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Abstract. Let g � Z=n1Z
 . . .
 Z=nrZ be a finite abelian group of rank r, where
njjnj�1 for j � 1; . . . ; r ÿ 1: Let t�g� be the number of subgroups of g, jgj the order of g
and r�g� the rank of g. In this paper we investigate carefully the asymptotic behaviour
of the level function `

�r�
t �n� :� P

jgj�n; r�g� % r
t�g� for r � 2. In particular we prove thatX

n % x

`�2�t �n� � A1x�log x�2 �A2x log x�A3x� D�x�;

where Ai-s are constants, D�x� � x5=8�log x�4 and D�x� � Wÿ�x1=2�log x�2�:

1. Introduction. The asymptotic behaviour of the number of subgroups of certain types of
groups, like torsion free nilpotent groups, is currently being investigated (see [7], [14]). For
abelian groups, the average number of their formal direct factors and their formal unitary factors
are known (see [5], [11]). The asymptotic behaviour of the number of subgroups of abelian
groups, however, has received little attention. Let g be a finite abelian group of rank r, i.e.

g � Z=n1Z
 . . .
 Z=nrZ;

where njjnj�1 for j � 1; . . . ; r ÿ 1: We write t�g� for the number of subgroups of
g; jgj � n1 � � � nr for the order of g and r�g� for the rank of g. We introduce the level
function `

�r�
t �n� of t�g�, defined by

`�r�t �n� :�
X

jgj�n; r�g� % r

t�g�;

which is the number of subgroups of finite abelian groups g satisfying r�g� % r and jgj � n.
We are interested in the asymptotic behaviour of this function.

It has recently been proved that there is a natural bijection between the set of subgroups
of a finite abelian group g of rank r and the set of divisors of an r � r Smith Normal Form
(SNF) matrix S :� diag�n1; . . . ; nr� (see Corollary 1 of [3]). Let t�S� be the number of
(inequivalent) factorizations of S, we have t�S� � t�g�. We define the Dirichlet series
associated to t�S� and to t�g� as

D�r�S �t; s� :�
X

S in SNF

t�S�
�n1 � � � nr�s ; d�r��t; s� :�

X
r�g� % r

t�g�
jgjs :
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Obviously these two series are equal. For r ^ 3, a usable Dirichlet series is still under
investigation and henceforth the parameter r, when suppressed, will be understood to be 2.
We know, from Corollary 1 of [2], that

d�t; s� � z�s�2z�2sÿ 1�G�s�;�1:1�
where z�s� is the Riemann zeta-function and G�s� :� z�2s�3Q

p
�1ÿ 2pÿ3s ÿ pÿ4s � 2pÿ5s� is a

Dirichlet series absolutely convergent Re s > 1
2 : Using (1.1), Bhowmik and Menzer [1] have

proved that X
n % x

`t�n� � A1x�log x�2 �A2x log x�A3x� D�x�;�1:2�

where Ai-s are computable constants and D�x� �" x31=43�" �8" > 0�:
In this paper, we first study the error term D�x� more carefully. We notice that by an

application of Dirichlet's hyperbola principle, the result of Huxley ([8], Corollary)
concerning the divisor problem of Dirichlet implies D�x� � x123=173�log x�607=146, which
improves the result in [1]. Here we shall use another method to treat D�x�. We require a
result for a weighted three dimensional divisor problem, for which effective results do not
seem to be available. We use multiple exponential sum techniques to prove the following
result.

Theorem 1. We haveX
n1n2n2

3 % x

n3 � B1x�log x�2 � B2x log x� B3x�O
ÿ
x5=8�log x�4�;�1:3�

where Bj-s are some computable constants.

With the aid of (1.3), we are able to obtain, by a convolution argument, a sharper estimate.

