On the asymptotic behaviour of the number of subgroups of finite abelian groups

By

GAUTAMI BHOWMIK and JIE WU

Abstract. Let $\mathscr{G} \cong \mathbb{Z}/n_1\mathbb{Z} \otimes \ldots \otimes \mathbb{Z}/n_r\mathbb{Z}$ be a finite abelian group of rank *r*, where $n_j|_{n_{j+1}}$ for $j = 1, \ldots, r-1$. Let $\tau(\mathscr{G})$ be the number of subgroups of \mathscr{G} , $|\mathscr{G}|$ the order of \mathscr{G} and $r(\mathscr{G})$ the rank of \mathscr{G} . In this paper we investigate carefully the asymptotic behaviour of the level function $\ell_{\tau}^{(r)}(n) := \sum_{|\mathscr{G}|=n,r(\mathscr{G}) \le r} \tau(\mathscr{G})$ for r = 2. In particular we prove that

$$\sum_{n \le x} \ell_{\tau}^{(2)}(n) = A_1 x (\log x)^2 + A_2 x \log x + A_3 x + \Delta(x),$$

where A_i -s are constants, $\Delta(x) \ll x^{5/8} (\log x)^4$ and $\Delta(x) = \Omega_-(x^{1/2} (\log x)^2)$.

1. Introduction. The asymptotic behaviour of the number of subgroups of certain types of groups, like torsion free nilpotent groups, is currently being investigated (see [7], [14]). For abelian groups, the average number of their formal direct factors and their formal unitary factors are known (see [5], [11]). The asymptotic behaviour of the number of subgroups of abelian groups, however, has received little attention. Let \mathscr{G} be a finite abelian group of rank r, i.e.

$$\mathscr{G}\cong \mathbb{Z}/n_1\mathbb{Z}\otimes\ldots\otimes\mathbb{Z}/n_r\mathbb{Z},$$

where $n_j|n_{j+1}$ for j = 1, ..., r-1. We write $\tau(\mathscr{G})$ for the number of subgroups of \mathscr{G} , $|\mathscr{G}| = n_1 \cdots n_r$ for the order of \mathscr{G} and $r(\mathscr{G})$ for the rank of \mathscr{G} . We introduce the *level function* $\ell_{\tau}^{(r)}(n)$ of $\tau(\mathscr{G})$, defined by

$$\ell^{(r)}_{ au}(n) := \sum_{|\mathscr{G}|=n, r(\mathscr{G}) \leq r} \tau(\mathscr{G}),$$

which is the number of subgroups of finite abelian groups \mathscr{G} satisfying $r(\mathscr{G}) \leq r$ and $|\mathscr{G}| = n$. We are interested in the asymptotic behaviour of this function.

It has recently been proved that there is a natural bijection between the set of subgroups of a finite abelian group \mathscr{G} of rank r and the set of divisors of an $r \times r$ Smith Normal Form (SNF) matrix $S := \text{diag}[n_1, \ldots, n_r]$ (see Corollary 1 of [3]). Let $\tau(S)$ be the number of (inequivalent) factorizations of S, we have $\tau(S) = \tau(\mathscr{G})$. We define the Dirichlet series associated to $\tau(S)$ and to $\tau(\mathscr{G})$ as

$$D^{(r)}_S(au,s):=\sum_{S ext{ in SNF}} rac{ au(S)}{(n_1\cdots n_r)^s}, \quad \mathscr{D}^{(r)}(au,s):=\sum_{r(\mathscr{G}) \equiv} rac{ au(\mathscr{G})}{|\mathscr{G}|^s}.$$

Mathematics Subject Classification (1991): 11N45, 11L07, 20K01, 20K27.

Obviously these two series are equal. For $r \ge 3$, a usable Dirichlet series is still under investigation and henceforth the parameter r, when suppressed, will be understood to be 2. We know, from Corollary 1 of [2], that

(1.1)
$$\mathscr{D}(\tau,s) = \zeta(s)^2 \zeta(2s-1)G(s),$$

where $\zeta(s)$ is the Riemann zeta-function and $G(s) := \zeta(2s)^3 \prod_p (1 - 2p^{-3s} - p^{-4s} + 2p^{-5s})$ is a Dirichlet series absolutely convergent $\Re e s > \frac{1}{2}$. Using (1.1), Bhowmik and Menzer [1] have proved that

(1.2)
$$\sum_{n \leq x} \ell_{\tau}(n) = A_1 x (\log x)^2 + A_2 x \log x + A_3 x + \varDelta(x),$$

where A_i -s are computable constants and $\Delta(x) \ll_{\varepsilon} x^{31/43+\varepsilon} \ (\forall \varepsilon > 0)$.

