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Abstract

We o�er a stress test framework in which interaction between regulated banks occurs through

pecuniary externalities when they delever. Since banks are constrained to maintain their capital

ratio higher than a threshold, the deleveraging problem yields a generalized game in which

the solvency constraint of each bank depends upon the decisions of the others. We analyze

the game under microprudential but also under macroprudential regulation in which �re sales

externalities are banned. We show that a Pareto optimal Nash equilibrium generically exists

under macroprudential regulation while the existence under microprudential regulation requires

strong conditions. An empirical analysis is also provided.
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1 Introduction

In the new banking regulatory framework called Basel III published in the aftermaths of the sub-
prime �nancial crisis ([BCBS, 2010]), the Basel Committee points out that they have not only
strengthened the classical microprudential regulatory framework (essentially the so-called risk-based
capital ratio) but also introduced a number of macroprudential elements into the capital framework

to help contain systemic risks such as the G-SIB bu�er, which concerns institutions classi�ed as sys-
temic institutions (GSIBs) by the Financial Stability Board1, de�ned as a capital surcharge (bu�er)
which depends upon the "systemicness" of the bank based on �ve public indicators such as size,
interconnectedness or complexity2.

The microprudential regulation focuses on the resilience of depositary institutions (i.e., banks)
and its basic aim is to protect depositors by mitigating the incentive of banks to take excessive risk
due to government-insured deposits ([Freixas et al., 2015], [Hanson et al., 2011]). By de�nition, the
microprudential regulation adopts a partial equilibrium approach, which means that the impact of
asset prices and markets on banks failures, something unrelated to government-insured deposits, is
outside of its scope. The minimum capital requirement thus is designed as if each bank were isolated
from the �nancial system and a "one size �ts all" framework is adopted, that is, the minimum risk-
based capital ratio is 8% for each bank.

The macroprudential regulation adopts a complementary point of view since it focuses on
the resilience of the �nancial system as a whole and its aim is to safeguard it, that is, to en-
sure the resilience of the �nancial system to adverse shocks3. By de�nition, the macropruden-
tial regulation adopts a general equilibrium approach, which means that the impact on asset
prices due to �re sales on banks failures�negative externalities�falls explicitly within its scope
([Claessens, 2014], [De Nicoló et al., 2012], [Freixas et al., 2015] chapter 9, [Hanson et al., 2011]).
While the Basel Committee notes that "greater resilience at the individual bank level reduces the
risk of system-wide shocks" ([BCBS, 2010]), solvency of individual depositary institutions does how-
ever in general not imply the stability of the �nancial system as a whole (e.g., [Freixas et al., 2015],
[Hanson et al., 2011]). As is well-known from the general theory of systems ([Bertalan�y, 1968]),
the stability of a system, be it a social, physical, biological etc... critically depends upon the way
its elements (agents, particles, cells) interact. For a �nancial system, its stability property depends
thus upon the network of interconnection between �nancial institutions ([Acemoglu et al., 2015],
[Allen and Gale, 2000], [Capponi and Larsson, 2015], [Elliott et al., 2014]), but also upon the vari-
ous market imperfections (e.g., [Shleifer and Vishny, 2011], [Krishnamurthy, 2010]).

When �nancial markets are not perfectly competitive, i.e., perfectly liquid to use �nancial ter-
minology, as in an oligopoly situation ([Vives, 2001]), a �nancial institution such as a large bank or
a large hedge fund may have a positive price impact when selling large quantities of assets and this
may result in a lower price. As opposed to other market participants such as hedge funds, banks
are particular in that they are heavily regulated and must comply at all times with a minimum

1See https://www.fsb.org/wp-content/uploads/P231121.pdf for the list of G-SIBs as of November, 2021.
2For European banks, see the European Banking Authority website, https://www.eba.europa.eu/risk-analysis-

and-data/global-systemically-important-institutions.
3As noted in [Hanson et al., 2011], the macroprudential regulation is not related to the existence or not of deposit

insurance and thus needs not be restricted to depositary institutions only.
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regulatory capital ratio. After an adverse shock, when a given bank does not anymore comply with
its regulatory capital requirements, a simple way to restore its capital ratio consists in selling a por-
tion of its assets (deleveraging), possibly at a dislocated price, something called �re sales in �nance
([Shleifer and Vishny, 2011]). When more than one bank delever because they are hit with the same
adverse shock, at the aggregate level�the �nancial system�this may lead to an emergent e�ect called
generalized asset shrinkage ([Hanson et al., 2011]). As recalled in the foreword of their early paper
devoted to the fundamental principles of �nancial regulations, [Brunnermeier et al., 2009] observe
that

"In trying to make themselves safer, banks, and other highly leveraged �nancial inter-
mediaries, can behave in a way that collectively undermines the system. Selling an asset
when the price of risk increases, is a prudent response from the perspective of an individ-
ual bank. But if many banks act in this way, the asset price will collapse, forcing insti-
tutions to take yet further steps to rectify the situation." ([Brunnermeier et al., 2009])

Such a phenomenon occurs when many �nancial institutions such as banks sell a common asset
at the same time so that the price of this asset will decrease (�re sales e�ect). As a result, they will be
forced to sell more assets to restore their capital ratios and this will ultimately lead to a running for
the exit� a kind of death spiral�observed in August 2007 in which the e�ect has been disproportion-

ally larger than the initial shock ([Pedersen, 2009]). In the stationary state, a number of institutions
may be insolvent not because of the initial shock, but because the (equilibrium) price is (much)
lower than the price right after the initial exogenous shock ([Braouezec and Wagalath, 2019]). Such
a contagion of failures is usually called price-mediated contagion and played an important role in the
great �nancial crisis of 2008 ([Brunnermeier, 2009], [Clerc et al., 2016]). A number of papers docu-
ment empirically such �re (forced) sales. In [Ellul et al., 2011], the authors document forced sales
of corporate bond by insurance companies while [Merrill et al., 2021] document a similar e�ect for
the case of RMBS markets. In the same vein, [Chernenko and Sunderam, 2020] provide empirical
evidence of �re sales externalities in the equity mutual fund industry (but see [Choi et al., 2020]).

For banks or insurance companies, it is actually the regulatory constraint together with fair
value accounting which leads to forced sales and thus to the (possible) destabilization of the �-
nancial through a generalized asset shrinkage, an emergent e�ect called negative externality and
which is not taken into account by banks when they delever. The very foundation of macropruden-
tial regulation precisely lies in the correction of these market imperfections�negative externalities�
that give rise to systemic risk, in particular externalities related to �re sales ([Freixas et al., 2015],
[Hanson et al., 2011]). According to [De Nicoló et al., 2012] and [Claessens, 2014], for the case of ex-
ternalities related to �re sales, they suggest that they can be addressed either by capital surcharges,
liquidity requirements, activities restriction or taxation (see table 1 in [De Nicoló et al., 2012]).
Regulators also acknowledge this externality problem posed by large banks (GSIBs) and tackle it,
as already discussed, through a GSIB-dependent capital surcharge (bu�er) based on quantitative
indicators.

"The selected indicators are chosen to re�ect the di�erent aspects of what generates
negative externalities and makes a bank critical for the stability of the �nancial system."
(Basel Framework4, p 17)

4See https://www.bis.org/basel-framework.
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While such a methodology to design the GSIBs bu�er is an interesting novelty5 of Basel III, it
remains unclear from a pure theoretical point of view in what sense the Basel Committee method-
ology takes into account these negative externalities with the GSIBs bu�er. Indicators such as
size, interconnectedness or complexity may give information about the possible magnitude of the
externality but are not per se indicators to address the externality problem.

In this paper, to the best of our knowledge, we are the �rst to o�er a theoretical strategic
framework in which we explicitly address the externality problem posed by banks through macro-
prudential constraints (or regulation). We consider a �re sales oligopoly model of assets in the spirit
of [Braouezec and Wagalath, 2019] but di�erent from [Eisenbach and Phelan, 2022] in which banks
compete à la Cournot, that is, through quantities (of assets) sold. In a Cournot oligopoly, and
contrary to perfect competitive markets, each bank has a positive impact on the price of a given
asset and thus is not a price taker. Our Cournot �re sales approach is novel in three aspects, and
these novelties can be summarized as follows.

1. We take into account the solvency constraint of each bank (capital ratio) and this leads to a
Cournot oligopoly which is more complex than the classical ones.

2. We consider both micro and macroprudential regulation. Under macroprudential regulation,
each bank must take into account the capital ratio of all the other banks and not only its own
capital ratio, as in microprudential regulation.

3. We show that under macroprudential regulation, there generically exists a Nash equilibrium
that minimizes the total value of the asset sale. Such a result has no equivalent under micro-
prudential regulation.

Due to banking regulation, each bank is constrained to sell a quantity of assets subject to a
solvency constraint, that is, the deleveraging strategy must be chosen such that its Tier 1 capital
ratio is greater than the minimum required, at least 8.5% in Basel III since the capital conserva-
tion bu�er is 2.5%. Through the price impact, the solvency constraint of each bank turns out to
explicitly depend upon the deleveraging decisions of all the other banks. Such a strategic situa-
tion, more complex than the classical one in Cournot oligopoly gives rise to a generalized game
(see [Facchinei and Kanzow, 2010] or [Fischer et al., 2014] for review papers). As opposed to most
game theoretic framework encountered in Economics, in a generalized game, the strategy set of
a given bank, its solvency constraint, is not invariant with respect to the decisions of the other
banks and this feature complicates the analysis. Our framework not only allows us to consider
the classical approach to microprudential regulation in which each bank takes into account its own
solvency constraint but, and more importantly, it also allows us to consider a macroprudential ap-
proach designed to prevent the �re sales externalities (i.e., price-mediated contagion) by explicitly
constraining the way banks delever. Quite surprisingly, the analysis of the strategic interaction is
easier under macroprudential regulation than under microprudential regulation.

Let us now explain in what sense macroprudential regulation prevents �re sales externalities and
consider the point of view of given bank i. Given what banks j 6= i are liquidating, bank i is not

5But see [Benoit et al., 2019] for concerns.
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allowed to choose a deleveraging strategy such that one (or more than one) bank j would not comply
with its regulatory constraint. Put it di�erently, when a given bank chooses its deleveraging strategy,
given what the others are liquidating, it must not only consider its own regulatory constraint but
also the regulatory constraint of all the other banks of the banking system. As a result, bank i may
not be in a position to choose the cheapest delevaraging strategy because such a strategy might
induce the failure of at least one bank. Bank i thus must choose a more expensive deleveraging
strategy in order to avoid the failure of some banks, that is, bank i is explicitly constrained to
internalize the externality it generates.

The organization of the paper is as follows. In the second section, we discuss the link of our paper
with the various strands of literature. In the third section, we present the Cournot �re sale oligopoly
while the fourth and �fth section are devoted to the microprudential and the macroprudential
analysis. In the sixth section, we apply our model to the French systemic banks and calibrate our
model to public data.

2 Related literature

The present paper, which deals with �re externalities and macroprudential regulation, is related to
several strands of literature in Economics and Finance. For brevity, we do not discuss, in general,
the contribution of the papers.

Stress testing banks. Since the �nancial crisis of 2007-2008, in Europe as in USA, public
authority bodies such as the European Banking Authority and the European Central Bank or the
Federal Reserve now implement on a regular basis regulatory stress tests under di�erent scenarios.
However, a striking feature of these regulatory stress tests is the static balance sheet assumption, that
is, banks hit with an adverse shock are not allowed to react even if their capital ratio falls below the
required minimum (see [Goldstein, 2017] a lucid criticism of regulatory stress tests). On the contrary,
the academic literature on the subject explicitly considers such a reaction, fundamental if one
wants to forecast systemic risk. An important paper on the subject is [Greenwood et al., 2015] (see
also [Braouezec and Wagalath, 2019], [Cont and Schaanning, 2016], [Duarte and Eisenbach, 2021]
for related models) in which they explicitly consider one round of deleveraging after an adverse
shock. An interesting aspect of their model (as the framework o�ered in this paper) is that it is
easy to calibrate to data and they o�er an empirical analysis using data from the European Banking
Authority.

Fire sales and pecuniary externalities in �nance. In addition to non-market interdepen-
dence, the usual de�nition of an externality in Economics, [Scitovsky, 1954] notes that the concept
of external economies also includes interdependence among �rms (e.g., banks) through the market
mechanism, called pecuniary externality. Such a concept of pecuniary externality has now been
extensively applied in Economics (e.g., [Greenwald and Stiglitz, 1986]). In �nance, when banks
are hit with an adverse common shock and sell a portion of their assets at the same time to (try
to) restore their capital ratios, this leads to �re sales, an example of pecuniary externality and
ultimately to a running for the exist ([Pedersen, 2009]), a kind of death spiral. In the recent liter-
ature on the subject, see for instance [Bichuch and Feinstein, 2019], [Bichuch and Feinstein, 2022],
[Braouezec and Wagalath, 2019], [Caballero and Simsek, 2013], [Chernenko and Sunderam, 2020],
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[Duarte and Eisenbach, 2021], [Jeanne and Korinek, 2020], [Kara and Ozsoy, 2020], [Kuong, 2021]
to cite few papers, all o�er a framework in which the concept of pecuniary externality��re sales�
plays a central role. In a recent paper [Eisenbach and Phelan, 2022] consider, as we do here, a
strategic model of �re sales called "Cournot �re sales" in which banks that face a liquidity (or
productivity) shock need to delever. However, the authors do not consider capital ratios, which
leads them to analyze a standard Cournot oligopoly model, that is, without solvency constraint.

