X) X Hom(A2,Y) Hom(A%Y).
(d) Every monomorphismi: K — L induces an inner fibration :
(i, ps) : Hom(L, X) — Hom(K,X) X om(k,y) Hom(L,Y).

Proof. Assertions (b) and (c) refer of course to the trivial fibrations for the Kan-Quillen
model category structure. For the proof, one argues as in the proof of corollary [5.1.12(i),
except that instead of invoking proposition[5.1.11] one applies proposition[6.1.4Jand corol-
lary[6.1.7): the details shall be left to the reader. m]

Corollary 6.1.9. A simplicial set X is an co-category if and only if the inclusion A2 — A?
induces a trivial fibration :

Hom(A*, X) — Hom(A% X).

Proof. Again, we refer here to the trivial fibrations for the Kan-Quillen model category.

In view of example i), the assertion is then a special case of corollary O

With the terminology of definition[2.5.1] the following corollary can be interpreted as
stating, in particular, that the functors between two co-categories form an co-category.

Corollary 6.1.10. For every co-category X and every simplicial set A, the simplicial set
Ftom(A, X) is an oo-category.

Proof. It suffices to apply condition (d) of corollary to the monomorphism @ — A
and the inner fibration X — A° (see example i)), and notice that JZom(2,X) =

Jom(a, \%) = sFom(A, A°) = A°. u]

Proposition 6.1.11. (i) The left adjoint 7 : sSet — Cat of the nerve functor sends inner
anodyne extensions to isomorphisms of categories (see §2.3.3).

(ii) The functor T preserves finite products.
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Proof. (i): Let .# be the class of morphisms f of sSet such that 7(f) is an isomorphism of
Cat; since the functor 7 commutes with all representable colimits ([13} Prop.2.49(ii)]), -#
is saturated (remark [3.1.4iii) and lemma [3.1.5), hence it suffices to check that the inner
horn inclusion j,'; : AZ — A" lies in .Z, for every n > 2 and every k = 1,...,n. For
the latter, by Yoneda’s lemma (theorem [1.6.5(iii)) it suffices to show that composition
with 7(j!) induces a bijection Cat(7A", %) = Cat(rA},¢), for every small category
% . By adjunction, we are further reduced to checking that composition with ji' induces
a bijection sSet(A", N€¢) — sSet(A?, N¥) for every such %’; the latter follows from
propositions and

(ii): Let X, Y € Ob(sSet), and pick inner anodyne extensions X — X’ and Y — Y’ such
that X" and Y’ are co-categories (example[6.1.2[iii)). We see from corollary[6.1.7(ii) that the
induced morphism X X Y — X’ X Y’ is again an inner anodyne extension, and by (i), the
induced functors tX — 7X’, 7Y — 7Y’ and r(XXY) — 7(X’XY’) are then isomorphisms
of categories. On the other hand, the canonical projections X’ « X’ X Y’ — Y’ induce
an isomorphism (X’ X Y’') & X’ X Y’ (remark ii)), whence the assertion. O

6.2. The Joyal model category structure. Their name notwithstanding, inner ano-
dyne extensions do not form a class of I-anodyne extensions for some exact cylinder I.
In order to fit into the general framework of our next task is to exhibit a suitable
exact cylinder I on sSet, so that we may then consider the smallest class of I-anodyne
extensions containing all inner anodyne extensions; this is achieved by the following :

Definition 6.2.1. (i) Let f : 0 — 1 be the unique non-degenerate simplex of A! (given
by the identity map of [1]). With the notation of §2.5.13| we define

J=af
and let 77 : J — A° be the unique morphism of sSet. The localization i : A' — Jis a

monomorphism, as it is an anodyne extension (see example [5.1.3); hence the same holds
for the composition
3,0
(a({,a{):AOuAOMNLJ

and then the datum (J, 8({ , 31] ,7/)isa cylinder of the final object A of sSet. By example
i), this datum induces an exact cartesian cylinder (I, aé, 8{, P ) on sSet, where I is
given by the functor J X (—) : sSet — sSet.

(ii) Just as in we shall denote by {¢} C J the image of 9;_,, for ¢ = 0,1, and
{e} X X C J x X shall denote the image of a{_g x X, for every X € Ob(sSet).

(iii) The class of categorical anodyne extensions
cAn C Mor(sSet)
is the smallest class of J-anodyne extensions containing inAn (see definition i)).

(iv) A weak categorical equivalence in sSet is a J X (—)-weak equivalence (see definition
iv)). A J-fibration is a morphism of sSet that lies in r(cAn). A simplicial set X is J-
fibrant if the unique morphism X — A° is a J-fibration.

Remark 6.2.2. (i) Clearly, a 1-simplex A! — X is an invertible arrow of X if and only if it
factors through the localization A' — J and a morphism | — X.

(ii) It follows easily from (i) that a morphism of sSet is conservative (see definition
Miv)) if and only if it has the right lifting property relative to the localization A — J.
Especially, every trivial fibration (for the Kan-Quillen model structure) is conservative.
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(iii) By proposition [2.5.15] the category zJ is the localization of [1] that inverts 0—1>, ie.
— — — . —
Ob(zJ) = {0,1} and Mor(7J)={1¢,1;,01:0—1,10:1— 0} (so 10 is the inverse of 01).

Proposition 6.2.3. (i) Let M := {J] X dA" U {e} X A" — Jx A"|n € N,e = 0,1} and
S={A} > A"|n>2,0<k<n} Then:

[cAn=1(r(MU3$)). |

(ii) For every categorical anodyne extension (K — L) and every monomorphismU — V,
the induced morphism K XV UL X U — L XV is a categorical anodyne extension.

(iii) inAn C cAn C sAn.

(iv) The classes of inner fibrations and of J-fibrations are stable under small filtered
colimits. Especially, the class of co-categories is stable under small filtered colimits in sSet.

Proof. (i): Set as well .# := {9A"™ — A" |n € N}; with the notation of we then
have MU S = A?(S, M), and in view of proposition we are reduced to checking
that Any(S) = l(r(A?(S, AM))), where (I, a{), a{ n') is the cartesian cylinder induced by
J, 8({, 81], n/). By corollary it then suffices to show that IKUJI ® L — IL) €
l(r(A?(S, AM))) for every (K — L) € S. But since inAn = [(r(S)) C l(r(A?(S, M))), the
latter follows from corollary[6.1.7]i).

(ii): We consider first the case where U = dA” and V = A’ for some r € N; since the
functors (—) X A", (=) X A" : sSet =% sSet admit right adjoints (remark[1.7.8]ii)), we may
apply proposition[3.1.21[iii) to the natural transformation dA”x(—) = A"X(—) induced by
the inclusion A" — A", and to the set . := MUS. Notice also that (KXA")N(LxoA") =
K X dA" for every monomorphism j : K — L, so that j® is the induced monomorphism
K XA ULX9N — Lx A", for every such j; in light of (i), we get :

cAn® c I(r(M° U S%)).

However, every element of S° is an inner anodyne extension, by virtue of corollary i),
so we are reduced to checking that M® C cAn. However, if j is the inclusion J X dA™ U
{e} x A" — J x A" for some n € N and ¢ € {0, 1}, then j° is the inclusion :

TIX (A" x aA" UdA" x A*) U {e} x (A" X A") — J x (A" x A™)

which is indeed a categorical anodyne extension, as required.

Next, we fix a categorical anodyne extension K — L and we apply proposition[3.1.21[iii)
to the induced natural transformation K X (—) = L X (—), and with .% := .#; recalling
that [(r(.#)) is the class .# of monomorphisms of sSet (remark[5.1.1), we then get :

IO U(r ().

But we have just seen that .#° C cAn, so finally .#° C cAn, as stated.

(iii): The first inclusion holds by definition; for the second inclusion, in light of (i) it
suffices to check that M C sAn. By virtue of proposition|[5.1.11[i), we are then reduced to
checking that the inclusion j. : {¢} — J is an anodyne extension, for ¢ = 0, 1; however,
Je is the composition of the anodyne extension d] ¢ : A° — A! with the localization
A' — J, and we have already observed that the latter is an anodyne extension as well,
whence the contention.

(iv) follows directly from (i) and example [3.1.14{iv). O
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Corollary 6.2.4. A morphismp : X — Y of sSet is a J-fibration if and only if the following
two conditions hold :

(a) Fore = 0,1, the morphism ol : A’ > J induces a trivial fibration of sSet :
(", p.) : AHom(],X) — X xy Hom(],Y)
(b) The inclusion j : A2 — A* induces a trivial fibration of sSet :
(J%, ps) : Hom(A?*, X) — Hom(A3,X) X Aom(A2Y) Hom(A%Y).

Proof. As usual, (a) and (b) refer to the trivial fibrations for the Kan-Quillen model cate-
gory. Let M and S be as in proposition[6.2.3(i); since r(cAn) = r(I(r(MUS))) =r(M U S)
(proposition [3.1.9(iii)), we see that p is a J-fibration if and only if it has the right lifting
property with respect to M and to the class of inner anodyne extensions. However, ar-
guing as in the proof of corollary[5.1.12[i) we see that p € r(M) < (a) holds, and on the
other hand we know already that p € r(inAn) < (b) holds (corollary[6.1.8). O

Theorem 6.2.5. There exists a unique cofibrantly generated model category structure on
sSet whose weak equivalences are the weak categorical equivalences and whose cofibrations
are the monomorphisms. Every fibration for this model structure is a J-fibration, the fibrant
objects are precisely the J-fibrant ones, and the fibrations with fibrant target are precisely
the J-fibrations between J-fibrant objects. Moreover, every object is cofibrant, and every
categorical anodyne extension is a trivial cofibration.

We call this model category the Joyal model category structure on sSet.

Proof. Just as for theorem 5.1.10] this follows directly from theorem [4.5.14] applied to the

exact cylinder J X (—) on sSet, and the class of categorical anodyne extensions of sSet. O

Proposition 6.2.6. The nerve functor N and its left adjoint © form a Quillen adjunction

’T:sSetC’Cat:N‘

for the Joyal model category structure on sSet and the canonical model category structure

on Cat (theorem[4.3.9).

Proof. 1t follows easily from lemma [2.3.4] that 7 preserves cofibrations. Next, define the
subsets S and M of Mor(sSet) as in proposition[6.2.3i); by virtue of proposition[4.5.17} we
are reduced to checking that r maps all the elements of MUS to equivalences of categories.
However, this is already known for the elements of S, by proposition[6.1.11{i). Hence, for
e =0,1and every n € N, consider the inclusion j., : J X 0A™ U {e} X A" — ] X A", and
notice that we have a cocartesian diagram of sSet :

{e} X ON" ———— {¢} X A"

| |

J X OA" ——— J x 9A™ U {e} x A".

Since 7 preserves all representable colimits ([13] Prop.2.49(ii)]) and finite products (propo-
sition |6.1.11(ii)), we deduce a cocartesian diagram of Cat :

{e} X 1(0A") ———— = 1{e} X [n]

| |

7] X T(dA") ——— 7(J X 9A™ U {e} X A"™)
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(recall that A" = [n], by . Now, if n > 3, the inclusion 9A™ — A" induces an
isomorphism 7(9A™) = [n] (proposition[2.5.8), so the top horizontal arrow of 7%, is
an isomorphism; then the same holds as well for the bottom horizontal arrow, and by the
same token, the same also holds for the functor obtained by applying 7 to the inclusion

J X 0A™ — J x A". We conclude that 7(j,,) is an isomorphism of categories if n > 3.

Next, since dA? = & we see that if n = 0, the left vertical arrow of D, is the unique
isomorphism @ = &, so the right vertical arrow is an isomorphism as well; hence, the
same holds for the right vertical arrow of 7%, o. Moreover, the inclusion i : {¢} X A° —
J x A° induces an equivalence of categories (i) : 7({e}) x [0] = 7] x [0] (see remark
[6-2.2[iii)), so finally 7(j¢,) is an equivalence for every ¢ € {0, 1}.

If n = 1, the diagram 7%, ; becomes :

r{e} x ([0] U [0]) —————r{e} x [1]

l l

77 % ([0] L [0]) —— 7(J x Al U {e} x AD).

Hence, let 0, 1, 0, 1’ be the four objects of 7Jx[1]; its subcategory 7 Jx([0]L[0]) consists of
the isomorphisms f; : 0 = 0’, f; : 1 = 1’ and their inverses (and of course, the identities
of the four objects). Likewise, the subcategory {0} x [1] (resp. {1} X [1]) consists of

the morphismo_l) :0 — 1 (resp. U0 - 1’) and the identities of the two objects 0 and
1 (resp. 0’ and 1’). Then, the datum of a functor F : 7(J X dA' U {0} X A!) — € is the
same as that of four objects a, b, a’, b’ of €, of isomorphisms a = a’, b = b’, and of a
morphism a — b. But it is easily seen that the same datum determines a unique functor
G : 1] X [1] — ¥, such that F = G o 7(jj1); this shows that 7(jj 1) is an isomorphism of
categories, and the same argument applies to 7(jy,1) as well.

Lastly, we consider the case where n = 2. To this aim, let i : 9A? — A? be the inclusion,
and notice the cocartesian diagram of sSet :

anto2y o afo2}

L

J— )

After applying termwise the functor 7, we obtain a cocartesian diagram of Cat, and recall
that TA? = [2] (remark [2.5.12). Hence, the datum of a functor F : 7(9A%*) — 4 amounts
to that of three objects a, b, ¢ of ¢ and three morphisms a:a > b, f:b > ¢,y : a — c,
and F factors through 7(i) : 7(dA%) — [2] if and only if y = ff o a. Likewise, the datum
of a functor G : 7] X 7(dA?) — ¥ is the same as that of six objects a, b, ¢, a’,b’, ¢’ of €, of
isomorphisms a = a’,b = b’, ¢ = ¢’, and of morphisms «, f, y as in the foregoing; then
G factors through 7(jo2) if and only if y = § o a. On the other hand, the cocartesianity
of 7%, shows that the datum of a functor H : 7(J x 9A? U {0} x [2]) — € is precisely
equivalent to that of a functor 7] x 7(dA%) — € whose restriction to 7{0} X 7(9A?)
factors through {0} X [2], i.e. with y = foa; hence every such functor H factors uniquely
through 7(jo2), i.e. 7(jo2) is an isomorphism of categories, and the same argument applies
to 7(j1,2) as well. O

Recall that the fibrations of the canonical model category structure on Cat are the
isofibrations between small categories. Proposition then motivates the following :
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Definition 6.2.7. A morphism p : X — Y of simplicial sets is an isofibration, if it is an
inner fibration, and for every object x, in X and every invertible arrow g : p(xp) — y; in
Y, there exists an invertible arrow f : xo — x; in X such that p(f) = g.

Remark 6.2.8. (i) In light of example[6.1.2{ii) and proposition [2.5.10] it is easily seen that
afunctor F : € — 2 between small categories is an isofibration if and only if its nerve
N(F) : N6 — N2 is an isofibration of sSet.

(i) SetS :={A} — A"|n € N,0 < k < n}; then the class of isofibrations of sSet is

precisely r(S U {81] }) (notation of definition i,ii)). Taking into account propositions
i) and iii), we deduce that every J-fibration is an isofibration of sSet.

(iii) In the same vein, let Y be an co-groupoid; then an inner fibration X — Y is an
isofibration if and only if it has the right lifting property relative to the inclusion Aj — A'.