Theorem 2. We have D�x� � x5=8�log x�4:
For comparison, we have 31

43 � 0:7209; 123
173 � 0:7109; 5

8 � 0:625:
By considering the contribution of the second pole s � 1

2 of d�t; s�xs=s, we could expect to
get the following ªasymptoticº formula

D�x� � A4x1=2�log x�2 �A5x1=2log x�A6x1=2 � E�x�;
where the first three terms are the residue of d�t; s�xs=s at s � 1

2 and E�x� (defined by the
preceding relation) is an ªerror termº. In this direction, we can give a non trivial upper
bound for the average order of E�x�, i.e.

Theorem 3. For any " > 0, we have

1
x

�x
0

E�u�du�" x3=8�":

As a consequence of Theorem 3, we state the following W-type estimate for D�x�:

Corollary 1. We have D�x� � Wÿ
ÿ
x1=2�log x�2�:

For a smooth point-wise bound, we have the following result.
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Theorem 4. (i) A maximal order for the function `t�n� is C0
���
n
p �log 2n�6; i.e.

limsup
n!1

`t�n����
n
p �log 2n�6 � C0;

where C0 :� e6g
Q
p
�1ÿ 1=p�6ÿ1�P1

j�1
�2j� 1��j� 1�=pj

�
and g is the Euler constant.

(ii) A minimal order for `t�n� is 2.

We can establish the following W-type result for E�x�:

Corollary 2. For infinitely many x, we have jE�x� 1� ÿ E�x�j � ���
x
p �log 2x�6: In particular,

we have E�x� � W
ÿ
x1=2�log 2x�6�:

A normal order for log `�r�t �n� has been shown to be �log 2� log 2n in [4]. As usual, let w�n�
be the number of distinct prime factors of the integer n. The following result shows that the
sum

P
n % x

`t�n� is dominated by a small number of ªabnormalº integers n, for which `t�n� is

large.

Theorem 5. For any " 2 �0; 1�, we haveX
n % x

jw�n�ÿ3 log2xj>" log2x

`t�n� � x�log x�2ÿ3h�1:6�

with

h :� min
� �1�1

3"

1
log t dt;

�1
1ÿ1

3"

log �1=t�dt
�
> 0:

In particular, the mean value �1=x� P
n % x

`t�n� is given by the natural numbers n such that

w�n� � 3 log 2x�O
ÿ
x�x� ������������

log 2x
p �

; where x�x� � o
ÿ ������������

log 2x
p �

as x! 1 :

Ac knowl edg e m en ts . We thank A. IvicÂ for his comments on an earlier version of this
paper, which helped us to improve Theorem 3.

2. Estimate for exponential sums. In this section, we give an estimate for exponential
sums, which is essentially a general form of the first estimate in Lemma 6 of Kolesnik [10].

Lemma 2.1. Let a1;a2 2 R with �a2 ÿ 2��a1 � 2a2 ÿ 2� Q
1 % j % 2

aj�aj ÿ 1��a1 � a2 ÿ j� �j 0,

X > 0; M1;M2 ^ 1; l :� log �XM1M2 � 2�. Suppose D 7 �M1; 2M1� � �M2; 2M2� is a
domain such that conditions �W2� and �W3�*) are satisfied for f �m1;m2� :�
�X=Ma1

1 Ma2
2 �ma1

1 ma2
2 on D. Let

S :�
XX
�m1;m2�2D

e
ÿ
f �m1;m2�

�
:

Then we have

S� ��X2M3
1M3

2�1=6 � �X2M5
1M2�1=6 �M1M1=2

2 � �X3M7
1�1=8

� �XM1�1=2 � �X2M8
1M2�1=8 �Xÿ1=2M2 �Xÿ1M1M2

	
l:

*) For definitions of �W2� and �W3�, see page 79 ± 80 of [6].
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For proving this lemma, we need a well known result of Kolesnik [10] in monomial case.
Here we take essentially the form of Theorem 6.12 of [6].