Macroprudential regulation as a tool to mitigate pecuniary externalities. The liter-
ature on macroprudential is now abundant, both in classical academic journals in Economics and
Finance but also in policy-oriented journals such as IMF publication ([Brockmeijer et al., 2011]),
BIS papers ([BIS, 2016]), ESRB papers ([(ESRB), 2014]). In [Brockmeijer et al., 2011], they re-
call that the objective of macroprudential policy is to limit the build-up of systemic risk and o�er
an interesting distinction between two types of macroprudential instruments, those that address
the time dimension of systemic risk (which re�ects to its buid-up over time) and those that ad-
dress its cross-sectional dimension (which re�ects the distribution of risk at one point in time). In
[De Nicoló et al., 2012] and in [Claessens, 2014], they implicitly adopt the cross-sectional point of
view and consider a number of tools designed to address the �re sales externalities problem; liquid-
ity requirements, capital surcharges (currently implemented in Basel III, see [Benoit et al., 2019]
for an appraisal), taxation and restrictions on activities. Both [De Nicoló et al., 2012] and in
[Claessens, 2014] share the point of view that the foundation of macroprudential policy lies in
the correction of the market failures�externalities�that gives rise to systemic risk.

Generalized games. First developed by [Arrow and Debreu, 1954] under the terminology
"abstract economy" (see [Harker, 1991], [Facchinei and Kanzow, 2010] or [Fischer et al., 2014]), in
a generalized game, interaction between agents occurs not only through the payo� function but also
through their strategy sets. In Economics, most game theoretic oligopoly à la Cournot are indeed
not generalized games since each �rm chooses a strategy in an exogenous strategy set which by
assumption does not depend upon the choice of the other �rms (e.g., [Vives, 2001], [Tirole, 1988],
5.4, see also [Ru�n, 1971] for an analysis of the competitive limit).

In a generalized game, the condition under which a Nash equilibrium exists are particularly
strong (e.g., [Ichiishi, 1983], see also [Dutang, 2013] for a nice review). To somehow circumvent
this existence problem, in an in�uential paper, [Rosen, 1965] introduced the notion of a shared

constraint. Under a shared constraint, each agent i, given what the others do, denoted x−i, is
constrained to pick a strategy xi such that the pro�le of strategies (xi, x−i) lies in an exogenous
set S called the shared constraint. [Rosen, 1965] shows that a Nash equilibrium with shared con-
straint exists under standard conditions (but see [Tóbiás, 2020]) and it is now very common in the
generalized games literature to directly start with a shared constraint. However, as observed in
[Braouezec and Kiani, 2021a], the "micro foundation" of the shared constraint is missing, that is,
the set S is simply postulated without any reference to the basic individual constraints. We shall
here follow [Braouezec and Kiani, 2021a] and consider the endogenous shared constraint, which is
the shared constraint that results from individual constraints. Within our �nancial model, the
individual constraint called microprudential constraint is the solvency constraint of a given bank
while the endogenous shared constraint called macroprudential constraint is solvency constraint of
all banks. In the second case, each bank considers the constraint of all banks.
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3 The Cournot �re sales oligopoly framework

In classic oligopoly models à la Cournot (e.g. [Tirole, 1988], [Vives, 2001]), the multi-product �rm
i o�ers a quantity qi = (qi,1, ..., qi,n). In the simplest case of a mono-product �rm (qi ∈ R+) in
which �rms compete à la Cournot, the price of the good is a function of the sum of the quantities
o�ered and is an example of an aggregative game (e.g. [Nocke and Schutz, 2018]). A striking
feature of the classic Cournot oligopoly, as in most game theoretic frameworks used in Economics,
is that the strategy set of each �rm does not depend upon the decisions of the other �rms. On
the contrary, within our framework in which �rms are regulated banks, the solvency constraint of
a given bank i explicitly depends upon the quantities of assets sold by the other banks through
the price mechanism, which gives rise to a negative pecuniary externality. We consider a banking
system at a given time t and we assume that each bank complies with its regulatory ratio(s).

3.1 Banks' balance-sheets and regulatory constraints

We consider a banking system B = {1, 2, ..., p} with p ≥ 2 banks where each bank i ∈ B invests
in two types of risky assets; assets subject to credit risk (loans) and assets subject to market risk
(traded securities). Banks may also invest a riskless asset, cash, which represents the value of the
bank account of that bank at the Central bank.

Consider the asset side of a given bank i and let Vi0 be the value of the loans (asset 0) and let
Vij := Pj × qij ≥ 0 be the value (in currency) of each risky asset j ∈ {1, 2, ..., n}, where qij is the
quantity (in shares) of risky asset j held by bank i and Pj is the price (or value) of the risky asset
j at a given date t. Cash is denoted vi > 0. Regarding now the liabilities, let Di be the sum of the
value of deposits and/or debt securities. The balance-sheet of the bank i at time t is as follows.

Balance-sheet of bank i at time t

Assets Liabilities

Cash: vi Debt: Di

Non-traded assets: Vi0
Traded assets:

∑n
j=1 qijPj Equity: Ei

Ai = vi + Vi0 +
∑n

j=1 qijPj Ei +Di

In general, loans (e.g., long-term consumers loans subject to credit risk) are illiquid contracts
so that their resale value in the short-term is close to zero due to the so-called adverse selection
problem. On the contrary, the risky assets subject to market or to counterparty risk (e.g., traded
securities such as stocks, ETF, bonds, vanilla derivatives) can be resold in the short-term depending
on their market liquidity. Some securities might be very liquid while others might be less liquid.
By de�nition, the total value of the assets at time t is equal to the total value of the liabilities.

Ai = vi + Vi0 +
n∑
j=1

qijPj = Ei +Di

Assumption 1 Banks are not directly interconnected through contractual obligation.

7



In practice, banks are interconnected through a number of �nancial debt contracts such as
derivatives, repurchase agreements or (long term) bonds. Unfortunately, this network of intercon-
nections can not be retrieved from the observation of the annual reports of each bank. Assuming
no contractual obligation between banks means that the debt of a given bank (liability) is either
entirely composed with deposits or held by outside investors such as households or non-banks enti-
ties. As a result, a given bank A can not directly fail because bank B fails, that is, direct contagion
(of default) can not arise. Considering such a network of interconnections would actually reinforce
the contagion e�ects analyzed in this paper. From the above balance sheet, the value of equity (or
capital) at time t of an operating (i.e., non-failed) bank i is equal to

Ei := Ai −Di = vi + Vi +
n∑
j=1

qijPj −Di > 0 (1)

and is positive by assumption. Let αij > 0 be the regulatory risk weight of bank i associated to
risky asset j. By de�nition, abstracting operational risk, the total risk-weighted assets of bank i is
equal to

RWAi = αi0Vi0 +

n∑
j=1

αijqijPj (2)

so that the global risk-based capital ratio (RBC) of that bank at time t is equal to

θi,t :=
Ei

RWAi
(3)

From Basel III, the total value of equity of bank i at time t (ignoring regulatory adjustments) is
equal to Tier 1, capital (going-concern capital) plus Tier 2 capital (gone-concern capital) and the
minimum capital ratio is now bank-dependent in that it depends upon the activity of the bank. In
this paper, we shall focus on Tier 1 capital ratio and θi,t,min denotes this minimum capital ratio at
time t. For simplicity, we drop the time index and simply denote it θi,min. By assumption

θi,t ≥ θi,min for each i = 1, 2, ..., p (4)

For simplicity, we shall assume that each bank has only Tier 1 capital, that is, Ei := Tier 1i so
that the global risk-based capital ratio θi is a Tier 1 capital ratio.

3.2 Impact of an exogenous shock on banks' capital ratios

The timing of our model is as follows.

• At time t+, assets are hit with an adverse shock and banks that do not anymore comply with
their regulatory capital ratio sell a portion of their assets.

• At time t+ 1, equilibrium prices are disclosed and observed.

Banks that are required to react at time t+ sell a portion of their assets by minimizing the value
of the asset sale. More precisely, banks use the known price of each asset at time t+ to choose their
deleveraging strategy in order to be solvent at time t + 1. Since no decisions are taken between
time t+ and t + 1, the game is static. Throughout this section, we present and discuss the main
assumptions of our Cournot �re sales oligopoly model.
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Assume that a shock on all risky assets occurs at date t+ and denote ∆ = (∆1, ...,∆n) ∈ [0, 1]n

the adverse shock vector, where ∆j represents the size of the shock in percentage of Pj . The price
(value) of risky asset j at time t+ thus is equal to

Pj,t+ = Pj(1−∆j) j = 0, 1, ..., n (5)

Remark 1 The vector of shocks ∆ = (∆1, ...,∆n) ∈ [0, 1]n is naturally interpreted as a stress test

scenario.

Let A+
i,t = vi + Vi0(1−∆0) +

∑n
j=1 qijPj(1−∆j) be the value of the asset after the shock. The

risk-based capital thus is equal to

θi,t+(∆) =
max{Ai,t+ −Di; 0}

RWAi,t+
=

max{Ei,t − Vi0∆0 −
∑n

j=1 qijPj∆j ; 0}
αi0Vi0(1−∆0) +

∑n
j=1 αijqijPj(1−∆j)

(6)

Let us now de�ne the three following sets

Z∅i := {∆ ∈ [0, 1]n : θi,t+(∆) ≥ θi,min} (no reaction) (7)

Zsalei := {∆ ∈ [0, 1]n : Ei,t+(∆) > 0 and θi,t+(∆) < θi,min} (asset sale) (8)

Zfaili := {∆ ∈ [0, 1]n : Ei,t+(∆) ≤ 0} (insolvency and liquidation) (9)

and note that they form a partition of [0, 1]n. Of particular interest throughout this paper will be
the sets Zsalei and Zfaili . The following fact follows directly from equations (8) and (9).

Fact 1 For each bank i, the critical sets Zsalei and Zfaili de�ned in equations (8) and (9) can be

written as follows:

Zsalei = {∆ ∈ [0, 1]n : Ei − θmin
n∑
j=0

αijqijPj <
n∑
j=0

qijPj∆j(1− αijθi,min)} (10)

Zfaili = {∆ ∈ [0, 1]n : Ei ≤
n∑
j=0

qijPj∆j} (11)

We shall adopt throughout the paper the following terminology.

De�nition 1 The shock ∆ is said to be

• small to medium if, for each bank i ∈ B, Ei(∆) > 0 but there exists at least one bank i′ such

that θj(∆) < θj,min, i.e., ∆ ∈ Zsalei′ .

• severe if there exists at least one bank i ∈ B such that θi(∆) = 0, i.e., ∆ ∈ Zfaili .

3.3 Deleveraging strategies, market liquidity and endogenous price impact

Since ∆ is a common shock, it a�ects the balance-sheet of all banks that hold risky assets and may
leave some of them undercapitalized, possibly insolvent. As observed in [Cohen and Scatigna, 2016],
there are various channels of adjustment that can be used by an undercapitalized bank to restore its
capital ratio. From a regulatory point of view, the best channel is clearly equity issuance although
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it is frequently considered as the most expensive one. Moreover, issuing new equity takes time,
typically several months, which is certainly too long for undercapitalized banks. After an adverse
shock, e.g., an event comparable to the failure of Lehman Brothers in 2008, banks liquidate a portion
of their assets but do not issue equity ([Brunnermeier and Oehmke, 2014, Cifuentes et al., 2005,
Greenlaw et al., 2012, Greenwood et al., 2015]). In the short-run, banks typically use one of the
two following deleveraging strategies to reshu�e their assets side6.

1. Asset shrinking strategy.

2. Risk-reduction strategy

In both cases, the bank will sell a portion of its risky assets. However, in the �rst case, the bank
will use the proceeds to repay a portion of its debt while in the second case, it will use it to invest
in cash. As long as markets are perfectly liquid (i.e., perfectly competitive), whether the bank uses
the asset shrinking strategy or the risk reduction strategy, its capital ratio will increase since the
capital remains constant while the risk-weighted asset decrease. A number of recent papers (e.g.,
[Gropp et al., 2019], [Juelsrud and Wold, 2020]) document empirically that banks tend to decrease
their risk-weighted assets in order to increase their risk-based capital ratio. In what follows, since we
essentially focus on the risk-based capital ratio, we make the assumption that undercapitalized (but
solvent) banks sell a portion of their risky assets and invest the proceeds in cash in order to (try to)
restore their capital ratio. We make the implicit assumption that there are on the market �nancial
institutions such as hedge funds that have no capital requirements (or other �nancial institutions
such as pension funds, other banks...) that have the �nancial muscles to be the buy side. We shall
discuss later on the situation in which the bank is required to manage more than one capital ratio.

Assumption 2 Banks that do not comply with their regulatory risk-based capital ratio reshu�e

their risk-weighted assets; they sell a portion of their risky assets and invest the proceeds in the

riskless asset (cash).

Let xij ∈ [0, 1] be the proportion of risky assets j sold by bank i in reaction to the shock vector
∆ at date t+ and let

Xj :=
∑
i∈B

xijqij (12)

be the total quantity of assets j sold by all banks. Note that Qj :=
∑

i∈B qij is the maximum
quantity of asset j that can be liquidated so that Xj ≤ Qj . As in [Banerjee and Feinstein, 2021]
among others, we consider of a fairly general price impact function denoted Ij(.) that encompasses
various price impact functions such as the linear or exponential ones but that only depends upon
the quantity of asset j liquidated, that is, there is no cross price impact.

Assumption 3 The price of the (risky) marketable asset j = 1, ..., n at time t+ 1 is equal to

Pj,t+1(∆j , Xj) = Pj × (1−∆j)︸ ︷︷ ︸
Pj,t+

×Ij(Xj) (13)

6To the best of our knowledge, [Braouezec and Kiani, 2021b] is the unique formal (optimization based) model in

which a bank can both issue new equity and/or liquidate assets in order to reach a target capital ratio from the

current one.
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where the (price) impact function Ij is once again a twice continuously di�erentiable and decreasing

function of Xj such that

Ij(0) = 1 and Ij(Qj) ≤ 1 (14)

Without loss of �nancial generality, we assume that the price impact function is a regular
function (continuously di�erentiable).

Balance-sheet of bank i at date t+ 1 after deleveraging

Assets Liabilities

Cash: vi +
∑n

j=1 xijPj,t+1(.)qij Debt: Di

Non-tradable assets: Vi0(1−∆0)

Tradable assets:
∑n

j=1(1− xij)Pj,t+1(.)qij Equity: Ei,t+1

Ai,t+1 = vi + Vi0 +
∑n

j=1 Pj,t+1(.)qij Ei,t+1 +Di

It will be convenient to write the impact function as follows.