Proposition 6.2.9. A morphismp : X — Y of oo-categories is an isofibration if and only
if the same holds for the morphism p°P : X°P — Y°P,

Proof. We know already that the opposite of an co-category is an co-category (remark
2.6.4), and that p is an inner fibration if and only if the same holds for p°P (example
6.1.2[iv)). Hence, we may suppose that p is an inner fibration, and that for every object
x1 in X and every invertible arrow g : yo — p(x;) in Y, there exists an invertible arrow
f :x9 — x1 in X such that p(f) = g, and we need to deduce that p is an isofibration.

So, let xy be an object of X, and g : p(x9) — y; an invertible arrow of Y; pick a
left inverse ¢’ : y1 — p(xo) of g. By assumption, there exists an invertible arrow f” :
x1 — xo of X such that p(f’) = ¢’; pick a right inverse A : x, — x; of f’. Then, by
corollary i), the classes of g and p(h) coincide in the homotopy category ho(Y)
(see theorem i)), and therefore we have a 2-simplex ¢ : A> — Y whose boundary is

the commuting triangle :
%
g

plxo)) — 1.

. h 1x . .
Moreover, the composable pair xy — x; —5 x; defines a morphism b : Af — X fitting
into a commutative square :
b

Nt x

L)

i ——
Since p is an inner fibration, the square admits a diagonal filler a : A> — X; then f :=
aod?: A — X is an arrow xo — x1 with p(f) = g. By construction we have [f] = [h] in

ho(X), and [A] is an isomorphism in ho(X), since it is a right inverse of the isomorphism
[f'] (corollary ii)); so [f] is an isomorphism of ho(X), i.e. f is invertible in X. O

6.3. Left fibrations and right fibrations.

Definition 6.3.1. (i) The class of left (resp. right) anodyne extensions is the saturation in
sSet of the set {A] — A" |n > 1,0 < k < n} (resp. of {A} — A" [n > 1,0 <k < n}). We
denote this class by |An (resp. rAn).

(i) A left (resp. right) fibration is a morphism of sSet that has the right lifting property
with respect to the class of left (resp. right) anodyne extensions.
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Remark 6.3.2. In light of remark [2.3.8{i), it is clear that a morphism f of sSet is a left
fibration if and only if its front-to-back dual f°P is a right fibration. Moreover, obviously
f is a Kan fibration if and only if it is both a left and a right fibration.

Proposition 6.3.3. Every monomorphism K — L and every left (resp. right) anodyne
extension X — Y induce a left (resp. right) anodyne extension :

(%) YXKUXXL—> YxL.

Proof. Since front-to-back duality preserves monomorphisms, remark reduces to
checking the assertion for the case of a left anodyne extension X — Y. Now, the proof of
proposition[5.1.4|already shows that the assertion holds for every monomorphism K — L
and for every element X — Y of . := {A] — A"|n > 1,0 < k < n}. On the other

hand, in light of remark ii), we may apply proposition [3.1.21(iii) to the functors
Fi, F, : sSet — sSet with F; := (=) X K and F, := (=) X L, and to the natural transforma-

tion 7, : F; = F, induced by the inclusion K — L, and notice that F;Y N F,X = F; X for
every monomorphism f : X — Y, so that f° is precisely the inclusion (). We then get :

I(r(Z)° cU(r(F))).

However, [(r(.°)) is the saturation of .* (corollary [4.1.9]iii)), and since .#’® consists
of left anodyne extensions, we deduce that the same holds for [(r(.¥))°; but [(r(-¥)) is
precisely the class of left anodyne extensions, whence the assertion. O
Corollary 6.3.4. Letp : X =Y be a morphism of sSet. We have the equivalent conditions:

(a) p is a left (resp. right) fibration.

(b) Every left (resp. right) anodyne extension i : K — L induces a trivial fibration :

Hom(L, X) — Jom(K, X) X pomk,y) SCom(L,Y).

(c) The restriction along A° a_(l)) A (resp. A° a—ll> A') induces a trivial fibration of sSet :
Hom(A', X) — X xy H#Hom(A',Y).
(d) Every monomorphismi: K — L induces a left (resp. right) fibration :
stom(L, X) — Hom(K, X) X somk,y) sCom(L,Y).

Proof. One argues as in the proof of corollary [5.1.12(i), invoking proposition and
proposition : the details are left to the reader. O

Proposition 6.3.5. Let p : X — Y be a morphism of co-categories that is either a left or
right fibration. Then p is a conservative isofibration (see definitions[2.5.4(iv) and[6.2.7).

Proof. Clearly a morphism of simplicial sets is conservative if and only if the same holds
for its front-to-back dual; combining with proposition and remark|6.3.2] we are then
reduced to the case where p is a left fibration.

Let us check first that p is conservative. Indeed, let f : xo — x; be an arrow of X such
that p(f) : p(x0) — p(x;) is invertible in Y, and pick a 2-simplex ¢ : A> — Y whose
boundary is the commuting triangle

p(x1)
p(f) g

1p(x)

p(x0) p(x0).
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Let also b : A2 — X be the morphism of sSet whose restriction to A1} and A2} are
respectively f and 1, : X — xo. By assumption, the commutative square

b

A——=X

Lol
.,
admits a diagonal filler A> — X, whose boundary is a a commuting triangle :
X1
N
1y,
Xo——>=Xp

Since p(f) is invertible in the co-category Y, the same holds for p(h), by virtue of corollary
[2.6.13(ii). Thus, we can repeat the foregoing discussion with f replaced by h, to obtain

another commuting triangle :
Xo
% X
1y

X1 ——————————— X1

and we deduce that A is invertible. Since X is an co-category, we may then invoke again
corollary|2.6.13(ii), to conclude that f is invertible, as required.

Lastly, since p is conservative and has the right lifting property with respect to the
inclusion 9] : A® — Al, it is easily seen that p is an isofibration. O

6.3.6. Recall that to every K € Ob(sSet) we have attached in §2.4.8|an adjoint pair :
(= | K) : sSet 2 K/sSet : (-/K).

natural transformations
Teiilo (= K)=(-1L) and 7)) : (=/L) = (=/K) o
where i' : K/sSet — L/sSet is the left adjoint of the functor i) : L/sSet — K/sSet.

e Letnow i : K — L be a monomorphism of sSet; we apply the discussion of §3.1.20
to the adjoint pairs of functors :

i'o(— | K):sSet = L/sSet: (~/K)oi; and (- |L):sSet = L/sSet: (—/L)
and to the natural transformation z,. Hence, every morphism j : U — V of sSet and
L/p:(X,t) > (Y,pot) of L/sSet induces morphisms of L/sSet and respectively sSet :

FV LK) Do U LD 25 1D 00t 22 (X7t o) Xy pporesy (Y/p o 1),

By inspecting the constructions, we see that L/j° is given by the commutative diagram

UlL

Ux[ <~——— L

l l”L

(V%K) Uy (U L) —2>V L.

Moreover, by lemma [2.4.10(i), if also j is a monomorphism, j° is the monomorphism
V«KUU*L — V L. Likewise, to ease notation, in this situation we shall usually write
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X/L — X/K Xy;k Y/L to denote the morphism (L/p).. By proposition i,ii), we
have then a natural bijection between commutative diagrams of the type :

t

L
&ll’)
. U—9Y o Xx/L
D : V+«KUU=%*L aaX and D, :
jl l(L/P)o
1 b,
b V—>X/KXY/K Y/L

Vel ———Y

Furthermore, this bijection extends to a natural bijections between the sets of diagonal
fillers V « L — X and V — X/L for the corresponding commutative squares.

Remark 6.3.7. The previous natural bijection can also be rephrased as follows. For every
monomorphism j : U — V of sSet and every morphism p : X — Y, we have a natural
bijection between commutative squares of the type

VeKUU L —%>X U——X/L
E° . jol l/p and pairs (Eo, 1) : jl l(L/P)o
, ,
Vil —2t sy Vo X/K xyx Y/L

where E, is the commutative square displayed on the right, and t : L — X is a morphism
of sSet; namely, a determines ¢, so that E® determines the pair (E,, ), and conversely,
from (E., t) we deduce a commutative diagram D°, from which we can extract E°. Again,
this natural bijection extends to a bijection between the diagonal fillers for E® and E,.

Proposition 6.3.8. Leti: K — L and j: U — V be two monomorphisms of sSet, and let
j:V*KUU=%*L — V *L be the morphism induced by i and j, as in we have :

(i) If j € sAn (resp. if j € rAn), then j° € |An (resp. j° € inAn).

(ii) If i € sAn (resp. if i € |1An), then j° € rAn (resp. j° € inAn).
Proof. Let us first remark :
Claim 6.3.9. For every A € Ob(sSet) and every subset . of Mor(A/sSet), the class
I(r(.%)) is the saturation of .7.
Proof : Every object of A/sSet is small, by remark[4.1.2{ii) and corollary [4.2.5(i); then also
every morphism of A/sSet is small, and the claim follows from corollary [4.1.9(iii). <&

Let us now take i : A’k" — A™ and j : 9A™ — A" to be the natural inclusions, for any

neN,anym > 1,and k =0,...,m. Then j° is the inclusion :
(*) A" 5 AU QA™ 5 A = AL — AT s AT = AT

(lemma [2.4.10(ii)). Let us then apply proposition to the same adjoint pairs as in
and with . := {dA" — A"|n € N}. The class [(r(.#)) is the class .# of

monomorphisms of sSet (remark; on the other hand, from (%) we get ° € A™/rAn,
and even .¥° C A™/inAn, in case k < m, i.e. in case i € |An. Moreover, both A™/rAn and
A™[inAn are saturated subclasses of Mor(A™ /sSet), by lemma [3.1.12[iv); by combining
with claim[6.3.9] we get therefore :

M CU(r(°)) c A /rAn and even AM° C A™/inAn in case i € |An.

Hence, for every monomorphism U — V, the inclusion V = Akm UU * A™ — V x A™ lies
in rAn for every m € N and 0 < k < m, and even in inAn, if k < m.
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Combining with lemma [2.4.12(ii) and remark i), we see likewise that for every

monomorphism K — L, the inclusion A" * L U A™ * K — A™ = L lies in |An for every
m>1and 0 < k < m, and even in inAn, if k > 0.

Let us next take i : K — L to be an arbitrary monomorphism; we apply again proposi-

tion to the adjoint pairs of ~., and with . := {Akm - A"|m>1,k=0,...,m}.
Then [(r(#)) = sAn (corollary 5.1.6), and on the other hand, . c L/IAn, whence :

sAn® c L/IAn.

Likewise, if we replace . by {A’k" - A"|m > 1L,k =1,...,m}, we get rAn® C L/inAn,
and this completes the proof of (i). Assertion (ii) follows from (i), in light of lemma

2.4.12(ii). o

Corollary 6.3.10. Leti: K — L be a monomorphism of sSet, (X, t) an object of L/sSet,
p : X — Y another morphisms of sSet, and (L/p). : X/L — X /K Xy;x Y/L the morphism
induced by p and i, as in We have :
(i) Ifp is a left (resp. inner) fibration, then (L/p). is a Kan (resp. a right) fibration.
(ii) (L/p). is a trivial fibration if either one of the following two conditions holds :
(a) i is an anodyne extension and p is a right fibration
(b) i is a left anodyne extension and p is an inner fibration.

Proof. All the assertions follow directly from proposition and remark : the
details shall be left to the reader. O

Corollary 6.3.11. Leti : K — L be a monomorphism of sSet, (X,t) an object of L/sSet,
and p : X — Y an inner fibration; the following holds :

(i) If X is an co-category, the morphism ) : X /L — X /K is a right fibration.

(ii) If Y is an co-category, the same holds for both X/L and X/K Xy;x Y/L, and the
projections X /K Xy ;x Y/L — X /K and X /K — X are right fibrations.

Proof. (i): The functor —/K preserves all representable limits ([13] Prop.2.49(i)]), hence it
preserves also the final object A°, for every K € Ob(sSet); moreover, X is an co-category
if and only if the unique morphism X — A is an inner fibration (example 1)) Then
the assertion is equivalent to the special case of corollary i) where Y = A%

(ii): If Y is an oo-category, then the same holds for X, since p is an inner fibration
(example [6.1.2(i)). Morever, taking K := &, we deduce from corollary [6.3.10[i) that the
morphism 7 : X/L — X/@ <> X is a right fibration (see example i)), so X /L is an
oco-category as well (example 1)) Furthermore, the projection X/K Xy x Y/L — X/K
is a pull-back of the right fibration Y/L — Y/K (by (i), so it is a right fibration as well
(proposition v)), and since we know already that X /K is an oo-category, it follows
that the same holds for X /K Xyk Y/L, again by example[6.1.2[(i). i

Theorem 6.3.12. (Joyal) Let Y be an co-category, p : X — Y an inner fibration, i : K — L
a monomorphism of sSet, and consider a commutative square :

{0} * LUA'sK —2> X
| |
A« ——Y.

Suppose that the arrow ag — ay given by the restriction of a to A' = Al x & ¢ A« K is
invertible in X. Then the square admits a diagonal filler A' x L — X.
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Proof. By remark [6.3.7] the commutative square of the theorem corresponds to the pair
(Es, t), where t : L — X is the restriction of a to L = {0} = L, and E, is the induced
commutative square :

{0} ———X/L

l l(L/P)o

A" —2 = X/K xy/x Y/L

and it suffices to check that E, has a diagonal filler. However, by corollaries i)
and [6.3.11{ii), (L/p). is a right fibration between co-categories, so it is an isofibration
(proposition [6.3.5). Hence, we are reduced to showing that « is an invertible arrow of
X /K Xy;x Y/L. But, invoking again corollary ii), we see that also the composed
projection 7 : X /K Xy x Y/L — X/K — X is aright fibration, so it is conservative, again
by proposition [6.3.5} thus, it suffices to check that 7 o @ is an invertible arrow of X. But
the latter is precisely the arrow ay — a;, and the proof is concluded. O

Corollary 6.3.13. (Joyal) Let Y be an co-category, p : X — Y an inner fibration,n > 2 an
integer, and consider a commutative square :

A —>X

|

A" ——Y.

Suppose that the arrow ay — ay given by the restriction of a to A{®1} is invertible in X. Then
the square admits a diagonal filler A" — X.

Proof. We apply theorem to the monomorphism i : A" 2 — A""2 and use the
natural isomorphism Aj * A" U Al x 9A""% =5 A (lemma ii)) to identify the
commutative square of the theorem with that of the corollary. Under this identification,
the arrow ay — a; of the theorem corresponds to the arrow ay — a; of the corollary,
whence the assertion. O

Corollary 6.3.14. (Joyal) A simplicial set is an co-groupoid & it is a Kan complex.

Proof. We know already that every Kan complex is an co-groupoid (proposition [2.6.3).
For the converse, it suffices to check that every co-groupoid X lies in (%), with . :=
{AY = A™|n > 1k = 0,n}. However, X is also an co-groupoid (remark iii)), so
the assertion follows from corollary and its front-to-back dual. O

Proposition 6.3.15. Letp : X — Y be either a left or right fibration. If Y is a Kan complex,
then the same holds for X, and p is a Kan fibration.

Proof. Indeed, p is conservative (proposition and Y is an oco-groupoid (corollary
, so the same holds for X, i.e. X is a Kan complex. Next, p is also an isofibration,
again by proposition so it is an inner fibration, and then, by virtue of corollary
and its front-to-back dual, p has the right lifting property relative to all inclusions
Al — A", withn > 2and 0 < k < n. Moreover, by remark iii) and proposition
p has also the right lifting property relative to the inclusions Allc — Al fork=0,1.
Hence, p is a Kan fibration. O

Corollary 6.3.16. For every left or right fibration p : X — Y and every objecty of Y, the
fibre f~(y) is a Kan complex (see definition iv)).
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Proof. Indeed, the unique morphism f~!(y) — A° is a pull-back of p, hence it is a left
or right fibration (proposition v)), and clearly A° is a Kan complex, so the assertion

follows from proposition|6.3.15 O

6.4. Invertible natural transformations. In §1.11.12] we exhibited two adjunctions :
m :Cat 2 Gpd:i:Gpd = Cat:k
where i : Gpd — Cat is the inclusion of the category of small groupoids into the category
of all small categories. Consider now the full subcategories of sSet denoted
Gpd®™ and Cat®™
whose objects are respectively the co-groupoids and the co-categories; we shall similarly
construct a right adjoint k : Cat® — Gpd® for the inclusion functor i : Gpd™ — Cat®.

