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1 Introduction

Game theory has proven to be a usefool tool in many �elds among which Economics, Political

sciences, International relations and Social sciences (to name a few) since its introduction by

[Morgenstern and Von Neumann, 1953], [Nash, 1950] and [Nash, 1951]. It appears to be the natu-

ral mathematical framework one would use to quantify, understand and predict the outcome of a

particular economic or social interaction between a set of agents who have a strategical connection

with one another. Remarkably, it has also proven to be a fruitful theory to create new ideas and

new ways of thinking in collective actions problems: it has permitted the creation of new concepts,

take for instance the Nash equilibria or Pareto e�ciency, that give a new grasp and point of view in,

for instance, Economics or Social sciences (and more broadly in every �eld it can be applied). It has

frequently given birth to new paradigms, new theories that have profoundly marked these di�erent

disciplines. In other words, Game theory has not only a power of description of the reality in eco-

nomics, social and political science, but it has also been the tool of creation of new economic, social

and political realities. We refer to [Fudenberg and Tirole, 1991], [Brams, 2011], [Schelling, 1980],

[Moulin, 1986] for classical textbooks. Modestly, it is the aim of our paper to give a new grasp and

propose new concepts about optimal regulation in game theory, that enable the creation of new

economic and social realities.

In this article, we consider the point of view of a regulator, for instance a State or a Public

policymaker, which has the ability to enforce a law and decisions on a group of N agents interacting

with one another in a game theory framework: the goal of the regulator is to maximize a social

welfare criterion (or minimize a social cost) for the community of agents. Indeed, it is often the

case that when agents act individually in maximizing their own payo� function (or minimizing their

own cost) without the help/action of a regulator, the consequences of isolated individual actions

can lead to devastating consequences for the whole community of agents.

The Financial crisis of 2007-2008 is a striking example of a situation where the absence of

regulation and coordination between banks, and particularly Global Systemically Important Banks

(G-SIBs), on the global scale (on certain issues at least) has caused dramatic consequences on the

whole �nancial system and world economies. Such absence of initial regulation has partly been

resolved with the Basel Accords issued by the Basel Committee on Banking Supervision (BCBS).

The global environmental crisis we are currently facing and the di�culty in �nding a regulation

that satis�es all the countries and compatible with the economic challenges and ambitions of every

country is another striking problem.

More generally, it is interesting to consider the point of view of a regulator in a framework where

N agents are interacting with one another in a game theory framework and to wonder what is the

best decision from a regulator point of view. A prerequisite to answer this question is: what is the

good criterion of social welfare from the regulatory point of view? And once this criterion has been

de�ned, is there an optimal regulation that maximizes this criterion?

There has been an abundant literature on Optimal Regulation in the past decades, the books

[La�ont and Tirole, 1993], [Train et al., 1991], [La�ont and Martimort, 2009] and the article [La�ont, 1994]
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give a good overview of the research that has been done on this topic. We take a new roadmap

in our article in the sense that we consider directly a regulator on a game theory framework: for

a given game, we de�ne one or several regulation criteria and we study existence of an optimal

regulation for each criterion.

In our framework, the regulator is seeking to maximize a social welfare criterion (or minimize a

social cost criterion), the variable is the regulation itself and we are looking for the possible optimal

regulation that maximizes (respectively minimizes) this given criterion of social welfare (respectively

social cost). Various examples of such criteria are given in the article.

It appears that generalized games seem to be the best tool to model the action of a regulator on

a system of agents interacting with one another. Generalized games, also called Generalized Nash

Equilibrium Problems (GNEPs for short), have �rst been introduced by [Arrow and Debreu, 1954],

and have gained an increasing attention in operational research over the past decades. In their well-

known survey, [Facchinei and Kanzow, 2007] give a global overview of generalized games and remind

interesting examples of applications of such games in environment policy or in telecommunication.

In the operations research literature more generally, there has been an increasing number of papers

on generalized games in recent years o�ering new methods, existence results or numerical algo-

rithms to �nd a Nash equilibrium (see for instance [Facchinei et al., 2009], [Aussel and Dutta, 2008],

[Fischer et al., 2014]). However, to the best of our knowledge, there has been no paper try-

ing to apply generalized games to optimal regulation. And only a few papers so far are trying

to apply generalized games in Economics (but see [Breton et al., 2006], [Elfoutayeni et al., 2012],

[Le Cadre et al., 2020], and see [Kulkarni, 2017] for a short review).

The purpose of our article is to draw and propose an optimal regulation road map for any game

theory model where the action of a regulator is relevant: �rst we consider the di�erent regulation

criteria of social welfare that are relevant from the regulator point of view, then we study the

existence of an optimal regulation for each regulation criterion. Such a research roadmap gives

answers to many questions on the regulatory point of view, among which: is there existence of

at least an optimal regulation for each regulation criterion? Is there uniqueness of the optimal

regulation? Are some regulation criteria equivalent: are there examples where a criterion A and a

criterion B have the same optimal regulation? When can we say that it is equivalent to optimize a

regulation criterion A and a regulation criterion B? It is precisely the aim of this paper to answer

these di�erent questions.

For instance, we will study the example of a �nancial regulator trying to implement a regulation

(enforcing some laws and taking some decisions) to maintain the stability of the �nancial system

during a �nancial crisis: what are the good criteria from a �nancial regulation perspective? Minimize

the losses in the �nancial systems? Minimize the number of banks and companies going bankrupt?

Minimize the number of jobs destroyed by the crisis? Can we prove that these minimization problems

are equivalent and strongly correlated? Or are they not correlated at all?

Such a complete study gives a global overview of the questions a regulator can wonder and the

levers of action at its disposal to complete its social goal and mission: it is the role of the regulator

and policymaker to decide what is the good criterion of social welfare for the collective well-being of
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a community of economic agents, and therefore what is the optimal regulation. Our inquiry gives a

radiography of the di�erent mechanisms of action between the regulator and the agents, what is the

best policy to enforce for the social welfare of a community of agents and what are the consequences

of the decision of a regulator on this community.

The paper is structured as follows: in Section 2 we remind a few de�nitions and properties about

generalized games with individual and shared constraints. In Section 3 we introduce the de�nitions

of a regulation, regulation criterion and optimal regulation on a game. We study the particular case

of existence of optimal vector(s). We also introduce the de�nitions of a surregulation, subregulation

and correlated regulation criteria. We give a few examples and properties. In Section 4 we study in

detail a model of strategic �re-sales and price-mediated contagion in the banking system inspired

from [Braouezec and Wagalath, 2019]: we consider di�erent regulation criteria and we look for the

existence of possible optimal regulations. Section 5 concludes the paper.

2 Generalized games with individual or shared constraints

2.1 Generalized games: notations and de�nitions

We take the following classical notations throughout the paper, which are similar to the ones in

cf article Braouezec-Kiani: we consider a Game with N players, we denote J = {1, .., N} the

set of players, each player i ∈ J controlling the variable xi ∈ Ei, with Ei a subset of Rni ; xi is

called the strategy or decision or state of agent i and Ei is called the strategy set. We denote by

x ∈ E = E1 × . . .× EN the vector formed by all these decision variables:

x :=


x1

...

xN

 ∈ E (1)

which has dimension n :=
∑N

i=1 ni and such that E ⊂ Rn. We denote by x−i ∈ E−i the vector
formed by all the players' decision variables except those of player i. To emphasize the i-th player's

variables within x, we sometimes write (xi, x−i) ∈ Ei × E−i instead of x ∈ E.
Each player has an objective function θi : Rn → R that depends on both her own variable xi as

well as on the variables x−i of all other players. This mapping θi is often called the utility function

or payo� function of player i when the agents are seeking to maximize θi(xi, x−i), or it can also

be called the loss function or cost function of player i when the agents are seeking to minimize

θi(xi, x−i), depending on the particular application in which the Game arises. Throughout the

article, if not mentioned otherwise, we will say that θi is a payo� function and that each agent i,

given the other players' strategies x−i, is seeking a strategy xi to maximize θi(xi, x−i) = θi(x).

A classical Game, or Nash Equilibrium Problem (NEP for short), is the given of the N maxi-

mization problems, for i ∈ J = {1, .., N}:
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maximizexi θi(xi, x−i) subject to xi ∈ Ei (2)

and it is de�ned in a unique way by the 3-uple (J,E, (θi)i∈J).

A ganeralized game, or General Nash Equilibrium Problem (GNEP for short), is a Game where

each player i ∈ J needs additionally to satisfy a constraint given by a constraint function Xi :

E−i → P (Ei) (where P (Ei) denotes the set of all subsets of Ei), such that each player's strategy

xi must belong to the set Xi(x−i) ⊂ Ei that depends on the rival players' strategies and that we

call the feasible set or strategy space of player i. For instance, as we will see and develop in the

section, the constraint functions Xi, i ∈ J can be given by a regulator (in economics, political

science, international relations, social science...).

If x ∈ E is such that xi ∈ Xi(x−i) for a given agent i we will say that the strategy vector x is

admissible for agent i or the constraint is satis�ed on the individual level for i. And if xi ∈ Xi(x−i)

for all i ∈ J we will say that the strategy vector x is admissible or the constraint is satis�ed on

the global level. If there is i ∈ J such that xi /∈ Xi(x−i), then we will say that the strategy vector

x is not admissible for agent i or the constraint is not satis�ed on the individual level for i, and

therefore we will also say that the strategy vector x is not admissible.

Each agent i, given the other players' strategies x−i, is seeking a strategy xi to minimize

θi(xi, x−i) = θi(x) and respecting the constraint xi ∈ Xi(x−i). A generalized game, or GNEP,

is therefore the given of the N constrained maximization problems, for i ∈ J = {1, .., N}:

maximizexi θi(xi, x−i) subject to xi ∈ Xi(x−i) (3)

and it is de�ned in a unique way by the 4-uple (J,E, (θi)i∈J , (Xi)i∈J).

Remark 1 We also notice that a classical game (J,E, (θi)i∈J) is a particular case of generalized

game with:

Xi : E−i → P (Ei)

x−i 7→ Ei

Actually, to emphasize the fact that each player has a given exogenous individual constraint

function Xi, we often �nd in the literature (see for instance [Fischer et al., 2014] or Braouezec-

Kiani) the denomination generalized game with individual constraints to name such generalized

games (J,E, (θi)i∈J , (Xi)i∈J).