Ij(Xj) = 1− ξj(Xj) (15)

where ξj(Xj) is a continuously di�erentiable and increasing function consistent with equation (14).

Remark 2 When ξj(Xj) = ajXj, we wil say as usual that the price impact is linear.

After the adverse shock ∆j but before any liquidation, the price of asset j is equal to P before
j =

Pj(1−∆j). When the price impact is linear, after liquidation, the price denoted P after
j is equal to

P after
j := P before

j ×
(

1−
∑

i∈B xi,jqi,j

Φj

)
(16)

where Φj is called a market depth and measures the degree of liquidity of the market (of security)
j. The greater the market depth, the greater the liquidity of security j. When Φj =∞, the market
is perfectly liquid in that each market participant considers the price as exogenous. Throughout the
paper, we assume that Φj > Qj where Qj =

∑
i∈B qi,j .

3.4 The deleveraging problem yields a Cournot �re sale oligopoly

Recall that within our framework, loans (i.e., asset 0) are non-tradable assets, that is, they are
perfectly illiquid with no resale value. After the shock, banks can only resell assets of the trading
book, that is, assets j = 1, 2, ..., n. Let

Ei := [0, 1]n and E =
∏
i

Ei (17)

be respectively the set of liquidation strategies of bank i ∈ B and let the set of liquidation strategies
of the overall banking system. As usual in game theory, let x = (xi, x−i) ∈ Ei × E−i where E−i :=

[0, 1]n(p−1) is a n(p−1)-dimensional vector and assume that x−i is known to bank i. Let Vij = Pj×qij

11



be the value of asset j at time t for bank i, i.e., before the shock. Using equations (13) and (15), it
is not di�cult to show that, for a liquidation strategy x, the total capital of bank i is equal to

Ei,t+1(∆, xi, x−i) = max

Ei,t − Vi0∆0 −
n∑
j=1

Vij × [∆j + ξj(Xj)(1−∆j)] ; 0

 (18)

and note that the capital of each bank i depends upon the overall vector of liquidation x ∈ E , which
means that the deleveraging problem is a strategic problem. The total capital at time t+ 1 can be
decomposed in three di�erent terms, the initial capital of the bank Ei,t, the depletion of this capital
due to an exogenous shock ∆j and the further depletion of this capital due to the endogenous banks'
reaction which involves the impact function ξj(Xj). From the balance sheet, it is easy to see that
for a given liquidation strategy x, the risk-weighted assets are equal to

RWAi,t+1(∆, xi, x−i) = αi0Vi0(1−∆0) +
n∑
j=1

αijVij × (1−∆j) (1− ξj(Xj)) (1− xij) (19)

so that the regulatory capital ratio of bank i at time t+ 1 is equal to

θi,t+1(∆, xi, x−i) =
Ei,t+1(∆, xi, x−i)

RWAi,t+1(∆, xi, x−i)
(20)

Note that we adopt the natural convention that θi,t+1(∆, xi, x−i) = 0 when (xi1, xi2, ..., xin) =

(1, 1, ..., 1) since Ei,t+1 = 0 (i.e., when bank i is insolvent after the deleveraging process).

Fact 2 For a given x−i, if for each i ∈ B, αi0Vi0(1−∆0) > 0, then, the risk-based capital ratio of

each bank i as de�ned in equation (20) is a continuous function on the set [0, 1]np and there exists

xmaxi ∈ [0, 1]n such that the function θi reaches its maximal value

θmaxi := sup
xi∈[0,1]n

θi(xi, x−i) (21)

which may be higher or lower than θi,min.

This continuity property follows from the fact that the price impact function ξj(Xj) is assumed to
be continuously di�erentiable for each j and the existence of θmaxi follows from Weierstrass extreme
value theorem. Due to the price impact, everything else equal, the numerator of the capital ratio
of bank i given by equation (20) is a decreasing function of xij while its denominator may or may
not be a decreasing function of xij . For the denominator of the capital ratio (i.e., the RWA) to be
a decreasing function of xij , the function h(xij) := (1− ξj(Xj)) (1−xij) should be decreasing, that

is, h′(xij) < 0. It is easy to see that this depends upon the magnitude of the positive term xij
dξj(Xj

dxij
.

Assuming even that the RWA is a decreasing function, since the capital is also a decreasing function
of xij , the capital ratio needs not be an increasing function of xij . We shall come back to that point
later on.

Following [Braouezec and Wagalath, 2019], we now introduce the implied shock for asset j, that
is, the shock which is implied after the liquidation process. This implied shock denoted ∆j(Xj) for
the asset j is found by solving

Pj,t+1(∆j , Xj) = Pj × (1−∆j(Xj)) (22)

12



and it is easy to show, using equations (13) and (15), that this implied shock for asset j is equal to

∆j(Xj) := ∆j + ξj(Xj)(1−∆j) (23)

As long as Xj 6= 0, ∆j(Xj) > ∆j so that the rebalancing process of each asset j at date t + 1

actually reinforces the under performance of asset j caused by the initial shock ∆j at date t+. It is
precisely because ∆j(Xj), an endogenous quantity, is greater than ∆j that there may be additional
failures after the deleveraging process.

Remark 3 Considering direct contagion within our framework (e.g., [Glasserman and Young, 2016],

[Jackson and Pernoud, 2021] for review papers) would actually reinforce indirect contagion.

Let fi(xi) be the total value of the assets sold by bank i at time t+ in order to restore its capital
ratio. For a given bank i, as long as xij > 0, this cost is equal to

fi(xi) =

n∑
j=1

xijqij Pj(1−∆j)︸ ︷︷ ︸
=Pjt+

(24)

We make the fairly natural assumption that each bank i tries to minimize the total value of asset
sold using the known prices of time t+ subject to the constraint that the capital will be greater than
the minimum required at time t+ 1, when the price of each asset j will be equal to Pj,t+1(∆j , Xj).

Assumption 4 Given the shock ∆ and what the other banks liquidate, i.e., x−i ∈ [0, 1]n(p−1), each

bank i such that θi,t+(∆) < θmin must solve the following constrained optimization problem

min
xi∈[0,1]n

fi(xi) (25)

subject to θi,t+1(xi, x−i,∆) ≥ θi,min (26)

The optimization problem given by equations (25) and (26) yields a particular kind of game called
generalized game since the set of strategies for a given bank i such that the constraint is satis�ed
explicitly depends upon x−i. We do not exclude the vector xi = (1, 1, ..., 1) which is the situation in
which bank i would have to liquidate 100% of its trading book assets, that is, assets j = 1, 2, ..., n.
Note importantly that given the shock ∆ and x−i, the set of solutions of the optimization problem
(given by equations (25) and (26)) may be empty. In such a case, the game is unde�ned. From a
�nancial point of view, no solution simply means that bank i is insolvent. We shall allow later on
such a possibility of insolvency.

Remark 4 The formulation of the problem given by equations (25) and (26) yields a static opti-

mization problem for each bank, given x−i. In this paper, we are only interested in looking at the

Nash equilibria of the generalized game. In practice, banks would liquidate sequentially their assets

and it would be possible to analyze the underlying dynamical system generated by the best responses

of banks over time. For instance, at time τ + 1, a given bank i could form its best response based

on the observed liquidation decisions at time τ , that is, xτ−i. The stationary states of this dynamical

system would be the Nash equilibria of the static game.

13



Assumption 5 Complete information; all the quantities but also the structure of the game are

known (indeed common knowledge) to every bank.

Due to Basel III, banks must now disclose more information than before about their own activity7

so that it makes sense to assume that each bank is aware of the positions of the other banks in
the banking system. Since the structure of the game is itself common knowledge, each bank knows
that each bank knows the structure of the game and so on and so forth. As a result, when a
given bank i is insolvent after the shock, this failure is known to each bank (i.e., can be perfectly
predicted) and this is common knowledge. But the consequences of this failure is also common
knowledge. Each bank is perfectly able to predict the consequences of the asset liquidation by bank
i on asset prices and the (possible) resulting cascade of failures due to the existence of the price
impact (negative �re sales externality). Within our model, we make the assumption that banks
and regulators (or supervisors) share the same information because annual reports contain all the
relevant information and are public, see section 7 devoted the empirical analysis. Admittedly, this
assumption while disputable is reasonable. It is our belief that modeling the same game theoretic
problem in asymmetric information (using Bayesian games) would raise additional issues that are
beyond the scope of this paper.

3.5 Risk-based and non risk-based capital ratios in Basel III

In Basel III, banks must not only comply with the various risk-based capital ratios but also with a
non-risk based capital ratio called the leverage ratio de�ned as Tier 1 capital divided by the total
exposure. It turns out that for many European banks, the total value of the assets and the total
exposures are very close and di�er typically by 5% to 10%, which means that the total value of the
assets is a fairly good approximation of the total exposure.

Li ≈
Tier1 capital

Total assets
=
Ei
Ai

(27)

Written as in equation (27), the leverage ratio can be thought of as the particular case of the
risk-based ratio when each risk weight is equal to one, including cash. Since the denominator of
the leverage ratio incorporates cash, the risk-reduction strategy is now inoperative. To increase its
leverage ratio, bank i must adopt an asset shrinking strategy, that is, as already discussed, it must
sell a portion of its risky assets and makes use of the proceed to pay back its debt8. Everything
else equal, with the asset shrinking strategy, both the leverage ratio and the risk-based capital will
increase. To see this, assume that the market of asset k is perfectly liquid (no price impact), that
is, by selling this asset k at its fair value Vik, the proceeds is equal to Vik. The total value of the
assets when asset k has been sold thus is equal to Ai =

∑
j 6=k

Vij − Vik and the total debt is equal to

Di − Vik. Let θi and Li be the risk-based and the leverage ratio before the asset sale.

7Systemic banks are constrained to publicly disclose twelve indicators about their activity with the rest of the

�nancial system on the website of the European Banking Authority (EBA). See https://www.eba.europa.eu/risk-

analysis-and-data/global-systemically-important-institutions.
8This might not always be possible. If a bank is essentially �nanced with deposits, it is di�cult to see how deposits

can be repaid...
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• The leverage ratio after the sale is now equal to Lafter
i =

Ei∑
j 6=k Vij − Vik

and is greater than

Li since the denominator has decreased by Vik.

• The risk-based capital ratio after the sale is now equal to θafter
i =

Ei∑
j 6=k αijVij

and is greater

than θi since the denominator has decreased by αikVik.

With low price impact, both capital ratios will yet increase. However, when the price impact is
signi�cant, depending upon αik (i.e., whether it is lower or higher than one), the risk-based capital
ratio may increase while the leverage decreases or the opposite.

4 Nash Equilibrium analysis under microprudential regulation

4.1 No price impact as a non-strategic problem

The case in which there is no price impact is simple because the problem for each bank is non-
strategic. For each j = 1, 2, ..., n, the function ξj(.) is invariably equal to zero so that, from equation
(18) and (19), the capital and the risk-based capital ratio of each bank i depends only upon xi. For
each bank i, the problem reduces to a standard decision problem, that is, minxi fi(xi) subject to
θi(xi) ≥ θi,min. The next proposition is simple to prove but gives an interesting insight regarding
the optimal way to delever when there is no price impact. It also says that depending upon the
exposure to loans, the bank might not be able to restore its capital ratio back above the required
minimum.

Proposition 1 Assume no price impact (i.e., for each j, Ej(Xj) = 0 regardless of Xj ≥ 0) and

consider a given bank i such that ∆ ∈ Zsalei .

1. For each i ≥ 1 and each j ≥ 1, the capital ratio xij → θi(xij , ...) is an increasing function of

xij.

2. When Vi0 = 0, bank i is always able to restore its capital ratio back above the required minimum

and it is optimal to �rst sell the security k with the highest regulatory weight k (i.e., the security

k such that αik > αij for k 6= j). If the proceeds of the sale is is not enough, it is optimal to

sell the asset with next highest risk weight and so on and so forth.

3. When Vi0 > Ei, bank i will always be able to restore its capital ratio back above the required

minimum through the above optimal deleveraging strategy.

Proof. See the appendix.

When markets are perfectly liquid (i.e., competitive), the numerator of the capital ratio of each
bank is invariant with respect to the liquidation decision(s) since each asset can be resold at its
current market price, without price impact case, (see equation 18). As a result, the capital ratio of
bank i only depends upon its own decision xi. Since the risk-weighted assets of each asset j decreases
with xij , it thus follows that the capital ratio of bank i increases when xij increases. When Vi0 = 0,
the bank is not exposed to illiquid assets. As a result, by selling an arbitrarily high portion of
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each asset j, the capital ratio is arbitrarily high since the risk-weighted assets are arbitrarily close
to zero. As a result, for a given constraint θi,min, there exists xij , j = 1, 2, ..., n possibly close to
one) such that θi(xi1, xi2, ..., xin) = θi,min. While there are possibly many deleveraging strategies to
restore its capital ratio, bank i is assumed to choose the cheapest one, which leads to point 2 of the
above proposition. To minimize the value of the asset sale, the bank sells �rst the asset (or security)
with the highest risk weight. If this is not enough, it sells the asset with the next highest risk
weight and so on and so forth. This liquidation strategy is in sharp contrast with the proportional
liquidation rule used in [Greenwood et al., 2015] or in [Cont and Schaanning, 2016] in which the
bank sells a proportion of each asset. Such a proportional liquidation strategy is suitable when the
bank maintains a non-risk based capital ratio such as the leverage ratio but not a risk-based capital
ratio.

4.2 Positive price impact as a generalized game problem

As long as the price impact is positive, from equation equation (26), the capital ratio of each bank
i depends upon the decisions of all the other banks. Before discussing the best response properties,
let us formulate the capital ratio constraint given in equation (26) as a microprudential (solvency)
constraint.