To this aim, for every co-category X we form the cartesian square of sSet :

k(X)) ——=X

| |

N(k(tX)) ——= N(tX)

where N and 7 are the nerve functor and its left adjoint (see §2.3.3), and nx denotes the
unit of adjunction. Recall that k(zX) is the largest groupoid contained in 7X; hence,
the inclusion k(7X) — X is trivially an isofibration, so the same holds for the induced
monomorphism N(k(rX)) — N(zX) of sSet (remark [6.2.8]i)). It follows that the mor-
phism k(X) — X is a monomorphism and an inner fibration (proposition v)), SO
k(X) is an co-category (example [6.1.2[i)). Moreover, k(X) and X have the same objects,

are precisely the invertible arrows of X, so k(X) is an co-groupoid. The construction of
k(X) is natural with respect to morphisms X — Y of Cat™, so we get a well-defined func-
tor k : Cat® — Gpd®™. Moreover, if X is a groupoid, then X = k(zX), again by corollary
[2.6.13{ii), so that k(X) = X in this case. Especially, for every co-groupoid Y C X, the inclu-
sion Y — X factors through the inclusion Y — k(X), i.e. k(X) is the largest co-groupoid
contained in X, and it follows easily that k is the sought right adjoint for i.

Lemma 6.4.1. (i) An inner fibration p : X — Y of co-categories is an isofibration <
k(p) : k(X) — k(Y) has the right lifting property relative to the inclusion 9} : {0} <— A'.
(ii) The inclusion k(X) — X is a conservative isofibration, for every X € Ob(Cat™).

(iii) For everyn > 0, the n-simplices of k(X) are the morphisms A" — X whose restriction
to A1} s an invertible arrow of X, for everyi=0,...,n— 1.

(iv) Every conservative morphism f : X =Y of oco-categories induces a cartesian square :

k(f)l lf

k(Y) ——Y.
(v) k(zX) = t(k(X)) for every X € Ob(Cat®™).

Proof. Assertions (i), (ii) and (iv) are clear from the definitions, and (v) follows from (iii),
theorem 2.6.12[iii), and the explicit construction of the homotopy category ho(X).
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(iii): Indeed, set Y, := Xy, and for every n > 0, let Y,, C X, be the subset of n-simplices
verifying the stated condition; it is easily seen that the system (Y, | n € N) yields a sub-
simplex Y of X, and then Y is obviously an co-groupoid. On the other hand, it is clear that
every groupoid contained in X lies already in Y, so Y = k(X). O

6.4.2. Next, to every simplicial set A we attach the simplicial set
Ob(A) := (A% )

(the disjoint union of copies of A indexed by Ay : see . Hence, the set of n-
simplices of Ob(A) is naturally identified with A, for every n € N, and all face and de-
generacy maps are identities, under this identification. We have a unique monomorphism

ig: Ob(A) - A such that iag =14, : Ob(A)y — A.

Remark 6.4.3. Every morphism f : A — B of sSet induces a map f; : Ag — By, whence a
morphism of sSet

Ob(f) == (A%Y) : Ob(A) — Ob(B)
(see §1.2.14). Clearly, the rules : A — Ob(A) and f + Ob(f) yield a well-defined functor
Ob : sSet — sSet

and itis easily seen that the rule: A — i4 defines a natural transformation is : Ob = 1get.

By virtue of corollaries and|6.1.10] every co-category X induces an inner fibration

between co-categories
i* : Hom(A,X) — Hom(Ob(A),X) = X%  F s (Fala € Ap).
We then define k(A, X) as the pull-back in the cartesian square :
k(A X) Ftom(A, X)

i

k(o#om(0Ob(A), X)) —— #om(0Ob(A), X)

whose bottom horizontal arrow is the natural inclusion. The left vertical arrow is also
an inner fibration (proposition[3.1.9(v)), and we know already that k(.Zom(Ob(A), X)) is
an co-category, so the same holds for k(A, X) (example [6.1.2[1)). Recall that #om(A, X)
is the co-category whose n-simplices are the morphisms A” X A — X of sSet, for every
n € N; especially, in the language of definition the arrows of JZom(A, X) are the
natural transformations n : F = G between functors F,G : A = X. Then such a
natural transformation lies in the co-subcategory k(A, X) if and only if its evaluation
Nq : Fa — Gais an invertible arrow of X, for every a € Ay, i.e. if and only if 5 is invertible
in the sense of definition [2.5.4]iv). Notice also that

k(A#om(Ob(A), X)) = k(X™0) = k(X)%

is the largest co-groupoid in X“. Hence, more generally, the n-simplices of k(A, X) are
the morphisms x : A" X A — X such that for every a € Ay, the evaluation of x at a :

x(@): A" 25 AT x A DG An A S x

is an n-simplex of k(X). Moreover, by virtue of remark[6.4.3] the construction of k(A4, X)
is natural in both A and X (details left to the reader), so we get a well-defined functor

’k(—, —) : sSet? x Cat™ — Cat™ (A, X) > k(A X). ‘
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Remark 6.4.4. (i) From the construction and from remark[2.6.4{iii), it is clear that :
k(X°P) = k(X)°P VX € Ob(Cat™).
(if) From (i), we easily deduce a commutative diagram of co-categories :

k(A X)%P — = k(A%, X°P)

l

Hom(A, X)P —— H#om (AP, X°P)

whose vertical arrows are the inclusions, and whose bottom horizontal arrow is the nat-
ural identification of remark [2.1.7]: the details are left to the reader.

Example 6.4.5. Since #om(2,X) = A® and #om(A°, X) = X, we get :
k(2,X)=A° and k(A% X)=k(X) VX € Ob(sSet).

Lemma 6.4.6. (i) k(sZom(A, X)) C k(A,X) c stom(A X).

(ii) Every co-category X, and every morphism f : A — B of sSet such that fy : Ay — By
is a bijection induce a cartesian diagram of sSet :

k(B,X) —— om(B,X)

l |

k(A X) —— Jtom(A X).
(iii) k(A,X) = s#om(A, X) for every A € Ob(sSet) and every X € Ob(Gpd®™).

Proof. (i): We have already observed that the morphism k(A ,X) — Jfom(A X) is a
monomorphism, since it is a pull-back of a monomorphism. Next, we have a commutative
diagram of sSet whose horizontal arrows are the natural inclusions :
k(stom(A X)) —— Hom(A X)
k(i*)l i
k(s¢om(Ob(A), X)) — s#om(Ob(A), X).

Hence the inclusion k(.7#om(A, X)) C J¢om(A, X) factors through k(A X).

(ii) and (iii) follow by a direct inspection of the constructions. O

6.4.7. The main goal of this § is to prove that the first inclusion of lemma [6.4.6[i) is in
fact an equality; i.e. we want to show that any invertible natural transformation is indeed
an invertible arrow of the co-category of functors. To this aim, we shall need an adjoint of
the functor k(—, X) : for every B € Ob(sSet), X € Ob(Cat™), and n € N, let

h(B,X), C #om(B,X)n

be the set of n-simplices f : A" — #om(B, X) of 7#om(B, X) such that that the associated
morphism ¢ : B — om(A", X) factors though k(A",X). For every morphism u :
[m] — [n] of sSet, the map u* : S#om(B,X), — Hom(B,X),, is given by the rule :
f + f o A%, and notice that the morphism ¢,:(r) : B — Hom(A™, X) associated with
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u*(f) is Hom(A*,1x) o ¢y, where SZom(A",1x) : Hom(A",X) — Hom(A™ X) is
defined as in However, the commutative diagram :

k(A*1x)

k(A" X) k(A™, X)

l Hom(A¥, l
Fom(A", X) M Fom(A™, X)

(whose vertical arrows are the inclusions) shows that if ¢ factors through k(A", X), then
Som(A¥, 1x) o ¢ factors through k(A™, X); i.e. the system (h(B,X),|n € N) yields a
subsimplicial set :

h(B,X) c s#om(B, X)

natural in both B and X, whence a well-defined functor

| h(—-) : sSet x Cat™ — sSet  (B,X) > h(B,X).|

One may think of h(B, X) as the full subcategory of .7Zom(B, X) consisting of those func-
tors B — X that map every arrow of B to an invertible arrow of X.

Example 6.4.8. Since Zom(9,X) = A", it is easily seen that :
h(2,X) =A% VX € Ob(sSet).

Moreover, for every n € N, the set h(A° X), is the set of n-simplices
f: A" — Hom(A°, X) = X

such that the associated morphism ¢ : A° — FHom(A", X) factors through k(A" X), i.e.
with f o u € k(X), for every u € sSet(A°, A™). But since k(X)y = Xo, we conclude that :

h(A°,X)=X VX € Ob(sSet).

Lemma 6.4.9. Every X € Ob(Cat™) induces an adjoint pair of functors :

’ k(—,X) : sSet = sSet®? : h(—, X). ‘

Proof. By adjunction, sSet(A, 5€om(B, X)) and sSet(B, .7Zom(A, X)) are identified with
sSet(A X B, X) and respectively sSet(B X A, X), for every A, B € Ob(sSet). Hence, the
isomorphism w : A X B = B X A that swaps the factors induces a natural bijection :

(%) sSet(A, #om(B, X)) = sSet(B, #om(A, X)).

Now, we have h(B,X) c s#om(B,X) and k(A, X) c Jom(A, X), and we come down to
checking more precisely that the bijection () induces by restriction a bijection :

sSet(A, h(B, X)) = sSet(B, k(A, X)).

However, unwinding the definitions, we see that the morphisms A — h(B, X) correspond,
under the foregoing natural identification, to the morphisms u, : A X B — X such that
un(m;(a),b) € k(X), for every n € N, every b € B, and every a € Ay, where 7, :
[n] — [0] is the unique map. Likewise, the morphisms B — k(A, X) correspond to the
morphisms v : BX A — X whose composition with o fulfills the previous condition,
whence the assertion. O
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Remark 6.4.10. (i) For every A, B,C € Ob(sSet) and every X € Ob(Cat™), the isomor-
phism C X B = B X C that swaps the factors induces a commutative diagram :

sSet(A x C, k(B, X)) — sSet(A x C, #om(B, X)) — sSet(A x C x B, X)
l sSet(Axw,X)
sSet(A x B, h(C, X)) — sSet(A x B, #om(C, X)) — sSet(Ax Bx C, X)

whose three unmarked arrows are injections. Indeed, on the one hand, the composition
of the top horizontal arrows identifies sSet(A X C, k(B, X)) with the set of morphisms
Ue : AX C X B — X of sSet such that u,(a,c, 7,(b)) € k(X), for every n € N and every
(a,b,c) € A, X By X Cy,, where 7, : [n] — [0] is the unique map. On the other hand, the
composition of the bottom horizontal arrows identifies sSet(A X B, h(C, X)) with the set
of morphisms v, : A X BXx C — X of sSet such that v, (7, (a), 7}, (b), c) € k(X), for every
n € Nand every (a,b,c) € Ay X By X Cp,.

(ii) Let p : X — Y be any morphism of Cat*; in light of lemma [6.4.9] we may apply
proposition [3.1.21 to the functors F;, F, : sSet =3 sSet® with F; := k(-,Y) and F, :=
k(—,X), and to the natural transformation 7z, : F; = F, induced by p. We then get, for
every pair f : A — Band g : C — D of morphisms of sSet, a natural bijection between
commutative squares of the type :

C———k(B,X) A——— > h(D,X)
D° : lg lf" and D, : lf lgo
D ——k(B,Y) Xray) k(A X) B—— h(C,X) Xpcy) K(D,Y).

as well as a natural bijection between diagonal fillers for D® and D..
(iii) For instance take f : @ — A° be the unique morphism, and g := 9] : {0} — A°.
Taking into account examples and[6.4.8] we see that in this case, (ii) yields a bijection

between commutative squares of the type :

{0} —k(X) g ——— h(A',X)
9}l lk(m and l l(ai)o
A ——k(Y) A’ —— X xy h(AL,Y)

as well as a bijection between the diagonal fillers for such squares. Combining with lemma
i), we conclude that p is an isofibration < p is an inner fibration and the morphism
(31)s : h(AY,X) — X Xy h(ALY) is surjective on objects.

Theorem 6.4.11. For every inner fibrationp : X — Y between co-categories, the morphism
(9})o + h(A',X) — X Xy h(AL,Y) of remarkl6.4.1((iii) lies in r({0A™ — A™ | n > 0}).

Proof. Remark[6.4.10(ii) yields a natural bijection between the commutative squares :

{0} ——— k(A" X) ON" ———— h(AL, X)
D° : la% lj:, and D, : ljn l(apo
A' —— k(A" Y) X (oany) k(0A™, X) A" — X xy h(A,Y)

and a bijection between the respective diagonal fillers. Thus, we are reduced to checking
that 9} € I({j; |n > 0}). To this aim, let us fix an integer n > 0; we apply proposition
to the functors F;, F, : sSet = sSet with F; := (=) X A" and F, = (=) X A"
and to the natural transformation 7z, : F; = F; induced by the inclusion j,. Notice also
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that F,K N F;L = F,K for every monomorphism K — L of sSet; we then get yet another
natural bijection between commutative squares of the type :

Al x 9A" U {0} x A" —% s X (0} —“ = Hom(A™, X)
Eo : (all)ol/ lp and EO : a%l \LPO
Alxan— b oy Al v Z

where Z = Fom(A™,Y) X pom(onny) #0m(0A", X), and as usual, we have also a bi-
jection between the respective diagonal fillers. Now, a direct inspection shows that the
simplicial set k(A",Y) Xk (aany) k(A" X) is a subobject of Z, and under this identifica-
tion, j, is the restriction of p, to the subsimplicial set k(A", X) c JZom(A", X). So, we
are further reduced to showing that if the image of a’ lies in k(A" X) and if the image
of b’ lies in k(A",Y) Xy (oany) k(3A", X), then E° has a diagonal filler : indeed, in this
case E, has a diagonal filler d : A' — S#om(A", X), and by construction the image of the
composition A! — J#om(dA", X) of d with the morphism S#om(j,, X) : Hom(A", X) —
Ftom(9A", X) lies in k(dA", X); but since j, induces a bijection (dA")y = (A™), (recall
that n > 0), lemma[6.4.6(ii) then implies that the image of d lies in k(A", X), so d will be
also a diagonal filler for D°.

Next, since the inclusion k(A", X) c J#om(A", X) is a bijection on objects, the stated
condition on @’ is empty; on the other hand, the stated condition on " amounts to asking
that b is an arrow of k(A", Y) and the restriction of a to A x 9A™ is an arrow of k(9A", X).
But since dA™ and A" have the same objects, the latter condition on a actually implies that
b is an arrow of k(A",Y).