In this paper, we first study the error term $\Delta(x)$ more carefully. We notice that by an application of Dirichlet's hyperbola principle, the result of Huxley ([8], Corollary) concerning the divisor problem of Dirichlet implies $\Delta(x) \ll x^{123/173} (\log x)^{607/146}$, which improves the result in [1]. Here we shall use another method to treat $\Delta(x)$. We require a result for a weighted three dimensional divisor problem, for which effective results do not seem to be available. We use multiple exponential sum techniques to prove the following result.

Theorem 1. We have

(1.3)
$$\sum_{n_1 n_2 n_3^2 \leq x} n_3 = B_1 x (\log x)^2 + B_2 x \log x + B_3 x + O(x^{5/8} (\log x)^4),$$

where B_i -s are some computable constants.

With the aid of (1.3), we are able to obtain, by a convolution argument, a sharper estimate.

Theorem 2. We have $\Delta(x) \ll x^{5/8} (\log x)^4$.

For comparison, we have $\frac{31}{43} \approx 0.7209$, $\frac{123}{173} \approx 0.7109$, $\frac{5}{8} = 0.625$.

By considering the contribution of the second pole $s = \frac{1}{2}$ of $\mathcal{D}(\tau, s)x^s/s$, we could expect to get the following "asymptotic" formula

$$\Delta(x) = A_4 x^{1/2} (\log x)^2 + A_5 x^{1/2} \log x + A_6 x^{1/2} + E(x),$$

where the first three terms are the residue of $\mathcal{D}(\tau, s)x^s/s$ at $s = \frac{1}{2}$ and E(x) (defined by the preceding relation) is an "error term". In this direction, we can give a non trivial upper bound for the average order of E(x), i.e.

Theorem 3. For any $\varepsilon > 0$, we have

$$\frac{1}{x}\int\limits_{0}^{x}E(u)du\ll_{\varepsilon}x^{3/8+\varepsilon}$$

As a consequence of Theorem 3, we state the following Ω -type estimate for $\Delta(x)$.

Corollary 1. We have $\Delta(x) = \Omega_{-}(x^{1/2}(\log x)^2)$.

For a smooth point-wise bound, we have the following result.

Theorem 4. (i) A maximal order for the function $\ell_{\tau}(n)$ is $C_0 \sqrt{n} (\log_2 n)^6$, i.e.

$$\limsup_{n\to\infty} \frac{\ell_{\tau}(n)}{\sqrt{n}(\log_2 n)^6} = C_0,$$

where $C_0 := e^{6\gamma} \prod_p (1-1/p)^6 (1+\sum_{j=1}^{\infty} (2j+1)(j+1)/p^j)$ and γ is the Euler constant. (ii) A minimal order for $\ell_{\tau}(n)$ is 2.

We can establish the following Ω -type result for E(x).

Corollary 2. For infinitely many x, we have $|E(x+1) - E(x)| \gg \sqrt{x}(\log_2 x)^6$. In particular, we have $E(x) = \Omega(x^{1/2}(\log_2 x)^6)$.

A normal order for $\log \ell_{\tau}^{(r)}(n)$ has been shown to be $(\log 2) \log_2 n$ in [4]. As usual, let $\omega(n)$ be the number of distinct prime factors of the integer *n*. The following result shows that the sum $\sum_{n \leq x} \ell_{\tau}(n)$ is dominated by a small number of "abnormal" integers *n*, for which $\ell_{\tau}(n)$ is large.

Theorem 5. For any $\varepsilon \in (0,1)$, we have

(1.6)
$$\sum_{\substack{n \leq x \\ |\omega(n) - 3\log_2 x| > \varepsilon \log_2 x}} \ell_\tau(n) \ll x (\log x)^{2-3\eta}$$

with

$$\eta := \min \left\{ \int_{1}^{1+\frac{1}{3}\varepsilon} \log t \, dt, \int_{1-\frac{1}{3}\varepsilon}^{1} \log \left(1/t\right) dt \right\} > 0.$$

In particular, the mean value $(1/x) \sum_{n \leq x} \ell_{\tau}(n)$ is given by the natural numbers n such that $\omega(n) = 3\log_2 x + O(\xi(x)\sqrt{\log_2 x})$, where $\xi(x) = o(\sqrt{\log_2 x})$ as $x \to \infty$.

Acknowledgements. We thank A. Ivić for his comments on an earlier version of this paper, which helped us to improve Theorem 3.

2. Estimate for exponential sums. In this section, we give an estimate for exponential sums, which is essentially a general form of the first estimate in Lemma 6 of Kolesnik [10].