Lemma 2.2. Let a1;a2 2 R with
Q

1 % j % 2
aj�aj ÿ 1��aj ÿ 2��a1 � a2 ÿ j� �j 0; M1 ^ M2 ^ 1,

X > 0; l :� log �XM1M2 � 2�. Let D; f �m1;m2�; S be defined as in Lemma 2.1. Then we
have

S���X2M3
1M3

2�1=6��M1M2�5=6�M1M1=2
2 ��Xÿ1M7

1M8
2�1=8�Xÿ1=4M1M2

	
l1=2:

Pr oof . By (6.4.5) of [6], we have

S� ��X2M3
1M3

2�1=6 � �M1M2�5=6 � �X2M13
1 M25

2 �1=26 � �M5
1M8

2�1=8

� �X2M7
1M11

2 �1=14 � �M2
1M2�1=2 � �Xÿ1M7

1M8
2�1=8 � �Xÿ1M4

1M4
2�1=4	l1=2

�: �E1 � � � � � E8�l1=2:

Since M1 ^ M2, it is easy to see that E4 % E2 and

E3 � �E63
1 E80

7 �1=143�M15
1 =M13

2 �ÿ2=143; E5 � �E45
1 E32

7 �1=77�M2
1=M2�ÿ6=77:

Thus E3;E4;E5 are superfluous. This proves Lemma 2.2. h

Pr oof o f Le mm a 2 .1. If M0
2 :� X=M2 % 1

2, Kusmin-Landau's inequality (Theorem 2.1
of [6]) implies the desired estimate. Next we suppose M0

2 ^ 1
2. Applying Lemma 2.2 of [13] to

m2, estimating the contribution of error term by Lemma 2.3 of [13] with n � m1 and
removing smooth coefficients by tartial summation, we easily find that

S� Xÿ1=2M2T � �X1=2 �M1 �Xÿ1=2M2 �Xÿ1M1M2�l;�2:1�
where

T :�
XX
�m1;m02�2D0

e
ÿ
f1�m1;m2�

�
; f1�m1;m2� :� ~a2�X=Mb1

1 M0b2
2 �mb1

1 m0b2
2

and b1 :� a1=�1ÿ a2�; b2 :� ÿa2=�1ÿ a2�; ~a2 :� j1ÿ a2jja2jÿb2 , and D0 is a suitable
subregion of �M1; 2M1� � �M0

2; 2M0
2�.

If M1 ^ M0
2, we can use Lemma 2.2 with �X;M1;M2� � �~a2X;M1;M0

2� to estimate T. This
yields that

Xÿ1=2M2T ���X2M3
1M3

2�1=6 � �X2M5
1M2�1=6

�M1M1=2
2 � �X3M7

1�1=8 �X1=4M1
	
l:

�2:2�

When M1 % M0
2, we use Lemma 2.2 with �X;M1;M2� � �~a2X;M0

2;M1� to write

Xÿ1=2M2T � ��X2M3
1M3

2�1=6 � �X2M5
1M2�1=6

� �XM1�1=2 � �X2M8
1M2�1=8 �X1=4M1

	
l:

�2:3�

Inserting (2.2) and (2.3) in (2.1), we obtain the required result. h

3. Weighted 3-dimensional divisor problem and proof of Theorem 1. The aim of this
section is to prove Theorem 1, which, as well as being of independent interest, is a key step in
the proof of Theorem 2.
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We first introduce some notations. Let a :� �a1; a2; a3� 2 R3; b :� �b1; b2; b3� 2 �R��3
with 0 < b1 % b2 % b3. Let p�1; 2; 3� be the set of all permutations of �1; 2; 3� and the
notation k :� �k1; k2; k3� 2 p�1; 2; 3� means that �k1; k2; k3� runs over all permutations of
�1; 2; 3�. We write ftg for the fractional part of t and put y�t� :� ftg ÿ 1

2. Defining weighted
3-dimensional divisor function

t�b; a; n� :�
X

n
b1
1 n

b2
2 n

b3
3 �n

na1
1 na2

2 na3
3 :