Summing up, we have a diagram E° such that the restriction of a to Al X A" is an
arrow of k(9A", X), and under this condition, we have to exhibit a diagonal filler for E°.
To this aim, we consider the front-to-back dual of the finite filtration of claim[5.1.5]:

B_i:=A'"x0A"U{0}xA" C By C --- C B, := A' x A™.
By remark i) we get cocartesian diagrams whose vertical arrows are the inclusions :

n+l % 5
AT Bi

(%) l l YVi=0,...,n.
An+1 Bi ; Bi

Hence, the inclusion B;_; — B; is inner anodyne for every i = 0,...,n — 1, so the same
holds for the inclusion j : B_; — Bj,_1. Let ¢ : B,,_; — Y be the restriction of b; since p
is an inner fibration, we deduce that the commutative square :

A x 9A" U {0} x A" L5 X
| &
By —————=Y
admits a diagonal filler ¢’ : B,_; — X. So, it remains only to exhibit a diagonal filler for :

coay,

A61+1 T . X

e )

bo
An+1 " .Y,



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 266

However, f3, is the front-to-back dual of the morphism ¢ : A" — Al x A" of claim
ie. it is the morphism corresponding to the unique strictly increasing map [n + 1] —
[1] x [n] whose image contains (0, 0) and (1, 0). Hence, the restriction of ¢’ o a,, to A{®1}
is the arrow of X given by the restriction of ¢’ to A! X {0}, which is the same as the
restriction of a to A! x {0}, and the latter is an invertible arrow of X, by assumption.

Then, the sought diagonal filler is provided by corollary/[6.3.13] m]

Corollary 6.4.12. An inner fibration p : X — Y between co-categories is an isofibration if
and only if the associated morphism (9}), : h(A',X) — X Xy h(A,Y) ofremarkiii)

is a trivial fibration (for the Kan-Quillen model structure).

Proof. Since {dA" — A" |n € N} is a cellular model for sSet (remark[5.1.1), the assertion
follows from remark [6.4.10(iii) and theorem[6.4.11 O

Theorem 6.4.13. (i) Every isofibration p : X — Y between co-categories, and every
monomorphism i : K — L of sSet induce a Kan fibration :

(i, ps) t k(LX) = k(L Y) Xk(k,y) k(K, X).
(ii) k(A, X) is an oo-groupoid, for every A € Ob(sSet) and every X € Ob(Cat™).

Proof. (i): Notice first that the natural isomorphisms of remark [6.4.4ii) identify (i*, p.)°P
with ((i°)*, (p°P)*), and p°P is an isofibration (proposition[6.2.9); in view of remark|[6.3.2]
it then suffices to check that (i*, p.) is a left fibration.

To this aim, in light of proposition [5.1.4[ii), we are reduced to checking that for every
n € N, every commutative square of the following type admits a diagonal filler :

A" x AP U A" x {0} ——2—> k(L, X)

(%) l l(i*,p*)

A A —L S k(L Y) Xpky) k(K X).
Now, if n = 0, (%) is the same as the diagram D° of remark [6.4.10[ii), with f := i and
g = 9}; in this case, we are then reduced to exhibiting a diagonal filler for the associated
diagram

K— h(ALX)

il M”

L—— X xy h(AL,Y).

The latter is provided by corollary [6.4.12] Next, suppose that n > 0; by remark [6.4.10{i),
the restriction of a to A" X A! can be regarded as a morphism a} : JA" x L — h(K, X),
and the composition of b with the projection to k(K, X) can be regarded as a morphism
ay : A" x K — h(A', X). Moreover, the commutativity of (x) implies that a] and d/, agree
on dA™ x K, whence a well-defined morphism a’ : A" x L U A" x K — h(A', X) which
restricts to @ on A" XL and to a;, on A" x K. Likewise, the restriction of a to A" X {0} can
be regarded as a morphism b} : A" x L — h(A° X) = X, and the composition of b with
the projection to k(L, Y) can be regarded as a morphism b7 : A" XL — h(Al,Y); moreover,
the commutativity of (x) implies that p o b} equals the composition of b}, with h(d;,Y) :
h(AL,Y) — h(A%Y) = Y, whence a well-defined morphism b” : A" XL — X Xy h(A,Y)
whose composition with the natural projections agrees with b] and respectively b;. Lastly,
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the commutativity of (*) is equivalent to the commutativity of the square :

OA" X LUA" x K —%—~ h(A!, X)

| o

A XL —2 o X xyh(ALY)

and the latter admits a diagonal filler &’ : A" x L — h(A', X), by corollary To
conclude, it remains to check that d’ corresponds to a morphism d : A" X Al — k(L X),
under the natural identifications of remark[6.4.10(i), since in that case, d will be the sought
diagonal filler for (). To this aim, since n > 0, lemmal6.4.1{iii) further reduces to checking
that the restriction &’ : 9A" X L — h(A',X) of d’ corresponds, under the same natural
identifications, to a morphism & : dA" x Al — k(L, X); however, § is none else than the
restriction of a to 9A™ X Al, and the proof is concluded.

(ii): We apply (i) with i : @ — A and with Y := A?; then (i, p.) is the unique morphism
k(A,X) — A° (example , and we conclude with propositionm O

We can now show the promised :

Corollary 6.4.14. For every A € Ob(sSet) and every X € Ob(Cat™) we have :

’k(A,X) = k(jfom(A,X)).\

Proof. Since k(7#om(A, X)) is the largest co-groupoid contained in 7#om(A, X), the as-
sertion follows straightforwardly from theorem [6.4.13(ii) and lemma [6.4.6]i). O

Corollary 6.4.15. Every isofibration p : X — Y between co-categories, and every anodyne
extension g : C — D induce a trivial fibration of sSet

go h(D,X) - h(C, X) Xh(C,X) h(D, Y)

Proof. (We refer here to the trivial fibrations of the Kan-Quillen model structure.) Ac-
cording to theorem [6.4.13(i), for every monomorphism f : A — B of sSet, the induced
morphism f° = (f*, p.) : k(B,X) — k(B,Y) Xgay) k(A X) is a Kan fibration, so the
assertion follows from remark [6.4.10[(ii). O

Definition 6.4.16. Let X and Y be two co-categories; we say that a functor f : X — Y is
an equivalence of co-categories if there exist functors g, ¢’ : Y =2 X and invertible natural

transformations fg = 1y and 1x = ¢’f (see definitions iv) and iv)).

Remark 6.4.17. (i) Let € and € be two small categories, and f, g : N(%) = N(%”’) two
functors; we know already that f = N(F) and g = N(G) for a unique pair of functors
F,G : ¢ = %', and that all natural transformations k : N(%) x A — N(%¢”) from f
to g are of the form N(H) for a unique natural trasformation H : € X [1] — %’ from F
to G (see remark [2.5.2). Moreover, taking into account example [2.6.2{i), we see that h is
invertible if and only if H is an isomorphism of functors. Likewise, f is an equivalence of
oo-categories if and only if F is an equivalence of categories.

(ii) In the situation of corollary let 7o : A — S#om(A, X) be a natural transfor-
mation between two functors f, g : A = X. With corollary[6.4.14 we now know that 7, is
invertible & 1, extends to a morphism | — J#om(A, X), or equivalently, a J-homotopy
1’ : J XA — X from f to g (see definition i)).
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6.5. co-categories as fibrant objects. The following result of Joyal justifies the intro-
duction of the model category structure that bears his name :

Theorem 6.5.1. (i) The fibrant objects of the Joyal model category are the co-categories.
(ii) A functor between co-categories is a J-fibration if and only if it is an isofibration.

(iii) A functor between co-categories is an equivalence if and only if it is a weak categorical
equivalence, if and only if it is a J-homotopy equivalence (see remark[4.5.2(ii)).

(iv) A functor between co-groupoids is an equivalence if and only if it is a weak homotopy
equivalence, if and only if it is a simplicial homotopy equivalence.

Proof. (ii): In light of remark([6.2.8{ii), it suffices to check that every isofibrationp : X — Y
between co-categories is a J-fibration. We apply the criterion of corollary[6.2.4]: condition
(b) of the corollary holds, since p is an inner fibration (corollary . Next, notice that,
for every co-category Z, the image of every morphism f : J] — Z lies in k(Z) : indeed,
the restriction of f to Al C J is an invertible arrow of Z (remark i)), i.e. a 1-simplex
of k(Z); then the unique extension of fip1 : A' — k(Z) to J is a morphism ] — k(Z) that
must coincide with f. Letting Z := #om(A",X) for any n € N and any X € Ob(Cat*™)
(corollary|[6.1.10), we conclude that :

h(J,X) = Hom(],X) VX € Ob(Cat™).

Recall also that z?g] : A — J is an anodyne extension for £ = 0, 1 (see definition i));
combining with corollary we get that (d*,p*) : Hom(J,X) —> X xy Hom(],Y)
is a trivial fibration, and this is precisely condition (a) of corollary[6.2.4]

(i): By example[6.1.2{i), every J-fibrant object of sSet is an co-category. Conversely, if

X is an co-category, obviously the unique morphism X — A is an isofibration, so it is a
J-fibration, by (ii), and therefore X is J-fibrant.

(iii): In light of (i), proposition[4.5.9(ii) yields the equivalence between the two last con-
ditions of (iii). It is also clear that every J-homotopy equivalence between co-categories
is an equivalence of co-categories (lemmal4.5.3). Lastly, with remark[6.4.17(ii) and lemma
we easily see that the equivalences of co-categories are precisely the J-homotopy
equivalences.

(iv): In light of corollary proposition [4.5.9(ii) yields the equivalence between
the two last conditions of (iv). Next, notice that if X is an co-groupoid and A € Ob(sSet),
then every natural transformation A! — #om(A, X) between any two functors f,g :
A =2 X is invertible; i.e. every simplicial homotopy from f to g extends (uniquely) to a J-
homotopy. This means that the equivalences of co-groupoids are precisely the simplicial
homotopy equivalences. O

Proposition 6.5.2. (i) The class of weak categorical equivalences is the smallest of the
classes W C Mor(sSet) satisfying the following three conditions :

(a) W enjoys the 2-out-of-3 property
(b) Every inner anodyne extension lies in /'
(c) Every trivial fibration lies in W .
(ii) Every weak categorical equivalence is a weak homotopy equivalence.

Proof. (i): Clearly the class € of weak categorical equivalences satisfies these conditions.
Conversely, let us show that if # satisfies (a)-(c), then € ¢ #'. Indeed,let f : X —» Y



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 269

be any weak categorical equivalence; arguing as in the proof of proposition [4.6.4] we can
find co-categories X’ and Y’, and a commutative square :

X—i>X’

i

y— oy

in which i and j are inner anodyne extensions. Then also f” is a weak categorical equiv-
alence, and it suffices to check that f” € #; hence, we may assume from start that X and
Y are co-categories. In this case, by lemma ii), we can write f = h o g, where h is an
isofibration and q is a right inverse of a trivial fibration, and therefore g € #, by (a) and
(c). Also, h is a weak categorical equivalence, so h € # by (c), and finally f € #'.

(ii) is an immediate consequence of (i). O
Corollary 6.5.3. The class of weak categorical equivalences is stable under finite products.

Proof. We are easily reduced to checking that for every X € Ob(sSet), the functor (—)xX :
sSet — sSet preserves weak categorical equivalences. Hence, let us consider the class
W of morphisms f of sSet such that f X X is a weak categorical equivalence. Clearly
W enjoys the 2-out-of-3 property; also inAn C %, by corollary[6.1.7(ii). Moreover, every
trivial fibration lies in % (proposition v)), hence every weak categorical equivalence

lies in #/, by proposition [6.5.2{i). m|

Corollary 6.5.4. (i) Leti: K — L and j: U — V be two monomorphisms of sSet, and
suppose that either i or j is a weak categorical equivalence. Then the induced morphism
KXV ULXU — L XYV isaweak categorical equivalence.

(ii) Every trivial cofibration (resp. cofibration)i : K — L, and every fibrationp : X — Y
of the Joyal model category structure induce a trivial fibration (resp. a fibration) :

Hom(L, X) — Jom(K, X) X pomk,y) SCom(L,Y).

(iii) For every isofibration p : X — Y between co-categories, and every monomorphism
i: K — L of sSet, stom(K,X) X yom(x,y) #0om(L,Y) is an co-category, , and we have :

] k(L,Y) Xi(k.y) k(K, X) = k(Hom(L, Y) X spom(k.y) #om(K, X)).

(iv) Every monomorphism i : K — L of sSet induces a Kan fibration
k(i,X) : k(LX) — k(K,X) VX € Ob(Cat®™).

Proof. (i): We consider the commutative diagram of sSet :

KXxj
KXU—KXxV

ixUl fl ixV

LXU——=KXVULXU——=LXV

whose square subdiagram is cocartesian. If i is a weak categorical equivalence, the same
holds for i x U, by corollary hence the latter is a trivial cofibration for the Joyal
model category structure, and then the same holds for f (proposition v)). By the
same token, i X V is a weak categorical equivalence, whence the assertion, by the 2-out-
of-3 property of weak categorical equivalences.

(ii): We apply the discussion of to the functors F, F; : sSet =% sSet with F; =
K x (=) and F; := L X (—) and to the natural transformation 7, : F; = F, induced by the
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inclusion i : K — L; by §2.1.6|and proposition [3.1.21] we get, for every monomorphism

Jj : U — V abijection between commutative squares of the type :

KXxVULXU——=X U Hom(L, X)
lﬁ lP and ji lpo
LXV ——Y V—><%”om(K,X) X A#om(K,Y) j‘fom(L, Y)

and between diagonal fillers for such pairs of corresponding squares. Now, if i is a trivial
cofibration, then for every such j the morphism j° is a trivial cofibration, by (i), so the left
square admits a diagonal filler, and therefore the same holds for the right square, which
shows that p, is a trivial cofibration. If i is only a cofibration, then j° is still a trivial
cofibration, provided that j is a trivial cofibration, again by (i), and the same argument
shows that in this case p, is a fibration of the Joyal model category.

(iii): The first assertion follows immediately from (ii), corollary and theorem
ii). Next, under the stated conditions on i and p, the associated morphism (i*, p..)
of theorem [6.4.13(i) is a Kan fibration, and then Z := k(L,Y) Xk(k,y) k(K,X) is an co-
groupoid, by combining with part (ii) of the same theorem. It follows easily that Z also
represents the fibre product of k(L,Y) and k(K, X) over k(K,Y) in the category Gpd™;
likewise, SZom(L,Y) X som(k,y) #€0om(K, X) represents the fibre product of J#om(L,Y)
and s#om(K, X) over s€om(K,Y) in the category Cat™. On the other hand, since the
functor k : Cat® — Gpd®™ is a right adjoint, it preserves such fibre products ([13|
Prop.2.49(i)]), whence the stated identity, by combining with corollary[6.4.14}

(iv) is the special case of theorem i) with Y := A%; indeed, the unique morphism
p : X — A% is an isofibration, since X is an co-category (theorem L,if)). O

Corollary 6.5.5. Let X — Y be an isofibration between co-categories. We have :
(i) Every trivial cofibration A — B of the Joyal model structure induces a trivial fibration:
a:k(B,X) = k(B Y) Xray) k(A X).
(ii) Every monomorphism C — D of sSet induces a fibration of the Joyal model structure:
B :h(D,X) = h(C,X) Xpcy) h(D,Y).
(iii) h(A, X) is an co-category, for every A € Ob(sSet) and every X € Ob(Cat™).
Proof. (i): We consider the commutative square :
k(B,X) Ftom(B,Y)

| I

k(B,Y) Xray) k(A X) —— Hom(B,Y) X yrom(a,y) s€om(A,X)

whose bottom (resp. top) horizontal arrow is identified, via corollary|[6.5.4{iii), with the in-
clusion of k(Hom(B, Y) X som(a,y) Hom(A, X)) into S20m(B, Y) X som(a,y) F£0m(A, X))
(resp. via corollary [6.4.14jwith the inclusion of k(.#om(B, X)) into ##om(B,X)). Then,
under these natural identifications, « corresponds to k(¢). Now, ¢ is a trivial fibration,
by|6.5.4{ii), hence it is conservative (remark|[6.2.2{ii)), and therefore the square is cartesian
(lemma iv)); but then, also « is a trivial fibration (proposition v)).