Lemma 2.1. Let $\alpha_1, \alpha_2 \in \mathbb{R}$ with $(\alpha_2 - 2)(\alpha_1 + 2\alpha_2 - 2) \prod_{1 \le j \le 2} \alpha_j(\alpha_j - 1)(\alpha_1 + \alpha_2 - j) \neq 0$, $X > 0, M_1, M_2 \ge 1, \ \mathcal{L} := \log (XM_1M_2 + 2)$. Suppose $\mathbf{D} \subseteq (M_1, 2M_1] \times (M_2, 2M_2]$ is a domain such that conditions (Ω_2) and $(\Omega_3)^*$) are satisfied for $f(m_1, m_2) := (X/M_1^{\alpha_1}M_2^{\alpha_2})m_1^{\alpha_1}m_2^{\alpha_2}$ on \mathbf{D} . Let

$$S:=\sum_{(m_1,m_2)\in \mathbf{D}}eig(f(m_1,m_2)ig).$$

Then we have

$$\begin{split} S &\ll \left\{ (X^2 M_1^3 M_2^3)^{1/6} + (X^2 M_1^5 M_2)^{1/6} + M_1 M_2^{1/2} + (X^3 M_1^7)^{1/8} \\ &+ (X M_1)^{1/2} + (X^2 M_1^8 M_2)^{1/8} + X^{-1/2} M_2 + X^{-1} M_1 M_2 \right\} \mathscr{L}. \end{split}$$

*) For definitions of (Ω_2) and (Ω_3) , see page 79-80 of [6].

For proving this lemma, we need a well known result of Kolesnik [10] in monomial case. Here we take essentially the form of Theorem 6.12 of [6].

Lemma 2.2. Let $a_1, a_2 \in \mathbb{R}$ with $\prod_{1 \le j \le 2} a_j(a_j - 1)(a_j - 2)(a_1 + a_2 - j) \neq 0, M_1 \ge M_2 \ge 1$, $X > 0, \mathcal{L} := \log (XM_1M_2 + 2)$. Let **D**, $f(m_1, m_2)$, S be defined as in Lemma 2.1. Then we have

$$S \ll \left\{ (X^2 M_1^3 M_2^3)^{1/6} + (M_1 M_2)^{5/6} + M_1 M_2^{1/2} + (X^{-1} M_1^7 M_2^8)^{1/8} + X^{-1/4} M_1 M_2 \right\} \mathscr{L}^{1/2}.$$

Proof. By (6.4.5) of [6], we have

$$\begin{split} S &\ll \left\{ (X^2 M_1^3 M_2^3)^{1/6} + (M_1 M_2)^{5/6} + (X^2 M_1^{13} M_2^{25})^{1/26} + (M_1^5 M_2^8)^{1/8} \\ &+ (X^2 M_1^7 M_2^{11})^{1/14} + (M_1^2 M_2)^{1/2} + (X^{-1} M_1^7 M_2^8)^{1/8} + (X^{-1} M_1^4 M_2^4)^{1/4} \right\} \mathscr{L}^{1/2} \\ &=: (E_1 + \dots + E_8) \mathscr{L}^{1/2}. \end{split}$$

Since $M_1 \ge M_2$, it is easy to see that $E_4 \le E_2$ and

$$E_3 = (E_1^{63} E_7^{80})^{1/143} (M_1^{15} / M_2^{13})^{-2/143}, \quad E_5 = (E_1^{45} E_7^{32})^{1/77} (M_1^2 / M_2)^{-6/77}.$$

Thus E_3, E_4, E_5 are superfluous. This proves Lemma 2.2.

Proof of Lemma 2.1. If $M'_2 := X/M_2 \le \frac{1}{2}$, Kusmin-Landau's inequality (Theorem 2.1 of [6]) implies the desired estimate. Next we suppose $M'_2 \ge \frac{1}{2}$. Applying Lemma 2.2 of [13] to m_2 , estimating the contribution of error term by Lemma 2.3 of [13] with $n = m_1$ and removing smooth coefficients by tartial summation, we easily find that

(2.1)
$$S \ll X^{-1/2} M_2 T + (X^{1/2} + M_1 + X^{-1/2} M_2 + X^{-1} M_1 M_2) \mathscr{L},$$

where

$$T := \sum_{(m_1, m_2') \in \mathbf{D}'} e(f_1(m_1, m_2)), \quad f_1(m_1, m_2) := \tilde{\alpha}_2(X/M_1^{\beta_1} M_2'^{\beta_2}) m_1^{\beta_1} m_2'^{\beta_2}$$

and $\beta_1 := \alpha_1/(1-\alpha_2), \beta_2 := -\alpha_2/(1-\alpha_2), \tilde{\alpha}_2 := |1-\alpha_2||\alpha_2|^{-\beta_2}$, and **D**' is a suitable subregion of $(M_1, 2M_1] \times (M'_2, 2M'_2]$.