De�nition 2 Given an adverse shock ∆ and the liquidation decisions x−i of all banks except bank i,

the strategy set that results from the enforcement of the microprudential regulation of bank i de�ned

as

Xi(x−i) = {xi ∈ [0, 1]n : θi,t+1(xi, x−i,∆) ≥ θi,min} (28)

is called the microprudential constraint.

Note importantly that the strategy set of bank i denoted Xi for short explicitly depends upon x−i
but implicitly depends upon the price impact function I1(.), ..., In(.). It is natural to call the set
Xi(x−i) the microprudential constraint since it is the aim of each bank i to have a capital ratio
greater (or equal) than the required minimum. If Xi(x−i) is empty, then, bank i is insolvent and
must be liquidated, that is, it must sell 100% of its asset, xi = (1, 1, ..., 1). As long as Xi(x−i) is not
empty, bank i can restore its capital ratio by choosing a strategy xi ∈ [0, 1]n to restore its capital
ratio. As we shall see later on, allowing banks to be insolvent raises new issues. The optimization
problem given by equations (25) and (26) can now simply be written as

min
xi∈[0,1]n

fi(xi) s.t xi ∈ Xi(x−i) (29)

Within our framework, interaction between banks occurs through the strategy sets but not through
their objective function.

Fact 3 For each bank i ∈ B, since the microprudential constraint Xi(x−i) depends upon x−i, it

is usual to call Xi(x−i) a point-to-set map. As a result, the Cournot �re sales oligopoly de�nes a

generalized game ([Facchinei and Kanzow, 2010], [Fischer et al., 2014] for review papers).

As already said, generalized games contrast with "classical" games frequently encountered in eco-
nomic theory (e.g., [Fudenberg and Tirole, 1991], [Moulin, 1986], [Osborne and Rubinstein, 1994])
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in which the strategy set Ei of each agent i does not depend upon the decisions of the other agents
x−i. In a generalized game, the strategy set of each agent depends upon the decisions of all the
other agents and hence is denoted Xi(x−i).

Let BRi(x−i) be the best response of bank i. We now provide a geometric characterization of
the point-to-set map Xi(x−i) when not empty and we show that under linear price impact, the best
response is unique.

Lemma 1 Assume that the price impact is linear for each asset j ∈ {1, 2, ..., n} and consider the

situation of bank i for which Xi(x−i) 6= ∅.

1. The point-to set map Xi(x−i) is the intersection of a n-dimensional ellipsoid with the unit

compact of Rn, [0, 1]n.

2. The best response BRi(x−i) is either the unique tangency point between the n-dimensional

ellipsoid Xi(x−i) and a hyperplane or is a corner solution.

Proof. See the appendix.

When n = 2, Xi(x−i) = {xi ∈ [0, 1]2 : θi(xi, x−i) ≥ θi,min} reduces to an ellipse. In Fig 1, for
simplicity, we make the assumption that the ellipse is contained in the unit square but nothing is
changed if we do not make this assumption. Let Fθi,min

= {xi ∈ [0, 1]2 : θi(xi, x−i) = θi,min} be
a level curve of the capital ratio, that is, all the deleveraging strategies xi such that the capital
ratio is equal to θi,min. This level curve is depicted in yellow in Fig 1 and is the contour (or the
boundary) of the ellipse. Let xmaxi be the solution of maxxi∈Xi(x−i) θi(xi, x−i) and note that in
general, θi(xmaxi , x−i) := θmaxi > θi,min. A number of remarks are in order.

1. The point xmaxi is (generically) not the center ci of the ellipse and is such that xmaxi ≥ ci
component-wise.

2. The two points xi,A and xi,B are located on the same level curve although xi,B > xi,A
component-wise.

3. The capital ratio of bank i is not an increasing function of xi,1 and xi,2. It can be directly
seen from Fig 1 that on the north-east of xmaxi , the capital ratio of bank i decreases when xi,1
or xi,2 increases.

4. The triangle with a red contour represents the set of point xi such that the capital of bank i
is equal to zero. Depending upon x−i and/or the capitalization of the bank, it may obviously
be the case that such a set of points is empty. The equation of the red line follows from the
linearity of the capital Ei(xi, x−i) with respect to xi,1 and xi,2. From equation (18) in the
case of linear price impact, it reduces in the two dimensional case to an equation of the form
K − xi1qi1 − xi2qi2 = 0 equivalent to xi2 = −xi1qi1+K

qi2
whose slope is − qi1

qi2
< 0

Consider point 3. When xi,1 and xi,2 increase, the risk-weighted assets decrease so that, ev-
erything else equal, the capital ratio increases. But everything is not equal. When xi,1 and xi,2
increase, this also decreases the price of the assets and thus the capital of the bank. By de�nition,
the point xi,A is such that θi(xi,A, x−i) = θi,min. From Fig 1, since xi,A < xmaxi component-wise,
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Figure 1: The point-to-set map is an ellipse when the price impact is linear
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Figure 2: The point-to-set map of a given bank

by increasing each component of xi,A, the capital ratio increases and reaches its maximum in xmaxi .
Starting from xi,A, this means that by selling more of each asset, the drop of the risk-weighted
assets is more important than the drop of the capital of the bank so that the capital ratio increases.
However, when one starts from the point xmaxi , when bank i sells more of each asset, the drop of the
capital is more important than the drop of risk-weighted assets so that the capital ratio decreases
and this explains point 3. If one continues to increase the sale of each asset after the point xi,B,
one may reach the region in which the capital of bank i is equal to zero.

Consider now the best response. On Fig 2, the point-to-set map of a given bank Xi(x−i) is
included in the unit compact of R2 while it is not on Fig (5). Since the level curves associated to
the objective function (i.e., fi) are lines, in Fig 2, the best response is a tangency point while in Fig
5, it is a corner solution, the best response is located on the boundary of the unit square [0, 1]2.

To conclude this paragraph, let us now come back to the multiple ratios situation and let

Yi(x−i) = {xi ∈ [0, 1]n : Li,t+1(xi, x−i,∆) ≥ Li,min} (30)

be the microprudential constraint associated with the leverage ratio, where Li,min is the minimum
leverage required. Since the leverage ratio is the particular case of the risk-based capital when

18



𝑋𝑖(𝑥−𝑖)

The best response of bank i is a 
corner solution

𝑥𝑖,2

1 𝑥𝑖,1

1

Figure 3: The point-to-set map of a given bank
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Figure 4: Risk-based capital ratio and leverage ratio

all the risk weights are equal to one9 (including cash), the point-to-set map Yi(x−i) also is (when
included in the unit compact of Rn) an n-dimensional ellipsoid. Let Hi(x−i) := Xi(x−i)

⋂
Yi(x−i)

be the intersection of two n-dimensional ellipsoids and note that Hi is a convex set.

Fact 4 Assume that price impact is linear and that each bank uses an asset shrinking strategy. When

a given bank i manages both the risk-based capital ratio and leverage ratio, then, the overall Tier

1 microprudential constraint results from the intersection of two n-dimensional ellipsoids Hi(x−i)

with the unit compact of Rn.

To the best of our knowledge, this is the �rst paper that o�ers a description of the management
of the two Tier 1 capital ratios in a fairly general framework.

9This is approximately correct when the total exposures is close enough to the total value of the assets.
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4.3 Existence of a Nash equilibrium under microprudential constraints

Following the terminology introduced in [Braouezec and Kiani, 2021a], let K be a set admissible
strategies de�ned as follows

K = {x ∈ E : ∀i ∈ B, xi ∈ Xi(x−i)} (31)

and note that if K = ∅, no equilibrium can exist. The non-vacuity of K thus is necessary for the
Nash equilibrium to exist and we shall assume that K is not empty. Given the shock ∆ and the price
impact functions Ij(.) j = 1, 2, ..., n, we make the assumption that the set of admissible strategies
K is not empty. Note that when x /∈ K, the game is unde�ned since at least one bank i does not
satisfy its microprudential constraint.

Let (B, E , (θi)i∈B, (Xi)i∈B) de�ne the Cournot �re sale game with microprudential constraints.
Recall that Ei = [0, 1]n and that E =

∏
i∈B Ei and note that K ⊂ E .

De�nition 3 The pro�le of strategies x∗ ∈ K is a Nash equilibrium of the Cournot �re sale game

with microprudential constraints (B, E , (θi)i∈B, (Xi)i∈B) if, for each i ∈ B and each xi ∈ Ei such that
xi ∈ Xi(x

∗
−i), it holds true that fi(x

∗
i , x
∗
−i) ≤ fi(xi, x∗−i).

As already said, a necessary but not su�cient for a Nash equilibrium to exist in the game
with microprudential constraints is K 6= ∅. But even when K 6= ∅, as long as the price impact
is positive, the proof of the existence of a Nash equilibrium to the Cournot �re sale game with
microprudential constraints (B, E , (θi)i∈B, (Xi)i∈B) remains di�cult because virtually nothing is
known in general regarding the (topological) properties of the sets Xi(x−i). For classical games
(e.g., [Dasgupta and Maskin, 1986], theorem 1 and 2), it is well-known that for a Nash equilibrium
in pure strategies to exist, the set Ei must be compact and convex. Within our generalized games
framework, for a Nash equilibrium to exist, the point-to-set map Xi(x−i) of each bank i must be
non-empty, compact and convex for each x−i ([Ichiishi, 1983], see the review paper [Dutang, 2013]).

Theorem 1 ([Arrow and Debreu, 1954], [Ichiishi, 1983]) Let (J,E, (θi)i∈J , (Xi)i∈J) be a general-

ized game with individual constraints and suppose that:

• There exists N nonempty convex and compacts sets Ci ⊂ Rni such that for all x ∈ Rn with

xi ∈ Ci for every i, Xi(x−i) is nonempty closed and convex, Xi(x−i) ⊂ Ci, and Xi as a

point-to-set map, is both upper and lower semi-continuous.

• For every player i, the function θi(, x−i) is quasiconvex on Xi(x−i).

Then a generalized Nash equilibrium exists.

Coming back to our model, we already know that, when non-empty, Xi(x−i) is an ellipsoid when
the price impact is linear, so that it is compact and convex. Applying theorem 1 for our model still
requires the strategy sets to be non-empty for every x−i. Note also that theorem 1 also requires
the point-to-set map Xi(x−i) to be both upper and lower semi-continuous, which is a notion of
continuity for a set.
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Proposition 2 Assume that the price impact is linear for each asset j ∈ {1, 2, ..., n} and assume

that for all i and for all x−i ∈ [0, 1](p−1)n, Xi(x−i) is nonempty. Under these assumptions, a

generalized Nash equilibrium in microprudential constraints always exist.

Proof. See the appendix.

The conditions under which a Nash equilibrium exists in microprudential constraints are ex-
tremely strong since they require in particular Xi(x−i) to be non-empty for all x−i ∈ [0, 1](p−1)n.
It requires not only the shock to be small but also the price impact to be low enough. To see this,
assume one moment that each bank k 6= i sells 99% of its trading book, that is, xk = (0.99, ..., 0.99)

so that x−i = ((0.99, ..., 0.99), ..., (0.99, ..., 0.99)). For the Nash equilibrium to exist in micropruden-
tial constraint, given this particular pro�le of strategies x−i, Xi(x−i) must be non-empty for each
bank i, which is a very strong assumption. For this pro�le of strategies, we typically expect bank i
to fail due to the price impact but such an insolvency is not yet allowed. Such a possibility will be
discussed later on.

5 Nash equilibrium analysis under macroprudential regulation

5.1 How to address externalities related to �re sales ?

According to [Brockmeijer et al., 2011], the aim of the macroprudential regulation (or policy) is to
address the two dimensions of systemic risk.

1. The time dimension;

2. The cross-sectional dimension.

The time dimension re�ects the procyclical e�ect that operates over time within the �nancial
system and the real economy. [Brockmeijer et al., 2011] observe that during the boom phase, pro-
cyclicality induces excessive leverage from �nancial institutions and this build up of aggregate risk
increases the chance of �nancial distress. In that sense, the leverage ratio, which by de�nition limits
the leverage of banks, is a time dimension macroprudential tool.

The cross-sectional dimension re�ects the distribution of risk in the �nancial system at a given
point in time and depends upon the links �nancial institutions may have (e.g., through contractual
obligations, through identical exposures) but also, as noted in [Brockmeijer et al., 2011], upon the
size of the institutions, concentration and substitutability of their activities. In that sense, the
various bu�ers introduced in Basel III as well as the liquidity ratios are cross-sectional macropru-
dential tools. In this paper, we only consider the cross-sectional dimension of systemic risk seen as
a restriction of banks deleveraging decisions.

Up to now, we focused on the microprudential approach to banking regulation, that is, each
bank i only considers its own solvency constraint Xi(x−i), that is, its set of deleveraging strategies
to restore its capital ratio given what the other banks are liquidating (x−i). This solvency constraint
is said to be microprudential because bank i takes into account its own solvency constraint only,
that is, given x−i, bank i chooses xi so as to minimize its own cost function. In particular, bank i
does not take into account the failure externality its decision xi (i.e., its best response BRi(x−i))
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may generate. Such a best response of bank i might imply the failure of a subset of banks. In their
table 1, [De Nicoló et al., 2012] consider four instruments that may be used to address externalities
related to �re sales (see also [Claessens, 2014] for a discussion); capital surcharges, liquidity require-
ment, taxation and restrictions on activities. However, restrictions on activities is mentioned as a
macroprudential tool but is not considered to address the �re sales problem and this is what we
want to do here. It seems important to point out that within our approach, restrictions on activities
arise ex post, that is, when banks must sell a portion of their assets after some systemic shock while
liquidity ratios or bu�ers arise ex ante.

