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1 Introduction

Compared to other financial institutions such as hedge funds, banks are regulated; their main capital
ratio called the risk-based capital ratio (RBC) defined as regulatory capital or equity E divided by
the risk-weighted assets RWA, that is, E

RWA , must be greater than a critical threshold around 10% at
all times (see BCBS (2017)). After an adverse systemic shock, as e.g., in mid-September 2008 when
Lehman Brothers failed, some banks may fail to satisfy their capital requirement. To comply with
regulation, the quickest solution consists in selling a portion of their risky assets to decrease their
risk-weighted assets. However, when many banks sell the same asset at the same time, something
called a generalized asset shrinkage (Hanson et al. (2011)), the price of the asset will decrease through
the market mechanism and will further deplete the capital of the bank, that is, this generates a
kind of death spiral (e.g., Brunnermeier and Pedersen (2009), Hanson et al. (2011)). It is usual to
call such a phenomenon a price-mediated contagion problem (e.g., Feinstein (2020)), as opposed to
direct contagion which is related to the network of exposures (e.g., Feinstein (2017), see Glasserman
and Young (2016) for a review). In Braouezec and Wagalath (2019), they consider a game theoretic
price-mediated contagion model in the particular case of one risky asset and show, using Tarski’s
theorem, that at least one Nash equilibrium exists. They however fail to recognize that this setting
is indeed a generalized game. In this paper, we consider a new setting in the spirit of Braouezec
and Wagalath (2019) in the general case of n ≥ 2 assets and prove, under some conditions on the
price impacts, the existence of a Nash equilibrium using Tarski’s theorem. This theorem is widely
applied in financial network models (e.g., Glasserman and Young (2016)) but not in generalized
games (see Dutang (2013) for a review of existence theorems, see also Arrow and Debreu (1954) and
Facchinei et al. (2007)). Our contribution is intimately related to Banerjee and Feinstein (2021) and
Capponi and Weber (2022) (see also Capponi and Larsson (2015)) since the authors, as we do here,
consider a static strategic setting. Banerjee and Feinstein (2021) is the generalization of Braouezec
and Wagalath (2019) to the case of an arbitrary number of assets and banks when each bank is
subject to a risk-based capital requirement. Capponi and Weber (2022) consider a related model
in which banks are subject to a non risk-based capital requirement (leverage ratio). Interestingly,
as opposed to Banerjee and Feinstein (2021) and Braouezec and Wagalath (2019), in Capponi and
Weber (2022) the asset allocation is not exogenous but is endogenous.

The aim of this paper is threefold. First, it is to show that due to both banking regulation
and the market mechanism, a generalized game naturally occurs when one considers the asset sale
problem between banks. Second, it is to show how Tarski’s theorem can be used to prove the
existence of a Nash equilibrium in a generalized game (see Facchinei et al. (2007), Dutang (2013)).
We also characterize the optimal liquidation strategy. Third, it is to generalize our existence result
to ϵ-Nash equilibria.

2 The generalized game

We consider the extension of Braouezec and Wagalath (2019) with a finite number of risky assets.
Let B = {1, ..., p} be the set of banks and S = {1, ..., n} be the set of risky securities. Each
bank i holds a quantity qij of security j (stocks, bonds, index...) for which the price Pj has been
hit with a shock ∆j in percentage at time t = 0, i.e., it is equal to Pj (1−∆j). Right after
the shock ∆ = (∆1, ....,∆n), the total value of the assets of each bank i is equal to Ai(∆) :=∑n

j=1 Pj (1−∆j) qij = Ai −
∑n

j=1 qijPj∆j where
∑n

j=1 qijPj∆j is the loss incurred by the bank.
The balance sheet of bank i is given below where Ai is the total assets before the shock.

Balance-sheet of bank i
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Assets Liabilities
Ai1 − qi1P1∆1 Debt: Di

...
Ain − qinPn∆n Equity: Ei(∆)

Ai −
∑n

j=1 qijPj∆j Ei(∆) +Di

As long as the the bank is solvent, the total value of the assets is equal to the total value of
the liabilities (i.e., Ai(∆) = Ei(∆) +Di) so that the capital can absorb the loss, that is, Ei(∆) =
Ei −

∑n
j=1 qijPj∆j > 0 where Ei is the capital before the shock. The positivity of the capital is

however not enough. Banking regulation imposes a risk-based capital ratio for each bank i to be
greater than θi,min (in practice θi,min ≈ 10%). Let αij ∈ [0, 1] be the regulatory weight of asset j
for bank i.