If $M_1 \ge M'_2$, we can use Lemma 2.2 with $(X, M_1, M_2) = (\tilde{\alpha}_2 X, M_1, M'_2)$ to estimate T. This yields that

(2.2)
$$X^{-1/2}M_2T \ll \left\{ (X^2M_1^3M_2^3)^{1/6} + (X^2M_1^5M_2)^{1/6} + M_1M_2^{1/2} + (X^3M_1^7)^{1/8} + X^{1/4}M_1 \right\} \mathscr{L}.$$

When $M_1 \leq M'_2$, we use Lemma 2.2 with $(X, M_1, M_2) = (\tilde{\alpha}_2 X, M'_2, M_1)$ to write

(2.3)
$$X^{-1/2}M_2T \ll \left\{ (X^2M_1^3M_2^3)^{1/6} + (X^2M_1^5M_2)^{1/6} + (XM_1)^{1/2} + (X^2M_1^8M_2)^{1/8} + X^{1/4}M_1 \right\} \mathscr{L}.$$

Inserting (2.2) and (2.3) in (2.1), we obtain the required result. \Box

3. Weighted 3-dimensional divisor problem and proof of Theorem 1. The aim of this section is to prove Theorem 1, which, as well as being of independent interest, is a key step in the proof of Theorem 2.

We first introduce some notations. Let $\mathbf{a} := (a_1, a_2, a_3) \in \mathbb{R}^3$, $\mathbf{b} := (b_1, b_2, b_3) \in (\mathbb{R}^+)^3$ with $0 < b_1 \leq b_2 \leq b_3$. Let $\pi(1, 2, 3)$ be the set of all permutations of (1, 2, 3) and the notation $\mathbf{k} := (k_1, k_2, k_3) \in \pi(1, 2, 3)$ means that (k_1, k_2, k_3) runs over all permutations of (1, 2, 3). We write $\{t\}$ for the fractional part of t and put $\psi(t) := \{t\} - \frac{1}{2}$. Defining weighted 3-dimensional divisor function

$$\tau(\mathbf{b}, \mathbf{a}; n) := \sum_{n_1^{b_1} n_2^{b_2} n_3^{b_3} = n} n_1^{a_1} n_2^{a_2} n_3^{a_3}$$

We denote by $\Delta(\mathbf{b}, \mathbf{a}; x)$ the error term in the weighted three dimensional divisor problem

(3.1)
$$D(\mathbf{b}, \mathbf{a}; x) := \sum_{n \leq x} \tau(\mathbf{b}, \mathbf{a}; n) = \text{main terms} + \Delta(\mathbf{b}, \mathbf{a}; x)$$

From (2), (3) and (4) of [16], we have

$$\Delta(\mathbf{b}, \mathbf{a}; x) = -\sum_{\mathbf{k} \in \pi(1, 2, 3)} \left\{ \Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}; x) + \sum_{1 \le j \le 3} O\left(x^{(a_{k_1} + \dots + a_{k_j} + j - 2)/(b_{k_1} + \dots + b_{k_j})}\right) \right\},$$

where

$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}; x) := x^{a_{k_3}/b_{k_3}} \sum_{1} n_1^{a_{k_1} - a_{k_3}b_{k_1}/b_{k_3}} n_2^{a_{k_2} - a_{k_3}b_{k_2}/b_{k_3}} \psi\Big((x/n_1^{b_{k_1}} n_2^{b_{k_2}})^{1/b_{k_3}} \Big)$$

and the summation condition of \sum_{1} is given by

 $SC(\sum_{1})$ $n^{b_{k_1}}n_2^{b_{k_2}+b_{k_3}} \leq x, n_1(\leq)n_2.$

The notation $n_1 (\leq) n_2$ means that $n_1 = n_2$ for $b_{k_1} < b_{k_2}$, and $n_1 < n_2$ otherwise.

As usual, for bounding $\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}; x)$, it is sufficient to consider the truncated sum

$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) := x^{a_{k_3}/b_{k_3}} \sum_{2} n_1^{a_{k_1}-a_{k_3}b_{k_1}/b_{k_3}} n_2^{a_{k_2}-a_{k_3}b_{k_2}/b_{k_3}} \psi\Big(\big(x/n_1^{b_{k_1}}n_2^{b_{k_2}} \big)^{1/b_{k_3}} \Big)$$

where $\mathbf{N} := (N_1, N_2) \in \mathbb{N}^2$, and the summation condition of \sum_2 is given by

$$SC(\sum_{2})$$
 $n_{1}^{b_{k_{1}}}n_{2}^{b_{k_{2}}+b_{k_{3}}} \leq x, \quad n_{1}(\leq)n_{2}, \quad N_{1} < n_{1} \leq 2N_{1}, \quad N_{2} < n_{2} \leq 2N_{2}.$

Obviously, Theorem 1 is equivalent to

(3.2)
$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) \ll x^{5/8} (\log x)^2$$

for $\mathbf{a} = (0, 0, 1)$, $\mathbf{b} = (1, 1, 2)$ and all $\mathbf{k} \in \pi(1, 2, 3)$.