We denote by D�b; a; x� the error term in the weighted three dimensional divisor problem

D�b; a; x� :�
X
n % x

t�b; a; n� � main terms� D�b; a; x�:�3:1�

From (2), (3) and (4) of [16], we have

D�b; a; x� � ÿ
X

k2p�1;2;3�

n
D�k; b; a; x� �

X
1 % j % 3

O
�

x�ak1
�����akj�jÿ2�=�bk1

�����bkj �
�o
;

where

D�k; b; a; x� :� xak3 =bk3

X
1
n

ak1ÿak3 bk1 =bk3
1 n

ak2ÿak3 bk2 =bk3
2 y

�ÿ
x=n

bk1
1 n

bk2
2

�1=bk3

�
and the summation condition of

P
1 is given by

SC�P 1� nbk1 n
bk2�bk3
2 % x; n1� % �n2:

The notation n1� % �n2 means that n1 � n2 for bk1 < bk2 , and n1 < n2 otherwise.
As usual, for bounding D�k; b; a; x�, it is sufficient to consider the truncated sum

D�k; b; a;N; x� :� xak3 =bk3

X
2
n

ak1ÿak3 bk1 =bk3
1 n

ak2ÿak3 bk2 =bk3
2 y

�ÿ
x=n

bk1
1 n

bk2
2

�1=bk3

�
where N :� �N1;N2� 2 N2, and the summation condition of

P
2 is given by

SC�P 2� n
bk1
1 n

bk2�bk3
2 % x; n1� % �n2; N1 < n1 % 2N1; N2 < n2 % 2N2:

Obviously, Theorem 1 is equivalent to

D�k; b; a;N; x� � x5=8�log x�2�3:2�
for a � �0; 0; 1�; b � �1; 1; 2� and all k 2 p�1; 2; 3�:

For this, we first establish a general estimate, which is valid for any a and b, defined as in
the beginning of this section. In the sequel, we write l :� log x.

Lemma 3.1. Under the preceding notations, we have

D�k; b; a;N; x� � X
��G2N5

1 N5
2�1=8 � �GN2

1N2�1=3	l2

with G :� ÿx=N
bk1
1 N

bk2
2

�1=bk3 and X :� Gak3 N
ak1
1 N

ak2
2 :

Pr oof . From a classic result on y�t� (see [6], page 39), we can write, for any H ^ 1, that

D�k; b; a;N; x� � X
n

N1N2Hÿ1 �
X

h % H

jS�h�j=h
o
;�3:3�
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where

S�h� :�
X

N1<n1 % 2N1

yn1

X
N2<n2 % 2N2

yn2
e
�

h
ÿ
x=n

bk1
1 n

bk2
2

�bk3

�
with ynj

:� �nj=Nj�akjÿak3 bkj =bk3 . The Abel summation formula allows us to replace ynj
by 1.

Applying Lemma 2.1 with �a1;a2� � �ÿbk1=bk3 ;ÿbk2=bk3�; �X;M1;M2� � �Gh;N1;N2�
yields

S�h� ���G2h2N3
1N3

2�1=6� �G2h2N5
1N2�1=6�N1N1=2

2 � �G3h3N7
1�1=8� �Gh�1=4N1

� �GhN1�1=2 � �G2h2N8
1 N2�1=8 � �Gh�ÿ1=2N2 �Gÿ1hÿ1N1N2

	
l:

Inserting this in (3.3), we obtain that for any H ^ 1

D�k; b; a;N; x� � X
��G2N3

1 N3
2H2�1=6 � �G2N5

1N2H2�1=6 � �G3N7
1H3�1=8

� �GN4
1H�1=4 � �GN1H�1=2 � �G2N8

1N2H2�1=8 �N1N2Hÿ1

�N1N1=2
2 �Gÿ1=2N2 �Gÿ1N1N2

	
l2:

In view of the term N1N2Hÿ1, this inequality also holds for 0 < H < 1. By Lemma 2.4 (iii)
of [13], there exists some H > 0 such that

D�k; b; a;N; x�� X
��G2N5

1 N5
2�1=8��G2N7

1N3
2�1=8��G3N10

1 N3
2�1=11��GN5

1N2�1=5

� �GN2
1N2�1=3 � �G2N10

1 N3
2�1=10 �N1N1=2

2

�Gÿ1=2N2 �Gÿ1N1N2
	
l2 �: X �E1 � E2 � � � � � E9�l2:

Noticing that SC�P2� implies G ^ N2 ^ N1, we easily see that E2;E4;E6;E7;E8;E9 can be
absorbed by E1 and E3 � �E8

1E3
5�1=11�N2=N1�ÿ3=11. Thus Ej �2 % j % 9; j �j 5� are super-

fluous. This completes the proof of Lemma 3.1. h

We are now in a position to prove (3.2). We discuss three possibilities.

1� When �ak1 ; ak2 ; ak3� � �0; 0; 1�, we have �bk1 ; bk2 ; bk3� � �1; 1; 2�, G � X � �x=N1N2�1=2.
Lemma 3.1 offers immediately that

D�k; b; a;N; x� � �
x5=8 � �x2=N2�1=3	l2 � x5=8l2

if N2 ^ x1=8. In the contrary case, we have trivially

D�k; b; a;N; x� � XN1N2 � �xN1N2�1=2 � �xN2
2�1=2 � x5=8:

2� When �ak1 ; ak2 ; ak3� � �0; 1; 0�, we have �bk1 ; bk2 ; bk3� � �1; 2; 1�, G � x=N1N2
2 , X � N2.

Noticing that SC�P2� implies N1 � N2; N1N3
2 � x, Lemma 3.1 immediately gives that

D�k; b; a;N; x� � ��x2N3
1N9

2�1=8 � �xN1N2
2�1=3	l2 � x5=8l2:

3� When �ak1 ; ak2 ; ak3� � �1; 0; 0�, we have �bk1 ; bk2 ; bk3� � �2; 1; 1�, G � x=N2
1N2, X � N1.

Noticing that SC�P2� implies N1 � N2; N2
1N2

2 � x, Lemma 3.1 offers immediately that

D�k; b; a;N; x� � ��x2N9
1N3

2�1=8 � �xN3
1�1=3	l2 � x5=8l2:

Obviously these estimates imply (3.2). This proves Theorem 1. h
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4. End of the proof of Theorem 2. Let g�n� be the coefficient of the Dirichlet series
z�2s�3Q

p
�1ÿ 2pÿ3s ÿ pÿ4s � 2pÿ5s�. In view of (1.1), we see that `t�n� � ft�a; b; �� � gg�n�

with a � �0; 0; 1� and b � �1; 1; 2�. Since
P1
n�1

g�n�nÿs converges absolutely for Re s > 1
2, using

Theorem 1, a simple convolution argument immediately shows thatX
n % x

`t�n� � A1x�log x�2 �A2x log x�A3x�O
ÿ
x5=8�log x�4�: h

5. Proofs of Theorem 3 and Corollary 1. Let A�x� :� P
n % x

`t�n� ÿ E�x�. By the definition of
E�x�, we easily see that

A�x� � Resfd�t; s�xs=s; 1g �Res
n
d�t; s�xs=s;

1
2

o
;

where ResfF�s�; ag is the residue of F�s� at s � a. By Perron's formula ([15], Theorem
II.2.3), we obtain