De�nition 1 The 4-uplet (J,E, (θi)i∈J , (Xi)i∈J) is called a generalized game with individual con-

straints.
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We can also clearly de�ne the set of admissible strategies of a generalized game.

De�nition 2 For a given generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J), let

K be the subset of E de�ned as follows.

K = {x ∈ E, ∀i ∈ J, xi ∈ Xi(x−i)} (4)

K is called the set of admissible strategies of the generalized game with individual constraints.

The set K represents the set of all the strategies x for which the GNEP with individual con-

straints is de�ned for all agents.

Now we can introduce the de�nition of a Nash equilibrium for a generalized game with individual

constraints. A generalized Nash equilibrium is a pro�le of strategies x
∗ = (x∗1, ..., x

∗
N ) ∈ K such

that no agent i wants to unilaterally deviate from her part of the equilibrium pro�le x
∗. However,

for x
∗ ∈ E to be an equilibrium pro�le, the constraint of each agent i ∈ J should be satis�ed. The

following de�nition makes clear this constraint.

De�nition 3 The pro�le of strategies x
∗ ∈ E is a Nash equilibrium for the generalized game with

individual constraints (J,E, (θi)i∈J , (Xi)i∈J) if for each i ∈ J and each xi ∈ Ei such that xi ∈
Xi(x

∗
−i), it holds true that θi(x

∗
i , x
∗
−i) ≥ θi(xi, x∗−i).

We notice that this de�nition is well consistent with the de�nition of a Nash equilibrium in a

classical game.

The next subsection gives a few reminders about generalized games with shared constraints and

their properties.

2.2 Generalized games with shared constraints

Generalized games with shared constraints were �rst initiated by Rosen in his famous article

[Rosen, 1965] (though the author does not mention explicitly the terminology game with shared

constraint in his paper) where he proves quite remarkably an existence result about Nash equilibria

for concave n-person games not only on cartesian products of strategy spaces E =
∏N

i=1Ei, but

also on any convex, closed and bounded subset X ⊂ E (that we call shared constraint), with the

assumption that each player's payo� function is continuous and concave in xi. Such a game is called

generalized game with shared constraint in the sense that all the agents share the same constraint.

The vector of strategies x := (x1, ..., xn) must always remain in the shared constraint set X: given

xi, each agent i is required to pick a strategy xi ∈ Ei such that x := (xi, xi) ∈ X. Generalized

games with shared constraints are a particularly interesting subclass of generalized games as there

are many existence results and methods already known for them.

The following de�nition of generalized game with shared constraint can be found in [Fischer et al., 2014].
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De�nition 4 Let (J,E, (θi)i∈J , (Xi)i∈J) be a generalized game with individual constraints. We

say that (J,E, (θi)i∈J , (Xi)i∈J) is a generalized game with shared constraint if there exists a subset

X ⊂ E such that for all i ∈ J , Xi(x−i) = {xi, (xi, x−i) ∈ X}. We will denote this generalized game

with shared constraint with the 4-uplet (J,E, (θi)i∈J , X)

Now we can introduce the corresponding de�nition of a Nash equilibrium for a generalized game

with shared constraint.

De�nition 5 x∗ = (x∗1, .., x
∗
N ) ∈ X is a Nash equilibrium for the generalized game with shared

constraint (J,E, (θi)i∈J , X) if and only if:

∀i ∈ J, ∀xi ∈ Ei such that (xi, x
∗
−i) ∈ X, θi(x∗i , x∗−i) ≥ θi(xi, x∗−i)

In the literature, it is quite common to assume that the setX is equal toX = {x ∈ E | G(x) ≤ 0}
where G : Rn → R is a componentwise convex function called the shared (or common) constraint

function. This hypothesis is quite convenient for the study of the generalized game, as for instance

in [Facchinei and Kanzow, 2010] or [Fischer et al., 2014]. We can also �nd some articles with hy-

potheses of the form Xi(x−i) = {xi, gi(xi, x−i) ≤ 0, G(xi, x−i) ≤ 0} where gi : Rn → R represents

individual constraints and G : Rn → R the shared ones, as for instance in [Fischer et al., 2014].

We can also remind the result from [Rosen, 1965]:

Theorem 1 ([Rosen, 1965]) Let (J,E, (θi)i∈J , X) be a game with an exogenous shared constraint

where θi is a payo� function. If the set X is convex, closed and bounded and if each player's payo�

function θi(xi, x−i), i ∈ J is continuous and concave in xi, then, the generalized game has at least

one Nash equilibrium.

We also note the fact that generalized games with shared constraints are quite convenient be-

cause under certain natural hypotheses on X and the cost functions θi, i ∈ J , it is very often

possible to use a �xed-point theorem (Kakutani, Schauder, Tarski,...) to prove the existence of

Nash equilibria.

2.3 Endogenous shared constraint generated from individual constraints

In this subsection, we remind di�erent concepts and results that were introduced in Braouezec-

Kiani, and that will be of great help in our inquiry about Optimal Regulations. Given a generalized

game with exogenous individual constraints, we will introduce the de�nition of the generalized game

with endogenous shared constraint generated from these individual constraints.

Recall that for the pro�le x to be a Nash equilibrium, a necessary but not su�cient condition

is that x ∈ K, given by equation 4. An endogenous shared constraint generated from individual

constraint is the situation where it is required from each agent that, given what the other agents

are choosing, i.e., x−i, agent i should pick a strategy xi such that the pro�le x = (xi, x−i) lies in K
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(which makes economic sense). Given x−i, let Ki(x−i) be the set of strategies of agent i de�ned as

follows

Ki(x−i) = {xi ∈ Xi(x−i) : x ∈ K} (5)

Now we can de�ne a generalized game with endogenous shared constraint, that is, a generalized

game in which the shared constraint is generated from the individual constraints.

De�nition 6 The 4-uplet (J,E, (θi)i∈J , (Ki)i∈J) is called a generalized game with shared constraint

generated from the game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

And we can therefore give the de�nition of a Nash equilibrium in a game with endogenous shared

constraint (J,E, (θi)i∈J , (Ki)i∈J):

De�nition 7 The pro�le of strategies x
∗ ∈ E is a Nash equilibrium for the generalized game with

endogenous shared constraint (J,E, (θi)i∈J , (Ki)i∈J) if for each i ∈ J and each xi ∈ Ei such that

xi ∈ Ki(x
∗
−i), it holds true that θi(x

∗
i , x
∗
−i) ≥ θi(xi, x∗−i).

In the article, to emphasize that the set K is the shared constraint, we will denote this game

with endogenous shared constraints (J,E, (θi)i∈J , (Ki)i∈J) as (J,E, (θi)i∈J ,K).

In a game in which the shared constraint is generated from the individual ones, the set of

strategies of each agent i in the game with endogenous shared constraint may be reduced compared

with the game with individual constraints, that is, for x−i, the following inclusion holds

Ki(x−i) ⊆ Xi(x−i) ∀i ∈ J (6)

In general, the inclusion may be strict for some agents, that is, as long as Xi(x−i) is not empty,

Ki(x−i) ( Xi(x−i).

The interesting feature of games with shared constraints is that these games may possess ad-

ditional equilibrium situations. It may thus be the case that while there is no Nash equilibrium in

the game with individual constraints, a Nash equilibrium exists in the game with shared constraint.

This is the main idea of the following result.

Proposition 1 The set of Nash equilibria of a game with individual constraints is included in the set

of the Nash equilibria of the game with shared constraint generated from the individual constraints,

that is, if x
∗ = (x∗1, ..., x

N
N ) ∈ E is a Nash equilibrium for the game with individual constraints,

it is also a Nash equilibrium for its generated game with shared constraint but the converse is not

true. In other words, the set of Nash equilibria of (J,E, (θi)i∈J , (Xi)i∈J) is included in the set of

the Nash equilibria of the generated game with endogenous shared constraint (J,E, (θi)i∈J ,K), and

this inclusion is not an equality a priori.

Proof. See Braouezec-Kiani.

This is an interesting result. This means that when looking for the Nash equilibria of a general-

ized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J), we can �rst have a look at the Nash
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equilibria of its generated game with shared constraint (J,E, (θi)i∈J ,K), which is a much easier thing

to study in general since, as we explained before, we already have many existence results and meth-

ods on the generalized games with shared constraint. The Nash equilibria of (J,E, (θi)i∈J , (Xi)i∈J),

if they exist, will be among the Nash equilibria of (J,E, (θi)i∈J ,K). On the other hand, if

(J,E, (θi)i∈J ,K) does not have any Nash equilibrium, this means that (J,E, (θi)i∈J , (Xi)i∈J) does

not have any Nash equilibrium either.

This has important consequences in regulatory economics as well, as we will see. This means

that if a regulator is seeking to get a Nash equilibrium for the collective well-being of a group of

agents interacting with one another, this is more likely to happen if the regulation constraint is

shared than if the regulation constraint is individual.

This is why we will introduce in Section 3 the concept of regulation with shared constraint

generated from a regulation with individual constraints: we consider a situation where economic

agents i ∈ J , interacting with one another are trying to maximize a payo� θi and a regulator

is requiring that each agent satis�es an individual constraint Xi, which we call a regulation with

individual constraints. In other words, the regulator asks that xi ∈ Xi(x−i) for all i. This is clearly a

generalized game with individual constraints. The regulator can decide to turn to the regulation with

shared constraint generated from this regulation if it asks that for all i, (xi, x−i) ∈ K, with K the

shared constraint set generated from the previous generalized game with individual constraints. We

can give the following illustration: let's assume thatXi is of the formXi(x−i) = {xi, gi(xi, x−i) ≤ 0}
where gi : Rn → R. The shared constraint set generated from these individual constraints is

K = {x = (x1, .., x
N ),


g1(x) ≤ 0

...

gN (x) ≤ 0

} ⊂ E (7)

and K gives us a regulation with shared constraint; an agent i can move from a state xi to a

state yi only if it sure that for all economic agents i′, gi′(yi, x−i) ≤ 0 is satis�ed.

2.4 An existence result: Shared constraint, Nash equilibrium and maximization

of the global payo� (or minimization of the global cost)

We now present an interesting existence result for generalized games with shared constraint that

will be useful in Section 3 and 4.