(ii) follows immediately from (i) and remark [6.4.10fii).
(iii): We apply (ii) to the monomorphism @ — A and with Y := A°; then f3 is the unique
morphism h(A, X) — A° (example , whence the assertion, by theorem i). O
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Lemma 6.5.6. (i) The functork : Cat® — Gpd®™ preserves equivalences of co-categories.

(ii) 7 : sSet — Cat sends weak categorical equivalences to equivalences of categories.

Proof. (i): Inlight of theoreml6.5.1{i), we may regard (Cat*)°P as the subcategory (sSet°P),
of cofibrant objects of the model category sSet°P, where the latter is endowed with the
opposite of the Joyal model category structure (proposition i)). Then Ken Brown’s
lemma (proposition [3.2.8) applies to k, and reduces to showing that k sends every trivial
fibration p : X — Y between co-categories to a trivial fibration k(p) : k(X) — k(Y).
However, every such p is conservative (remark [6.2.2[ii)), hence k(p) is a pull-back of p
(lemma [6.4.1{iv)), so the assertion follows as usual from proposition [3.1.9v).

(ii) follows from proposition and lemma [3.4.12(iii.a). O

Theorem 6.5.7. Let f : X — Y be a morphism of simplicial sets. The following conditions
are equivalent :

(a) f is a weak categorical equivalence.

(b) For every co-category W, the induced morphism f;;, : #om(Y, W) — om(X, W)
is an equivalence of co-categories.

(c) Foreveryco-category W, the induced functor tf},, : t#om(Y, W) — tom(X, W)
is an equivalence of categories.

(d) For every oco-category W, the induced morphism k(f,W) : k(Y,W) — k(X,W) is
an equivalence of co-groupoids.

Proof. (a)=(b): By proposition and theorem iii), it suffices to show that the
functor #om(—, W) : sSet — sSet°P sends trivial cofibrations of the Joyal model category
to weak categorical equivalences, and the latter follows from corollary [6.5.4](ii).

(b)=(c): This follows from theorem [6.5.1{iii) and lemma ii).

(c)=(a): By definition of the Joyal model category structure, and, by virtue of theorem
[6.5.1]i), the morphism f is a weak categorical equivalence if and only if every co-category
W induces a bijection [Y,W] = [X, W], where [X, W] denotes the set of morphisms
from X to W up to J-homotopy equivalence (see definition[4.5.4[iv)). However, by lemma
for given morphisms g1,g, : X = W we have [g;] = [g2] in [X, W] if and only
if there exists a J-homotopy from g; to g», if and only if there exists an invertible arrow
g1 = g in Sfom(X, W) (remark i)), if and only if there exists an isomorphism
g1 — g2 in .7om(X, W) (corollary ii)), so if (c) holds, (a) holds as well.

(b)=(d): In light of corollary[6.4.14] the assertion follows from lemma [6.5.6{i).

(d)=(a): The objects of k(X, W) are the morphisms X — W of sSet, and we have
already remarked that the arrows A! — k(X, W) are the invertible natural transforma-
tions between such morphisms, which are the same as the J-homotopies ] X X — W.

Combining with proposition 5.4.6[ii), it follows that :
m(k(X,W)) = [X, W] VX € Ob(sSet), YW € Ob(Cat®).

On the other hand, the equivalence of co-groupoids k(f, W) is a J-homotopy equivalence,
and every J-homotopy equivalence yields, by restriction, a Al-homotopy equivalence,
hence a weak homotopy equivalence, which in turns induces a bijection o (k(f, W)) :

1o (k(Y,W)) = my(k(X, W)) (proposition i)), whence (a). O

Theorem 6.5.8. Let f : X — Y be a functor between oo-categories. The following condi-
tions are equivalent :
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(a) f is an equivalence of co-categories.

(b) For every simplicial set A, the induced morphism fa, : om(A,X) — Fom(AY)
is an equivalence of co-categories.

(c) For every simplicial set A, the induced functor tfa. : t7€om(A,X) — t#om(A,Y)
is an equivalence of categories.

(d) For every simplicial set A, the induced morphismk(A, f) : k(A, X) — k(A Y) isan
equivalence of co-groupoids.

(e) f induces an equivalence of co-groupoids k(A", X) — k(A" Y) for everyn € N.

Proof. (a)=(b): Let us endow sSet°" with the opposite of the Joyal model category struc-

ture (proposition i)); by proposition and theorem 1,iii), it suffices to show
that the functor Zom(A, —) : sSet®® — sSet°P sends trivial cofibrations of sSet°P (that is,

trivial fibrations of the Joyal model category) to weak categorical equivalences, and the
latter follows from corollary[6.5.4[ii).
(b)=(c),(d): These are proved as the corresponding implications of theorem[6.5.7}
(c)=(a): Arguing as in the proof of the corresponding implication of theorem
we see that (c) implies that every A € Ob(sSet) yields a bijection fy. : [A,X] = [A Y],
where [A, X] denotes the set of morphisms from A to X up to J-homotopy equivalence,
and likewise for [A, Y]; then f is a J-homotopy equivalence (lemma[4.5.3), whence (a).
(d)=(a): Arguing as in the proof of the same implication of theorem[6.5.7} we see that
(d) yields a bijection fa. : [A,X] = [A, Y] for every A € Ob(sSet), whence (a).
Obviously (d)=(e); for the converse, let .# be the class of all simplicial sets A such that
k(A, f) is an equivalence of co-groupoids; by corollary [2.2.10] it suffices to check :

Claim 6.5.9. .# is saturated by monomorphisms.

Proof : The functors k(—, X) and k(—, Y) preserve all small colimits, since they are left
adjoints (lemmal6.4.9]and [13| Prop.2.49(ii)]), so every small family (A; | i € I) of elements
of .% induces a commutative diagram whose vertical arrows are isomorphisms of sSet :

k(Uier A X) —— k(i1 A1 Y)

T

[ie k(A X) ——[ ;e k(AL Y)

and in order to check that | |;.; A; € F, we are reduced to showing that § is a weak ho-
motopy equivalence (theorem|[6.5.1{iv)). To this aim, we endow sSet°? with the model cat-
egory structure induced by the Kan-Quillen model structure of sSet (proposition 3.2.4(i));
then each morphism k(A;, Y) — k(A;, X) is a weak equivalence between cofibrant objects
of sSet®P, so the assertion follows from corollary i).

Next, let us consider morphisms L <~ K — K’ of sSet, where i is a monomorphism
and K, L,K’ € .¥; we get an induced commutative diagram of sSet :

k(L X) —2) (K, X) <——— k(K. X)

7 e |

k(L Y) ——> k(K,Y) =< k(K', Y)

where k(i, X) and k(i, Y) are Kan fibrations, i.e. cofibrations of sSet°? (corollary[6.5.4(iv)),
and by assumption the vertical arrows are weak homotopy equivalences. By applying
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corollary to the diagram 2°P in the opposite model category sSet°?, we deduce a
weak homotopy equivalence of sSet :

k(L, X) Xkxx) k(K',X) = k(L,Y) Xk(k,y) k(K',Y).

However, since k(—, X) and k(—,Y) preserve small colimits, this morphism is naturally
identified with k(L Uk K’, f), so L Lg K’ € F.

Lastly, consider a countable sequence Kj LN K LN K; — -+ of monomorphisms of
sSet, with K,, € .Z for every n € N; we get an induced commutative diagram of sSet :

k(i1,X) K (i0,X)
_— —_—

i~ k(Kp X) k(Ky, X) k (Ko, X)

\L k(iy,Y) l/ k(io,Y) l

o ——— k(K Y) ————k(K;,Y) ————k(K,, Y)

whose vertical arrows are weak homotopy equivalences, and whose horizontal arrows
are Kan fibrations, i.e. cofibrations of sSet®, again by corollary [6.5.4(iv). By corollary
[3.5.13| (applied to the opposite model category sSet°P), the induced morphism of sSet :
lim k (K, X) — lim k(K,, Y)
neN neN
is a weak homotopy equivalence; but since the functors k(—, X) and k(—,Y) preserve
small colimits, this morphism is naturally identified with the morphism

k(lim K, X) — k(lim K., Y)

neN neN
so the colimit of the sequence K, lies in .%, and the proof is concluded. O
Remark 6.5.10. Condition (e) of theorem shall be sharpened later : see theorem
6.6. Path spaces and loop spaces. Let X be an co-category, and x, = (Xo,...,%,) a

sequence of objects of X, for some n > 0. Recall that (A"), is naturally identified with
[n] = {0,...,n}, hence the monomorphism i : Ob(A") = (A%){(I"]) — A" as in
yields an evaluation morphism i* : #om(A", X) — X"*1. We form the cartesian square :

X(xe) — Fom(A", X)

oo |k

AO x%xrﬁll
By construction, we have then X (x) = A° for every x € Xy, and if n = 1, the objects of
X (x,) are precisely the arrows of X of the form xy — x;.

Lemma 6.6.1. X(x,) is an co-groupoid, for everyn € N and every x, € (X;)"*.

Proof. By construction, we have a commutative diagram :

X(xe) —— k(A™, X) —— Stom(A", X)

[ e

A0 Xe k(X)"“ xntl

whose two square subdiagrams are cartesian. Now, since X is an co-category, the unique
morphism p : X — A° is an isofibration; by theorem i), the induced morphism
k(l*) = (l*,p*) : k(An,X) 4 k(An, AO) Xk(Ob(A"),AO) k(Ob(An),X) = k(X)n+1 is a Kan
fibration, so the same holds for g (proposition [3.1.9(v)), i.e. X (x,) is a Kan complex, and
we conclude with corollary|[6.3.14] a
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Example 6.6.2. For every category ¢ and every x, := (o, ...,Xx,) € Ob(%)™*!, let us
denote by € (x.) the set of all sequences of morphisms of ¢ of the form x — x; —
-+ — x,. We have natural identifications :

N(%)(xs) = N(%(x.)) = (M%) €D Vn > 0,Vx, € Ob(€)™!

where the set ©(x,) is regarded as a discrete category, as usual. Indeed, example
yields a natural identification : #om(A", N€) = N(%'"!), under which, the morphism
i* corresponds to the nerve of the functor €7 : €1"l — %"*! induced by the functor
Jj : Ob([n],<) = {0,...,n} — ([n], <) that is the identity on objects. Then, since the
nerve functor is left exact ([13] Prop.2.49(i)]), the diagram %, is obtained by applying
termwise the nerve functor to the cartesian diagram of Cat :

% (xs) — @]

r

[0] Xe gn+l

whence the sought isomorphism. In particular, notice that for n = 1, the set €(x, y) asso-
ciated to any given sequence (x, y) of objects of X is just the usual Hom-set of morphisms
x — yin €. More generally, for any co-category X, the special case where n = 11is singled
out in the following definition :

Definition 6.6.3. Let X be an co-category, and (x, y) a given pair of objects of X.

(i) The co-groupoid X (x, y) is called the path space from x toy in X.
(ii) Notice that X(x, x) has a distinguished object 1, : x — x. The pair :

QX x) == (X(x,x), 1)

is called the loop space of X at the point x.
Remark 6.6.4. (i) Let X be an co-category, n,m € N, x, := (xo,...,%,) € (Xo)"!, and
¢ : [m] — [n] any non-decreasing map, inducing a morphism A? : A™ — A" of sSet; we
set Xq = (X$(0)> - - -» Xp(m))- Then there exists a unique morphism of sSet
X(4) : X(xa) > X(xF)
fitting into the commutative diagram :
X(x) FStom(A", X)

X(x?) ——= Hom(A™,X)

b

AO Xe Xm+1
/ X
AO Xe

where X? is defined as in §1.2.14

(ii) Moreover, the datum of (X, x,) can be regarded as an object of the slice category
(A%) ("D /Cat*, and it is easily seen that the rule (X, x,) —> X(x,) extends to a functor

I, : (A% "D /cat™® — Gpd™.

Xn+1
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Namely, every morphism f : (X,x,) — (Y,y.) of (A7) /Cat*® yields a commutative
diagram of sSet :
Fom(A", X) —— Ftom(A",Y)

l l

Xn+1 Yn+1
and f™!(x,) = y., whence an induced morphism IT,,(f) : X(x.) — Y(y.) as required.

fn+1

(iii) By the same token we get a well-defined functor
Q' A%/Cat™ — A”/Gpd® (X, x) — QY(X, x).

(iv) Furthermore, since the functors sZom(A", —) and .7#om(Ob(A"), —) preserve all
representable limits (lemma [1.6.14), combining with corollary [1.4.6{iii), it is easily seen
that the same holds for both II,, (for every n € N) and Q! : details left to the reader.

(v) Likewise, since the functors ##om(A", —) and s#om(Ob(A"), —) also preserve all
small filtered colimits (example[2.2.12[i)), and since the finite limits of sSet commute with
all small filtered colimits (see §2.1.6), combining with corollary|1.4.6[ii,iii) it follows easily
that both II,, (for every n € N) and Q! preserve all small filtered colimits.

Example 6.6.5. (i) Let X be an co-category, n € N, and x, € X["*'. Recall that the
inclusion j : k(X) — X is an isofibration (lemma ii)); arguing as in the proof of
lemma we get a commutative diagram :

k() (x0) — 9 L X (x) A0

k(An,lk(X)) k(A™,)) k(j’x)&)k(xl)n.ﬂ

whose two square subdiagrams are cartesian, and k(A" j) is a Kan fibration, by theorem
[6.4.13[i). Hence IT,,(j) : k(X)(xs) — X(x.) is a Kan fibration (proposition[3.1.9(v)).

(if) Especially, for every x € Xy, the inclusion j : k(X) — X induces a Kan fibration
Q(j) : QM (k(X),x) = QY(X, x).

Proposition 6.6.6. Let X be an co-category; we have a natural bijection :

7(X(x,9)) S ho(X)(x,y)  Vxy€X]
where ho(X) is the Boardman-Vogt homotopy category of X (see theorem|[2.6.12).
Proof. The morphism X — N(ho(X)) of theorem[2.6.12fii) induces a morphism of sSet :
X(x,y) = N(ho(X))(x,y) = N(ho(x,y))
(example [6.6.2), that is given on objects by the rule : (f : x — y) — [f], where [f]
denotes the class of f in ho(x, y). There follows a surjective map of sets :
m(X(x,y)) = m(N(ho(x,y))) = ho(x,y)

that is clearly natural with respect to morphisms of (A®)(I')/Cat*™, and it remains to
check the injectivity of this map. Hence, let f,g : x == y be two arrows of X with
[f] = [g]; this means that there exists a 2-simplex t : A> — X whose restriction to dA?

is the commuting triangle :
y
7N
g
X—.
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Let p : A! x A' — A? be the nerve of the surjective morphism [1] X [1] — [2] of poSet
that maps both (0,0) and (0, 1) to 0; then tp : Al x Al — X corresponds to an arrow
T : f — g of #om(A!,X), whose compositions with s and ¢ are respectively 1, and
1,. So, 7 lies in X(x,y), and shows that the classes of f and g agree in 7o(X(x,y)), as
required. O

The aim of this section is to lift the composition law of the homotopy category of any
co-category X, to operations on the path spaces and loop spaces of X. To this purpose,
we shall need the following :

Proposition 6.6.7. For everyn > 1 we have :
(i) The inclusion i, : AU} — Sp™ is a right anodyne extension (see .
(ii) The inclusion j, : Sp™ — A" is an inner anodyne extension.