Within our model, each bank i ∈ B comes up with its solvency constraint Xi(x−i) which depends
upon its own characteristics and the decisions of other banks x−i. Recall that K (see equation (31))
is the set of admissible deleveraging decisions. If there is a Nash equilibrium, x must lie in K.
Following [Braouezec and Kiani, 2021a], assume that K is the endogenous shared constraint; given
x−i, the best response of bank i BRi(x−i) must lie in K, which is a restriction of activity. Given
x−i, bank i is not anymore allowed to choose xi ∈ Xi(x−i) if (xi, x−i) /∈ K. Such a restriction of
activities may typically come from a social planner, indeed regulators or supervisors, and can be
interpreted as a systemic constraint that we call a macroprudential regulation.

De�nition 4 Given x−i, the strategy set of bank i that results from the enforcement of the macro-

prudential regulation, the constraint K, is de�ned as

Ki(x−i) = {xi ∈ Ei : x ∈ K} (32)

It is clear that the macroprudential regulation yields an additional constraint for each bank i
since

Ki(x−i) ⊆ Xi(x−i) (33)

When each bank is subject to the macroprudential regulation, given x−i, the choice xi by bank
i is restricted to Ki(x−i) and not anymore to Xi(x−i) and it is precisely in that sense that the
macroprudential regulation introduces a restriction of activities compared to the sole micropruden-
tial constraint. By de�nition, as long as x ∈ K, all banks are able to comply with their regulatory
constraint. It thus follows that when xi ∈ Ki(x−i), all banks comply with their regulatory capital
ratio, i.e., they will all have their capital ratio greater (or equal) than the minimum required. The
optimization problem of each bank i can now simply be written as

min
xi∈[0,1]n

fi(xi) s.t xi ∈ Ki(x−i) (34)

Given x−i, under macroprudential regulation, each bank i must now choose xi to minimize
fi(xi) subject to θi(xi, x−i) ≥ θi,min and subject to θk(xi, x−i) ≥ θk,min for k 6= i, that is, each
bank i takes not only into account its own solvency constraint but also the solvency constraint of
all the other banks. Under microprudential constraint, it may be the case that the best response
BRi(x−i) is such that for some k ∈ B, θk(BRi(x−i), x−i) < θk,min, that is, bank i generates a
negative (�re sales) externality on bank k which does not comply with its regulatory constraint.
Our macroprudential regulation precisely forbids such negative externalities related to �re sales.
We summarize this discussion in the following fact.
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Fact 5 When K is not empty, under the macroprudential regulation, each bank i minimizes fi(xi)

subject to the constraint that no bank will fail (i.e., solves problem 34), which means that the �re

sales externalities problem is addressed.

From a pure mathematical point of view, our model can be seen as a generalization of the
strategic �re sale model introduced in [Braouezec and Wagalath, 2019] in which the number of
risky assets is �nite and not restricted to one. This mathematical generalization allows us, from a
�nancial point of view, to make a clear distinction between micro and macro prudential regulation.
In [Braouezec and Wagalath, 2019], such a distinction is irrelevant since given x−i, each bank has a
unique deleveraging strategy to restore its capital ratio, because xi is scalar. Within our framework
in which n ≥ 2, given x−i, a given bank i may have several deleveraging strategies to restore its
capital ratio. As a result, a given bank i may not allowed to choose the cheapest one if it generates
the failure of other bank(s). As we shall now show, when K is not empty, a Nash equilibrium
always exists under macroprudential regulation, and among the Nash equilibria, one minimizes the
total value of the asset sale, that is, this Nash equilibrium is Pareto optimal. Contrary to the basic
intuition one may have, the analysis is much more easier under macroprudential regulation than
under microprudential regulation.

5.2 Existence of a Nash equilibrium that minimizes the value of asset sales

Assume that x ∈ K and let

V (x) :=
∑
i∈B

fi(xi) =
∑
i∈B

∑
j

fi(xij) (35)

be the total value of the asset resold by banks. Before we present an existence result of Nash
equilibrium under macroprudential regulation, we o�er once again a geometric description of the
point-to-set map Ki(x−i), when not empty.

Lemma 2 Assume that the price impact is linear for each asset j ∈ {1, 2, ..., n} and consider the

situation of bank i for which Ki(x−i) 6= ∅.

1. The point-to-set map Ki(x−i) is the intersection of Xi(x−i) with p−1 a�ne closed half-spaces.

It is therefore the intersection of a n-dimensional ellipsoid with p− 1 a�ne closed half-spaces

and [0, 1]n.

2. The best response in macroprudential constraint BRi(x−i) is well de�ned and is either the

unique point of tangency between the ellipsoid delimited by Xi(x−i) intersected with p − 1

closed a�ne half-spaces (that is, Ki(x−i)) and an a�ne hyperplane, or a corner solution.

In Fig 5, we o�er a geometric representation in the two-dimensional case. We give below the
de�nition of a Nash equilibrium of the Cournot �re sale game under macroprudential constraint.

De�nition 5 The pro�le of strategies x∗ ∈ K is a Nash equilibrium of the Cournot �re sale game

with macroprudential constraint (B, E , (θi)i∈B, (Ki)i∈B) if, for each i ∈ B and each xi ∈ Ei such that

xi ∈ Ki(x
∗
−i), it holds true that fi(x

∗
i , x
∗
−i) ≤ fi(xi, x∗−i).

23



𝑋𝑖(𝑥−𝑖)

𝑥𝑖,2

1 𝑥𝑖,1

1

𝐾𝑖(𝑥−𝑖)

Figure 5: The point-to-set map Ki(x−i) ⊂ Xi(x−i)

As the following result shows, as long as K is not empty, there always exists a Nash equilibrium
under macroprudential constraint that minimizes the total value of asset sale, which is thus Pareto
optimal.

Proposition 3 Let ∆ be a small to medium shock (i.e., for at least one bank i, ∆ ∈ Zsalei ). If

K 6= ∅, then, there exists a Nash equilibrium under macroprudential regulation x∗,M ∈ K such

that V (x∗,M ) :=
∑

i∈B fi(x
∗,M
i ) is minimized (Pareto optimality) and such that for each i ∈ B,

θi(x
∗,M
i , x∗,M−i ) ≥ θi,min.

Proof. See the appendix.

The Nash equilibrium is obviously Pareto optimal since the total value of the sales is minimized.
It is worthwhile to note since the cost functions are all expressed in currency, the Nash equilibrium
of interest is the one in which the total value of the asset sale is minimized. Our model is indeed
similar to a transferable utility cooperative games for which interpersonal comparisons of utility
between agents make sense.

Remark 5 The Nash equilibrium under macroprudential regulation x∗,M ∈ K is interesting for a

number of reasons. From an economic point of view, it fully addresses the �re sales externalities

problem in that it minimizes the total asset sale and hence constitutes the optimal solution from a

regulatory point of view. From a technical point of view, as long as K is not empty, there always

exists a Nash equilibrium under macroprudential regulation.

Remark 6 The existence of Nash equilibrium under macroprudential regulation x∗,M ∈ K that

minimizes the total asset sale holds under general price impact function as long as it is a continuous

function of xj for all risky asset j.

Recall that Hi(x−i) := Yi(x−i)
⋂
Xi(x−i) is the overall Tier 1 microprudential regulatory con-

straint. When Hi(x−i) 6= ∅, given what the other banks liquidate, bank i is able to �nd a strategy
such that it complies with the two Tier 1 capital ratios. Let

K = {x ∈ E : ∀i ∈ B, xi ∈ Hi(x−i)} (36)
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Fact 6 If K is not empty, proposition 3 holds, that is, there exists a Nash equilibrium under macro-

prudential constraint that minimizes the total value of the resale and such that each bank both

complies with the risk-based capital ratio and the leverage ratio.

At equilibrium, it may obviously be the case that for some bank i, θi(x
∗,M
i , x∗,M−i ) > θi,min. This

depends upon the situation of that bank. For instance, a bank i which is extremely well-capitalized
may be such that θi(0, x

∗,M
−i ) > θi,min where 0 := (0, 0, ..., 0) is an n−dimensional vector. In such

a case, this bank i needs not to delever so that the resulting capital ratio at equilibrium is higher
than the required minimum.

5.3 Macroprudential regulation as the natural benchmark

We have shown that a Nash equilibrium which minimizes the total value of asset sales exists in
macroprudential constraint. From a theoretical point of view, it would clearly be interesting to
compare the properties of a Nash equilibrium under macroprudential constraint x∗,M ∈ K with
the Nash equilibrium under microprudential constraint x∗,m ∈ K when it exists. However, as we
have seen, the conditions under which a Nash equilibrium x∗,m exists in microprudential constraints
are extremely strong since the non-vacuity of the strategy set Xi(x−i) for each i and each x−i is
required. On the contrary, as long as K is not empty, a Nash equilibrium under macroprudential
regulation exists, which means that this equilibrium naturally de�nes the benchmark for regulation.

De�nition 6 The Nash equilibrium under macroprudential constraint x∗,M ∈ K which minimizes

the total asset resale is said be microprudentially incentive-compatible if, without any macropruden-

tial constraint, for each bank i ∈ B, BRi(x∗,M−i ) ∈ Ki(x
∗,M
−i ).

When the Nash equilibrium x∗,M is microprudentially incentive-compatible, no bank has an
incentive to choose a strategy such that another bank would fail to comply with its regulatory
constraint. On the contrary, when the Nash equilibrium x∗,M is not microprudentially incentive-
compatible, at least one bank i ∈ B is such that BRi(x

∗∗,M
−i ) /∈ Ki(x

∗∗,M
−i (i.e., BRmi (x∗∗,M−i ) ∈

Xi(x
∗∗,M
−i )\Ki(x

∗∗,M
−i )). As a result, (at least) one bank does not comply with its constraint.

Numerical example. To understand our concepts in a simple framework, let us consider the
case of two banks A and B in which each bank can either resell a "small" portion, a "medium"
portion, or a "large" portion of each asset. Assume more speci�cally that 20% is the small portion,
40% is the medium portion and 70% is the large portion. As in the general model, each bank is
assumed to be exposed to totally illiquid assets (loans) and to tradable assets. We assume that
there are two tradable assets, asset 1 and 2, and we make the further assumption that asset 1 is
perfectly liquid while asset 2 is imperfectly liquid. Assuming linear price impact, this means that
the market Φ2 is �nite. Within our example, Φ2 = 3000. For simplicity, prices are normalized to
one so that the value is equal to the quantity. Consider the balance sheets of the two banks A and
B.

Bank A Bank B
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Assets Liabilities Assets Liabilities

V0,a = 80 (credit) Ea = 10 V0,b = 65 (credit) Eb = 4.7

V1,a = 60 (market)
V2,a = 80 (market) V2,b = 30 (market)

Aa = 220 220 Ab = 95 95

From these two balance sheet, one can see that bank A is exposed to asset 1 and 2 while bank
2 is only exposed to asset 2. From a regulatory point of view, for each bank, the credit risk weight
of the loans is equal to α0 = 0.5 while it is equal to α2 = 0.6 for the asset 2. The risk weight of the
liquid asset is equal to α1 = 0.2. We also know that the required capital ratios are θa,min = 9% and
θb,min = 8%. Before the shock, the risk-based capital ratio of bank A is equal to θa = 10% while the
risk-based capital ratio of bank B is equal to θb = 9.3%. Each bank complies with the regulatory
risk-based capital ratio.

Assume now that loans (and only loans) are hit with a shock, that is ∆ = (∆0, 0, 0). Assume
that ∆0 = 2%, which may lead to a large loss (in currency). After the shock, the value of the loans
is equal to V0,a = 78.4 for bank A and is equal to V0,b = 63.7 for bank B. The capital ratios are
respectively equal to θa(∆0) ≈ 8.47% and θb = 6.82%, which means that each bank fails to comply
with the regulatory capital ratio.

By assumption, under a macroprudential constraint, as long as K is not empty, bank A can
not choose a deleveraging strategy so that bank B would not comply with its regulatory constraint.
Table 6 provides the overall picture of what can happen. For instance, in the �rst cell, bank B sells
20% of asset 2 while bank A sells 20% of asset 1 and 2. For such deleveraging strategies, the cost
for bank A is equal to 28 and the resulting capital ratio is equal to 8.98%. For bank B, the cost is
equal to 6 and its resulting capital ratio is equal to 6.89%. Overall, the total cost is equal to 34.

From table 6, it is easy to see that there is a unique pro�le of strategies such that both banks
comply with their regulatory capital ratio, which means that the Nash equilibrium under macro-
prudential constraint is unique. This pro�le of strategies corresponds to the cell (in blue in table 6)
in which bank A sells 70% and 20% of asset 1 and 2 respectively and ends up with a capital ratio
equal to 9.18% while bank B sells 70% of asset 2 and ends up with a capital ratio equal to 8.14%.
The total cost for bank A is equal to 58.

Is this Nash equilibrium under macroprudential constraint microprudentially incentive-compatible
when θa,min = 9% and θb,min = 8% ? The answer is negative. Knowing that bank B sells 70% of
asset 2, the best response of bank A is to sell 20% of asset 1 and 40% of asset 2 and the resulting
capital ratio and costs of bank A are equal to 9.06% and 44 respectively. Without any macropru-
dential regulation, when bank B sells 70% of asset 2, bank A is able to comply with the regulatory
constraint for a cost of 44 instead of 58 with a macroprudential constraint. It thus follows that the
pro�le of strategies x = (xa = (70%, 20%);xb = 70%) is not a Nash equilibrium when there is no
macroprudential constraint. It should be pointed out that this non-existence of a Nash equilibrium
in this example critically depends upon the required capital ratios.

Assume now that θa,min = 8.5% and θb,min = 8%. From table 6, only three pro�le of strategies
x are in K and in both cases, bank B sells once again 70%. The �rst one is when bank A sells 20%
of each asset for a total cost equal to 28 and the resulting capital ratio is equal to 8.54%. Since the
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Figure 6: Two banks example with three rebalancing strategies

capital ratio of bank B is equal to 8.14%, both banks comply with their regulatory constraint. The
second and third pro�le of strategies (in which both banks comply with their constraints) is when
bank A chooses either to sell 40% of asset 1 and 20% of asset 2 for a cost equal to 40 or to sell
70% of asset 1 and 20% of asset 2 for a cost equal to 58. For bank A, the cheapest cost is when it
sells 20% of each asset, which means that the pro�le of strategies x = (xa = (20%, 20%);xb = 70%)

is the unique Nash equilibrium under macroprudential constraint that is also microprudentially
incentive-compatible.