Assumption 1 For each i ∈ B
αi,1 > αi,2 > ... > αi,n (1)

The regulatory weights can be directly provided by regulators to banks (standardised approach)
so that they are identical for each bank. But they can also be computed by the bank (internal
model approach), which means that two different banks may have different estimates of the weight
of a given asset. However, in the post-subprime crisis regulation called Basel III, banks have much
less freedom than before to make use of internal models. The risk-weighted assets are equal to
RWAi(∆) :=

∑
j αijPj (1−∆j) qij . For the sake of financial interest, we assume that each bank

must react after the shock.

Assumption 2 For each i ∈ B, Ei(∆) > 0 but

θi(∆) :=
Ei(∆)

RWAi(∆)
< θi,min

To restore their capital ratio back above θi,min, banks are assumed to sell a portion xij ∈ [0, 1]
of security j = 1, ..., n. Let

∑
k∈B xkjqkj be the total quantity of security j sold by banks. When

markets are imperfectly competitive, the price is impacted by such sales. For simplicity, we consider
a linear price impact model (e.g., Braouezec and Wagalath (2019)) for which the price of security j
after the asset sale is equal to

P after
j = P before

j ×
(
1−

∑
i∈B xkjqkj

Φj

)
(2)

where Φj >>
∑

k∈B qkj is called the market depth and measures the competitiveness of market j.
The greater Φj , the more competitive the market of security j. At the limit, when Φj is infinite, it
is perfectly competitive. Let xi ∈ [0, 1]n be the liquidation of bank i and x ∈ [0, 1]np be a vector of
liquidation of the set of banks. Let

Li(xi) :=

n∑
j=1

xijqijPj(1−∆j)

be the total value of the assets sold by bank i. It is not difficult to show that the risk-based capital
ratio of bank i is equal to

θi(∆, x) :=
Ei(∆, x)

RWAi(∆, x)
=

Ei −
n∑

j=1

qijPj × (∆j +

∑
k∈B xkjqkj

Φj
(1−∆j))

n∑
j=1

αijqijPj (1−∆j)

(
1−

∑
k∈B xkjqjk

Φj

)
(1− xij)

(3)
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As usual in game theory, let x = (xi, x−i). Since the capital ratio of bank i depends upon xi but
also upon x−i ∈ [0, 1]n(p−1) (what banks k ̸= i are liquidating), the asset sale problem is strategic.
Let

Xi(x−i) = {xi ∈ [0, 1]n, θi(xi, x−i) ≥ θi,min}

be the solvency constraint of a given bank i. At time t = 0, each bank i chooses its liquidation strat-
egy xi := (xij)j∈S ∈ [0, 1]n and prices after liquidation are disclosed, i.e., P after = (P after

1 , ..., P after
n )

at time t = 1.

Assumption 3 Each bank i ∈ B solves the following constrained optimization problem.

min
xi

Li(xi) s.t. xi ∈ Xi(x−i) (4)

The objective function is similar to Braouezec and Wagalath (2019) in that it only depends
upon xi, the decision of bank i. Interaction between banks thus takes place through the solvency
constraint but not through the objective function. Let Φ := (Φ1, ...,Φn) and let

K∆,Φ = K := {x ∈ [0, 1]np : ∀i ∈ B, xi ∈ Xi(x−i)} ⊂ [0, 1]np

be the set of admissible strategies of the generalized game. We now recall the definition of a Nash
equilibrium for our game.

Definition 1 The profile of strategies x∗ ∈ K is a Nash equilibrium of the asset sale game if, for
each i ∈ B and each xi ∈ [0, 1]n such that xi ∈ Xi(x

∗
−i), it holds true that Li(x

∗
i , x

∗
−i) ≤ Li(xi, x

∗
−i).

3 Perfectly competitive markets

When markets are perfectly competitive, 1
Φj

= 0 for all j. From equation (3), the risk-based capital
ratio of bank i reduces to

θi(∆, xi) =
Ei,t −

∑n
j=1 qijPj∆j∑n

j=1 αijqijPj(1−∆j)(1− xij)
(5)

so that the decision problem is not anymore strategic; the capital ratio only depends upon xi.

Lemma 1 The risk-based capital ratio θi(∆, xi) is an increasing function of xij for each i ∈ B and
each j ∈ S.