For this, we first establish a general estimate, which is valid for any **a** and **b**, defined as in the beginning of this section. In the sequel, we write $\mathcal{L} := \log x$.

Lemma 3.1. Under the preceding notations, we have

$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) \ll \Xi \left\{ (G^2 N_1^5 N_2^5)^{1/8} + (G N_1^2 N_2)^{1/3} \right\} \mathscr{L}^2$$
with $G := (x/N_1^{b_{k_1}} N_2^{b_{k_2}})^{1/b_{k_3}}$ and $\Xi := G^{a_{k_3}} N_1^{a_{k_1}} N_2^{a_{k_2}}.$

Proof. From a classic result on $\psi(t)$ (see [6], page 39), we can write, for any $H \ge 1$, that

(3.3)
$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) \ll \Xi \Big\{ N_1 N_2 H^{-1} + \sum_{h \leq H} |S(h)|/h \Big\},$$

where

$$S(h) := \sum_{N_1 < n_1 \le 2N_1} \psi_{n_1} \sum_{N_2 < n_2 \le 2N_2} \psi_{n_2} e\Big(h\big(x/n_1^{b_{k_1}} n_2^{b_{k_2}}\big)^{b_{k_3}}\Big)$$

with $\psi_{n_j} := (n_j/N_j)^{a_{k_j}-a_{k_3}b_{k_j}/b_{k_3}}$. The Abel summation formula allows us to replace ψ_{n_j} by 1. Applying Lemma 2.1 with $(a_1, a_2) = (-b_{k_1}/b_{k_3}, -b_{k_2}/b_{k_3}), (X, M_1, M_2) = (Gh, N_1, N_2)$ yields

$$\begin{split} S(h) \ll & \left\{ (G^2 h^2 N_1^3 N_2^3)^{1/6} + (G^2 h^2 N_1^5 N_2)^{1/6} + N_1 N_2^{1/2} + (G^3 h^3 N_1^7)^{1/8} + (Gh)^{1/4} N_1 \right. \\ & \left. + (Gh N_1)^{1/2} + (G^2 h^2 N_1^8 N_2)^{1/8} + (Gh)^{-1/2} N_2 + G^{-1} h^{-1} N_1 N_2 \right\} \mathscr{L}. \end{split}$$

Inserting this in (3.3), we obtain that for any $H \ge 1$

$$\begin{split} \varDelta(\mathbf{k},\mathbf{b},\mathbf{a},\mathbf{N};x) \ll & \Xi \{ (G^2 N_1^3 N_2^3 H^2)^{1/6} + (G^2 N_1^5 N_2 H^2)^{1/6} + (G^3 N_1^7 H^3)^{1/8} \\ & + (G N_1^4 H)^{1/4} + (G N_1 H)^{1/2} + (G^2 N_1^8 N_2 H^2)^{1/8} + N_1 N_2 H^{-1} \\ & + N_1 N_2^{1/2} + G^{-1/2} N_2 + G^{-1} N_1 N_2 \} \mathscr{L}^2. \end{split}$$

In view of the term $N_1N_2H^{-1}$, this inequality also holds for 0 < H < 1. By Lemma 2.4 (iii) of [13], there exists some H > 0 such that

$$\begin{split} \mathcal{\Delta}(\mathbf{k},\mathbf{b},\mathbf{a},\mathbf{N};x) &\ll \mathcal{\Xi} \left\{ (G^2 N_1^5 N_2^5)^{1/8} + (G^2 N_1^7 N_2^3)^{1/8} + (G^3 N_1^{10} N_2^3)^{1/11} + (G N_1^5 N_2)^{1/5} \right. \\ &+ (G N_1^2 N_2)^{1/3} + (G^2 N_1^{10} N_2^3)^{1/10} + N_1 N_2^{1/2} \\ &+ G^{-1/2} N_2 + G^{-1} N_1 N_2 \right\} \mathscr{L}^2 =: \mathcal{\Xi} \left(E_1 + E_2 + \dots + E_9 \right) \mathscr{L}^2. \end{split}$$

Noticing that $SC(\sum_2)$ implies $G \ge N_2 \ge N_1$, we easily see that $E_2, E_4, E_6, E_7, E_8, E_9$ can be absorbed by E_1 and $E_3 = (E_1^8 E_5^3)^{1/11} (N_2/N_1)^{-3/11}$. Thus E_j $(2 \le j \le 9, j \ne 5)$ are superfluous. This completes the proof of Lemma 3.1. \Box

We are now in a position to prove (3.2). We discuss three possibilities.