Consider now the more realistic case in which each bank i is able to choose a quantity to resell
a percentage of asset j xij ∈ {0%, 1%, 2%, ..., 99%, 100%}. Using the numerical values as above
with θa,min = θb,min = 9%, we found numerically that the Nash equilibrium under macropru-
dential constraint is the pro�le of strategies x∗∗,M = (x∗,Ma , x∗∗,Mb ) = ((72%; 25%), 95%). Since
BRma (95%) = (0%; 57%), such a Nash equilibrium is not microprudentially incentive-compatible
since when bank a chooses to sell 57% of asset 2, bank b does not anymore comply with its con-
straint.

Policy implications. The foundation of macroprudential regulation is related to the prevention
of negative externalities. When K is not empty, an equilibrium under macroprudential regulation
that minimizes the total asset sale always exists. Depending upon the situation, this equilibrium
prevents some banks to delever in a way that would be detrimental to other banks. By de�nition,
under macroprudential regulation, a bank i is not allowed to delever in a way that a bank k would not
anymore comply with its own regulatory constraint. Formally, since x ∈ K by de�nition, given x−i,
bank i can not choose xi such that θk(xi, x−i) < θk,min. Assume, as in the previous example, that
bank a owns perfectly and imperfectly liquid assets while bank b only owns imperfectly liquid assets.
After an adverse shock, if bank a �nds it cheaper to delever by selling imperfectly liquid assets,
the asset price drop may be su�ciently large to generate the insolvency of bank b at equilibrium.
Macroprudential regulation prevents such a failure that may arise due to such negative externality
related to �re sales.
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To analyze more deeply such a situation, let us build on the example given with two banks10.
We consider the simplest case of two banks a and b in which the trading book contains at most two
securities (assets) with di�erent market liquidity.

• Security 1 is perfectly liquid (no price impact).

• Security 2 is imperfectly liquid (positive price impact).

As before, the banking book (loans) of each bank is assumed to be perfectly illiquid, without
any resale value in the short-run. Let ∆ := (∆0, 0, 0) be a small to medium shock in the banking
book only and ∆ is such that for each i ∈ {a, b}, ∆ ∈ Zsalei . Seen from 2021, such an adverse shock
can be interpreted as a consequence of Covid 19 since the lock-down has sharply increased the cost
of risk of banks. We make the assumption that after such a small to medium shock, neither bank
a nor bank b comply with their regulatory capital ratio.

For the sake of �nancial interest, banks are assumed to be heterogeneous in terms of diversi-
�cation, that is, bank b is less diversi�ed than bank a. Concretely, bank b is only long security
2 while bank a is long security 1 and security 2. Since bank b has no position in security 1, the
only way to delever is to sell asset 2. The situation is di�erent for bank a since it can sell both
security 1 and security 2, which means that bank a will always be in a position to increase its capital
ratio by selling security 1 since there is no price impact. Throughout the discussion, we make as
before the assumption that K is not empty. From proposition 3, we know a Nash equilibrium in
macroprudential constraint x∗,M that minimizes the total value of the resale exists and may or may
not be microprudentially incentive-compatible. Such an incentive-compatible property is a fairly
complex function of all the parameters of the models, the regulatory weights, the capital require-
ments, the positions on securities, the market depth etc...To now understand why, as a function of
the market illiquidity of security 2, macroprudential regulation is required, let us make the following
assumptions.

1. If market of security 2 were perfectly liquid, bank b would be in a position to restore its capital
ratio.

2. Bank a is in a position to restore its capital ratio by selling only security 1, that is, there
exists xa1 < 1 such that θa(xa1, 0) = θa,min.

To facilitate the discussion, assume that the price impact is linear for security 2 and let Φ2 := Φ

be the market depth. From the above assumptions, since the capital ratio is a continuous function
of the market depth, there exists a critical market depth (high enough) Φ such that bank b will
be able to restore its capital ratio independently of bank a. In such a situation, macroprudential
regulation is not required. Assume now that the market depth for security 2 is low enough so
that bank b, even alone, is not able to restore its capital ratio due to its own price impact. Let
Φ be this market depth11. Within such a framework, it thus follows from the discussion that as

10This paragraph is based on computations that are not reproduced in the paper to focus on policy implication.

Computations are available upon request.
11It is easy to compute this critical market depth. For the failure of bank b, it su�ces to compute Φ such that

Eb(∆, xb2 = 1,Φ) = 0. Note that since xb2 = 1, the capital ratio is unde�ned.
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long as Φ /∈ [Φ,Φ], macroprudential regulation is not justi�ed. Consider now the situation in
which Φ ∈ [Φ,Φ]. Without macroprudential regulation, bank a may �nd cheaper (say because the
regulatory weight of security 1 is much lower than the weight of security 2) to restore its capital
ratio by essentially selling security 2. But such a decision may adversely impact bank b which might
not be able to restore its capital ratio. In the worse scenario, given that bank b is insolvent (i.e.,
it must liquidate its position, xb2 = 1), bank a may still �nd cheaper to essentially sell security 2.
Without macroprudential regulation, only bank a is solvent at equilibrium. On the contrary, with
a macroprudential regulation, both bank will be solvent because bank a will not anymore have the
possibility to choose the cheapest solution to delever. As a result, the externality related to �re
sales disappears. We summarize the above discussion in the following policy implication fact.

Policy implication. To prevent failures externalities, macroprudential regulation is justi�ed for

"intermediate" price impact but is unnecessary when the price impact is either low or high enough.

In Basel III, banks are not only constrained to have idiosyncratic capital surcharge(s) that
may signi�cantly increase their Tier 1 capital but they now also have to maintain two types of
liquidity ratios, called LCR and NSFR, that is, banks must have su�cient high-quality liquid assets

(HQLA) to survive a signi�cant stress scenario lasting for 30 days12. While these liquidity ratios
have been introduced to avoid (funding) liquidity problems generated by maturity transformation,
as observed during the subprime crisis, such liquidity ratios may also play an important role within
our framework. By forcing banks to invest in liquid assets, banks are also more resilient after a
shock since they can delever using these highly liquid assets. In that sense, liquidity ratios can be
thought of as macroprudential instruments.

6 Severe shocks, cascade of failures and Nash equilibrium analysis

6.1 What happens if K is empty ? Forget about the conservation bu�er!

Up to now, we made the assumption that K is not empty everything else equal, that is, given the
positions of the banks but also the price impact functions and the capital requirement. A striking
di�erence between Basel II and Basel III is precisely the capital requirements. In Basel III, the
basic uniform Tier 1 capital requirement is 6% (of the (total) risk-weighted assets). However, all
banks must comply with the capital conservation bu�er (equal to 2.5%) and the countercyclical
bu�er among others and systemic banks must moreover comply with the GSIB bu�er so the overall
tier one capital requirement13 in Basel III can be higher than 10%. Let βih be the bu�er h for Tier
1 capital of bank i and et

∑
h∈H βih := βi be the total capital surcharge. The Tier 1 capital of a

given bank i thus can be in general written as

θi,min = 6% + βi (37)

As noted on the website of the Bank for International settlements (BIS), the capital conservation
bu�er is supposed to ensure that banks have an additional layer of usable capital that can be drawn

down when losses are incurred14. During a period of stress, say after a systemic shock, it makes

12See BCBS (2014), "Basel III: the net stable funding ratio", p. 1
13Note that some bu�ers such as the conservation bu�er applies to CET 1 capital ratio.
14See the BIS document as of 2019 entitled "The capital bu�ers in Basel III � Executive Summary".
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no sense to require the capital conservation bu�er of 2.5% so that the overall tier one capital
requirement is equal to

θi,min = 3.5% + βi (38)

When banks are allowed to forget about the capital conservation bu�er, K may be not empty and
this means that we are back to what we did before. If K is still empty, then, under macroprudential
constraints, failures can not be avoided, which means that the adverse shock is severe. In such a
situation, that is, for some i ∈ B, ∆ ∈ Zfaili , some banks are insolvent right after the shock. Put it
di�erently, given the shock size and/or the severity of the price impact, a subset of banks may be
unable to satisfy their microprudential constraint given in equation (28). We thus have to extend
the microprudential constraint Xi to the case in which bank i is insolvent.

6.2 Extended microprudential constraint, cascade of failures and Nash equilib-

rium

Given x−i, let Xi(x−i) de�nes the extended microprudential constraint.

Xi(x−i) =

{
Xi(x−i) when Xi(x−i) 6= ∅
(1, 1, ..., 1) := 1 when Xi(x−i) = ∅

(39)

When for some i ∈ B, ∆ ∈ Zfaili so that Xi(x−i) is empty, these banks are insolvent and thus
must thus be liquidated. They must thus sell 100% of their assets, that is, xi = (1, 1, ..., 1). From
a resolution point of view, this means that is no regulatory attempt to assist bank(s) in �nancial
distress15 (e.g., bail out) but also that there are, as already said, �nancial institutions such as solvent
banks, hedge funds, institutional investors... that have once again the required �nancial muscles to
purchase the assets sold at a discount ([Acharya and Yorulmazer, 2008]). Note that the extended
microprudential constraint is the extension of [Braouezec and Wagalath, 2019] with p ≥ 2 assets.
Such an extension has also been considered recently in [Banerjee and Feinstein, 2021] and they show
the existence of Nash equilibria in proposition 3.7.

When for some banks i ∈ B, the shock ∆ ∈ Zfaili , these banks are insolvent right and must
liquidate their assets. In a world without price impact, as long as Vi0 > Ei (see proposition 1 part 3),
all the other banks are able to restore their regulatory capital ratio. However, this remains unclear
when the price impact is positive. When these banks that are insolvent right after the initial shock
sell their assets, this will depress the price of each asset and thus the capital of solvent banks. It may
thus be the case that after these liquidation, a new subset of banks becomes insolvent and so on and
so forth. Instead of directly considering the Nash equilibrium in which all banks are participating
to the deleveraging process (as in [Braouezec and Wagalath, 2019]), we here disentangle the "pure"
liquidation process (i.e., only banks that are insolvent sell their assets) from the deleveraging process
of banks that are solvent after the liquidation process (i.e., banks that are still solvent after the
�rst stage and that sell a portion of their assets in order to remain solvent at equilibrium). The
two-stage is as follows.

15In the European Union, since the 2014 banking unions, such a bank resolution procedure exists. We refer the

reader to the excellent textbook of [Freixas et al., 2015] (paragraph 8.4.3) for an interesting and exhaustive discus-

sion on the bank resolution procedure, see also [Acharya and Yorulmazer, 2007], [Acharya and Yorulmazer, 2008],

[Acharya et al., 2011]
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1. Pure liquidation process (see appendix B). Banks that are insolvent after the shock sell
all their assets. If after this liquidation, some additional banks are insolvent, these banks also
sell all their assets and so on and so forth.

2. Nash equilibrium of the deleveraging game. We look at the Nash equilibrium of this
deleveraging game for banks that are still solvent after the liquidation process.

Recall that for the initial shock ∆, some banks are insolvent. By assumption, they liqui-
date all their asset and this will contribute to decrease the price of each asset j. Let ∆(1) =

(∆
(1)
1 (.), ...,∆

(1)
n (.)) be the implied shock after the �rst round of liquidation. If there are addi-

tional banks that are insolvent for the implied shock ∆(1) (but were solvent for ∆), denoted by
F (1), then there is a second round of liquidation and so on and so forth. Our liquidation pro-
cess is in the spirit similar to the cascade of bankruptcies considered in many networks papers,
e.g., [Amini et al., 2016], [Bernard et al., ], [Detering et al., 2021], [Caccioli et al., 2014] to quote
few papers, see also [Jackson and Pernoud, 2021] or [Glasserman and Young, 2016] few insightful
review papers. In appendix C, we describe precisely the algorithm and we show that this liquidation
process ends after l liquidation rounds, with l ≤ p.

Assume now that the liquidation process stops after l < p rounds and that there is still a subset
of banks that are solvent. The implied shock is equal to ∆(l) = (∆

(l)
1 (.), ...,∆

(l)
n (.)). By de�nition,

at round l, there are no more failure (i.e., F (l) = ∅). Let ∆(l) := ∆Liq. Let S be the subset of
solvent banks after the liquidation process (with a positive capital ratio).

S = {i ∈ B : ∆Liq /∈ Zfaili } (40)

Note interestingly that the situation in which the set of solvent banks is S are hit by a shock
∆Liq is equivalent to the initial situation when the set of solvent banks is B hit by a small to medium
shock ∆. Since a number of banks have been liquidated, we only consider the set of banks S ⊂ B
as de�ned in equation (40). Let

K ′ = {x ∈ E : ∀i ∈ S, xi ∈ Xi(x−i)} (41)

When K ′ is not empty, we are back to the previous analysis and a Nash equilibrium under
macroprudential constraint that minimizes the total value of the asset sale will exist. Assume now
that due to the severity of the price impact, K ′ is empty. In such a situation, abstracting from the
capital conservation bu�er, one must now consider the set

K
′
= {x ∈ E : ∀i ∈ S, xi ∈ Xi(x−i)} (42)

By de�nition, since K ′ is empty, a number of solvent banks after the shock ∆Liq will be insolvent
after the deleveraging process. In the next result, we show that a Nash equilibrium exists.

Proposition 4 Let ∆ be a severe shock. There exists a Nash equilibrium under macroprudential

regulation x∗,M ∈ K ′ such that V (x∗,M ) :=
∑

i∈B fi(x
∗,M
i ) is minimized on K

′
(Pareto optimality)

and such that for each i ∈ B, either θi(x∗,Mi , x∗,M−i ) ≥ θi,min or x∗,Mi = 1.

Proof. See the appendix.