Proof. Since the numerator of θi(∆, xi) is invariant with respect to xij while the denominator
decreases with xij , the result follows. □

The next proposition provides a characterization of the optimal liquidation strategy. Note that
the optimization problem reduces to a linear programming problem.

Proposition 1 (Characterization of the optimal strategy) Under assumptions 1, 2, 3, when
markets are perfectly competitive, there is a unique optimal liquidation vector (x∗i,1, ..., x

∗
i,2, ..., x

∗
i,n) ∈

[0, 1]n\{(1, 1, ..., 1)} of the form (1, ..., 1, x∗i,h, 0, ...0) where x∗i,h ∈ (0, 1) for some integer h ∈ {1, ..., n}
is such that

x∗i,h =
1

αi,hqi,hPh(1−∆h)

 n∑
j=h+1

αijqijPj(1−∆j)−
1

θi,min
(Ei,t −

n∑
j=1

qijPj∆j)
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Proof. The denominator of (5) tends to zero when xij tends to one for all j so that the capital
ratio tends to infinity. Since θi,min < ∞, a solution exists. For x∗i = (x∗i1, ..., x

∗
in), the constraint is

clearly binding; θi,t+1(∆, xi) = θi,min, that is,

Ei,t −
∑n

j=1 qijPj∆j∑n
j=1 αijqijPj(1−∆j)(1− x∗ij)

= θi,min (6)

which implies that:

n∑
j=1

αijqijPj(1−∆j)x
∗
ij =

n∑
j=1

αijqijPj(1−∆j)−
1

θi,min
(Ei,t −

n∑
j=1

qijPj∆j)

Letting Xij = qijPj(1 − ∆j)x
∗
ij , and Ci =

∑n
j=1 αijqijPj(1 − ∆j) − 1

θi,min
(Ei,t −

∑n
j=1 qijPj∆j),

equation (6) is equivalent to:
n∑

j=1

αijXij = Ci (7)

Each bank i seeks to minimize
∑n

j=1Xij . Therefore, the unique solution consists in selling asset 1
with the highest risk weight αi1, then asset 2 to asset h ≤ n until the capital ratio is restored. □

Proposition 1 says that it is optimal for each bank i to first sell the asset with the highest
regulatory weight. If this is not enough to restore the capital ratio, it is now optimal to sell 100% of
asset 1 and a portion of risky asset 2. If this is not enough, it is optimal to sell 100% of asset 1 and
2 and a portion of risky asset 3 and so on and so forth. The optimal liquidation strategy follows
the order of the weights.

4 Imperfectly competitive markets: existence result with Tarski’s
theorem

4.1 Preliminary results and main assumptions

We shall prove a few preliminary results.

Assumption 4
For each i ∈ B and each x ∈ [0, 1]np, Ei(∆, x) > 0 (8)

Lemma 2 Under assumption 4, regardless of x−i ∈ [0, 1]n(p−1), Xi(x−i) ̸= ∅.

Proof. From assumption 4, Ei(∆, 1) > 0 where 1 is the np-dimensional vector. Let Ei(∆, 1) := ξi >
0 and note that Ei(∆, xi, x−i) ≥ ξi regardless of x−i ∈ [0, 1]n(p−1). Since for each i, RWAi(xi) tends
to zero when xi tend to the n-dimensional vector 1, limxi→1

ξi
RWAi(xi)

→ ∞. Since θi(∆, xi, x−i) ≥
ξi

RWAi(xi)
regardless of x−i ∈ [0, 1]n(p−1) and since θi,min < ∞, there exists xi ∈ [0, 1]n\{1, ..., 1} such

that θi(∆, xi, x−i) = θi,min, hence Xi(x−i) ̸= ∅. □

For notations simplicity, we may denote θi(∆, xi, x−i) by θi(.).

Lemma 3 Given xi, θi(.) is a decreasing function of xkj for all k ̸= i and all j = 1, ..., n. In
particular, θi(∆, xi, x−i) is a decreasing function of x−i.
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Proof. Let N(x) := Ei(∆, x) be the numerator of the risk-based capital ratio and D(x) be its
denominator (see equation (3)). Consider ∂θi

∂xkj
when k ̸= i:

∂θi(.)