1° When $(a_{k_1}, a_{k_2}, a_{k_3}) = (0, 0, 1)$, we have $(b_{k_1}, b_{k_2}, b_{k_3}) = (1, 1, 2)$, $G = \Xi = (x/N_1N_2)^{1/2}$. Lemma 3.1 offers immediately that

$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) \ll \left\{ x^{5/8} + (x^2/N_2)^{1/3} \right\} \mathscr{L}^2 \ll x^{5/8} \mathscr{L}^2$$

if $N_2 \ge x^{1/8}$. In the contrary case, we have trivially

$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) \ll \Xi N_1 N_2 \ll (x N_1 N_2)^{1/2} \ll (x N_2^2)^{1/2} \ll x^{5/8}.$$

2° When $(a_{k_1}, a_{k_2}, a_{k_3}) = (0, 1, 0)$, we have $(b_{k_1}, b_{k_2}, b_{k_3}) = (1, 2, 1)$, $G = x/N_1N_2^2$, $\Xi = N_2$. Noticing that $SC(\sum_2)$ implies $N_1 \ll N_2$, $N_1N_2^2 \ll x$, Lemma 3.1 immediately gives that

$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) \ll \left\{ (x^2 N_1^3 N_2^9)^{1/8} + (x N_1 N_2^2)^{1/3} \right\} \mathscr{L}^2 \ll x^{5/8} \mathscr{L}^2.$$

3° When $(a_{k_1}, a_{k_2}, a_{k_3}) = (1, 0, 0)$, we have $(b_{k_1}, b_{k_2}, b_{k_3}) = (2, 1, 1)$, $G = x/N_1^2N_2$, $\Xi = N_1$. Noticing that $SC(\sum_2)$ implies $N_1 \ll N_2$, $N_1^2N_2^2 \ll x$, Lemma 3.1 offers immediately that

$$\Delta(\mathbf{k}, \mathbf{b}, \mathbf{a}, \mathbf{N}; x) \ll \left\{ (x^2 N_1^9 N_2^3)^{1/8} + (x N_1^3)^{1/3} \right\} \mathscr{L}^2 \ll x^{5/8} \mathscr{L}^2.$$

Obviously these estimates imply (3.2). This proves Theorem 1. \Box

4. End of the proof of Theorem 2. Let g(n) be the coefficient of the Dirichlet series $\zeta(2s)^3 \prod_p (1-2p^{-3s}-p^{-4s}+2p^{-5s})$. In view of (1.1), we see that $\ell_{\tau}(n) = \{\tau(\mathbf{a},\mathbf{b};\cdot) * g\}(n)$ with $\mathbf{a} = (0,0,1)$ and $\mathbf{b} = (1,1,2)$. Since $\sum_{n=1}^{\infty} g(n)n^{-s}$ converges absolutely for $\Re e s > \frac{1}{2}$, using Theorem 1, a simple convolution argument immediately shows that

$$\sum_{n \leq x} \ell_{\tau}(n) = A_1 x (\log x)^2 + A_2 x \log x + A_3 x + O(x^{5/8} (\log x)^4). \quad \Box$$

5. Proofs of Theorem 3 and Corollary 1. Let $A(x) := \sum_{n \le x} \ell_{\tau}(n) - E(x)$. By the definition of E(x), we easily see that

$$A(x) = \operatorname{Res}\{\mathscr{D}(\tau, s)x^{s}/s, 1\} + \operatorname{Res}\left\{\mathscr{D}(\tau, s)x^{s}/s, \frac{1}{2}\right\},\$$

where $\text{Res}\{F(s), a\}$ is the residue of F(s) at s = a. By Perron's formula ([15], Theorem II.2.3), we obtain

(5.1)
$$\int_{0}^{x} E(u) du = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \mathscr{D}(\tau, s) \frac{x^{s+1}}{s(s+1)} ds - \int_{0}^{x} A(u) du.$$

Let $\sigma_0 \in (\frac{1}{3}, \frac{1}{2})$. By (II.3.15) and (II.3.22) of [15], we deduce that for any T > 10 and any $\varepsilon > 0$

$$\int_{\sigma_0 \leq \sigma \leq 2, |t|=T} \left| \mathscr{D}(\tau, s) \frac{x^{s+1}}{s(s+1)} \right| |ds| \ll x^3 / T^{5/18-\varepsilon}$$

and

$$\int_{\sigma=2, |t| \ge T} \left| \mathscr{D}(\tau, s) \frac{x^{s+1}}{s(s+1)} \right| |ds| \ll x^3/T$$