Proposition 2 Let (J,E, (θi)i∈J , X) be a generalized game with shared constraint. We assume that

X is a compact set and we also assume that ∀i ∈ J, θi is continuous and of the form θi(x) =

θi(xi). Then this generalized game with shared constraint has at least one Nash equilibrium x∗ that

maximizes the global payo�
∑

i∈J θi(x).
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Proof. See the appendix.

Actually the Nash equilibria x∗ for this generalized game coincide exactly with the local maxima

of the function F (x).

Obviously, this result is also true if the θi, i ∈ J are cost functions instead of payo� functions:

in this case, there will be a Nash equilibrium that minimizes the global cost and the Nash equilibria

x∗ for such a generalized game coincide exactly with the local minima of the function F (x).

We have 2 results at the same time: if (J,E, (θi)i∈J , X) is satisfying the assumptions of Proposi-

tion 2, there is existence of at least one Nash equilibrium, and moreover there is a Nash equilibirum

that maximizes the global payo� for all the agents.

This is again an interesting result from a regulatory point of view in economics: in a setting

where economic agents are trying to maximize (or minimize) a continuous payo� function (respec-

tively cost function) depending on their only actions and are interacting with one another through

a shared constraint required by a regulator with a compact constraint set X then, this strategic

interaction has a Nash equilibrium that maximizes the global payo� (respectively minimizes the

total cost). This means as well that if the same problem is with individual constraints from the

regulator and if the shared constraint set generated from the individual constraints is compact, we

have a Nash equilibrium that maximizes the global payo� (respectively minimizes the total cost)

for the regulation with shared constraint, which is a remarkable fact.

Actually this result is as good as what we would get with a social planner in a planned economy.

Assume that instead of having N agents/players (each of which maximizing their payo� function

individually, in a non-cooperative way) we would have a social planner controlling the N variables

(x1, ..., xN ) and trying to maximize the global payo�
∑

i∈J θi(x). This social planner would exactly

get a Nash equilibrium x∗ as best solution and in any case could not get a better con�guration than

such a x∗.

We will see an application of this result in Section 3 with Optimal Regulations and an example

in Section 4 in bank regulation.

3 Generalized Games and Optimal Regulation

3.1 Regulation and Regulation criterion

Now that we have introduced generalized games with individual and shared constraints, and re-

minded a few properties about them, we can turn to the central development of our article, that

is de�ning what is an optimal regulation in a game theory framework. First, we need to de�ne

what is a regulation on a set of N agents interacting with one another in a game theory framework,

and this concept intuitively boils down to giving a N − uple of individual constraints (Xi)i∈J : each

agent i has to satisfy the constraint Xi given by a regulator. For instance, see Braouezec-Kiani,
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in an environment policy problem Xi can be a threshold of emission of greenhouse gaz given by a

regulator, or in a public good problem Xi can give the minimum price to pay for agent i ta have

the public good built. In Section 4, we will detail an example in bank regulation where Xi is a

threshold given to banks by the regulator via the Basel agreements. The de�nition below makes

clear what a regulation in game theory is.

De�nition 8 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

(Xi)i∈J is called a regulation on the Game (J,E, (θi)i∈J) and the agents i ∈ J .

Then, we need to de�ne what is a criterion of well-being - that we will call regulation criterion -

for the community of agents that the regulator is seeking to maximize (or minimize) by choosing the

right regulation(s). Intuitively, and staying as much general as we can in de�ning our concepts, a

regulation criterion is a function of well-being that the regulator is seeking to maximize (or minimize)

for the collective well-being of a group agents. For instance, in a public good problem it can be

the minimum price to pay for the community to get the good, or the most comfortable good for

the community of agents, etc. In environmental policy, the goal of the regulator is to minimize the

emission of greenhouse gases. In Section 4, we will study an example in bank regulation where the

regulator is either seeking to minimize the �nancial losses in the system, or minimize the number of

banks going bankrupt. We will also see that in a period of crisis and instability the regulator can

be seeking to get a Nash equilibrium as fast as possible which guarantees the end of instability, and

therefore will prefer a regulation giving a large number of Nash equilibria that enable a diminution

of volatilty and instability (a system of agents in a Nash equilibrium con�guration does not move

over time). The de�nition below makes clear the general concept of regulation criterion.

De�nition 9 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

We call regulation criterion (or regulation criterion of evaluation) on the Game (J,E, (θi)i∈J) any

application R of the form:

R : (F(E−i, P (Ei)))
N → (F, ≤)

(Xi)i∈J 7→ R((Xi)i∈J)

with (F,≤) a partially ordered set.

Note that if R1 and R2 are two criteria on the Game (J,E, (θi)i∈J) with values in (F,≤) and g

is an application from (F,≤)2 to a partially ordered set (G,≤), then g(R1, R2) is also a criterion on

the Game (J,E, (θi)i∈J). More generally, if R1, R2,..,Rp are p criteria on the Game (J,E, (θi)i∈J)

with values in (F,≤) and g is an application from (F,≤)p to a partially ordered set (G,≤), then

g(R1, R2, .., Rp) is also a criterion on the Game (J,E, (θi)i∈J).

We will study 4 examples of regulation criteria in this subsection, two criteria that we will call

stability-type criteria (in the sense that the goal of the regulator is to maximize stability) and two

payo�-type criteria (in the sense that the goal of the regulator is to maximize the global payo�).

We start with our 2 examples of stability-type criteria.
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Example 1 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

(Xi)i∈J is a regulation on the Game (J,E, (θi)i∈J).

We can de�ne the regulation criterion:

Nash : (F (E−i,P(Ei)))
N → (E, ⊂)

(Xi)i∈J 7→ Nash((Xi)i∈J)

with Nash((Xi)i∈J) the set of Nash equilibria of the generalized game (J,E, (θi)i∈J , (Xi)i∈J).

This regulation criterion is called the Nash-set stability criterion. If (Xi)i∈J and (Yi)i∈J are two

regulations such that the set of Nash equilibria of the generalized game (J,E, (θi)i∈J , (Yi)i∈J) contains

the set of Nash equilibria of the generalized game (J,E, (θi)i∈J , (Xi)i∈J), then Nash((Xi)i∈J) ⊂
Nash((Yi)i∈J). We note that (E,⊂) is not a totally ordered set.

Example 2 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J)

and we assume that E is a �nite set. (Xi)i∈J is a regulation on the Game (J,E, (θi)i∈J) and since

E is a �nite set, the generalized game (J,E, (θi)i∈J , (Xi)i∈J) has a �nite number of Nash equilibria.

We can de�ne the regulation criterion:

Stab : (F (E−i,P(Ei)))
N → (N, ≤)

(Xi)i∈J 7→ number of Nash equilibria of (J ,E,(θi)i∈J , (Xi)i∈J)

This regulation criterion is called the stability criterion. The more Nash equilibria given by the

regulation (Xi)i∈J on the Game (J,E, (θi)i∈J), the higher R((Xi)i∈J), and the higher the stability cri-

terion: if (Xi)i∈J and (Yi)i∈J are two regulations such that the generalized game (J,E, (θi)i∈J , (Yi)i∈J)

has more Nash equilibria than the generalized game (J,E, (θi)i∈J , (Xi)i∈J), then Stab((Yi)i∈J) ≥
Stab((Xi)i∈J).

Proposition 3 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J)

and the generalized game with shared constraint (J,E, (θi)i∈J , (Ki)i∈J) generated from (J,E, (θi)i∈J , (Xi)i∈J).

Then, Nash((Xi)i∈J) ⊂ Nash((Ki)i∈J).

Moreover, if E is �nite set, Stab((Xi)i∈J) ≤ Stab((Ki)i∈J).

Proof of Proposition 3

This is a direct consequence of Proposition 1. �

We now study our two examples of payo�-type regulation criteria.

Example 3 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

(Xi)i∈J is a regulation on the Game (J,E, (θi)i∈J). In this example we assume that θi is a payo�

function (and not a cost function).

We can de�ne the regulation criterion:

12



T : (F (E−i,P(Ei)))
N → (R,≤)

(Xi)i∈J 7→ supx∈K((Xi)i∈J )

∑N
i=1 θi(x)

with K((Xi)i∈J) the set of admissible strategies of the generalized game (J,E, (θi)i∈J , (Xi)i∈J).

T ((Xi)i∈J) is the supremum of the total payo�s among all the admissible strategies of the generalized

game (J,E, (θi)i∈J , (Xi)i∈J). If this supremum is higher for the regulation (Yi)i∈J than for the

regulation (Xi)i∈J , then T ((Yi)i∈J) ≥ T ((Xi)i∈J). Of course, if there exists x such that T ((Xi)i∈J) =∑N
i=1 θi(x) then such a vector x is Pareto Optimal.

Indeed, if θi is a cost function instead of a payo� function, we can de�ne this regulation criterion

in a symmetric way T (Xi)i∈J) = infx∈K((Xi)i∈J )

∑N
i=1 θi(x), and here is the goal of a regulator is

to minimize a global cost instead of maximizing a global payo�.

Proposition 4 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J)

and the generalized game with shared constraint (J,E, (θi)i∈J , (Ki)i∈J) generated from (J,E, (θi)i∈J , (Xi)i∈J).

Then, T ((Xi)i∈J) = T ((Ki)i∈J).

Proof of Proposition 4

By de�nition, K((Xi)i∈J) = K((Ki)i∈J) and therefore T ((Xi)i∈J) = T ((Ki)i∈J). �

Example 4 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

(Xi)i∈J is a regulation on the Game (J,E, (θi)i∈J). In this example we assume that θi is a payo�

function (and not a cost function).

We can de�ne the regulation criterion:

TN : (F (E−i,P(Ei)))
N → (R,≤)

(Xi)i∈J 7→ supx∗∈Nash((Xi)i∈J )

∑N
i=1 θi(x

∗)

with Nash((Xi)i∈J) the set of Nash equilibria of the generalized game (J,E, (θi)i∈J , (Xi)i∈J).

TN((Xi)i∈J) is the supremum of the total payo�s among all the Nash equilibria of the gener-

alized game (J,E, (θi)i∈J , (Xi)i∈J). If this supremum is higher for the regulation (Yi)i∈J than for

the regulation (Xi)i∈J , then TN((Yi)i∈J) ≥ TN((Xi)i∈J). Of course, if there exists x∗ such that

TN((Xi)i∈J) =
∑N

i=1 θi(x
∗) then such a vector x∗ is Pareto Optimal.