∂xkj
=

qijPjqkj(1−∆j)

ΦjD(x)2
[αij(1− xij)N(x)−D(x)]

which has same sign as αij(1−xij)N(x)−D(x). We notice that αij(1−xij) ≤ 1, so if N(x) < D(x),
we have that ∂θi

∂xkj
< 0. Since θi,min << 1, it is always true that N(x) < D(x). Therefore, if

x−i ≤ y−i, we have that θi(xi, x−i) ≥ θi(xi, y−i). □

Lemma 4 When the market depths Φ are large enough, θi(.) is an increasing function of xij for
each j = 1, 2, ..., n.

Proof. Consider ∂θi
∂xkj

when k = i:

∂θi
∂xij

=
qijPj(1−∆j)

D(x)2

[
αijN(x)[1 +

qij
Φj

(1− xij)−
∑

k∈B xkjqkj

Φj
]− qij

Φj
D(x)

]
(9)

which has same sign as αijN(x)[1+
qij
Φj

(1−xij)−
∑

k∈B xkjqkj
Φj

]− qij
Φj

D(x). From equation (8), N(x) > 0

for all x. From equation (9), it thus follows that when market depths are high enough, ∂θi(.)
∂xij

> 0.
□

Corollary 1 There exists a critical smallest market depths vector Φ′ := (Φ′
1, ...,Φ

′
n) such that,

regardless of x−i ∈ [0, 1]n(p−1), for each i ∈ B and each j ∈ S, θi(.) is an increasing function of
xij ∈ [0, 1].

Assumption 5 The market depths satisfy Φ ≥ Φ′.

4.2 Main result

Before proving the main result, we show that when the market depths are high enough, the optimal
liquidation strategy is identical to the one found in Proposition 1.

Lemma 5 There exists a critical market depths vector Φ0 := (Φ0
1, ...,Φ

0
n) such that, for all Φ ≥ Φ0,

the optimal liquidation strategy of each bank i ∈ B is identical to the one in Proposition 1.

Proof. See the appendix.

Assumption 6 The market depths satisfy Φ ≥ Φ0.

Lemma 6 Under assumptions 1 to 6, BRi(x−i) is an non-decreasing function of x−i.

Proof. Let x ∈ [0, 1]np and y ∈ [0, 1]np such that x ≤ y so that x−i ≤ y−i. When Φ ≥ Φ0,
the best responses are given as in lemma 5. Let BRi(x−i) = (1, ..., 1, xih, 0, ...0) and BRi(y−i) =
(1, ..., 1, yil, 0, ..., 0). Since θi(BRi(x−i), x−i) = θi(BRi(y−i), y−i) = θi,min, using the properties of
the best responses, θi((1, ..., 1, xih, 0, ..., 0), x−i) = θi((1, ..., 1, yil, 0, ..., 0), y−i) = θi,min. Since x−i ≤
y−i, from Lemma 3 we have that θi,min = θi((1, ..., 1, xih, 0, ...0), x−i) ≥ θi((1, ..., 1, xih, 0, ...0), y−i)
and therefore θi,min = θi((1, ..., 1, yil, 0, ..., 0), y−i) ≥ θi((1, ..., 1, xih, 0, ..., 0), y−i). From Lemma
4, when Φ ≥ Φ′, since given z−i, θi(zi, z−i) is an increasing function of zij for all j ∈ [1, .., n],
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we necessarily have that l ≥ h and in the case that l = h we have that yil ≥ xil. Therefore
BRi(x−i) = (1, ..., 1, xih, 0, ..., 0) ≤ (1, ..., 1, yil, 0, ..., 0) = BRi(y−i), which concludes the proof □

If the market depths are not high enough, then, there may exist x ≤ y such that for instance
given x−i, αi1(1 − δ1(Φ1, x)) > αi2(1 − δ2(Φ2, x)) for all xi while given y−i, αi2(1 − δ2(Φ

′
2, y)) >

αi1(1− δ1(Φ
′
1, y)) for all yi. In such a case, the best responses are no more increasing.

Tarski’s theorem (Tarski (1955), see also Vives (1990)). Let (L,≥) be a complete lattice and f a
non decreasing function from L to L and F the set of fixed points of f . Then, F is non-empty and
(F ,≥) is a complete lattice. In particular, supx F and infx F belong to F .

Consider the lattice ([0, 1]np,≤) with ≤ defined by the natural order x ≤ y ⇐⇒ xi ≤ yi for each
i = 1, ..., p where xi ≤ yi component-wise. Note that [0, 1]np is the product of compact intervals
and thus is a complete lattice. Consider a function f from ([0, 1]np,≤) to ([0, 1]np,≤). We shall now
show that the function f

f(x) = (BR1(x−1), ..., BRp(x−p))

is non-decreasing from ([0, 1]np,≤) to ([0, 1]np,≤) and apply Tarski’s theorem to f .