Shifting the line of integration from $\sigma = 2$ to $\sigma = \sigma_0$ and using the preceding estimates, the residue theorem implies that

$$\begin{aligned} \frac{1}{2\pi i} \int\limits_{2-i\infty}^{2+i\infty} \mathscr{D}(\tau,s) \frac{x^{s+1}}{s(s+1)} ds &= \frac{1}{2\pi i} \int\limits_{2-iT}^{2+iT} \mathscr{D}(\tau,s) \frac{x^{s+1}}{s(s+1)} ds + O\left(\frac{x^3}{T}\right) \\ &= \int\limits_{0}^{x} A(u) du + \frac{1}{2\pi i} \int\limits_{\sigma_0 - iT}^{\sigma_0 + iT} \mathscr{D}(\tau,s) \frac{x^{s+1}}{s(s+1)} ds + O\left(\frac{x^3}{T^{5/18-\varepsilon}}\right).\end{aligned}$$

where we used the relation

$$\operatorname{Res}\{\mathscr{D}(\tau,s)x^{s+1}/s(s+1),1\} + \operatorname{Res}\left\{\mathscr{D}(\tau,s)x^{s+1}/s(s+1),\frac{1}{2}\right\} = \int_{0}^{x} A(u) \, du$$

Making $T \to \infty$ and inserting the formula obtained in (5.1), we find that

(5.2)
$$\int_{0}^{x} E(u) \, du = \frac{1}{2\pi i} \int_{\sigma_{0} - i\infty}^{\sigma_{0} + i\infty} \mathscr{D}(\tau, s) \frac{x^{s+1}}{s(s+1)} ds \ll x^{1+\sigma_{0}} \int_{-\infty}^{+\infty} \frac{|\mathscr{D}(\tau, \sigma_{0} + it)|}{(|t|+1)^{2}} dt.$$

Observing $\frac{1}{2} < 1 - \sigma_0 < \frac{2}{3}$, the functional equation for $\zeta(s)$ ([15], Theorem II.3.3) yields

(5.3)
$$\mathscr{D}(\tau, \sigma_0 + it) \asymp |t|^{5/2 - 4\sigma_0} |\zeta(1 - \sigma_0 - it)|^2 |\zeta(2\sigma_0 + i2t)|^3.$$

ARCH. MATH.

For $\sigma \in [\frac{1}{2}, 1]$, we define $m(\sigma)$ to be the supremum of all numbers m such that

$$\int_{1}^{T} |\zeta(\sigma + it)|^m dt \ll_{\varepsilon} T^{1+\varepsilon}$$

holds for any $\varepsilon > 0$ and any $T \ge 1$. Recalling $\frac{1}{2} < 1 - \sigma_0$, $2\sigma_0 < 1$ and $m(\frac{1}{2}) \ge 6$ (Theorem 8.4 of [9]), we show, by the Hölder inequality and (5.3), that

$$\int_{T}^{2T} \frac{|\mathscr{D}(\tau, \sigma_0 + it)|}{t^2} dt \ll T^{1/2 - 4\sigma_0} \Big\{ \int_{T}^{2T} |\zeta(1 - \sigma_0 - it)|^5 dt \Big\}^{2/5} \Big\{ \int_{T}^{2T} |\zeta(2\sigma_0 + i2t)|^5 dt \Big\}^{3/5} \\ \ll_{\varepsilon} T^{3/2 - 4\sigma_0 + \varepsilon}.$$

Taking $\sigma_0 = \frac{3}{8} + \varepsilon$ and using the inequality obtained with $T = 2^k$, we find that

$$\int_{1}^{\infty} \frac{|\mathscr{D}(\tau, \sigma_0 + it)|}{t^2} dt = \sum_{k=0}^{\infty} \int_{2^k}^{2^{k+1}} \frac{|\mathscr{D}(\tau, \sigma_0 + it)|}{t^2} dt \ll \sum_{k=0}^{\infty} \frac{1}{2^{3\varepsilon k}} \ll_{\varepsilon} 1.$$

This and (5.2) imply the required result. \Box

For Corollary 1, we first see that Theorem 3 yields that

$$\frac{1}{x} \int_{0}^{x} \Delta(u) \, du \sim \frac{1}{24} A_4 x^{1/2} (\log x)^2.$$

In addition a simple calculation shows that

$$A_4 = -\frac{1}{16}\zeta \left(\frac{1}{2}\right)^2 \prod_p \left(1 - 2p^{-3/2} - p^{-2} + 2p^{-5/2}\right) < 0.$$

These imply the required result. \Box

6. Proofs of Theorem 4 and Corollary 2. We first evaluate the coefficient $\ell_{\tau}(n)$. Since this function is multiplicative, it is enough to study $\ell_{\tau}(p^{\nu})$ for prime numbers p and positive integers ν .