�x
0

E�u�du � 1
2pi

�2�i1

2ÿi1
d�t; s� xs�1

s�s� 1�dsÿ �x
0

A�u�du:�5:1�

Let s0 2 �13 ; 1
2�. By (II.3.15) and (II.3.22) of [15], we deduce that for any T > 10 and any " > 0�

s0 % s % 2; jtj�T

���d�t; s� xs�1

s�s� 1�
���jdsj � x3=T5=18ÿ";

and �
s�2; jtj ^ T

���d�t; s� xs�1

s�s� 1�
���jdsj � x3=T:

Shifting the line of integration from s � 2 to s � s0 and using the preceding estimates, the
residue theorem implies that

1
2pi

�2�i1

2ÿi1
d�t; s� xs�1

s�s� 1�ds � 1
2pi

�2�iT

2ÿiT
d�t; s� xs�1

s�s� 1�ds�O
� x3

T

�
� �x

0
A�u�du� 1

2pi

�s0�iT

s0ÿiT
d�t; s� xs�1

s�s� 1�ds�O
� x3

T5=18ÿ"

�
;

where we used the relation

Resfd�t; s�xs�1=s�s� 1�; 1g �Res
n
d�t; s�xs�1=s�s� 1�; 1

2

o
� �x

0
A�u�du:

Making T ! 1 and inserting the formula obtained in (5.1), we find that

�x
0

E�u� du � 1
2pi

�s0�i1

s0ÿi1
d�t; s� xs�1

s�s� 1� ds� x1�s0
��1
ÿ1

jd�t; s0 � it�j
�jtj � 1�2 dt:�5:2�

Observing 1
2 < 1ÿ s0 <

2
3, the functional equation for z�s� ([15], Theorem II.3.3) yields

d�t; s0 � it� � jtj5=2ÿ4s0 jz�1ÿ s0 ÿ it�j2jz�2s0 � i2t�j3:�5:3�
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For s 2 �12 ; 1�, we define m�s� to be the supremum of all numbers m such that

�T
1
jz�s � it�jmdt�" T1�"

holds for any " > 0 and any T ^ 1. Recalling 1
2 < 1ÿ s0; 2s0 < 1 and m�12� ^ 6 (Theorem 8.4

of [9]), we show, by the HoÈ lder inequality and (5.3), that

�2T

T

jd�t; s0 � it�j
t2 dt� T1=2ÿ4s0

n �2T

T
jz�1ÿ s0 ÿ it�j5dt

o2=5n �2T

T
jz�2s0 � i2t�j5dt

o3=5

�" T3=2ÿ4s0�":

Taking s0 � 3
8� " and using the inequality obtained with T � 2k, we find that

�1
1

jd�t; s0 � it�j
t2 dt �

X1
k�0

�2k�1

2k

jd�t; s0 � it�j
t2 dt�

X1
k�0

1
23"k �" 1:

This and (5.2) imply the required result. h

For Corollary 1, we first see that Theorem 3 yields that

1
x

�x
0

D�u� du � 1
24 A4x1=2�log x�2:

In addition a simple calculation shows that

A4 � ÿ 1
16

z
1
2

� �2Y
p

ÿ
1ÿ 2pÿ3=2 ÿ pÿ2 � 2pÿ5=2� < 0:

These imply the required result. h

6. Proofs of Theorem 4 and Corollary 2. We first evaluate the coefficient `t�n�. Since this
function is multiplicative, it is enough to study `t�pn� for prime numbers p and positive
integers n.

Lemma 6.1. Let p be a prime number, n ^ 1 a positive integer and m :� �n=2�. Then we have

`t�pn� �
Xm

j�0

�nÿ 2m� 2j� 1��j� 1�pmÿj:

Pr oof . Obviously, we may evaluate directly `t�pn� by (1.1). However, using the relation
t�g� � t�S�, we can give a more succinct proof. Let thpj; pnÿji be the number of
factorisations of the SNF matrix diag�pj; pnÿj�, the preceding relation implies