Proposition 2 Under assumptions 1 to 6, there exists a smallest Nash equilibrium x∗ = (x∗1, ..., x
∗
p) ∈

([0, 1]n\{(1, 1, ..., 1)})p to the generalized game defined in (4).

Proof of proposition 2
Let us consider x ∈ [0, 1]np and y ∈ [0, 1]np such that x ≤ y. Therefore, x−i ≤ y−i so

for all zi ∈ [0, 1]n we have that θi(zi, x−i) ≥ θi(zi, y−i). This implies that Xi(y−i) = {zi ∈
[0, 1]n; θi(zi, y−i) ≥ θi,min} ⊂ Xi(x−i) = {zi ∈ [0, 1]n; θi(zi, x−i) ≥ θi,min}, and by assumption
these two sets are not empty. Therefore, from Lemma 6, BRi(x−i) ≤ BRi(y−i) for all i. Hence, f
is a non-decreasing function from ([0, 1]np,≤) to ([0, 1]np,≤), and therefore it satisfies the assump-
tions of Tarski’s theorem. As a consequence, the set of fixed points of f is not empty, so that there
exists at least one Nash equilibrium. If there are multiple Nash equilibria, since they are ordered,
by Tarski’s theorem, infx F belongs to F , the set of Nash equilibrium and x∗ = infx F is the
smallest Nash equilibrium. At equilibrium, each bank i is solvent so that it must be the case that
x∗i ∈ [0, 1]n\{(1, 1, ..., 1)} □

To the best of our knowledge, this is the first application of Tarski’s theorem to a generalized
game.

In Banerjee and Feinstein (2021), while they do not explicitly consider a generalized game, they
offer a general extension of Braouezec and Wagalath (2019) in which each bank can go bankrupt.
The strategy set of each bank i thus is extended and given by Xi(x−i) = {xi ∈ [0, 1]n, θi(xi, x−i) ≥
θi,min} ∪ {(1, .., 1)}. Using Berge maximum theorem, they prove in Proposition 3.7 the existence of
(at least) one Nash equilibrium but they do not characterize the optimal liquidation rule.

5 Epsilon-Nash equilibria

We now consider epsilon-Nash equilibria, similar in the spirit to Marinacci (1997). Let us rename
and denote by x̄ the optimal liquidation solution in case of no price impact as studied in Section
3, that is, a vector of the form x̄ = (1, ..., 1, xi,h, 0, ..., 0). In this section, we prove the existence
of epsilon-Nash equilibria and characterize a set of epsilon-Nash equilibria as a neighborhood of x̄.
The interest of these epsilon-Nash equilibria here is twofold: 1) Given ϵ > 0 there always exists
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some market depths such that epsilon-Nash equilibria exist. 2) We can compute and describe a set
of epsilon Nash equilibria, for any ϵ > 0.

Definition 2 x∗ = (x∗1, ..., x
∗
p) is an ϵ-Nash Equilibrium if:

∀i ∈ {1, ..., p}, ∀xi ∈ [0, 1]n s.t. θi,t+1(xi, x
∗
−i) ≥ θi,min : Li(x

∗
i , x

∗
−i)− ϵ ≤ Li(xi, x

∗
−i)

Definition 3 Given the market depths Φ1, ..., Φn, we denote the set of admissible strategies of the
strategic problem K = KΦ1,...,Φn.

Proposition 3 Under assumptions 1 to 3: ∀ϵ > 0, there exist a neighborhood V (x̄, ϵ) of x̄ and
Φ0
1, ...,Φ

0
n > 0 such that ∀Φ1 ≥ Φ0

1,..., ∀Φn ≥ Φ0
n, V (x̄, ϵ) ∩ KΦ1,...,Φn is not empty and all its

elements are ϵ-Nash equilibria.