Proof. (i): We argue by induction on n > 1: the case n = 1 is trivial. Next, suppose that
(i) holds for some n > 1; we consider the commutative diagram :

Alny I Adnnr1y e p (1)

%) | o,

Spn 5 Spn+1

all whose arrows are the natural inclusions. Then the square subdiagram of (x) is co-
cartesian, and since i, is a right anodyne extension, the same holds for i},; but I,,41 is right
anodyne as well, so the same follows for iy;.

(ii): We argue again by induction on n > 1; the cases n = 1,2 are trivial; hence, let
n > 2, and suppose that j, is an inner anodyne extension. We apply proposition i)
withi: @ — A+l and j := i,; in light of (i), it follows that the inclusion :

Spn % U A{n} *A{n+1} N Spl’l *A{n+1}
is an inner anodyne extension. Recall as well the natural identification (remark [2.4.6[ii))
(**) An * A{n+l} N An+l

under which, A" * @ and At} A{™*1} correspond respectively to A"l ¢ A" (the image
of @1 : A" — A"1)and to A{»™1} ¢ A™! Hence, Sp" + @ U Al™ « A1*1} corresponds

n+1
to Sp™*! ¢ A", under the same identification.

Next, we apply again proposition i) with i : @ — A" and with j := j,; since
by inductive assumption j, € inAn, the same then follows for the inclusion :

An *@USP” *A{n+l} N An >X<A{n+l}

which, under the identification (##), corresponds to A"l U Sp™ « Aln+1} ¢ AP+,

We are thus reduced to checking that the inclusion Sp™ * AT} — ATy gpn + Atr+1}
is an inner anodyne extension. However, lemma [2.4.10[(i) implies that the diagram :

Spn 5 Spn % A{"+1}
a I
Alnl s Alnly gpn s Alr+t}

is cocartesian, and since j, € inAn, the assertion follows. O
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Corollary 6.6.8. (i) Every isofibration X — Y of oco-categories induces trivial fibrations :
Hom(A",X) — Hom(Sp", X) X som(spn,y) SLom(A",Y) Vn > 1.
(ii) In particular, every co-category X induces trivial fibrations :
Hom (A", X) — Hom(Sp", X) Vn > 1.

Proof. (i) follows from corollary[6.5.4{ii) and proposition|[6.6.7} assertion (ii) is the special
case of (i) where Y = A, O

Remark 6.6.9. (i) Let X be an co-category. Notice that the objects of #Zom(Sp?, X) are pre-
cisely the sequences x, := (xg — Xx; — x;) of arrows of X; since, by corollary[6.6.8[ii), the
morphism s#om(A?, X) — s#om(Sp", X) is a trivial fibration (especially, it admits a sec-
tion), any such x, can be lifted to an object of S#om(A? X), and any such lifting amounts
to the choice of a composition for the two arrows xo — x; and x; — x; composing x,.
(if) With the following proposition, we shall extend the observation of (i) to sequences
x. of any length n > 1. To this aim, notice first that the inclusion Sp” — A" induces an
isomorphism Ob(Sp™) = Ob(A") = (A% "), thus, the inclusion i : Ob(Sp") — Sp"
induces again an evaluation morphism i* : #om(Sp", X) — X"*!. We may then state :

Proposition 6.6.10. Let X be an co-category, and xo = (Xo, ..., Xn) a sequence of objects
of X, for somen > 1. The following holds :

(i) We have a cartesian diagram of sSet :

[No<icn X (xi, Xi41) —— SHom(Sp", X)

l I

AO Xe Xn+1.
(ii) The trivial fibration of corollary[6.6.§(ii) restricts to a trivial fibration :

X(x) = [ ] Xxixis1)

0<i<n

whose composition with the projection onto X (x;, Xi+1) is the morphism X(¢;) : X(x,) —
X (xi, Xi41) induced by the inclusion ¢; : A1} — A" fori=0,...,n—1 (remarki)).

Proof. (i): Notice first that Sp” = Aot Lacy A2} Ut -« - Uptn- Aln=tn} By virtue of
lemma[L.6.14] there follows a natural identification :

Hom(Sp",X) => AHom(A ™, X) X spom(ath x) * X stom(atn- x) Hom(ATTH X).
Next, let us remark :
Claim 6.6.11. Let € be a category whose fibre products are representable, and let
(fi: Aj = Aili=0,...,n) (9i : Bijs1 = Apjis1 = Ai X Aja|i=0,...,n—-1)

be two sequences of morphisms of €. Set A := [, A;, A" ==L, AL AL,,, = Al X A]

i,i+1 i+1
and B! =A},.1 XA, Biis1 for i =0,...,n — 1. Then we have a natural isomorphism :

i+l
’ ~ ’ ’
A" X (Boa Xa, Biz Xa, =+ Xa, , Bp-1n) = Byy Xar -+ Xar By,

Proof : Left to the reader. <&
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We apply claimwithA; = Agand A; := X1} = X = #om(A1}, X)fori=0,...n
(notation of §1.2.14) and with B;;; := Hom(AH*1} X); then A; ;4 = X1+, and we
take f; : A° — X to be the object x; of X for i = 0,...n, and g; : #om(A*1} X) —
X 11} the evaluation morphism induced by the inclusion Ob(A{:#+1}) — A1} With
this notation, A = X{%m = X" and A’ = A°, and the induced morphism A’ — A is
Xo : A — X™! On the other hand, A’ .., = X(x;,x;11) fori =0,...,n— 1, whence (i).

i,i+1

(ii): Indeed, by (i) and by construction of X (x.) we have a cartesian diagram of sSet :

X(x,) Hom(A", X)

l l

[To<icn X (xi, x; + 1) —— Hom(Sp", X)

(since Ob(A™) = Ob(Sp™)) and we know already that the right vertical morphism is a

trivial fibration, so the same holds for the left vertical one (proposition V). ]
6.6.12. Now, let X be an co-category, and x, := (xo, ..., X,) a sequence of objects of X,

for some n > 2. Let ¢/, : [1] — [n] be the map such that 0 — 0 and 1 — n; a composition
law for path spaces is defined as any morphism of the form :
i X (Yn)
(+) [T X (i xie1) 5 X(xa) — X(x0, %)

0<i<n

where j is any section of the trivial fibration provided by proposition [6.6.10(ii) (the ex-
istence of such a section is ensured by proposition [4.5.6(i)). Applying the functor 7z, to
such a law () yields, by virtue of propositions[6.6.6|and[5.4.6(i), a map :

[] ho(0) (xi, xi41) — ho(X) (xo, xn)

0<i<n

and a direct inspection of the construction easily shows that the latter is nothing else than
the composition law of the homotopy category ho(X).

6.6.13.  'We proceed similarly for loop spaces : for a given object x of X and for n > 1,
set x™ = (x,...,x) € X™!. We notice that the co-groupoid X (x{™) has a distigu-
ished object : namely, the unique morphism 7, : A" — A° induces a morphism 7, :

Hom(A%, X) — stom(A", X); there follows a commutative diagram :

A —X o X = Hom(A’, X) —2= Hom(A", X)

|+

AO Xe Xn+1

whence an object called the base point of X(x.(")) and denoted also x : A® — X(x.(") ),bya
slight abuse of notation. Since 7,,0A? = r,, for every non-decreasing map ¢ : [m] — [n],

it is easily seen that X(¢) : X(xf")) — X(xfm)) preserves the respective base points, for
every such ¢. Clearly, the base point of X (xfl)) = X(x, x) is precisely the distinguished
object 1, : x — x as in definition [6.6.3[ii); let {1} C X(x,x) be the image of this base
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point x : A° — X (x, x). We consider the commutative diagram (notation of §2.1.14) :

X(x,%x) V X(x,x) —— X(xfz))
(%)
X(x, x)2 _— X(x’ x)z
whose left vertical arrow is the natural inclusion, whose right vertical arrow is the triv-

ial fibration of proposition [6.6.10(ii), and where a is the morphism whose restrictions to
X(x,x) X {1, } and to {1,} X X(x, x) are respectively the compositions :

- X(a}) (2) ~ X(a3) )
X(x,x) X {1} 5 X(x,x) — X(x,7) {1} xX(x,x) 5 X(x,x) — X(x,")

associated with the degeneracy maps 07,07 : [2] — [1]; notice that these morphisms
coincide on X (x, x) X {1,} N {1} X X (x, x) = {1,} x {1,} = A°, and on this intersection
they agree with the base point x : A° — X(x,(z)) = X(x, x, x).

We pick a diagonal filler j : X(x,x)? — X (x.(z)) for (#x); by construction, j maps
{15} x{1,} to the base point ofX(x.(z)), so we may regard it as a morphism of A°/Gpd™:

QX x)? = (X (), x).

We compose the latter with the morphism X (¢/3) : (X (xfz)), x) — QY(X, x) defined as in
to get a composition law for loop spaces :

Yxx : Q1 (X, %)% — QY(X, x).

Remark 6.6.14. The (unique) isomorphism w : A° =5 {1,.} can be regarded as an object of
A°/Gpd®, and then the inclusion {1,} — X(x,x) is a morphism ({1, },w) — Q(X, x)
of A°/Gpd®. Since moreover o2 o i, = 1{1] = 62 o ), the composition law yx y fits into
the commutative diagram of A°/Gpd®™ :

QX x) X {1} Q1(X, %)? = {1} x Q1 (X, x)
\ l/YX,x /
p1 p2
Ql(X, x)
where p; and p, are the natural identifications.

6.7. The Serre long exact sequence. Recall that for every co-groupoid X, the category
ho(X) is a groupoid (corollary [2.6.13(i)), hence m(Q (X, x)) = (X, x) is a group, for
every x € X, (notation of definition [6.6.3[ii)), with the composition law inherited from
ho(x, x) via the natural bijection 7, (Q!(X, x)) = ho(x, x) of proposition

6.7.1. Let us introduce the slice category Gpd>® := A°/Gpd®; then we define inductively
Q"™(X,x) = QN (Q"(X,x))  Vn>1,V(X,x) € Ob(Gpd?).
For every n > 1, we then get the n-th homotopy group of X at the point x, defined as

]n,,(x, x) = m(Q"(X, x)). \

Likewise, we shall sometimes use the notation :

[ 70(X, %) = (m0(X), [x]) |
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where [x] € m(X) denotes the class of x : A — X. Let Grp be the category of groups;
clearly, we get well-defined functors :

Q" : GpdY” — Gpd’ 7 : Gpdy — Set, 7n : Gpdy — Grp Vn > 1.

Lemma 6.7.1. (i) The functor my : Gpdy — sSet, preserves all small filtered colimits.
(ii) The functor m, : Gpdy® — Grp preserves all small filtered colimits, for everyn > 1.

Proof. (i): This functor 7 is the restriction of the functor so,7y : sSet, — Set, induced
by 7 : sSet — Set according to §1.4.8L which shows that o, is still a left adjoint, and
therefore preserves all representable colimits of sSet, ([13] Prop.2.49(ii)]).

Next, by proposition [5.1.11fjii), the class Ob(Gpd™) of Kan complexes is stable under
filtered colimits in sSet; in light of [13] Lemma 2.52(i)] and corollary ii), we deduce
that Gpd’ is I-cocomplete for every small filtered category I, and the inclusion functor
Gpdy” — sSet, preserves and reflects I-colimits, for every such I, whence the assertion.

(ii): Likewise, Q" preserves all small filtered colimits, for every n > 1 (remark|[6.6.4(v)),
and moreover the forgetful functor Grp — Set preserves and reflects all small filtered
colimits; combining with (i), we deduce that 7, preserves all small filtered colimits. O

Proposition 6.7.2. The group r,(X, x) is abelian for everyn > 2.

Proof. Clearly, it suffices to show that 7, (X, x) is abelian. To this aim, we consider the

composition law of §6.6.13]
Yxx : QNHX, x) X QY(X, x) — QY(X, x).
Since Q! preserves products (remark iv)), we deduce two morphisms of A°/Gpd®:

Yal(x.x) Q' (yxx)
_

Q% (X, x) ——— Q*(X,x) x Q*(X, x) Q*(X,,x)
and recall that also 7 preserves finite products (proposition [5.4.6(i)). Then, let us set :
aeb :=m(Q(cx))(ab) aob:=m(cqi(xx))(ab) Va,b € m (X, x).

Hence, — o — is just the composition law of the group 7, (X, x), whose neutral element is
the class [x] of the base point x : A — Q?(X, x); whereas —e— is a group homomorphism
(X, x) X m3(X, x) — (X, x), so that :

(aeb)o(ced)=(aoc)e(bod) Va,b,c,d € my (X, x).

Claim 6.7.3. We have a ® [x] = a = [x] ® a for every a € m,(X, x).

Proof : With the notation of let o : A° = {1,} be the unique isomorphismy; it is
easily seen that there exists a unique isomorphism Q!({1,},w) = (A% 1,0), and since
the inclusion of {1} into X(x, x) is a morphism i : ({1}, w) — Q}(X, x) of A°/Gpd®,
we get a morphism Q!(i) : (A% 15) — Q%(X,x) of A°/Gpd®. This means that Q!(i)
preserves the base points, i.e. Q'(i) : A — Q%(X,x) is the base point x of Q?(X,x).
Therefore, by applying the functor Q! to the commutative diagram of remark we
get a commutative diagram :

Q% (X, x)xx xxQ?(X,x)

Q%(X,x) x A° Q%(X, x) x Q?(X, x)

\ \LQI(YX}C)//
P P2

Q%(X, x)

A% x Q1(X, x)

where p; and p, are the natural identifications. The assertion then follows, after applying
the functor 7 to this diagram. <
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We may now compute :

acb=(ae[x])o([x]eb)=(ac[x])e([x]ob)=aeb
boa=([x]eb)o(ae[x])=([x]ca)e(bo[x])=aeb

whence a o b = b o a, as required. O

Proposition 6.7.4. Let f : X — Y be an equivalence of co-groupoids, and x € X,. Then :
(i) f induces an equivalence of co-groupoids Q' (f,x) : Q1(X, x) — QN(Y, f(x)).
(ii) The induced map m,(X,x) — m,(Y, f(x)) is a group isomorphism, for everyn > 1.

Proof. (i): We have the commutative square :

Hom(AL,X) — Aom(ALY)

D : pl l/q
XxX —2  yxy

whose top (resp. bottom) horizontal arrow is an equivalence of co-groupoids, by virtue of
theorem|6.5.8]and lemma|6.4.6{iii) (resp. by virtue of corollary[6.5.3] theorem|[6.5.1[iv) and
example [2.6.2(ii)), and where p and g are the evaluation morphisms as in Hence,
fi and f X f are weak homotopy equivalences (theorem [6.5.1iv)), so D is homotopy
cartesian for the Kan-Quillen model category (lemma @iﬁ)). Moreover, p and q are
Kan fibrations, by corollary [5.1.12[i); hence, f; restricts to a weak homotopy equivalence
p1(x,x) = ¢ ' (f(x), f(x)), by corollary The latter is precisely the morphism
iv)

Ql(f, x), and we conclude with theorem

(ii): In light of (i) (and again, with theorem iV)), an easy induction shows that f
induces a weak homotopy equivalence Q"(X,x) — Q"(Y, f(x)) for every n > 1; then
we conclude with proposition [5.4.6(i). i

6.7.5. Let X be a simplicial set and x € Xj; recall that Ex™ (X) is an co-groupoid (theorem
, and the natural transformation Y : X — Ex™(X) is a weak homotopy equivalence,
that yields a natural identification on objects : Xy = Ex™(X), (lemma i,iii)), so by
a small abuse of notation we may define :

’ﬂn(X,x) = 1, (Ex™ (X), x) Vn EN.‘

By virtue of propositions i) and ii), and theorem iv), the resulting functors

7T : sSet, — Set, and 7Ty : sSeto — Grp Yn>1

extend, up to natural isomorphism, the functors 7, defined in §6.7.1) on the full subcate-

gory Gpd;’ (notation of §2.1.14).