Same remark as for Example 3, if θi is a cost function instead of a payo� function, we can de�ne

this regulation criterion in a symmetric way TN(Xi)i∈J) = infx∗∈Nash((Xi)i∈J )

∑N
i=1 θi(x

∗), and

here is the goal of a regulator is to minimize a global cost instead of maximizing a global payo�.

Proposition 5 Given a generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J), we

have that T ((Xi)i∈J) ≥ TN((Xi)i∈J)

Proof of Proposition 5

supx∈K((Xi)i∈J )

∑N
i=1 θi(x) ≥ supx∗∈Nash((Xi)i∈J )

∑N
i=1 θi(x

∗) sinceNash((Xi)i∈J) ⊂ K((Xi)i∈J).

�

13



Proposition 6 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J)

and the generalized game with shared constraint (J,E, (θi)i∈J , (Ki)i∈J) generated from (J,E, (θi)i∈J , (Xi)i∈J).

Then, TN((Xi)i∈J) ≤ TN((Ki)i∈J).

Proof of Proposition 6

From Proposition 3 we have thatNash((Xi)i∈J) ⊂ Nash((Ki)i∈J) and therefore TN((Xi)i∈J) ≤
TN((Ki)i∈J). �

Proposition 7 Consider a generalized game with shared constraint (J,E, (θi)i∈J , X) satisfying the

assumptions of Proposition 2, that is X is a compact set, and that ∀i ∈ J, θi is continuous and of

the form θi(x) = θi(xi) . For such a game, we have that T (X) = TN(X).

Proof of Proposition 7

See Proof of Proposition 2. �

3.2 Optimal Regulation

Now that we have de�ned what a regulation is and what a regulation criterion is, we can easily

de�ne a concept of optimal regulation, and study existence of one or several optimal regulation(s)

for any game. In this subsection, we assume that the regulator is seeking to maximize a regulation

criterion R, function of collective well-being (it is symmetric if we assume that the regulator is

seeking to minimize a regulation criterion).

First, we explain what we mean when we say that a regulation (Yi)i∈J is better than a regulation

(Xi)i∈J for the criterion R, which is quite intuitive.

De�nition 10 We say that a regulation (Yi)i∈J is better than a regulation (Xi)i∈J for the criterion

R on the Game (J,E, (θi)i∈J) if R((Yi)i∈J) ≥ R((Xi)i∈J). We denote (Yi)i∈J ≥ (Xi)i∈J for the

criterion R.

Of course, the de�nition of "better"' is symmetric if the goal of the regulator is to minimize

a social cost rather than maximize a function of social welfare. If the goal of the regulator is to

minimize a social cost, we say that a regulation (Yi)i∈J is better than a regulation (Xi)i∈J for the

criterion R on the Game (J,E, (θi)i∈J) if R((Yi)i∈J) ≤ R((Xi)i∈J).

The corollary below gives us a direct example of a regulation better than another regulation

not only for one regulation criterion but actually for four regulation criteria: we proved in the

previous subsection that for our 4 examples of regulation criteria, Nash, Stab, T and TN , we

always have that the regulation with endogenous shared constraint is better than the one with

individual constraints.

Corollary 1 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J)

and the generalized game with shared constraint (J,E, (θi)i∈J , (Ki)i∈J) generated from (J,E, (θi)i∈J , (Xi)i∈J).

Then, from Proposition 3, 4 and 6, (Ki)i∈J is a better regulation than (Xi)i∈J for the criteria Nash,

Stab (if E is a �nite set), T and TN .
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This corollary is an interesting result in the sense that if a regulator is seeking to maximize one

of the 4 criteria Nash, Stab, T and TN , this regulator should always choose the regulation with

endogenous shared constraint rather than the regulation with individual constraints: the regulation

with endogenous shared constraint is better than the regulation with individual constraints for these

four criteria.

More generally, given a regulation criterion, a natural process of thinking is to compare reg-

ulations between one another (when such a comparison is possible) and study if there is one (or

several) regulation which is better than the others. Now that we have de�ned what is a regulation,

a regulation criterion, and what we mean when we say that a regulation is better than another for a

given criterion, it consequently makes sense to de�ne what is an optimal regulation in the following

way.

De�nition 11 • We say that a regulation (Yi)i∈J is optimal (in the strong sense) for the

criterion R on the Game (J,E, (θi)i∈J) if for all regulation (Xi)i∈J we have R((Yi)i∈J) ≥
R((Xi)i∈J).

• We say that a regulation (Yi)i∈J is optimal in the weak sense for the criterion R on the Game

(J,E, (θi)i∈J) if there is no (Xi)i∈J such that R((Xi)i∈J) > R((Yi)i∈J).

Note that an optimal regulation in the strong sense is also an optimal regulation in the weak

sense (but the converse is not true). And note that both notions coincide if (F,≤) is a totally

ordered set. Also note that such optimal regulations may fail to exist. We study a few cases of

existence of optimal regulations below.

Theorem 2 If E is a �nite set:

• Stab, T and TN and always have at least one optimal regulation (in the strong sense).

• Nash always have at least one optimal regulation in the weak sense.

Proof. See the appendix.

We can also state the more general result, which is an extension of Theorem 2:

Theorem 3 If E is a �nite set:

• For any criterion R, there exists at least one optimal solution in the weak sense.

• For any criterion R such that (F,≤) is a totally ordered set, there exists an optimal regulation

(in the strong sense).

Proof. See the appendix.

We add the following additional result, which concerns the criteria where the set F is �nite:
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Theorem 4 If F is a �nite set:

• For any criterion R, there exists at least one optimal solution in the weak sense.

• For any criterion R such that (F,≤) is a totally ordered set, there exists an optimal regulation

(in the strong sense).

Proof. See the appendix.

Remark 2 Interestingly, if E or F can be approximated by a �nite set (which is usually the case

when modeling real-world problems) the above property is true and we have existence of optimal

regulations for the above criteria. A good extension (that we will not develop in this paper) would

be to study the limit of sequences of games with �nite strategy set to see if we can draw an existence

result asymptotically when considering the limit of such a sequence of games.

We give 2 illustrations below.

Example 5 We consider a set of N agents driving their car on a highway road with one lane. There

is a speed limitation set from the regulator to minimize the number of car accidents, and we assume

that this limit is 130km/h. We assume their are two types of drivers on this road, a �rst category

of N − 1 drivers who like to drive with a speed xi contained between 80km/h and 120km/h with a

preference at 100km/h and a second category of 1 driver who can only drive at a speed xi between

50km/h and 90km/h with a preference at 70km/h. The actual pace on the road is equal to mini∈Jxi.

We assume that the cost function for category 1 of drivers is equal to |100km/h −mini∈Jxi| and
the cost function for the category 2 of drivers is equal to |70km/h −mini∈Jxi|. This game has an

in�nity of Nash equilibria of the form (x1, ..., xN−1, 70).

The total cost is equal to
∑N−1

i=1 |100km/h − mini∈Jxi| + |70km/h − mini∈Jxi| and the goal

of the regulator is to minimize it at the Nash equlibria, so the regulation criterion here is TN . If

the regulator asks that their should be a speed minimum of 80km/h on this road then we have a

better regulation than the regulation with only the speed limit equal to 130km/h. And the optimal

regulation (in the strong sense) for this criterion is that the regulator chooses a minimum speed equal

to 90km/h.

Example 6 We consider a beach which is a portion [0, w] × [0, l] ⊂ R, with w the width of the

beach in meters and l its length in meters. We have N agents and each agent can choose its loca-

tion on the beach (xi, yi) ∈ Ei = [0, w] × [0, l]. We assume that there is an ice cream shop located

at (a, b) ∈ [0, w] × [0, l] on the beach. Each agent sitting somewhere on the beach is seeking to

minimize its distance to the ice cream shop d((xi, yi), (a, b)) and is seeking to maximize its dis-

tance to other agents on the beach d((xi, yi), (xj , yj)), j 6= i. So the cost for an agent i is equal

d((xi, yi), (a, b))−
∑

j 6=i d((xi, yi), (xj , yj)) So the total cost from a regulatory point of view is equal

to
∑N

i=1 d((xi, yi), (a, b))−
∑N

i=1

∑
j 6=i d((xi, yi), (xj , yj)). A good way to simplify the problem is to
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say that the coordinates of the agents xi and yi should be integers ∈ N. From Theorem 2, we have

existence of an optimal regulation for the criteria T and TN , and it is is possible to �nd these

optimal regulations with a simple computation given the data of the model.

Actually, we will see in the next subsections that it often makes sense to say that a regulation

is optimal among a subset of regulations. It is convenient and fruitful to proceed considering if a

regulation is optimal among either its surregulations or subregulations.

3.3 Optimal vector

In the particular case where the optimal regulation for a criterion meets with the choice of a vector

x, we say that the game has an optimal vector for this given criterion.

De�nition 12 If there exists an Optimal regulation (Xi)i∈J for the criterion R on the Game

(J,E, (θi)i∈J) which is of the form

Xi : E−i → P (Ei)

x−i 7→ {xi}

with x = (x1, ..., x1) ∈ E, then we say that x is an optimal vector (either in the strong sense or

in the weak sense).

Or equivalently, if there exists a vector of strategies x such that the Optimal regulation (Xi)i∈J

for the criterion R on the Game (J,E, (θi)i∈J) satis�es R((Xi)i∈J) = R(x), we say that x is an

Optimal vector (either in the strong sense or in the weak sense).

In other words, it is optimal from a regulatory point of view to act as a social planner and choose

the vector of strategies x to maximize the total payo� (or minimize the total cost) for the agents.

Theorem 5 If E or F are �nite sets, T and TN always have at least one optimal vector (in the

strong sense).

Proof. See the appendix.

For instance, a direct consequence of this Theorem is that for our Example 6 with the beach

and ice cream shop, the criteria T and TN always have at least one optimal vector.

3.4 Product regulation, Surregulations and Subregulations

We now introduce 2 new intuitive concepts that are meaningful and essential in the development

of our theory. First, the product of two regulations: given two di�erent regulations (Xi)i∈J and

(Wi)i∈J on a game, it makes sense to consider how the mixing of these two di�erent regulations

a�ect economic agents. Such a product regulation means that for all agent i, xi should satisfy both

the regulation (Xi)i∈J and the regulation (Wi)i∈J . Take for instance a citizen or company located
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in a country with di�erent states: this citizen or company lives with both the laws of the country

and those of the local state, this is a product regulation. The following de�nition makes this concept

clear.