Proof of Proposition 3
We define ϵ̃ij =

ϵ
n×qijPj(1−∆j)

and ϵ̃ = (ϵ̃1, ..., ϵ̃p).
∀i, θi,t+1(x̄,Φ = ∞) = θi,min, therefore θi,t+1(x̄ + ϵ̃,Φ = ∞) > θi,min, therefore since θi,t+1 is

continuous in Φ, there exist Φ0 = (Φ0
1, ...,Φ

0
n) such that ∀Φ ≥ Φ0, ∀i, θi,t+1(x̄+ ϵ̃,Φ) > θi,min. We

consider such a Φ0 and as from now we assume that Φ ≥ Φ0.
We notice that Li(x̄+ ϵ̃) =

∑n
j=0(x̄ij+ ϵ̃ij)qijPj(1−∆j) =

∑n
j=0 x̄ijqijPj(1−∆j)+ϵ = Li(x̄)+ϵ.

We also know that ∀i ∈ {1, ..., p}, ∀xi ∈ [0, 1]n s.t. θi,t+1(xi, x̄−i + ϵ̃−i) ≥ θi,min : Li(xi, x̄−i +
ϵ̃−i) ≥ Li(x̄). Indeed, Li(x̄) is the infimum cost for bank i.

Therefore, ∀i ∈ {1, ..., p}, ∀xi ∈ [0, 1]n s.t. θi,t+1(xi, x̄−i + ϵ̃−i) ≥ θi,min : Li(xi, x̄−i + ϵ̃−i) ≥
Li(x̄+ ϵ̃)− ϵ, and therefore x̄+ ϵ̃ is an ϵ-Nash equilibrium.

Consider V (x̄, ϵ) =
∏

]x̄ij , x̄ij + ϵij ].
∀Φ ≥ Φ0, V (x̄, ϵ) ∩KΦ1,...,Φn is not empty and for a ∈ V (x̄, ϵ) ∩KΦ1,...,Φn , fi(a) ≤ Li(x̄) + ϵ.
Also ∀xi ∈ [0, 1]n s.t. θi,t+1(xi, a−i) ≥ θi,min : Li(xi, a−i) ≥ Li(x̄), which implies that

Li(xi, a−i) ≥ Li(a)− ϵ and therefore a is an ϵ-Nash equilibrium.
As a consequence, all elements of V (x̄, ϵ) ∩KΦ1,...,Φn are ϵ-Nash equilibria. □
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6 Technical proofs

Proof of Lemma 5 Given x−i, the best response (xi,1, ..., xi,n) is such that the constraint is
binding, that is,

Ei −
∑n

j=1 qijPj(∆j +
∑

k∈B xkjqkj
Φj

(1−∆j))∑n
j=1 αijqijPj (1−∆j)

(
1−

∑
k∈B xkjqjk

Φj

)
(1− xij)

= θi,min (10)

We shall now show that, by suitably relabeling the quantities, equation (10) can be written, up
to functions in 1

Φj
, as (7). Define ϵj(Φj , x) :=

∑
k∈B xkjqkj

Φj
. From eq (10), we have

n∑
j=1

αijqijPj(1−∆j)(1− ϵj(Φj , x))xij =

n∑
j=1

αijqijPj(1−∆j)(1− ϵj(Φj , x))−
Ei −

∑n
j=1 qijPj(∆j + ϵ(Φj , x))(1−∆j))

θi,min

Let Xij = qijPj(1 − ∆j)xij and Ci =
∑n

j=1 αijqijPj(1 − ∆j) − 1
θi,min

(Ei,t −
∑n

j=1 qijPj∆j).
Equation (10) is therefore equivalent to:

n∑
j=1

αij(1− ϵj(Φj , x))Xij = Ci −
n∑

j=1

αijqijPj(1−∆j)ϵj(Φj , x) +

∑n
j=1 qijPjϵj(Φj , x)(1−∆j))

θi,min

Define ηj(Φj , x−i) = ϵj(Φj , x)− xijqij
Φj

. Equation (10) is equivalent to:∑n
j=1 αij(1−ϵj(Φj , x))Xij−

∑n
j=1 αijqijPj(1−∆j)

xijqij
Φj

+

∑n
j=1 qijPj

xijqij
Φj

(1−∆j))

θi,min
= Ci−

∑n
j=1 αijqijPj(1−

∆j)ηj(Φj , x−i) +
∑n

j=1 qijPjηj(Φj ,x−i)(1−∆j))

θi,min

which is in turn equivalent to∑n
j=1 αij(1 − ϵj(Φj , x))Xij −

∑n
j=1

αijqij
Φj

Xij +
∑n

j=1Xij
qij

Φjθi,min
= Ci −

∑n
j=1 αijqijPj(1 −

∆j)ηj(Φj , x−i) +
∑n

j=1 qijPjηj(Φj ,x−i)(1−∆j))