From a regulatory point of view, the "best" criterion to be used in such a situation of failures
remains unclear. Should one minimize the number of failures or should one minimize the total value
of the asset sales? This raises new issues that are beyond the scope of the paper.
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7 Cascade of failures: application to French systemic banks

In this section, to illustrate how our model can be calibrated on data, we focus on the four French
GSIBs as of 2020; BNP Paribas, BPCE, Crédit Agricole and Société Générale. Our approach boils
down to manually collecting data and consists in extracting from the annual report the relevant
disclosed quantities. The calibration of the model to real data raises however new issues as some
inputs are not directly disclosed in annual reports, which means that one must �nd proxies. As in
[Braouezec and Wagalath, 2018], we need to recover the banking book, the trading book and their
associated risk weights.

7.1 Descriptive statistics and calibration methodology

Let θ and L respectively be the observed risk-capital capital ratio and leverage ratio as of December
2020. In the following table, except the total exposure, all the quantities come from annual reports.
Except ratios, all the quantities are expressed in billion.

Risk-based capital ratio and leverage ratio (December, 2020)

Bank Tier 1 RWA θ θmin Exp L Lmin A Exp

A

BNP Paribas 98.8 695.52 0.142 0.1096 2266.86 0.0436 0.03 2488.49 0.915

Société Générale 56.18 351.85 0.160 0.1052 1188.5 0.047 0.03 1461.9 0.813

Crédit Agricole 50.02 336.04 0.149 0.0964 1861.5 0.027 0.03 1861 0.95

BPCE 68.98 431.22 0.160 0.12 1374.3 0.050 0.03 1446.26 0.95

In the above table, the total exposure reported comes from the banks individual templates
available on the website of European Banking Authority16 (EBA). Few remarks are in order.

• The total exposure incorporates on balance sheets items but also o� balance sheets items. It
is somehow surprising that this total exposure Exp is always lower than the total value of the
assets A, although fairly close to it. This means that A is a fairly good approximation of Exp.

• As opposed to few years ago, the minimum capital required for each bank depends upon its
own characteristics. Since the capital conservation is equal to 2.5% in Basel III, one can clearly
see that the minimum required for Tier 1 risk-based capital ratio is higher than 8.5%, which
means that these banks are subject to additional capital surcharges such as the GSIBs bu�er.

Consider a given bank i and let Vi,BB and Vi,TB be the value of the banking and trading book
and let and αi,BB αi,TB be their respective risk weight. We consider cash, denoted v in the model,
as a separate item since it does not entail any capital. It thus follows that for each bank i, we have

Ai = vi + Vi,BB + Vi,TB (43)

16See https://www.eba.europa.eu/risk-analysis-and-data/global-systemically-important-institutions. The reason

lies in the fact that for some banks, Crédit Agricole, the total exposure reported in the annual report di�ers from

the one found on the website of the EBA by 800 billion. This also means that the leverage ratio is not around 5%,

as stated in the annual report, but around 2.8%.
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In the same vein, the (total) risk-weighted assets RWAi is equal to the risk-weighted asset of the
banking book plus the risk-weighted assets of the trading book for each bank i, that is

RWAi = RWAi,BB + RWAi,TB (44)

Once Vi,BB, Vi,TB and RWAi,BB,RWAi,TB are recovered, the two risk weights αi,BB and αi,TB
are also known since

RWAi,BB = αi,BBVi,BB RWAi,TB = αTBVi,TB (45)

Banking versus trading book. To construct the banking book and the trading book from the
consolidated balance sheet, we make the assumption that the banking book is subject to credit risk
while the trading book is subject to market risk and counterparty risk. For the banking book, we
make the assumption that it is equal to the �nancial assets at amortized costs (loans to customers
and to credit institutions). From equation (43), the trading book thus is equal to the total value
of the assets minus the banking book (loans) and the cash. We thus implicitly incorporate in the
trading book a number of items such as intangible assets and goodwill that are not traded assets and
which might be di�cult to resell in the short-run. Fortunately, as their value is small in percentage,
around 1% or 2% of the total assets, this assumption is innocuous.

Partial risk-weighted assets assignment. The credit risk-weighted assets, by far the most im-
portant of all the risk-weighted assets, is assigned to the banking book risk-weighted assets as
well as the securitization exposures in the banking book risk-weighted assets. On the contrary,
the market risk-weighted assets is assigned to the trading book and we decided to also assign the
counterparty risk-weighted assets. The di�culty concerns the operational risk-weighted assets and
the settlement risk-weighted assets (although this last quantity is negligible). To re�ect the fact
that operational risk is both present in the banking book and in the trading book, we assign the
operational risk-weighted assets as a proportion of the credit risk-weighted assets divided by the
market risk-weighted assets plus the credit risk-weighted assets.

Proxied quantities as of December, 2020, (Phased In)

Bank v VBB VTB RWABB RWATB αBB αTB αAvg
BNP Paribas 308.7 946.8 1232.96 625.32 70.2 0.660 0.057 0.319

Société Générale 168.18 502.14 791.6 306.63 45.22 0.611 0.057 0.272

Crédit Agricole 194.3 953.9 812.9 302.79 33.25 0.317 0.041 0.190

BPCE 153.4 836.82 456 402.74 28.48 0.481 0.062 0.334

One can clearly see from the table that the banking book risk weight is much higher than the
trading book risk weight. While this in part depends upon our methodology, it essentially follows
from the fact that the credit risk-weighted assets is by far the most important. Its contribution in
the total risk-weighted assets varies from 70% (Société Générale) to 81% (BPCE), and this explains
why the the banking book risk weight is much higher than the trading book risk weight. We also
report the usual average risk weight αAvg, used by regulators to calibrate the leverage ratio, de�ned
here as the risk-weighted assets (RWA) divided by the total assets minus cash (A− v).
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7.2 Cascades of failures as a function of the severity of the stress test

We now consider the cascade of failures that may result after a given shock in the banking book,
given a price impact, measured by Φ. We call a price impact of x% if, when all banks sell 100%
of their trading book, the price decreases by x%. Within our framework, the severity of the stress-
test both depends upon the shock ∆ and the price impact x%. As before, we consider a shock
in the banking book only to eliminate model risk, here wrong assignment of items of the balance
sheet. Overall, the severity of the stress test both depends upon the shock ∆ and the price impact
measured by x, which implicitly depends the market depth Φ. Since it is di�cult to assess the
accuracy of the market depth Φ, in part because the trading book contains very di�erent type of
assets, this parameter can be actually seen as a measure of the severity of the stress test, just like
the shock. Recall that when one bank fails, it sells 100% of its assets and this may generate new
failures and so on and so forth.

Linear price impact: 1%.

• ∆ = 6%: Crédit Agricole fails and there is no cascade of failures.

• ∆ = 7%: idem

• ∆ = 8%: idem

• ∆ = 9%: Crédit Agricole and BPCE fail and there is no cascade of failures.

Linear price impact: 2%.

• ∆ = 6%: Crédit Agricole fails and there is no cascade of failures.

• ∆ = 7%: idem

• ∆ = 8%: Crédit Agricole fails and BPCE fails after the liquidation of Crédit Agricole.

• ∆ = 9%: Crédit Agricole and BPCE fail and there is no cascade of failures.

• ∆ = 9.5%: Crédit Agricole and BPCE fail. BNP Paribas fails after their liquidation. Société
Générale fails after the liquidation of BNP Paribas.

It is interesting to note that for a shock of 9.5%, Crédit Agricole and BPCE fail. After liquidation,
BNP Paribas fail and Société Générale in turn fails after the liquidation of BNP.

Linear price impact: 4%.

• ∆ = 6%: Crédit Agricole fails and there is no cascade of failures.

• ∆ = 7%: idem

• ∆ = 8%: Crédit Agricole fails and BPCE fails after the liquidation of Crédit Agricole.

• ∆ = 9%: Crédit Agricole and BPCE fail and BNP Paribas and Société Générale fail after the
liquidation.
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Consider for instance the case in which the price impact is 2% and the shock is ∆ = 8%. We
know that Crédit Agricole fails and BPCE fails after the liquidation of Crédit Agricole. Since BNP
Paribas and Société Générale are still solvent (with positive capital), we then consider the Nash
equilibrium. It turns out that these two banks also fail at equlibrium.

It would certainly be interesting to consider the model with at least two risky assets in the
trading book. However, due to the di�culty to obtain the various items of the trading book and
the di�culty to estimate the price impact, it is our belief that such an comprehensive empirical
analysis deserves a full paper.

8 Conclusion

We o�er in this paper a new framework in which we make a clear distinction between microprudential
and macroprudential regulation. We show that a Pareto optimal Nash equilibrium generically exists
under macroprudential regulation while such an existence result under microprudential regulation
requires a set of strong conditions. Our results clearly suggest to consider macroprudential regulation
as the natural benchmark. An interesting aspect of our framework is that most of the parameters
can be calibrated in a fairly easy way. While many theoretical extensions of our model could be
done, it is our belief that an interesting and promising work would be to o�er a more complete
empirical analysis.
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9 Appendix: Proofs

Proof of proposition 1. Proof of part 1. When there is no price impact, the total capital of a
bank i Ei,t+1(.) given in equation (18) is invariant with respect to xi while the risk-weighted assets
RWAi,t+1(.) given in equation (19) is (for each j but also for each i) a decreasing function of xij .
As a result, the risk-based capital ratio is an increasing function of each xij �

Proof of part 2. Consider bank i and assume that for all j 6= k, αij 6= αik. One thus can
de�ne a permutation such that the asset index are ordered such that j1 > j2 >,.., > jn implies
αij1 > αij2 > ... > αijn (the case in which αij1 ≥ αij2 ≥ ... ≥ αijn will be discussed later on).

Claim 1 Consider bank i and in addition to assuming ∆ ∈ Zsalei and no price impact, assume

further that Vi0 = 0. Then, there always exists an optimal strategy for bank i to restore its capital

ratio back above the minimum required θi,min. It is optimal for bank i to �rst sell a portion of the

asset j1 with the highest risk weight. If this is not enough to restore the regulatory capital ratio, it

is optimal for the bank to sell 100% of the risky asset j1 and a portion of risky asset j2. If selling

100% of the asset j1 and j2 is not enough to restore the capital ratio, it is optimal to sell a portion

of asset j3 and so on and so forth.

Proof of claim 1. For the optimal (xi1, ..., xin) it is clear that the constraint is binding, that
is θi,t+1(xi) = θmin, that is,

Ei,t −
∑n

j=1 qijPj∆j∑n
j=1 αijqijPj(1−∆j)(1− xij)

= θmin (46)

which implies that:

n∑
j=1

αijqijPj(1−∆j)xij =

n∑
j=1

αijqijPj(1−∆j)−
1

θmin
(Ei,t −

n∑
j=1

qijPj∆j) (47)

If we rename Xij = qijPj(1−∆j)xij , and Ki =
∑n

j=1 αijqijPj(1−∆j)− 1
θmin

(Ei,t−
∑n

j=1 qijPj∆j),
this is equivalent to:

n∑
j=1

αijXij = Ki (48)

Each bank i seeks to minimize
∑n

j=1Xij . Therefore, it is optimal to start by selling the asset j1
with the highest risk weight αi,j1 , then asset j2, ..., until asset jk such that the capital ratio is
restored �

Remark. In the event of two risky assets jk and jk+1 with the same risk weights, it is equivalent
to sell one or the other �rst, or both at the same time. �

Proof of part 3. Assume now that there are illiquid asset (loans). Since ∆ ∈ Zsalei , the total
capital after the shock is positive, that is, Ei −∆0Vi0 −

∑n
j=1 qijPj∆j > 0, which is equivalent to

∆0 < ∆c :=
Ei−

∑n
j=1 qijPj∆j

Vi0
. Assume now that the bank resell 100% of the risky assets j = 1, 2, ...n,

that is, xi = 1. The risk-based capital ratio thus is equal to θi(1) =
Ei−∆0Vi0−

∑n
j=1 qijPj∆j

αi0Vi0(1−∆0) . If θi(1) >
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θi,min, the bank will be able to restore its capital ratio. It is easy to show that θi(1) > θi,min is

equivalent to ∆0 < ∆c
i :=

Ei−
∑n

j=1 qijPj∆j−αi0Vi0θi,min

Vi0(1−αi0θi,min) also easy to show that ∆c
i > ∆i,c is equivalent

to Vi0 > Ei −
∑n

j=1 qijPj∆j so that bank i will be able to restore its capital ratio. Since Vi0 > Ei,
∆0 < ∆i,c < ∆c

i so that bank i will always be in a position to restore its capital ratio �

Proof of lemma 1

Assume that Xi(x−i) 6= ∅ and note that Pj is the price of asset j at time t (before the shock).
We have:

Proof of part 1. Given x−i, the capital ratio of bank i is equal to

θi(xi, x−i) =
Ei,t − qi0P0∆0 −

∑n
j=1 qijPj(∆j +

∑
k∈B xkjqkj

Φj
(1−∆j))

αi0qi0P0(1−∆0) +
∑n

j=1 αijqijPj (1−∆j)
(

1−
∑

k∈B xkjqjk
Φj

)
(1− xij)

By de�nition, Xi(x−i) is given by the set of points xi ∈ [0, 1]n such that: θi(xi, x−i) ≥ θi,min. It
is easy to show that θi(xi, x−i) ≥ θi,min is equivalent to equation (49) lower (or equal) than equation
(50): αi0qi0P0(1−∆0) +

n∑
j=1

αijqijPj (1−∆j)

(
1−

∑
k∈B xkjqkj

Φj

)
(1− xij)

 θi,min (49)

Ei,t − qi0P0∆0 −
n∑
j=1

qijPj(∆j +

∑
k∈B xkjqkj

Φj
(1−∆j)) (50)

which, given x−i, is in turn equivalent to:

R1(xi1) +R2(xi2) + ...+Rn(xin) ≤ C (51)

with

C = Ei,t − qi0P0∆0 −
n∑
j=1

qijPj(∆j +

∑
k 6=i xkjqkj

Φj
(1−∆j))− αi0qi0P0(1−∆0)

−
n∑
j=1

αijqijPj (1−∆j)

(
1−

∑
k 6=i xkjqkj

Φj

)
θi,min (52)

and for all j ∈ [1, .., n], Rj(xij) a polynomial of degree 2 with a positive leading coe�cient of
the form: Rj(xij) = dij × (xij)

2 + eij × (xij)

with for all j ∈ [1, .., n],
dij = αijqijPj (1−∆j)

qij
Φj
θi,min > 0

eij = αijqijPj (1−∆j) [−
(

1−
∑

k 6=i xkjqkj
Φj

)
− qij

Φj
]θi,min + qijPj

qij
Φj

(1−∆j)

This can be rewritten: Rj(xij) = dij × (xij +
eij
2dij

)2 − e2ij
4dij

.
And (51) is equivalent to:
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n∑
j=1

dij × (xij +
eij
2dij

)2 ≤ C +
n∑
j=1

e2
ij

4dij
(53)

If we denote C ′ = C +
∑n

j=1

e2ij
4dij

, this is equivalent to:

n∑
j=1

(xij +
eij
2dij

)2

C′

dij

≤ 1(54)

And this is equivalent to:

n∑
j=1

(xij − cij)2

(aij)2
≤ 1 (55)

with cij =
eij
2dij

and aij =
√

C′

dij
> 0. Since the equation of a canonic ellipsoid in dimension

n is given by
∑n

j=1

x2
j

a2
j
≤ 1, it thus follows that equation (55) is the equation of an n-dimensional

ellipsoid and this concludes the proof of part 1 �

Proof of part 2. Bank i aims to minimize fi(xi) =
∑n

j=1 xijqijPj subject to xi ∈ Xi(x−i). Let

F (a)
i (x−i) = {xi ∈ Xi(x−i) : fi(xi) = a}) be the level curve associated to the cost function fi = a.