De�nition 13 We consider two regulations (Xi)i∈J and (Wi)i∈J on the Game (J,E, (θi)i∈J). We

de�ne the product regulation of (Xi)i∈J and (Wi)i∈J , and we denote (Xi,Wi)i∈J the regulation on

the Game (J,E, (θi)i∈J) such that each agent i ∈ J is required to satisfy xi ∈ Xi(x−i) ∩Wi(x−i).

This intuitive concept of product regulation is meaningful and essential, as well as the concepts

of surregulation and subregulation that we develop below. It is common to hear that a regulation

can be stricter or weaker than another one. It makes sense to say that a regulation is stricter than

another regulation if the conditions to satisfy the �rst regulation are stricter than those to satisfy

the second one: an economic agent satisfying the �rst regulation would consequently also satisfy

the second regulation. For instance, environmental regulation since the Kyoto protocol is stricter

than environmental regulation before the Kyoto protocol; or another example, bank regulation since

2008 is stricter than bank regulation between 2000 and 2007. The de�nition below makes clear these

concepts of surregulation and subregulation.

De�nition 14 We consider two regulations (Xi)i∈J and (Wi)i∈J on the Game (J,E, (θi)i∈J). We

say that (Wi)i∈J is a surregulation of (Xi)i∈J on the Game (J,E, (θi)i∈J), or that regulation (Wi)i∈J

is stronger (or stricter) than regulation (Xi)i∈J , if for every agent i and for all x,Wi(x−i) ⊂ Xi(x−i).

We will also say that (Xi)i∈J is a subregulation of (Wi)i∈J on the Game (J,E, (θi)i∈J), or that

regulation (Xi)i∈J is weaker (or less strict) than regulation (Wi)i∈J .

For instance, the product of two regulations is obviously a surregulation of both initial regula-

tions.

Example 7 (Xi,Wi)i∈J is a surregulation of (Xi)i∈J . It is obviously also a surregulation of (Wi)i∈J .

An endogenous shared constraint generated by exogenous individual constraints provides a nat-

ural example of surregulation.

Example 8 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J)

and the generalized game with shared constraint (J,E, (θi)i∈J , (Ki)i∈J) generated from (J,E, (θi)i∈J , (Xi)i∈J).

Then, (Ki)i∈J is a surregulation of (Xi)i∈J since by de�nition for every agent i and for all x,

Ki(x−i) ⊂ Xi(x−i).

We prove a few more interesting results below.

Proposition 8 We consider two regulations (Xi)i∈J and (Wi)i∈J on the Game (J,E, (θi)i∈J) such

that (Wi)i∈J is a surregulation of (Xi)i∈J . Then, the set of admissible strategies of (J,E, (θi)i∈J , (Wi)i∈J)

is included in the set of admissible strategies of (J,E, (θi)i∈J , (Xi)i∈J).

Or in other words: K((Wi)i∈J) ⊂ K((Xi)i∈J).
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Proof of Proposition 8

K((Wi)i∈J) = {x ∈ E, ∀i ∈ J, xi ∈ Wi(x−i)} ⊂ {x ∈ E, ∀i ∈ J, xi ∈ Xi(x−i)} = K((Xi)i∈J).

�

Proposition 9 We consider two regulations (Xi)i∈J and (Wi)i∈J on the Game (J,E, (θi)i∈J) such

that (Wi)i∈J is a surregulation of (Xi)i∈J . Then, T ((Wi)i∈J) ≤ T ((Xi)i∈J).

Proof of Proposition 9

K((Wi)i∈J) ⊂ K((Xi)i∈J) from Proposition 8.

Therefore T ((Wi)i∈J) = supx∈K((Wi)i∈J )

∑N
i=1 θi(x) ≤ supx∈K((Xi)i∈J )

∑N
i=1 θi(x) = T ((Xi)i∈J).

�

Remark 3 This result is not true for regulation criteria Stab, Nash and TN a priori.

Corollary 2 We consider a regulation (Xi)i∈J on a Game (J,E, (θi)i∈J). (Xi)i∈J is optimal among

all its surregulations for the criterion T .

We give an example of existence of optimal vector among a set of surregulations which is a

corollary of Proposition 2: we proved that under the hypotheses of Proposition 2, there is existence

of a Nash equilibrium x∗ that maximizes the global payo� among all admissible strategies. Such a

x∗ is therefore an optimal vector for the criteria T and TN among all the surregulations of X. The

proposition below makes clear this result.

Proposition 10 Consider a generalized game with shared constraint (J,E, (θi)i∈J , X) satisfying

the assumptions of Proposition 2, that is X is a compact set, and that ∀i ∈ J, θi is continuous

and of the form θi(x) = θi(xi) . Then such a game admits an optimal vector x∗ among all the

surregulations of X for the criteria T and TN .

Proof See Proof of Proposition 2.

We now �nish this subsection with an example of regulation which is optimal among a set of

subregulations.

Proposition 11 Let (J,E, (θi)i∈J , X) be a generalized game with shared constraint. Then the regu-

lation X is optimal among all the subregulations (Xi)i∈J such that K((Xi)i∈J) = X for the criteria

T , Nash and TN on the Game (J,E, (θi)i∈J). Moreover, if E is �nite set, this property is also true

for the criterion Stab.

Proof of Proposition 11

If (J,E, (θi)i∈J , (Xi)i∈J) is a generalized game with individual constraints such thatK((Xi)i∈J) =

X then, we have that T ((Xi)i∈J) = T (X). From Proposition Braouezec-Kiani we have that

Nash((Xi)i∈J)) ⊂ Nash(X) and therefore we also have TN((Xi)i∈J)) ≤ TN(X). If E is a �-

nite set, we also have that Stab((Xi)i∈J)) ≤ Stab(X). �
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3.5 Correlated regulation criteria and intersection of optimal solutions

We continue our development with comparing the regulation criteria with one another. The goal of

this subsection is to answer to the theoretical question: to what extent is it similar for a regulator to

optimize a criterion R1 and a criterion R2? Are the di�erent criteria correlated with one another?

Do they have common optimal solutions? This is what we inspect here.

De�nition 15 We say that two regulation criteria R1 and R2 are positively correlated if for any

regulation (Xi)i∈J and (Yi)i∈J such that R1((Yi)i∈J) ≥ R1((Xi)i∈J), we also have R2((Yi)i∈J) ≥
R2((Xi)i∈J). They are negatively correlated if for any regulation (Xi)i∈J and (Yi)i∈J such that

R1((Yi)i∈J) ≥ R1((Xi)i∈J), we have R2((Yi)i∈J) ≤ R2((Xi)i∈J).

Example 9 • If g is an increasing function then R1 and R2 = g(R1) are positively correlated.

• If g is a decreasing function then R1 and R2 = g(R1) are negatively correlated.

De�nition 16 We say that two regulation criteria R1 and R2 are optimally identical if the set of

optimal regulations for the criterion R1 on the Game (J,E, (θi)i∈J) is equal to the set of optimal

regulations for the criterion R2 on the Game (J,E, (θi)i∈J), either in the strong or the weak sense.

We say that the two criteria R1 and R2 have a common optimal regulation if the set of optimal

regulations for the criterion R1 and the set of optimal regulations for the criterion R2 have at least

one element in common, either in the strong or the weak sense.

Note that if R1 and R2 are optimally identical then they have a common optical regulation (but

the converse is not true).

Example 10 If g is an increasing function then R1 and R2 = g(R1) are optimally identical.

Proposition 12 We consider a Game (J,E, (θi)i∈J) with E a �nite set. Then the regulations Nash

and Stab have at least one common optimal regulation in the weak sense.

Proof of Proposition 12

Stab has at least one optimal regulation (Yi)i∈J (in the strong sense). This means that there is

no regulation (Xi)i∈Jsuch that Stab((Yi)i∈J) < Stab((Xi)i∈J). And for such a (Yi)i∈J , there is no

(Xi)i∈J such that Nash((Yi)i∈J) ⊂ Nash((Xi)i∈J). �

Proposition 13 We consider a generalized game with shared constraint (J,E, (θi)i∈J , X). Then X

is a common optimal regulation (in the strong sense) among the subregulations (Xi)i∈J of X such

that K((Xi)i∈J) = X for the criteria T , TN and Nash (and also Stab if E is �nite).

Proof of Proposition 13

See Proposition 11. �

We �nish this subsection with the example of two criteria that are optimally identical (in the

strong sense) if the game satis�es the assumptions of Proposition 2.
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Proposition 14 Consider a generalized game with shared constraint (J,E, (θi)i∈J , X) satisfying

the assumptions of Proposition 2, that is X is a compact set, and that ∀i ∈ J, θi is continuous

and of the form θi(x) = θi(xi) . Then the criteria T and TN are optimally identical (in the strong

sense) among all the surregulations of X and their set of optimal regulations is equal to the set of

subregulations of the optimal vectors x∗ of Nash equilibria that maximize the global payo� given in

Proposition 2.

Proof See Proof of Proposition 2.

Exemple de jeu tel que Nash, T et TN no correlated et no optimally identical 2 à 2.

3.6 Other examples of regulation criteria

We give two additional examples of regulation criteria that can be useful in certain contexts. In

particular, these two criteria can be mixed to the four criteria already studied to de�ne new and

relevant criteria of collective social well-being from the regulatory point of view.

Example 11 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

(Xi)i∈J is a regulation on the Game (J,E, (θi)i∈J). In this example we assume that θi is a payo�

function (and not a cost function).

We can de�ne the regulation criterion:

Diff : (F (E−i,P(Ei)))
N → (R,≤)

(Xi)i∈J 7→ supx∈K((Xi)i∈J )

∑N
i=1 θi(x)− infx∈K((Xi)i∈J )

∑N
i=1 θi(x)

with K((Xi)i∈J) the set of admissible strategies of the generalized game (J,E, (θi)i∈J , (Xi)i∈J).

Diff((Xi)i∈J) is the di�erence between the maximum total payo� among all the admissible

strategies of the generalized game (J,E, (θi)i∈J , (Xi)i∈J) and the minimum total payo�. If this

di�erence is higher for the regulation (Yi)i∈J than for the regulation (Xi)i∈J , then Diff((Yi)i∈J) ≥
Diff((Xi)i∈J).

Example 12 We consider the generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J).