θi,min

To get a more compact expression, let

η(Φ, x−i) = −
n∑

j=1

αijqijPj(1−∆j)ηj(Φj , x−i) +

∑n
j=1 qijPjηj(Φj , x−i)(1−∆j))

θi,min

It thus follows that (10) is equivalent to:

n∑
j=1

αij(1− ϵj(Φj , x)−
αijqij
Φj

+
qij

Φjθi,min
)Xij = Ci + η(Φ, x−i)

Letting now δj(Φj , x) = ϵj(Φj , x)− αijqij
Φj

+
qij

Φjθi,min
, equation (10) is finally equivalent to:

n∑
j=1

αij(1− δj(Φj , x))Xij = Ci + η(Φ, x−i)
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an expression, up to functions in 1
Φj

, identical to equation (7) and note that δj(Φj , x) ≤ δj(Φj , 1)

for all x ∈ [0, 1]np.

By assumption, αi1 > αi2 > ... > αin, i.e., for all j ∈ [2, .., n], αij

αij−1
< 1 so that there exists

δ0ij > 0 such that αij

αij−1
= 1−δ0ij . We know that for all i and all j, limΦj=∞ δij(Φj , 1) = 0. There thus

exists Φi,0
j such that for all Φj ≥ Φi,0

j , δij(Φj , 1) < δ0ij . As a result, for all Φi ≥ Φi,0 = (Φi,0
1 , ..,Φi,0

n )

and all x ∈ [0, 1]np, we have

αi1(1− δi1(Φ
i
1, x)) > αi2(1− δi2(Φ

i
2, x)) > ... > αin(1− δin(Φ

i
n, x))

Since bank i is seeking to minimize
∑n

j=1Xij we are back in Proposition 1, that is, it is optimal
to sell assets by decreasing risk weights. For this result to be true for all banks, it suffices to take
Φ0
j = supiΦ

i,0
j , and Φ ≥ Φ0 = (Φ0

1, ..,Φ
0
n). □

7 Appendix: calculation of Φ0 and Φ′

In this section, we propose to establish the values of Φ0 and Φ′.

• Φ0 :
δ0ij is defined such that αij

αij−1
= 1− δ0ij .

We solve the inequation δij(Φj , 1) < δ0ij :

δij(Φj , 1) < δ0ij ⇐⇒ ϵj(Φj , 1)− αijqij
Φj

+
qij

Φjθi,min
< δ0ij

⇐⇒
∑

k∈B qkj
Φj

− αijqij
Φj

+
qij

Φjθi,min
< 1− αij

αij−1

We can thus take: Φi,0
j =

∑
k∈B qkj−αijqij+

qij
θi,min

1−
αij

αij−1

And Φ0
j = supiΦ

i,0
j = supi

∑
k∈B qkj−αijqij+

qij
θi,min

1−
αij

αij−1

for all j, which gives us Φ0.

• Φ
′

To find Φ
′ , we need to solve:

αijN(x)[1 +
qij
Φj

(1− xij)−
∑

k∈B xkjqkj
Φj

]− qij
Φj

D(x) > 0, for all i and j.

We note that :
αijN(x)[1 +

qij
Φj

(1− xij)−
∑

k∈B xkjqkj
Φj

]− qij
Φj

D(x) > αijN(1)[1−
∑

k∈B qkj
Φj

]− qij
Φj

D(0)

We solve the inequation:

αijN(1)[1−
∑

k∈B qkj
Φj

]− qij
Φj

D(0) > 0 ⇐⇒ Φj >
qijD(0)+

∑
k∈B qkj

αijN(1)

⇐⇒ Φj >
qij

∑n
j=1 αijqijPj(1−∆j)+

∑
k∈B qkj

αij [Ei−
∑n

j=1 qijPj×(∆j+

∑
k∈B qkj
Φj

(1−∆j))]

We can thus take:

Φ
′
j = supi

qij
∑n

j=1 αijqijPj(1−∆j)+
∑

k∈B qkj

αij [Ei−
∑n

j=1 qijPj×(∆j+

∑
k∈B qkj
Φj

(1−∆j))]
for all j, which gives us Φ

′ .

Note importantly that the two market depth Φ0 and Φ
′ only depend upon the input of the

model. It would be easy to consider numerical examples within a two assets two banks framework.
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