Since fi(xi) =
∑n

j=1 xijqijPj is linear in each xij , each iso cost function de�nes an hyperplane. By
de�nition of the best response BRi(x−i), it is minimum of the function fi with respect to xi subject
to xi ∈ Xi(x−i). It thus follows that the best response BRi(x−i) = x∗i is such that the hyperplane
is tangent to the ellipsoid delimited by Xi(x−i) and thus is unique. When the best response is not
a tangency point, it is a corner solution. Let Cn := [0, 1]n be the unit compact of Rn and let ∂Cn

be its boundary and intCn be its interior so that Cn := ∂Cn
⋃

intCn. A corner solution is de�ned as
a best response which belongs to ∂Cn and which can not satisfy the tangency condition. �

Proof of proposition 2

Given i and x−i ∈ [0, 1](p−1)n, consider Xi(x−i) and assume that it is nonempty. Since Xi(x−i)

is a n-dimensional ellipsoid, it is clearly compact and convex.
Let us prove that for all i, Xi is a lower and upper semi-continuous point-to-set map:
Indeed:

• Xi is lower semi-continuous: let us consider a sequence (vl) ∈ ([0, 1](p−1)n)
N
that converges

to v∞ ∈ [0, 1](p−1)n. We consider w ∈ Xi(v∞), that is θi(w, v∞) ≥ θi,min. Let us prove that
there exists a sequence (wl) with wl ∈ Xi(vl) for all l and such that (wl) converges to w.
We consider ε > 0. Let us prove that there exists L0 such that for all l ≥ L0 we have that
B′(w, ε)∩Xi(vl) 6= ∅. Indeed, if it was not the case, we would have for all L0 > 0 existence of a
l > L0 such that B′(w, ε)∩Xi(vl) = ∅. So we could build a subsequence (vφ(l)) that converges
to v∞ and such that B′(w, ε) ∩Xi(vφ(l)) = ∅ for all l. This implies that θi(xi, vφ(l)) < θi,min
for all l and for all xi ∈ S(w, ε) = ∂(B′(w, ε)), and since θi is continuous we would have
θi(xi, v∞) ≤ θi,min for all xi ∈ S(w, ε). Let us consider the vector zi ∈ S(w, ε) that maximizes
the distance to 0, that is d(zi, 0) = maxxi∈S(w,ε)d(xi, 0). Since all coordinates of w are strictly
lower than the coordinates of zi, we would have θi(w, v∞) < θi(zi, v∞) ≤ θi,min since θi(xi, v∞)
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is an increasing function of xi. And θi(w, v∞) < θi,min is a contradiction. Therefore, there
exists L0 such that for all l ≥ L0 we have that B′(w, ε) ∩ Xi(vl) 6= ∅, and we can build a
sequence wl ∈ B′(w, ε) ∩Xi(vl) that converges to w.

• Xi is upper semi-continuous: let us consider a sequence (vl) ∈ ([0, 1](p−1)n)
N
that converges to

v∞ ∈ [0, 1](p−1)n, and a sequence (wl) ∈ Xi(vl) for all l, that converges to w∞ ∈ [0, 1](p−1)n.
θi(vl, wl) ≥ θi,min for all l, and since θ is continuous we have that θi(v∞, w∞) ≥ θi,min, and
therefore w∞ ∈ Xi(v∞).

Moreover, since for all x−i, fi(, x−i) is linear in xi, it is thus quasiconvex on Xi(x−i).
Therefore, the assumptions of Theorem 1 are satis�ed and under these assumptions there exists

a Nash equilibrium in microprudential constraint. �

Proof of lemma 2

Proof of part 1. Ki(x−i) is described by the set {xi ∈ [0, 1]n such that θi(xi, x−i) ≥ θi,min and
for all l 6= i, θl(xi, x−i) ≥ θl,min}.

θi(xi, x−i) ≥ θi,min gives us the equation of a n-dimensional ellipsoid similar to Proposition 1.
Moreover, for l 6= i we have:

θl(xi, x−i) =
El,t−ql0P0∆0−

∑n
j=1 qljPj(∆j+

∑
k∈B xkjqkj

Φj
(1−∆j))

αl0ql0P0(1−∆0)+
∑n

j=1 αljqljPj(1−∆j)

(
1−

∑
k∈B xkjqkj

Φj

)
(1−xlj)

For all l 6= i, θl(xi, x−i) ≥ θl,min is equivalent to:(
αl0ql0P0(1−∆0) +

∑n
j=1 αljqljPj (1−∆j)

(
1−

∑
k∈B xkjqkj

Φj

)
(1− xlj)

)
θl,min ≤ El,t−ql0P0∆0−∑n

j=1 qljPj(∆j +
∑

k∈B xkjqkj
Φj

(1−∆j))

which, given x−i, is in turn equivalent to:∑n
j=1 aijxij ≤ C with for all j ∈ [1, .., n], aij ∈ R and C ∈ R.

And this is the equation of a closed a�ne half-space. �

Proof of part 2. A best response in macroprudential constraint BRMi (x−i) satis�es θi(xi, x−i) =

θi,min and for all l 6= i, θl(xi, x−i) ≥ θl,min. θi(xi, x−i) = θi,min gives us the equation of the frontier of
a n-dimensional ellipsoid. θl(xi, x−i) ≥ θl,min gives us the equations of p−1 closed a�ne half-spaces.

Bank i is seeking to minimize Li(xi) =
∑n

j=1 xijqijPj subject to xi ∈ Ki(x−i).∑n
j=1 xijqijPj = a is an isocost hyperplane, and the minimum for Li, which is the best response

BRMi (x−i) is reached for a point of tangency of an a�ne hyperplane
∑n

j=1 xijqijPj = ai with the
frontier of the ellipsoid delimited by Xi(x−i) intersected with the p − 1 closed a�ne half-spaces
de�ned by θl(xi, x−i) ≥ θl,min, l 6= i. �

Proof of proposition 3

We shall prove the proposition with two lemma.

Lemma A 1 K is a compact set.
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Proof. Since K ⊂ [0, 1]n×k, it is clearly a bounded set. To show that K is compact, it remains

to prove that K is closed. Let ~θ(x) ≥ ~θmin be the vectorial notation for


θ1(x) ≥ θ1,min

...

θp(x) ≥ θp,min

. Recall
that

K := {x ∈ [0, 1]n×p : ~θ(x) ≥ ~θmin} ⊂ [0, 1]n×p (56)

and is not empty by assumption. Since ∆0 < 1, for all i ∈ S, αi0Vi0(1−∆0) > 0, the denominator
of the capital ratio θi is strictly positive so that θi is a continuous application on [0, 1]n×p (see fact
2). Therefore, K is the preimage of a closed set [θ1,min,+∞[×... × [θp,min,+∞[ by the continuous
application θ = (θ1, ..., θp), and thus K is closed. It thus follows that K is a closed and bounded
set of [0, 1]n×p which means that K is a compact set. �

Consider now the application V : [0, 1]n×p → R, i.e., for a given x ∈ [0, 1]n×p, V (x) =∑
i∈S fi(xi). Since for all i ∈ B, fi is continuous, V is also continuous on the compact set K.

From Weierstrass extreme value theorem, it admits at least one minimum x∗,M ∈ K. LetMK ⊂ K
be the set of minimizers of the function V on K, possibly a singleton.

Lemma A 2 Each element ofMK is a Nash equilibrium of the game under macroprudential con-

straint.

We shall prove that x∗K is a Nash equilibrium, that is, for all i, x∗,Mi = BRi(x
∗,M
−i ). For notational

simplicity, we remove the subscript M . Let us work by contradiction and assume that this is not
the case, i.e., there exists i0 ∈ B such that x∗i0 6= BRi0(x∗−i0). By de�nition, given x∗−i0 , x

∗
i0
is not

the cheapest deleveraging strategy. Using the fact that for each i, fi is continuous, this means that
there exists x′i0 such that fi(x

′
i0

) < fi(x
∗
i0

) and (x′i0 , x
∗
−i0) still in K so that fi0(x′i0)+

∑
i 6=i0 fi(x

∗
i ) <∑

i∈S fi(x
∗
i ) and this yields the desired contradiction. Therefore, the minima of V are Nash equilibria

�

This concludes the proof of proposition proposition 3 �

Proof of Proposition 4

The proof is quite similar to Proposition 3:

K
′
= {x ∈ E : ∀i ∈ S, xi ∈ Xi(x−i)} (57)

Xi(x−i) =

{
Xi(x−i) when Xi(x−i) 6= ∅
(1, 1, ..., 1) := 1 when Xi(x−i) = ∅

(58)

Therefore:

K
′
= {x ∈ E : ∀i ∈ S, θi(xi, x−i) ≥ θi,min or xi = (1, .., 1)} (59)

Let's prove that K
′
is a compact set.
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• K ′ ⊂ [0, 1]np is clearly a bounded set.

• We want to prove that K
′
is a closed set. Let (xm)m∈N = (x1,m, ..., xp,m)m∈N ∈ (K

′
)N be a

sequence which converges to a given x∞ ∈ [0, 1]np. We will show that x∞ ∈ K
′
.

Let i ∈ {1, .., p}.

� either xi,∞ = (1, 1, ..., 1)

� or xi,∞ ∈ [0, 1]n \ {(1, 1, ..., 1)} and there exists ε > 0 such that B(xi,∞, ε) ⊂ [0, 1]n \
{(1, 1, ..., 1)} and there exists m0 ∈ N such that ∀m ≥ m0, xi,m ∈ B(xi,∞, ε). Therefore
∀m ≥ m0, θi,t+1(xm) ≥ θmin. And since θi,t+1 is continuous on B(xi,∞, ε), we have
θi,t+1(x∞) ≥ θmin

So K
′
is a closed set.

Therefore K
′
is a closed bounded set of [0, 1]np, so K is a compact set.

Same as in Proposition 3, we look at the minimizers of V on K
′
, and these are Nash equilibria

of the generalized game with shared constraint K
′
.

�

10 Appendix B: liquidation process

We now describe formally the algorithm associated to the liquidation process. Since the banking
book has no value, when a given bank sells it, the proceeds is equal to zero.

Algorithm of the liquidation process with linear price impact

1. Let F (1) := {i ∈ B : ∆ ∈ Zfaili }. If F (1) = ∅, then, the liquidation process stops. If
F (1) 6= ∅, all banks i ∈ F (1) liquidate all their assets, that is, for each i ∈ F (1), xi = 1.
The resulting implied shock given by equation (23) for each asset j = 1, 2, ..., n is equal to

∆
(1)
j (
∑

i∈F (1) qij) := ∆j +

∑
i∈F (1) qij

Φj
(1−∆j) so that the implied vector of shock after the �rst

step is equal to ∆(1) := (∆
(1)
1 (.), ...,∆

(1)
n (.)).

2. Let F (2) := {i ∈ (B\F (1)) : ∆(1) ∈ Zfaili }. If F (2) = ∅, then, the liquidation process stops. If
F (2) 6= ∅, all the bank i ∈ F (2) liquidate all their assets, that is, for each i ∈ F (2), xi = 1.
The resulting implied shock given by equation (23) for each asset j = 1, 2, ..., n is equal to

∆
(1)
j (
∑

i∈(F (1)
⋃

(F (2)) qij) := ∆j +

∑
i∈(F (1) ⋃

(F (2))
qij

Φj
(1−∆j) so that the implied vector of shock

after the �rst step is equal to ∆(2) := (∆
(2)
1 (.), ...,∆

(2)
n (.)).

3. Repeat until F (k) := {i ∈ (B\ ∪k−1
a=1 F

(a)) : ∆(k−1) ∈ Zfaili } is not empty.

Fact 7 The liquidation process stops after a �nite number of liquidation rounds l ≤ p.

Proof. Assume that the process does not stop at step k ≥ 1, which means that for an implied
shock ∆(k−1) at step k − 1, F (k) 6= ∅, that is, an additional subset of banks fail. Since F (k) 6= ∅ is
equivalent to Card(F (k)) ≥ 1 and since

∑p
k=1 Card(F (k)) ≥ p, the liquidation process must stop in

at most l ≤ p steps such that
∑l

k=1 Card(F (k)) ≤ p �
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