(Xi)i∈J is a regulation on the Game (J,E, (θi)i∈J). In this example we assume that θi is a payo�

function (and not a cost function).

We can de�ne the regulation criterion:

DiffNash : (F (E−i,P(Ei)))
N → (R,≤)

(Xi)i∈J 7→ supx∗∈Nash((Xi)i∈J )

∑N
i=1 θi(x

∗)− infx∗∈Nash((Xi)i∈J )

∑N
i=1 θi(x

∗)

with Nash((Xi)i∈J) the set of Nash equilibria of the generalized game (J,E, (θi)i∈J , (Xi)i∈J).

DiffNash((Xi)i∈J) is the is the di�erence between the maximum total payo� among all the

Nash equilibria of the generalized game (J,E, (θi)i∈J , (Xi)i∈J) and the minimal total payo� among

all the Nash equilibria. If this di�erence is higher for the regulation (Yi)i∈J than for the regulation

(Xi)i∈J , then DiffNash((Yi)i∈J) ≥ DiffNash((Xi)i∈J).
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3.7 From static games with constraints to dynamic games with constraints

We would like to o�er an extension of our theory and results to more general types of games with

a time dimension. A frequent critics about static games, with or without constraints, is that they

are not always representative of real-world problems in the sense that it is rather rare to meet with

real-world problems where the agents act in a single shot and all at the same time. To this extent,

static games o�er an idealized and simpli�ed modeling of interaction between agents that give a �rst

grasp on the problem one is analyzing. We defeat the critics about static games in the context of our

article: the beauty of our theory on Optimal Regulation is that our modeling, framework and results

are still true for any dynamic games, either discrete-time or continuous-time, either deterministic

or with a stochastic component. In this perspective, our study of problems with static games o�er

a �rst ground of study of real-world problems and the results we obtain on this simpli�ed version

of the problem we study can be transferred to the dynamic version.

Indeed, consider the generalized game with constraint (J,E, (θi)i∈J , (Xi)i∈J) and now consider

that the strategy xi chosen by agent i is also a function of time t and, therefore the strategy xi(t) of

agent i can be reevaluated over time, either at some dates given by a deterministic law or at dates

given by a law with a stochastic component, either at discrete times or continuous times. The goal

of each agent is still to optimize its objective function θi(x(t)). We observe that the de�nition of

a Nash equilibrium for such a game is identical to the one in a static game and all the de�nitions

and results of Section 2 and 3 can be extended to such dynamic games. The study of such dynamic

generalized games o�er enough substance for an article itself dedicated to this topic and we will not

go further in this direction in the present article.

We also note that the introduction of the time dimension or a stochastic dimension in our study

can also give birth to additional relevant de�nitions of regulation criteria: for instance, a regulator

could be seeking to minimize the time before the agents get to a Nash equlibrium or another given

con�guration, or in a stochastic context the goal of a regulator could be to maximize the expected

total payo�... And there are many other considerations that we will not develop here but that can

also be the topic of discussion of a future article.

4 An application: strategic �re-sales in the banking system and

optimal regulation

In this Section, we study applications of the theory and results developed in Section 2 and 3 to

answer a problem in bank regulation during �re sales. Study of contagion of �nancial losses between

�nancial institutions during a period of �nancial crisis has become a hot topic in �nancial regulation

research since the global crisis of 2007-2008. In particular, Global Systemically Important Banks (G-

SIBs), have raised an increasing attention over the years due to the risk of implosion of the �nancial

system in case of bankruptcy of such a Bank. See [Brunnermeier, 2009], [Krishnamurthy, 2010] and

[Glasserman and Young, 2016] for review papers. A salient feature of the �nancial crisis of 2007-2008

is the role played by �nancial markets, which have been a vector of not only direct contagion through
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contractual links between institutions, but also indirect contagion of losses and/or bankruptcy

between banks and �nancial institutions, through asset prices. See for instance [Clerc et al., 2016].

A �nancial institution hit by a shock during a �nancial crisis may be forced to sell an important

quantity of assets to rebalance its portfolio and capital ratio, what we call �re sales, and this can

cause a major decrease in the prices of the assets sold (through price impact) which therefore impacts

the balance sheets of other banks.

In this article we study a model of contagion between banks through the prices of assets in the

�nancial markets inspired from [Braouezec and Wagalath, 2019]. First we remind and summarize

the model developed in their article: they present the situation of p banks which need to sell some

of their assets after a �nancial shock to re-balance their risk-based capital ratio over a regulatory

threshold (see the initial article for full details). Then, we take the regulator point of view and

study di�erent regulation criteria, and existence of possible optimal regulations: what is the relevant

criterion to optimize for a regulator who seeks the collective welfare of the community of agents? For

instance, a regulator can either choose to minimize the losses in the �nancial system or to minimize

the number of �nancial institutions going bankrupt. Do we have existence of an optimal regulation

for these two regulation criteria?

4.1 The model

4.1.1 Banks' balance-sheets and regulatory constraints

We take same notations as in [Braouezec and Wagalath, 2019]. We consider a set B = {1, 2, ..., p}
of p ≥ 2 banks that can invest in a risky asset and in cash.

For each bank i, we denote by vi > 0 the amount of cash (in dollars) and by qiPt > 0 the value

(in dollars) of risky assets, where qi is the quantity of risky assets held by the bank and Pt is the

market price of the risky asset at a given date t. Let Di be the sum of the value of deposits and/or

debt securities, that have been issued by bank i.

The balance-sheet of the bank at time t is as follows.

Balance-sheet of bank i at time t

Assets Liabilities

Cash: vi Debt: Di

Risky assets: qiPt Equity: Ei,t

Ai,t Ei,t +Di

We make the assumption that the risky asset is a �nancial security issued by a non-�nancial

institution whose price is quoted on �nancial markets.

From the Basel accords on banking regulation, banks are required to hold enough capital as a

percentage of their risk-weighted assets (RWA). Within our model, since there is a single risky asset,

the risk-weighted asset of bank i is simply equal to

RWAi,t = αiqiPt (8)
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where αi is the risk weight of bank i associated to the risky asset. Note that αi may vary across

banks.

We de�ne the risk-based capital ratio (RBC) θi,t for a given bank i at time t:

θi,t :=
Ei,t

RWAi,t
(9)

For the sake of interest, we assume that all banks are solvent at date t, that is, Ei,t > 0 for all

1 ≤ i ≤ p.
We denote by θmin the minimum capital ratio imposed by the regulator, which is equal to 8%.

For the sake of interest, we shall assume that, at date t, all banks comply with the regulatory

constraint:

θi,t ≥ θmin for each i = 1, 2, ..., p (10)

4.1.2 Impact of an exogenous shock on banks' capital ratios

Assume that a shock on the risky asset occurs at date t+ and denote ∆ ∈ (0, 1) the size of the

adverse shock in percentage of Pt. The price of the risky asset at time t+ thus is equal to

Pt+ = Pt(1−∆) (11)

At time t+, right after the shock, the balance-sheet of bank i is given as follows.

Balance-sheet at time t+

Assets Liabilities

Cash: vi Debt: Di

Risky assets: qiPt(1−∆) Equity: Ei,t+

Ai,t+ Ei,t+ +Di

It is the role of equity to absorb the shock, i.e., the loss which is equal to qiPt∆ in dollars. The

RBC of bank i at date t+ is equal to

θi,t+(∆) =
max{Ai,t+ −Di; 0}

RWAi,t+
=

max{Ei,t − qiPt∆; 0}
αiqiPt(1−∆)

(12)

In the remainder of this paper, we work under the following assumption.

Assumption 1 At date t, each bank's equity is lower than the size of its risky assets, that is, for

all 1 ≤ i ≤ p:
Ei,t < qiPt (13)

This assumption is natural in the banking system as, in practice, banks' equities typically do not

exceed 20% of their risky assets.

Lemma 1 Under Assumption 1, the bank's RBC after the shock is a decreasing function of the

shock size ∆.
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See [Braouezec and Wagalath, 2019] for the proof. A given bank i may thus be in one of the three

following situations, depending on the size of the shock ∆:

1. solvent and complying with regulatory capital requirement, that is θi,t+(∆) ≥ θmin

2. solvent but not complying with regulatory capital requirement, that is 0 < θi,t+(∆) < θmin

3. insolvent, that is θi,t+(∆) = 0, which is equivalent to Ei,t − qiPt∆ ≤ 0

4.1.3 Endogenous �re sales and feedback e�ects

Since ∆ is a common shock, it a�ects the balance-sheet of all banks that hold the risky asset and

may leave some of them undercapitalized. Banks that do not comply with the regulatory capital

constraints consequently need to restore their capital ratio above the minimum required θmin by

selling assets and decrease the denominator of the risk-based capital ratio.

Such forced sales are usually called ��re sales�. We will also assume that, as in most models

(e.g., [Elliott et al., 2014, Caccioli et al., 2014]), a bank which is unable to restore its capital ratio

above θmin is fully liquidated at date t+ 1.

We denote by xi ∈ [0, 1] the proportion of risky assets sold by bank i at date t+ 1, in reaction

to the shock ∆ at date t+. When bank i does not need to liquidate assets, then xi = 0. On the

contrary, when the shock ∆ is such that bank i is insolvent or unable to restore its capital ratio

above θmin, then it is fully liquidated and xi = 1. The volume (in shares) of liquidation by bank

i is denoted by xiqi and
∑

i∈B xiqi denotes the total volume of �re sales in the banking system at

date t+ 1.

Fire sales obviously impact the price of the asset at date t + 1 and we assume here this price

impact to be linear. We introduce the asset market depth Φ which is a linear measure of the asset

liquidity [Kyle and Obizhaeva, 2016]. In [Cont and Wagalath, 2016], it is shown that the relevant

quantity to capture the magnitude of feedback e�ects is
∑

i∈B qi
Φ .

The asset price at date t + 1 thus depends on the vector of liquidations x (∆,Φ) := x =

(x1, x2, ..., xp) ∈ [0, 1]p, and this vector of liquidation depends on both the shock ∆ and the market

depth Φ.