Corollary 6.7.6. Every weak homotopy equivalence f : X — Y of sSet induces group
isomorphisms :

’”n(f’x) : ”n(X’x) = ”n(Y,f(X)) Vn > 1,Vx € X()‘

Proof. This follows immediately from proposition ii), lemma i) and theorem
iv). o
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6.7.7. For every n € N we define the simplicial n-sphere S™, as follows. For n = 0, we set
S° := 9A!, and for n = 1 we let S! as the push-out in the cocartesian diagram :
§'——A
A —¢
(notation of example [2.1.15(i)). Lastly, we define inductively
S"=S'AS"! Vnx>2
Proposition 6.7.8. Let X € Ob(Gpd?’), and n > 1 an integer. Then :
(i) With the notation of §6.7.7, we have a natural isomorphism of sSet, :

| Aom, (8", X) = Q"(X). |

(ii) Also, with the notation of example|2.1.15(i), we have natural isomorphisms of Set, :

7o (Homo((9A™,a), X)) 5 7,(X)  Va € (9A™"),.

(iii) The functor Q™ preserves pointed Kan fibrations between pointed Kan complexes.

Proof. (i): We argue by induction on n > 1. The case where n = 1 follows directly from
lemma|1.6.14] Now, suppose that we have already exhibited such a natural isomorphism
for some n > 1; with proposition [2.1.16(ii), we get induced isomorphisms :

Hom,(S™,X) = Home(S' AS",X) =5 Home(S', Hom,(S", X))
= Homo(S', Q" (X))
= QNQM(X)) = Q"N(X).

(ii): Here, the group m,(X) is naturally a pointed set, with base point given by the
neutral element; also, the stated naturality is meant with respect to morphisms X — X’
of Gpd:’. Now, a simple induction shows that, for every n > 1, the simplicial set S"

underlying S has a unique object 0, : A® — S", so that S" = (5", 0,,). We prove first :

~

Claim 6.7.9. For every n € N, there exists an isomorphism dA™"! = S" in ho(sSet).

Proof : We argue by induction on n : for n = 0, the sought isomorphism is just the identity
of dA!. Next, suppose that the assertion is known for some n € N; recall that the functor
— AS"™1: sSet, — sSet, admits a right adjoint (proposition i)), so it preserves all
representable colimits ([13| Prop.2.49(ii)]); combining with corollary [1.4.6[ii), we deduce
that both commutative squares :

oA —— A1 SOA ST —— AL A ST
() l | | l
AT — (9An+l AO A Sn—l - sgm

are cocartesian in sSet. Moreover, we have natural identifications : S® A S"~1 = §n-1
and A° A S"~1 = A? (proposition [2.1.16{ii)). Futhermore, since the projection A" — A°
is a weak homotopy equivalence for every n € N (lemma [5.1.17(ii)), the same holds for
the induced morphism AP A ST 5 A0 A ST 5 AD Likewise, the inclusion A;’l:} —
A™1 is an anodyne extension (corollary , so it is a weak homotopy equivalence, and
therefore the same holds for the projection A”*! — A°, by the 2-out-of-3 property of

n+l1
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the class of weak homotopy equivalences. Summing up, we get commutative diagrams,
whose vertical arrows are weak homotopy equivalences :

A" <—— 9A" —— A A° sn-t Al A ST
S A |
A° IA" A° A° sn-1 AL,

Recall also that the functor — AS"~! preserves monomorphisms (corollary|5.4.11{i)); hence
all the horizontal arrows of both squares () are monomorphisms, and therefore these two
squares are also homotopy cocartesian (proposition i.b)).

Let fo, - Sl — Ex®(S""!) be the trivial cofibration provided by lemma i);
by inductive assumption we have an isomorphism ¢ : A" = S""1 in ho(sSet), and
since Ex®(S"!) is a Kan complex (theorem , there exists a morphism f : dA" —
Ex®(S""1) in sSet such that y(f) = y(Ben-1) © ¢, where y : sSet — ho(sSet) is the
localization (remark [3.3.7(iv)). Clearly y(f) is an isomorphism of ho(sSet), so f is a weak
homotopy equivalence (theorem[3:3.9(ii)). Hence, we get a commutative diagram of sSet:

Al oA" A°

/|

AO - Exm(sn—l) I AO

o
sn—1

AO Sn—l AO

whose vertical arrows are weak homotopy equivalences. Combining with (xx), we con-
clude that, both with X = dA™*! and with X = S", we get a homotopy cocartesian square:

EXoo(Sn—l) I AO

l

AN X
whence an isomorphism A" =5 S" of ho(sSet). &

Now, we have already remarked that claim[6.7.9implies the existence of a weak homo-
topy equivalence f, : dA™! — Ex®(S") for every n € N. Moreover, recall that Ex®(S")
has a unique object 0, : A° — Ex®(S") (lemma iii)), hence any object a of dA™!
yields a pointed weak homotopy equivalence f;, : (dA™!,a) — (Ex™(S"),0,), and we
have as well the pointed weak homotopy equivalence g, : (5",0,) — (Ex™(S"),0,).
Hence, assertion (ii) follows, by combining with (i) and corollary [5.4.10]

(iii) follows from (i) and corollary ii). O

Lemma 6.7.10. Denote by A'/Gpd®™ the full subcategory of the slice category A'/sSet
whose objects are the pairs X := (X, h : Al — X) with X € Ob(Gpd®); also, fori = 0,1 let
d; : A'/Gpd™ — Gpd2® be the restriction of the functor 81.1! : Al/sSet — sSet, induced by
37 : A" — A (see . Foreveryn > 1 andi = 0,1 there exist a functor

L": A'/Gpd™ — A'/Gpd™  and natural transformations ' : Q" od; = d; o L"

such that w;’(’i is a pointed weak homotopy equivalence for every X € Ob(Al/Gpd™).



00-CATEGORIES AND HOMOTOPICAL ALGEBRA 284

Proof. Let X := (X,h) € Ob(A!/Gpd™), and set x; := hod} : A — X fori = 0,1; we
consider the cartesian squares of sSet :

QYN(X, x;) L Hom(AL, X)

L e
9!

! hh
A° A xx

By applying corollary i) to the projection p : X — A and the monomorphism
i:=(0),0}) : A°UA® — A' we see that (9]*, 9}*) is a Kan fibration, hence the same holds

for q (propositiv)). On the other hand, 9] is a weak homotopy equivalence for
i=0,1 (lemma i)), hence the same holds for j; (corollary/[5.4.1).

e Next, let p; : A X Al — Al be the projection onto the first factor; the morphism
hop : Al x A' — X defines a 1-simplex H : A! — #om(AL, X) of s#om(AL, X)
(see such that H 0 8} : A — #om(A', X) corresponds to the unique morphism
A' — X that factors through x;, i.e. H o 81.1 = 1,, for i = 0,1. On the other hand,
(91*,9,") o H = (h, h), so H yields a 1-simplex of F that we denote again H : A’ — F.

e By theorem and lemma 5.3.8[i), we may then set
L'(X) = (Ex¥(F), fy o H) € Ob(A'/Gpd™)  and  wy'=pFoj; fori=0,1.

Recall that the base point of Q!(X,x;) is 14, so a)}lgi is indeed a morphism of pointed
simplicial sets Q' (X, x;) — d; o L'(X) = (Ex™(F), B’ 0 14,), for i = 0, 1. The functoriality
of L' and the naturality of w," follow by a direct inspection of the constructions : details
left to the reader; this completes the proof for n = 1.

° 'Lastly, for every n > 1 and i = 0,1 we define inductively L™ := L" o L, and we let
w™" be the composition :

n 1i ni
Qn+l odl-:Q”leodi%QnodioL%dioLn,
By theorem iv), proposition i), and the foregoing case n = 1, we see inductively
that w;l(” is a pointed weak homotopy equivalence for every n > 1, for i = 0,1, and for
every X € Ob(A!/Gpd®), so the proof is concluded. O

Proposition 6.7.11. Let X be a simplicial set. Then X is weakly contractible (see definition
[5.1.4(ii)) if and only if the following two conditions hold :

(a) X is connected (see §2.1.11)).

(b) For everyn > 1 there exists x, € Xy such that m,(X, x,,) is a trivial group.

Proof. The conditions are necessary, in view of corollary [6.7.6] proposition i) and
example [2.1.13] For the converse, after replacing X by Ex®(X), we may assume that X is
a Kan complex. We first remark :

Claim 6.7.12. If (a) and (b) hold, 7, (X, x) is a trivial group for all n > 1 and all x € Xj.

Proof : (i): Let x,, € X such that x,(X, x,,) is a trivial group, and x any other object of X.
By assumption, the morphisms x, x, : A° — X are A'-homotopy equivalent (proposition
ii)); since X is a Kan complex, we have then a Al-homotopy h : A! — X from x to
Xn (lemmaii)). We apply lemmato)_( = (X,h),toget L(X) = (LX,H: A' —
LX) € Ob(A!/Gpd™) and pointed weak homotopy equivalences :

Q"(X,x) — (LX,H o 9}) Q"(X,xn) = (LX,H o 3}).
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Since Q" (X, x,) is connected, it follows that the same holds for LX (proposition [5.4.6(i)),
and then also for Q" (X, x), whence the claim. &

By virtue of proposition ii), claim means that for every such n and every
morphism f : dA" — X, there exists x € Xy and a morphism h : Al X A" — X
that is a homotopy from f to the unique morphism g : JA" — X that factors through
x:A® — X. Letalso p : A™ — X be the projection; we then get a morphism (h, x o p) :
A' x 9A™ U {1} x A" — X, which extends to a morphism H : A! x A" — X, since X is a
Kan complex (corollary [5.1.6). The restriction of H to {0} x A" extends f; summing up,
we have shown that for every n > 1, every morphism dA" — X extends to a morphism
A" — X. The same holds also for n = 0, since X is connected (hence, non-empty); since
{0A" — A™|n € N} is a cellular model for sSet, we conclude that the unique morphism
X — A is a trivial fibration, and especially, a weak homotopy equivalence. O

Theorem 6.7.13. Let f : X — Y be a Kan fibration of sSet, and x € X;,. Sety := f(x),
F = f~1(y) (notation ofdeﬁnitioniv)), X = (X,x),Y = (Y,y), F := (F,x), and let

Jj : F — X be the inclusion. Then f induces a natural long exact sequence of pointed sets :

o () 2 0 Y (1) 2 i (F) - o 10(F) = m0(X) — mo(Y)

that we call the Serre long exact sequence attached to f and x. Its restriction to the terms
7n (=) withn > 0 (resp. n > 1) is a long exact sequence of groups (resp. of abelian groups).

Proof. We say that a sequence (f, : (Sn,$n) = (Sn—1,Sn-1) | n € Z) of morphisms of Set,
is exact if f,41(Sn+1) = f; '(sn-1) for every n € Z. To begin with, we remark :

Claim 6.7.14. Consider a homotopy cartesian diagram of sSet :

h

A ——A

| |
B—.B

with B” weakly contractible. Then every a’ € Aj induces an exact sequence of Set, :

¢ mAhd) 2 naa) 2 (B b)) witha:= h() and b = p(a).
Proof : According to example[3.6.2{iii), there exists a cartesian square (E) of sSet consisting
of Kan fibrations between Kan complexes, and a weak equivalence w : (D) — (E) of
sSety. By proposition [5.4.6(i), w identifies (x) with the corresponding sequence induced
by (E) and the image of @’ in (E). Thus, after replacing (D) by (E) we may assume that
(D) is cartesian and that both p and p’ are Kan fibrations between Kan complexes.

Next, let b’ := p’(a’), and denote by A”” c A’ the fibre of p’ over b’; we get another
cartesian and homotopy cartesian square of sSet :
A// ‘] A/
(D) : \l] \LP,
A° L> B’
and moreover, since the unique morphism B’ — A’ is a weak homotopy equivalence, the
same holds for &, so also for the inclusion j (corollary|[5.4.1). The composition of (D) and
(D’) is yet another cartesian and homotopy cartesian square (D”’) whose top horizontal
arrow is ho j : A” — A’ (proposition 1)), and since 7o (j) : mo(A”) — m(A) is
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a bijection (proposition i)), (%) is again naturally identified with the corresponding
sequence induced by (D”"). Thus, we may replace (D) by (D’), and assume that B’ = A°.

In this situation, since g(b’) = b, it is clear that the composition of the maps in (*) is
the constant map with value the class [b] of b. Lastly, let x : A° — A be any object of
A such that the class of p o x : A — B in 75(B) equals the class of b; since B is a Kan
complex, this means that there exists a homotopy h : A — B from p o x to b (lemma
[3.2.11](ii)), whence a commutative square in sSet :

AN —X oA

3}l lp
Al _h>B

and since p is a Kan fibration, this square admits a diagonal filler H : A — A. Set
y:=Hody: A" — A, and notice that p oy = ho 9} = b, so y € A); then the class [y] of y
in 779 (A’) maps to the class of H o 9] = x in 7y (A), and the claim is proved. &

e Now, let us first assume that Y and X are Kan complexes; then the cartesian square:

F—l o

ool

AO_y>Y

is also homotopy cartesian (proposition ii)), and we get the exact sequence :

() 1) 22 ) 2L 70(v).

with claim[6.7.14] Next, we consider the commutative diagram of sSet, :

Q1(X) —— Q(X) — P(X) —= Hom(AL,X)
| "l "Kl lwi*ﬁé*)
AN o F L o x O xxx

| |
AN — T X

whose square subdiagrams are all cartesian (and where p; is the projection on the second
factor). Recall that ##om(A',X) is a Kan complex, (9}*,d;") is a Kan fibration and p, o
(o, aé*) = a;* is a trivial fibration (corollary|5.1.12); hence, all the terms in the diagram
are Kan complexes, and all the squares are homotopy cartesian, again by proposition
ii). Moreover, the unique morphism P(X) — A is a trivial fibration, ie. P(X) is
weakly contractible. We may then apply claim to the two squares whose bottom
sides are given respectively by x and j ; we get a single exact sequence of Set, :

o (ix) P 70 (j
(1) 10 2 70 2D 1y(F) 29 7y (X).
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We have a unique morphism P(f) : P(X) — P(Y) that makes commute the diagram :
P(Y) Hom(AL,Y)
~ =
P(X) —> Hom(A}, X)
Py pél l(a}*,a&*) (01".a1")
(1x.x)
X —>" L XxX

% (1y,y)

YxY

whose inner and outer squares are cartesian. Since both P(X) and P(Y) are weakly con-
tractible, P(f) is clearly a weak homotopy equivalence. Lastly, there exists a unique mor-
phism Q(f) : Q(X) — Q!(Y) that makes commute the diagram :

Q(X) P(X)

~ev -

QN(Y) —=P(Y)

l lpx forx

AO—y>Y

N

whose inner and outer squares are again cartesian. Since py and f o px are Kan fibrations,
it follows that these two squares are also homotopy cartesian (proposition [3.6.5[ii)), and
since P(f) is a weak homotopy equivalence, we conclude that the same holds for Q(f)
(remark ii)). A direct inspection of the construction shows that :

Q(f) eix =Q'(f) : Q'(X) - Q'(Y)
(details left to the reader); since 7oQ(f) is a bijection (proposition i)), we let

9.1 = m0(q) © m(Q()) ™ m(Y) = Q! (Y) — 7mo(E)

and we combine with (F) and (§7) to get the first five terms of the Serre exact sequence.

e For the following terms, we notice that the functor Q" preserves all representable
limits, for every n > 1 (remark iv)), hence Q"(A%) = A for every such n (remark
[1.1.11ii)), and therefore Q" (F) represents the fibre of Q"(f) : Q"(X) — Q"(Y); more-
over, Q"(f) is a pointed Kan fibration (proposition|[6.7.8(iii)), so we may apply the forego-
ing discussion to Q" (f), and this yields inductively the initial segment of the Serre long
exact sequence, up to the term 41 (X).

o Lastly, if f is a Kan fibration between given X,Y € Ob(sSet), we have defined
1, (f) = m(Ex®(f)), and likewise for 7, (j); however, Ex™(f) is still a Kan fibration,
and Ex™ is left exact (lemma [5.3.8]ii)), so we have Ex®(A®) = A° (remark [1.1.11]ii)), and

we get a cartesian diagram of sSet, :

(Ex®(F), x) — (Ex®(X), x)

l lEX‘” ()

A — = (Ex*(Y),y)
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for the natural identification of x € X, and y € Y, with their images in Ex*(X) and
Ex*(Y), under the natural weak homotopy equivalences Y : X — Ex*(X) and respec-
tively g7 : Y — Ex®(Y). Hence, Ex™(F) is the fibre of Ex™(f) over y, and the previous
case applies to Ex™(f), to conclude the construction of the long Serre exact sequence.