`t�pn� �Pm
j�0

thpj; pnÿji: From Remark 1.4 of [12], we find that

`t�pn� �
Xm

j�0

Xj

k�0

�nÿ 2k� 1�pk �
Xm

k�0

�nÿ 2k� 1��mÿ k� 1�pk;

which is equivalent to the required result. This proves Lemma 6.1. h
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We note that nÿ 2m� 1 �j 0 (it is 1 or 2 depending on whether n is even or odd), hence
`t�pn� is a polynomial in p of degree m. Thus, for example, we have

`t�p� � 2; `t�p2� � p� 6; `t�p3� � 2p� 8; `t�p4� � p2 � 6p� 15:

Now we are in a position to complete the proof of Theorem 4.
By using Lemma 6.1, we have

`t�p2m� � pm
�

1�
X

1 % j % mÿ2

�2j� 1��j� 1�=pj
�
�m � 1; 2; . . .�;�6:1�

`t�p2m�1� � 2pm
�

1�
X

1 % j % mÿ2

�j� 1�2=pj
�
�m � 0; 1; 2; . . .�:�6:2�

From this, we easily deduce that

`t�pn� % pn=2
�

1�
X1
j�1

�2j� 1��j� 1�=pj
�
:

Since `t�n� is multiplicative, we find that

`t�n�%
���
n
p Y

pnkn

�
1�
X1
j�1

�2j�1��j�1�=pj
�

%
���
n
p Y

p % pw�n�

�
1�
X1
j�1

�2j� 1��j� 1�=pj
�

%
���
n
p Y

p % pw�n�

�1ÿ 1=p�ÿ6
Y

p % pw�n�

�1ÿ 1=p�6
�

1�
X1
j�1

�2j� 1��j� 1�=pj
�
;

where w�n� is the number of distinct prime factors of n and pj denotes the jth prime number.
By Mertens' formula and the relation log pw�n� % f1� o�1�glog 2n, it is easy to show that

limsup
n!1

`t�n����
n
p �log 2n�6 % C0:�6:3�

Defining nk;m :� p2m
1 � � � p2m

k for k ^ 1 and m ^ 4, the first relation of (6.1) yields that

limsup
n!1

`t�n����
n
p �log 2n�6 ^ lim

k!1
`t�nk;m����

n
p

k;m�log 2nk;m�6

� e6g
Y

p

�1ÿ 1=p�6
�

1�
X

1 % j % mÿ2

�2j� 1��j� 1�=pj
�
:

We let m! 1 and together with (6.3), we obtain the first assertion of Theorem 4. The
lower bound is trivial, since `t�n� ^ 2 and `t�p� � 2. h

For verifying Corollary 2, we can write

`t�nk;1� � A�nk;1� ÿA�nk;1 ÿ 1� � E�nk;1� ÿ E�nk;1 ÿ 1�:
Since A�nk;1� ÿA�nk;1 ÿ 1� � �log nk;1�2, the first relation of (6.1) implies immediately

jE�nk;1� ÿ E�nk;1 ÿ 1�j � ��������
nk;1
p �log 2nk;1�6: h

7. Proof of Theorem 5. For each z > 0, the function `t�n�zw�n� is multiplicative andX1
n�1

`t�n�zw�n�nÿs � z�s�2zz�2sÿ 1�zG�s; z� �Re s > 1�;
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where G�s; z� is a Dirichlet series absolutely convergent for Re s > 1
2 and for any z > 0 fixed.

By the Selberg±Delange method (Chapter II.5 of [15], with minor modification), we can showX
n % x

`t�n�zw�n� � x�log x�3zÿ1:

Hence we deduce thatX
n % x

jw�n�ÿ3log2xj>"log2x

`t�n�%
X
n % x

`t�n�
nÿ

1� 1
3"
�w�n�ÿ�3�"�log2x�ÿ1ÿ 1

3"
�w�n�ÿ�3ÿ"�log2x

o
� x�log x�2ÿ3h;

where h is defined as in the formulation of Theorem 5. Combining this with (1.2) yields the
second assertion. h
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