Assumption 2 The price of the risky asset at time t+ 1 is equal to

Pt+1(x,Φ) = Pt (1−∆)

(
1−

∑
i∈B xiqi

Φ

)
(14)

Qtot

Φ
< 1 (15)

where Qtot =
∑
i∈B

qi (16)

At time t+1, the balance-sheet of bank i that sold a portion xi of the risky asset is given below:

Balance-sheet of bank i at date t+ 1 after deleveraging
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Assets Liabilities

Cash: vi + xiqiPt+1(x ,Φ) Debt: Di

Risky asset: (1− xi)qiPt+1(x ,Φ) Equity: Ei,t+1

Ai,t+1 = vi + qiPt+1(x ,Φ) Ei,t+1 +Di

where Pt+1(x ,Φ) is given in Assumption (2). Let Ei,t+1(x ) be the total capital at time t+ 1 after

deleveraging. From the above balance-sheet, we have that

Ei,t+1(x ,∆) = max

{
Ei,t − qiPt

(
∆ +

∑
j∈B xjqj

Φ
(1−∆)

)
; 0

}
(17)

and note that it is a decreasing function of xi due to the existence of a price impact. The regulatory

capital ratio of bank i at time t+ 1 (i.e., after deleveraging) thus is equal to

θi,t+1(x ,∆) =
Ei,t+1(x )

αiqiPt+1(x ,Φ)(1− xi)
(18)

with the natural convention that θi,t+1(x ,∆) = 0 when xi = 1 and when Ei,t+1 = 0.

We can also introduce the concept of the implied shock :

∆(x ) := ∆ +

∑
j∈B xjqj

Φ
(1−∆) (19)

associated to the vector of liquidation x such that the price of the risky asset at date t+ 1 can be

written as follows

Pt+1(x ,Φ) = Pt(1−∆(x )) (20)

Assumption 3 Each bank i = 1, 2, ..., p rebalances its portfolio of assets (i.e., deleverage) in order

to minimize xi ∈ [0, 1] subject to the constraint

θi,t+1(x,∆) ≥ θmin (21)

If the constraint can not be satis�ed for some xi ∈ [0, 1), then bank i is insolvent and is costlessly

liquidated at time t+ 1 so that xi = 1.

4.2 Strategic �re sales and Regulation criteria

Now that we have reminded the model developed in the article [Braouezec and Wagalath, 2019],

we can turn to the study from a regulator point of view of di�erent regulation criteria, existence of

possible optimal regulation, and possible correlation between di�erent criteria.

We easily note that these strategic �re-sales with 1 asset are an example of generalized game

with individual constraints:

• J = {1, ..., p} a set of p banks

• ∀i, Ei = [0, 1] and E = [0, 1]p
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• a cost function that we will denote fi here
fi : E → R

x 7→ xi

•
A regulation Xi : [0, 1]p−1 → P ([0, 1])

x−i 7→ {xi ∈ [0, 1), θi,t+1(xi, x−i) ≥ θmin} ∪ {1}

To avoid any confusion, we keep the notation θi of the article [Braouezec and Wagalath, 2019]

for the RBC ratio and we will denote the cost function fi in our presentation for this section.

In this section, we will consider the 3 criteria studied in Section 3 Nash (a stability criterion),

T , and TN (two cost criteria; obviously, as fi(x) = xi here is a cost function, we adapt the

corresponding de�nition of the criteria T and TN), plus two additional regulation criteria that we

will call bankruptcy criteria:

NB : (F (E−i,P(Ei)))
N → ([0,N],≤)

(Xi)i∈J 7→ maximumx∈K((Xi)i∈J )number of solvent banks(x) at t+ 1

and

NBN : (F (E−i,P(Ei)))
N → ([0,N],≤)

(Xi)i∈J 7→ maximumx∈Nash((Xi)i∈J )number of solvent banks(x) at t+ 1

NB measures the minimum number of banks going bankrupt among all the admissible strategies

of the generalized game (J,E, (fi)i∈J , (Xi)i∈J) and it is equal to minx N− the number of banks

going bankrupt for the strategy vector x.

NBN measures the minimum number of banks going bankrupt among all the Nash equilibria

of the generalized game (J,E, (fi)i∈J , (Xi)i∈J) and it is equal to minx∗ N− the number of banks

going bankrupt for the Nash equilibrium x∗.

Note that we immediately have that for any regulation (Xi)i∈J , NBN((Xi)i∈J) ≤ NB((Xi)i∈J).

It is the goal of our inquiry to study these 5 regulation criteria and to see if there is existence

of optimal regulations and optimal vectors.

We also note that we immediately have the following results of existence since the set F is

�nished for NB and NBN .

Proposition 15 The criteria NB and NBN have at least one optimal regulation and one optimal

vector.

4.3 Regulation with individual constraints or endogenous shared constraint

It is proven in [Braouezec and Wagalath, 2019] that for such a game with individual constraints,

there is always existence of Nash equilibria thanks to Tarski's theorem.

We want to go further and consider the regulation with endogenous shared constraint generated

from this regulation with individual constraints. We already know that the regulation with shared
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constraint is at least better than the initial regulation with individual constraints for criteria Nash,

T and TN . We will moreover prove that with such a regulation in place, there is existence of a

Nash equilbrium that minimizes the total cost and di�usion of the assets
∑p

i=1 xi in the banking

system.

First, we introduce the generated shared constraint set:

K = {x ∈ [0, 1]p; ∀i ∈ {1, ..., p} : xi ∈ [0, 1( and θi(xi, x−i) ≥ 8%, or xi = 1} (22)

Proposition 16 K is a compact set.

Proof See the Appendix.

So the regulation with shared constraint we introduced gives a generalized game with shared

constraint that satis�es all the assumptions of Proposition 2 and therefore, as a corollary, such

strategic �re-sales have a Nash equilibrium that minimizes the total cost and loss di�usion in the

banking system if the regulator takes the regulation with shared constraint generated from the

initial regulation with individual constraints, which is a new interesting result.

Corollary 3 The generalized game with shared constraint (J,E, (fi)i∈J ,K) admits at least one

Nash equilibrium that minimizes the global cost
∑

i∈J xi on K: there exists a Nash equilibrium

x∗ ∈ E such that
∑

i∈J x
∗
i = minx∈K

∑N
i=1 xi. Therefore the regulation with shared constraint K

is optimal among all the surregulations of K for the criteria T and TN : in particular it is better

than the regulation with individual constraints for the criteria T and TN , K ≤ (Xi)i∈J for these

two criteria. And obviously, from Proposition 7, T (K) = TN(K). Moreover, such a vector x∗ is

an optimal vector (in the strong sense) for the criteria T and TN .

We will go further in our study and actually prove that this remarkable Nash equilibrium in

shared constraint is also a Nash equilibrium in individual constraints.

First, we remind this intuitive assumption:

Assumption 4 We make the following natural assumptions:

• we assume that the ratio θi of a given bank i is an increasing function of the quantity of assets

its sells. Or in other words: for all i ∈ J , θi(x) is an increasing function of xi.

• we assume that the ratio θi of a given bank i is a decreasing function of the quantity of assets

sold by other banks j ∈ J . Or in other words: for all i ∈ J , for all j 6= i, θi(x) is a decreasing

function of xj.

Lemma 2 If x∗ is a Nash equilibrium of the generalized game (J,E, (fi)i∈J , (Xi)i∈J) then for all i

such that x∗i < 1, we have that θi(x
∗) = 8%.

Proof See the appendix.

28



Proposition 17 The generalized game with individual constraints (J,E, (fi)i∈J , (Xi)i∈J) admits at

least one Nash equilibrium that minimizes the global cost
∑

i∈J xi on K((Xi)i∈J): there exists a

Nash equilibrium x∗ ∈ E such that
∑

i∈J x
∗
i = minx∈K((Xi)i∈J )

∑N
i=1 xi. Therefore, T ((Xi)i∈J) =

TN((Xi)i∈J), the regulation (Xi)i∈J is as good as the regulation K for the criteria T and TN and it

is also optimal among all the surregulations of (Xi)i∈J for the criteria T and TN . Moreover, such

a vector x∗ is an optimal vector (in the strong sense) for the criteria T and TN .

Proof See the Appendix.

Corollary 4 T and TN have a common optimal regulation (in the strong sense) on the Game

(J,E, (fi)i∈J) among the subregulations (Xi)i∈J of X such that K((Xi)i∈J) = K. The criteria T

and TN are optimally identical (in the strong sense) among all the surregulations of K and their set

of optimal regulations is equal to the set of surregulations of the optimal vectors x∗ of Nash equilibria

that maximize the global payo� given in Proposition 2.

This is a new result that does not appear in [Braouezec and Wagalath, 2019]: they prove that

Nash equilibria are ranked and that it is optimal to choose the smallest Nash equilibrium, we

moreover prove that the smallest Nash equilibrium minimizes the total cost among all the admissible

strategies of the game (J,E, (fi)i∈J). This Nash equilibrium is clearly the preferred solution of

regulatory public institutions who seek to minimize the global losses in the �nancial system.

But what if the regulator is seeking to minimize the number of banks going bankrupt, or equiv-

alently maximize the number of solvent banks? We answer to this question in the next subsection.

We also note that we have the following result for the criterion NBN .

Proposition 18 K is a better regulation than (Xi)i∈J for the criterion NBN .

Proof See the Appendix.

4.4 Comparison of optimal regulations and optimal vectors for the di�erent

criteria

We know that we have existence of optimal regulations and optimal vectors for the criteria T , TN ,

NB and NBN . Now, one can wonder: are these optimal regulations/vectors identical? Is it the

same from a regulatory point of view to say that a regulator is seeking to minimize the losses in the

system or to minimize the number of banks going bankrupt? This is an important question from a

regulatory point of view.

To answer this question, one should look for:

• The set {x∗T } of optimal vectors for the criterion T .

• The set {x∗TN} of optimal vectors for the criterion TN .

• The set {xNB} of optimal vectors for the criterion NB.
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• The set {xNBN} of optimal vectors for the criterion NBN .

and look at the intersections of these four sets.

We consider two ways to describe these four sets:

• either it is analytically convenient to �nd these four sets, given the data in our stress-test

model.

• or if it's not the case, one can write do the following approximation and compute the following

algorithm. Given the data in the model, we make the approximation that the set E is �nite

(which is actually the case in real life since xi takes its value in a �nite set in real life), and

we compute an algorithm that tests all vectors x ∈ K and �nd the optimal vectors for each

criterion.