The naturality of the sequence with respect to morphisms (X L Y) » (X f—> Y’) of
sSet!!] (for any two Kan fibrations £, f’) is clear from the construction. O

Corollary 6.7.15. A morphism f : X — Y of simplicial sets is a weak homotopy equiva-
lence if and only if the following two conditions hold :

(a) f induces a bijection 7o (f) : mo(X) = mo(Y).
(b) f induces isomorphisms of groups

Tn(f, %) : 1 (X, x) = 1, (Y, f(x)) Vx € Xo,Vn > 1.

Proof. The conditions are necessary, by virtue of corollary [6.7.6 and proposition i).
Conversely, suppose that (a) and (b) hold for f; since 7Y : X — Ex®(X) and f} :
Y — Ex®(Y) are weak homotopy equivalences (lemma 1)), it suffices to check that
the same holds for Ex(f), and since 5 and By’ induce bijections on objects (lemma
[5.3.8]iii)), proposition [5.4.6(i) and corollary easily imply that Ex™(f) stilll fulfills
conditions (a) and (b). Thus, after replacing f by Ex®(f) we may assume that X and Y
are Kan complexes (theorem|[5.3.9).

Now, let us write f = g o h for a weak homotopy equivalence h : X — X’ and a Kan
fibration g : X’ — Y. Since A fulfills condition (a), the same clearly holds for g, and notice
that X’ is a Kan complex, since the same holds for Y. Next, let x” € X/; condition (a) for h
says that there exists x € X; such that x’ is Al-homotopy equivalent to h(x), so we have a

Al-homotopy u : A — X’ from x” to h(x) (lemma|3.2.11{ii)). According to lemmal6.7.10]

we then get for every n > 1 a commutative diagram of Gpd™ :

Q"X x') ———= L(X, u) ~<——— Q*(X’, h(x))
Q”(%X’)l l lﬂ”(g,h(X))
Q"(Y,g(x")) —=L(Y,gou) =—— Q"(Y, f(x))

whose horizontal arrows are weak homotopy equivalences. In light of proposition|5.4.6{i),
we then see that 7,(g,x") : m(X',x") — m(Y,g(x’)) is a group isomorphism if and
only if the same holds for (g, h(x)) : m, (X', h(x)) — m,(f(x)). On the other hand,
7, (f,x) = m,(g, h(x)) o m,(h,x), and 7, (h, x) is an isomorphism, since h is a weak ho-
motopy equivalence; the same holds by assumption for 7, (f, x), so also for z,(g, h(x)).
Summing up, we find that g fulfills again conditions (a) and (b), and clearly it suffices to
check that g is a weak homotopy equivalence; thus, we may replace f by g, and assume
that f is a Kan fibration between Kan complexes.

In this situation, theoremimplies that for every y € Y, the fibre F,, := f'(y) is
a connected Kan complex with trivial homotopy groups in every degree n > 1; by virtue
of proposition is therefore weakly contractible, for every y € Y;. Let us then
apply proposition ii) with S := Y, p := f and q := 1y; we have just shown that f
induces a weak homotopy equivalence fy : p~!(y) — q7'(y) = A” forevery y € Y, so we
get that f is a weak homotopy equivalence. O
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6.8. Fully faithful functors and essentially surjective functors. In this section we
extend to co-categories the usual categorical classes of fully faithful functors and essen-
tially surjective functors, and we use them to give another characterization of equiva-
lences of co-categories. We begin with the following refinement of theorem[6.5.8]:

Theorem 6.8.1. Let f : X — Y be a morphism between co-categories. The following
conditions are equivalent :

(a) f is an equivalence of co-categories.
(b) f induces an equivalence of co-groupoids k(A", f) :k(A", Y) > k(A" X) forn =0,1.

Proof. We have (a)=(b) by theorem[6.5.8} for the converse, in light of the same theorem,
it suffices to show that if (b) holds, then A" lies in the class .% of simplicial sets A such
that k(A, f) is an equivalence of co-groupoids, for every n € N. However, recall that the
inclusion Sp” — A" is an inner anodyne extension for every n > 1 (proposition |[6.6.7](ii)),
so the vertical arrows in the induced commutative diagram :

k(A™,
k(A X) — 2 an vy
l k(Sp™.f) l

k(Sp", X) k(Sp™,Y)

are equivalences of co-groupoids, by theorem[6.5.7] Thus, we are reduced to showing that
Sp" € .Z for every n > 1. We argue by induction on n > 1: since Sp' = A, the assertion
holds for n = 1 by assumption. Next, suppose that the assertion holds for some n > 1; we
have a cocartesian square of sSet :

A’ ——— Al

L

Spn Spn+1

and by assumption A%, A! and Sp” lie in .%; then claim implies that the same holds
for Sp™*!, as required. i

Definition 6.8.2. Let f : X — Y be a functor between co-categories.

(i) We say that f is fully faithful, if it induces equivalences of co-groupoids :
X(x,x") = Y(f(x), f(x)) Vx,x" € X,.

(ii) We say that f is essentially surjective, if for every y € Yy there exists x € X, with an
invertible morphism f(x) — y of Y.

Remark 6.8.3. (i) By corollary|2.6.13(ii), a functor f : X — Y of co-categories is essentially
surjective < the same holds for the induced functor of categories 7(f) : 7(X) — z(Y).

(if) Moreover, propositions and[5.4.6/and theorem|[6.5.1{iv) imply that if f is fully

faithful, the same holds for the functor 7(f).

(iii) In light of example it is also clear that a functor F : o&f — 4 between small
categories is fully faithful (resp. essentially surjective) if and only if the same holds for

the induced functor N(f) : N(&/) — N(Z) of co-categories (see also example[2.6.2[1)).

Example 6.8.4. Let X be an oco-category, and A any subset of Xy; the full subcategory
generated by A is the simplicial subset X4 € X whose n-simplices are all the morphisms
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f + A" — X such that (0),...,f(n) € A, for every n € N. We then get a cartesian
diagram of sSet :

Xy————— =X

N(ho(X)4) —+ N(ho(X))

where j : ho(X)4 — ho(X) denotes the inclusion of the full subcategory ho(X)4 of
the homotopy category ho(X) whose set of objects is A, and where u is the functor of
theorem ii). In view of example ii) and corollary ii), it is easily seen
that u is a conservative isofibration, and then the same holds for v : details left to the
reader. Hence, Xy is an co-category (example [6.1.2{i)); moreover, the induced morphism
Xa(a,b) — X(a,b) is the identity, for every a,b € A, so the inclusion Xy — X is a fully
faithful functor.

Proposition 6.8.5. (i) A functor f : X — Y between co-categories is fully faithful & it
induces a homotopy cartesian square of co-groupoids for the Kan-Quillen model structure :

k(AL
k(AL X) WD kaLY)

<a;*,ag*>l l(a}*,ag*)
k k
k(X) x k(X) —LFD vy x k(y).

(i) Moreover, f is an equivalence of co-categories & f is fully faithful and k(f) :
k(X) — k(Y) is an equivalence of co-groupoids.

Proof. (i): The proof of lemma shows that both vertical arrows of this commutative
square are Kan fibrations; then the assertion follows from corollary

(ii): If f is an equivalence of co-categories, then both k(f) = k(A% f) and k(A% f)
are equivalences of co-groupoids, by theorem|[6.5.8|(see example[6.4.5); then, by corollary
[5.1.13[ii), both horizontal arrows of the commutative square of (i) are weak homotopy
equivalences (theorem [6.5.1]iv)), so this square is homotopy cartesian (lemma [3.6.4{iii)),
and therefore f is fully faithful. Conversely, if k(f) is an equivalence of co-groupoids
and f is fully faithful, then k(AL f) is an equivalence of co-groupoids as well, by (i) and
lemma [3.6.4[iii), and then f is an equivalence of co-categories, by theorem [6.8.1 O

Theorem 6.8.6. A functor between co-categories is an equivalence of co-categories if and
only if it is fully faithful and essentially surjective.

Proof. Let f : X — Y be such a functor. If f is an equivalence of co-categories, then
7(f) : ©(X) — 7(Y) is an equivalence of categories, by theorem[6.5.8] so f is essentially
surjective, by remark[6.8.3(i). Moreover, f is fully faithful by proposition [6.8.5{ii).

Conversely, suppose that f is fully faithful and essentially surjective; by proposition
ii), we are reduced to checking that k(f) : k(X) — k(Y) is an equivalence of co-
groupoids. Now, the induced functor 7(f) is an equivalence of categories, by remark
[6-8.3]1,ii), so it induces an equivalence of categories ko7(f) : kot(X) — kor(Y) (notation
of §1.11.12), whence a bijection my (k) : 9 (ktX) = mo(kY); but by lemmatal[2.3.4/and
krf) is naturally identified with m o k(f) : 7 (kX) = mo(kY).

By corollary we are thus further reduced to showing that f induces pointed
weak homotopy equivalences Q! (kX, x) — QI(kY, f(x)) for every x € k(X)y = Xo. To
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this aim, notice that 7(f) is conservative (since it is an equivalence) so the same holds for

f (remark2.6.14{iii)), so we get the cartesian square of sSet :

k
k(x) —

L k(Y)
b

by virtue of lemma iv). Since the functor Q! preserves all representable limits (re-
mark iv)), we deduce a cartesian square of sSet, :

Q1 (X, x) —ED9 oty £(x)
Q' (X, x) — 2 ony, fx))

whose vertical arrows are pointed Kan fibrations, by example Since by assumption,
f is fully faithful, we know that Q!(f, x) is a pointed weak homotopy equivalence, and
then the same holds for Q!(k(f), x), by virtue of corollary i). O

Corollary 6.8.7. The classes of fully faithful functors, of essentially surjective functors, and
of weak categorical equivalences are stable under small filtered colimits.

Proof. Let I be a small filtered category, X, Yo : I — sSet two functors,and f, : Xe — Vs a
natural transformation; let also X (resp. Y) be the colimit of X, (resp. of Y,), and suppose
first that f; : X; — Y; is an essentially surjective functor of sSet for every i € Ob(I). We
need to check that the colimit f : X — Y of f, is still essentially surjective. Hence, let
y € Yp; since [ is filtered, and since the colimits of sSet are computed termwise, there
exists i € Ob(I) such that y is the image of some object y; of ;. Then by assumption
there exists an object x; of X; with an invertible arrow u : f;(x;) — y;, and we let x be the
image of x; in X; then the image of u in X is an invertible arrow f(x) — y in Y, whence
the assertion.

e Next, suppose that X; and Y; are Kan complexes and f; is a weak homotopy equiv-
alence for every i € Ob(I); then X and Y are Kan complexes (proposition 5.1.11iii)), and
we claim that f is a weak homotopy equivalence. Indeed, notice that 7 (f;) is bijective
for every i € Ob(I) (corollary[6.7.15); since ) preserves all small filtered colimits (lemma
[6.7.1]1)), we get the bijectivity of 7o(f). Next, given an object x of X, we find i € Ob(I)
such that x is the image of some object x; of X;, and we let y; == fi(x;) and y := f(x);
moreover, for every morphism ¢ : i — j of I we set xp := ¢(x;), where ¢(x;) denotes the
image of x; under the morphism X; — X; induced by ¢, and likewise we define y45. We
then get well-defined functors

XY, il sSets (i )0 x5 )) = (Vyy)

and f, induces a natural transformation f; : X, — Y, with f3 := f; : (Xj,x4) — (Y}, yg)
for every ¢ € Ob(i/I). Since the target functor i/I — I is cofinal (example [L.5.9(i)), the
colimits of X, and Y, are respectively (X,x) and (Y,y) (corollaries [1.5.4(i) and [1.4.6{i));

also, i/I is filtered, so 7, (f, x) is the colimit of the induced system of group isomorphisms
~ S 9 ;
Tn(fgs xg) = (X, %) = (Y}, yp) V(i — j) € Ob(i/I),¥n > 1

by virtue of lemma ii). Hence 7, (f, x) is an isomorphism for every object x of X and
every n > 1, and therefore f is a weak homotopy equivalence (corollary|6.7.15).
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o Next, suppose that X; and Y; are co-categories and f; is a fully faithful functor for ev-
ery i € Ob(I); then we already know that X and Y are also two co-categories (proposition
[6.2.3[iv)) and we need to check that f is fully faithful, in this case. Hence, let x, x’ be two
objects of X; arguing as in the foregoing, we may assume that I has an initial object iy and
that x and x” are images of objects x, x; of Xj,. Then, for every i € Ob(I) we let x;, x] be
the images of xy and x; under the morphism X;, — X; induced by the unique morphism
ip — i of I;, by assumption, each f; : X; — Y; induces an equivalence of co-groupoids
Xi(xi, %) = Yi(fi(x:), fi(x])), and by the foregoing and remark[6.6.4[v) it follows that f
induces an equivalence of co-groupoids X (x,x") — Y(f(x), f(x)), as required.

o Lastly, suppose that f; is a weak categorical equivalence for every i € Ob(I); from
theorem[6.8.6| and the foregoing cases, we already see that if moreover X; and Y; are co-
categories for every such i, then f : X — Y is a weak categorical equivalence.

For the general case we observe that, by corollary[2.2.11] we may apply theorem [4.1.]
and corollaryto the subset . := {A} — A" |n > 2,k =1,...,n— 1} of Mor(sSet).
We then get a functor L : sSet — sSet that preserves all small filtered colimits and such
that L(X) € Ob(Cat™) for every X € Ob(sSet); moreover, we get a natural transforma-
tion Ae : 155¢¢ = L such that Ay : X — L(X) is an inner anodyne extension, for every
X € Ob(sSet). In view of theorem [6.5.1iii) and the 2-out-of-3 property of weak categor-
ical equivalences, we deduce that f : X — Y is a weak categorical equivalence if and
only if Lf : LX — LY is an equivalence of co-categories; moreover, Lf is the colimit of
the system of morphisms Lf;, each of which is an equivalence of co-categories, by the
same token. Then the foregoing case allows us to conclude that Lf is an equivalence of
co-categories, so f is a weak categorical equivalence, as stated. O
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