We can easily see that these vectors do not always coincide if for instance we have a world with

one very large bank and (N-1) tiny banks with a quantity of assets which is for instance divided by

100. When these sets do not coincide and therefore optimizing a given criterion leads to a di�erent

result than optimzing another criterion, the regulator should wonder: what criterion of social welfare

should be chosen, given that optimizing the di�erent criteria is not equivalent? It is interesting to

think of these questions retrospectively with the �nancial crisis of 2007-2008 and �gure out if the

decisions taken were optimal for the di�erent regulation criteria.

We end up this section with considering a new possibility from a regulatory point of view during

stress-tests when enabling that the threshold θi,min given to each bank is variable.

4.5 Regulation with variable θi,min

We go further in our inquiry by assuming that the thresholds θi,min asked by the regulator are also

variable, so we get new variable regulations.

We consider the family of following regulations ((Xi,si)si>0)i∈J on the Game (J,E, (fi)i∈J :

Xi,si : [0, 1]p−1 → P ([0, 1])

x−i 7→ {xi ∈ [0, 1), θi,t+1(xi, x−i) ≥ si} ∪ {1}

with si > 0. Note that we do not impose that all banks have the same ratio threshold s and

the ratio threshold si can be customized by the regulator for each bank depending its size and own

intrinsic characteristics.

Proposition 19 If 0 < si ≤ s′i, then for any x−i ∈ E−i, we have Xi,s′i
(x−i) ⊂ Xi,si(x−i).

Proof See the Appendix.

Corollary 5 If s and s' in (R∗+)N are such that for all i ∈ J, 0 < si ≤ s′i, we have thatK((Xi,s′i
)i∈J) ⊂

K((Xi,si)i∈J).
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Corollary 6 If s and s' in (R∗+)N are such that for all i ∈ J, 0 < si ≤ s′i, we have that:

• T ((Xi,s′i
)i∈J) ≥ T ((Xi,si)i∈J)

• TN((Xi,s′i
)i∈J) ≥ TN((Xi,si)i∈J)

• NB((Xi,s′i
)i∈J) ≤ NB((Xi,si)i∈J)

Therefore (Xi,si)i∈J is a better regulation than (Xi,s′i
)i∈J for the criteria T , TN and NB. And

therefore T and TN are positively correlated on the family of regulation (Xi,si)i∈J,si>0, and T and

NB (and also TN and NB) are negatively correlated on the family of regulation (Xi,si)i∈J,si>0.

Proof See the Appendix.

Corollary 7 The regulation Xi,0(x−i) = {xi ∈ [0, 1(, θi,t+1(xi, x−i) > 0} ∪ {1} is optimal (in the

strong sense) for T , TN and NB among the family of regulations (Xi,si)i∈J,si≥0. Therefore these 3

criteria are optimally identical (in the strong sense) among the family of regulations (Xi,si)i∈J,si≥0.

Therefore in a period of �nancial crisis following a �nancial shock our study provides the result

that it is optimal for a regulator who is seeking to maximize either T , TN or NB to forget the

RBC ratio for a while and choose the regulation Xi,0(x−i) = {xi ∈ [0, 1(, θi,t+1(xi, x−i) > 0} ∪ {1}.
In other words, a regulator who is seeking to minimize the losses in the system or the number of

banks going bankrupt had better choose such a regulation (Xi,0)i∈J .

We also have the following result for the regulation criterion NBN :

Proposition 20 There exists an optimal regulation for NBN among the family of regulations

(Xi,si)i∈J,si>0.

Proof See the Appendix.

One can wonder if the optimal regulation for NBN is same as NB and equal to Xi,0(x−i) =

{xi ∈ [0, 1(, θi,t+1(xi, x−i) > 0} ∪ {1}.
And same as in Subsection 4.4, one can wonder if there is existence of Optimal vectors x∗T ,

x∗TN , xNB and xNBN and if our four criteria are optimally identical or have at least some common

optimal regulation/vector. The method to answer such questions is similar to the one in Subsection

4.4:

• either it is analytically convenient to �nd the four sets of optimal regulations and possible

optimal vectors, given the data in our stress-test model.

• or if it's not the case, one can write the following approximation and compute the following

algorithm. Given the data in the model, we make the approximation that the set E is �nite

(which is once again actually the case in real life since xi takes its value in a �nite set and also

we note that the price of the asset is in a �nite set of prices), and we compute an algorithm

that tests all vectors x ∈ K and �nd the optimal vectors for each criterion.
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This gives us again a process of comparison of the di�erent optimal regulations/vectors and the

criteria.

5 Conclusion
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6 Appendix

Proof of Proposition 2

We consider the application:

F : E → R
x 7→

∑
i∈J θi(x) =

∑
i∈J θi(xi)

F is continuous on our compact set X ⊂ E therefore F has a maximum x∗ ∈ X, and x∗

is a Nash equilibrium. Indeed if there was i ∈ J and yi ∈ Ei such that (yi, x
∗
−i) ∈ X, and

θi(yi, x
∗
−i) > θi(x

∗
i , x
∗
−i), we would have F (yi, x

∗
−i) > F (x∗i , x

∗
−i) = F (x), which is not possible. �

Proof of Theorem 2

• Stab, T and TN are applications from a �nite set of regulations to (R,≤), therefore they each

admit a maximum (Yi)i∈J and such a maximum is an optimal regulation in the strong sense.

• Nash is an application from a �nite set of regulations to (E,⊂), therefore there exists at least one

(Yi)i∈J such that there is no (Xi)i∈J with Nash((Yi)i∈J) ( Nash((Xi)i∈J). �

Proof of Theorem 3

• R is an application from a �nite set of regulations to (F,≤), therefore there exists at least one

(Yi)i∈J such that there is no (Xi)i∈J with R((Yi)i∈J) < R((Xi)i∈J).

• R is an application from a �nite set of regulations to a totally ordered set (F,≤), therefore R has

at least one maximum (Yi)i∈J and such a maximum is an optimal regulation in the strong sense. �

Proof of Theorem 4

• R is an application to a �nite set (F,≤), therefore there exists at least one (Yi)i∈J such that

there is no (Xi)i∈J with R((Yi)i∈J) < R((Xi)i∈J).

• R is an application to a �nite set (F,≤) which is totally ordered, therefore R has at least one

maximum (Yi)i∈J and such a maximum is an optimal regulation in the strong sense. �

Proof of Theorem 5

If E and F are �nite set then then the maxima for T and TN are reached at some vectors that

are optimal. �

Proof of Proposition 16

• K is clearly a bounded set.

• We want to prove that K is a closed set. Let (xm)m∈N = (x1,m, ..., xp,m)m∈N ∈ KN be a

sequence which converges to a given x∞ ∈ [0, 1]p. We will show that x∞ ∈ K.

Let i ∈ {1, .., p}.
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� either xi,∞ = 1

� or xi,∞ ∈ [0, 1( and there exists ε > 0 such that B(xi,∞, ε) ⊂ [0, 1] \ {1} and there exists

m0 ∈ N such that ∀m ≥ m0, xi,m ∈ B(xi,∞, ε). Therefore ∀m ≥ m0, gi(xm) ≥ 8%.

And since gi is continuous on B(xi,∞, ε) (see [Braouezec and Wagalath, 2019]), we have

gi(x∞) ≥ 8%

And this is true for all i ∈ {1, .., p}, so K is a closed set.

Therefore K is a closed bounded set of [0, 1]p, so K is a compact set. �

Proof of Lemma 2

From Assumption 4, if θi(x
∗) > 8%, then there would exist yi < x∗i such that (yi, x

∗
−i) ∈ K,

which is not possible.

Proof of Proposition 17

Similar to the proof of Proposition 2, we consider the application:

F : E → R
x 7→

∑
i∈J fi(x) =

∑
i∈J fi(xi) =

∑
i∈J xi

F is continuous on our compact set K ⊂ E therefore F has a minimum x∗ ∈ X. Let's prove

that x∗ is a Nash equilibrium.

Indeed let's assume that there is i ∈ J and yi ∈ Ei such that yi ∈ X(x∗−i), and fi(yi, x
∗
−i) =

yi < x∗i = fi(xi, x
∗
−i).

• Either x∗i < 1 and therefore since θi is an increasing function of xi from Assumption 4 we

have that θi(yi, x
∗
−i) < θi(x

∗
i , x
∗
−i) = 8%, which is not possible.

• Either x∗i = 1 and therefore since for all j 6= i, θj(x) is a decreasing function of xi, we have

that θj(yi, x
∗
−i) ≥ θj(x∗i , x∗−i) for all j such that xj < 1. And therefore, for all j 6= i such that

xj < 1 we have that x∗,j ∈ Xj(yi, x∗,−i,−j), and this is also the case if j is such that xj = 1.

Therefore, for all j 6= i, x∗,j ∈ Xj(yi, x∗,−i,−j), and therefore (yi, x
∗
−i) is an admissible strategy

and (yi, x
∗
−i) ∈ K. But we would have F (yi, x

∗
−i) < F (x∗,i, x∗−i) = F (x), which is not possible.

Therefore x∗ is a Nash equilibrium of the generalized game (J,E, (fi)i∈J , (Xi)i∈J). �

Proof of Proposition 18 From Proposition 1 we have that Nash((Xi)i∈J) ⊂ Nash(K), and

therefore NBN(K) ≥ NBN((Xi)i∈J).

Proof of Proposition 19

If si ≤ s′i, from Assumption 4 we have that θi(xi, x−i) is an increasing function of xi and

therefore {xi ∈ [0, 1), θi,t+1(xi, x−i) ≥ s′ii} ⊂ {xi ∈ [0, 1), θi,t+1(xi, x−i) ≥ si}, so that Xi,s′i
(x−i) ⊂

Xi,si(x−i). �

Proof of Corollary 6
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Xi,s′i
(x−i) ⊂ Xi,si(x−i) for any x−i ∈ E−i therefore K((Xi,s′i

)i∈J) ⊂ K((Xi,si)i∈J) and conse-

quently, T ((Xi,s′i
)i∈J) ≤ T ((Xi,si)i∈J) and NB((Xi,s′i

)i∈J) ≤ NB((Xi,si)i∈J). From Proposition 17,

T ((Xi,s′i
)i∈J) = TN((Xi,s′i

)i∈J) and T ((Xi,si)i∈J) = TN((Xi,si)i∈J) and therefore TN((Xi,s′i
)i∈J) ≤

TN((Xi,si)i∈J) �

Proof of Proposition 20

For the criterion NBN , the set F is equal to {0, ..., N} and is therefore �nite so we can apply

Theorem 4. �
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