Lemma 6.1. Let p be a prime number, $v \ge 1$ a positive integer and $m := \lfloor v/2 \rfloor$. Then we have

$$\ell_{\tau}(p^{\nu}) = \sum_{j=0}^{m} (\nu - 2m + 2j + 1)(j+1)p^{m-j}.$$

Proof. Obviously, we may evaluate directly $\ell_{\tau}(p^{\nu})$ by (1.1). However, using the relation $\tau(\mathscr{G}) = \tau(S)$, we can give a more succinct proof. Let $\tau\langle p^{j}, p^{\nu-j} \rangle$ be the number of factorisations of the SNF matrix diag $[p^{j}, p^{\nu-j}]$, the preceding relation implies $\ell_{\tau}(p^{\nu}) = \sum_{j=0}^{m} \tau\langle p^{j}, p^{\nu-j} \rangle$. From Remark 1.4 of [12], we find that $\ell_{\tau}(p^{\nu}) = \sum_{j=0}^{m} \sum_{j=0}^{m} (\nu - 2k + 1)p^{k} = \sum_{j=0}^{m} (\nu - 2k + 1)(m - k + 1)p^{k}$.

$$\ell_{\tau}(p^{\nu}) = \sum_{j=0}^{m} \sum_{k=0}^{j} (\nu - 2k + 1)p^{k} = \sum_{k=0}^{m} (\nu - 2k + 1)(m - k + 1)p^{k},$$

which is equivalent to the required result. This proves Lemma 6.1. \Box

Vol. 69, 1997 On the asymptotic behaviour of the number of subgroups

We note that $\nu - 2m + 1 \neq 0$ (it is 1 or 2 depending on whether ν is even or odd), hence $\ell_{\tau}(p^{\nu})$ is a polynomial in p of degree m. Thus, for example, we have

$$\ell_{\tau}(p) = 2, \quad \ell_{\tau}(p^2) = p + 6, \quad \ell_{\tau}(p^3) = 2p + 8, \quad \ell_{\tau}(p^4) = p^2 + 6p + 15$$

Now we are in a position to complete the proof of Theorem 4. By using Lemma 6.1, we have

By using Lemma 6.1, we have

(6.1)
$$\ell_{\tau}(p^{2m}) = p^m \left(1 + \sum_{1 \le j \le m-2} (2j+1)(j+1)/p^j \right) \quad (m = 1, 2, \ldots),$$

(6.2)
$$\ell_{\tau}(p^{2m+1}) = 2p^m \left(1 + \sum_{1 \le j \le m-2} (j+1)^2 / p^j\right) \quad (m = 0, 1, 2, \ldots).$$

From this, we easily deduce that

$$\ell_{\tau}(p^{\nu}) \leq p^{\nu/2} \Big(1 + \sum_{j=1}^{\infty} (2j+1)(j+1)/p^j \Big).$$

Since $\ell_{\tau}(n)$ is multiplicative, we find that

$$\begin{split} \ell_{\tau}(n) &\leq \sqrt{n} \prod_{p^{\nu} \parallel n} \left(1 + \sum_{j=1}^{\infty} (2j+1)(j+1)/p^{j} \right) \leq \sqrt{n} \prod_{p \leq p_{\omega(n)}} \left(1 + \sum_{j=1}^{\infty} (2j+1)(j+1)/p^{j} \right) \\ &\leq \sqrt{n} \prod_{p \leq p_{\omega(n)}} (1-1/p)^{-6} \prod_{p \leq p_{\omega(n)}} (1-1/p)^{6} \left(1 + \sum_{j=1}^{\infty} (2j+1)(j+1)/p^{j} \right), \end{split}$$

where $\omega(n)$ is the number of distinct prime factors of *n* and p_j denotes the *j*th prime number. By Mertens' formula and the relation $\log p_{\omega(n)} \leq \{1 + o(1)\} \log_2 n$, it is easy to show that

(6.3)
$$\limsup_{n \to \infty} \frac{\ell_{\tau}(n)}{\sqrt{n} (\log_2 n)^6} \leq C_0.$$

Defining $n_{k,m} := p_1^{2m} \cdots p_k^{2m}$ for $k \ge 1$ and $m \ge 4$, the first relation of (6.1) yields that

$$\limsup_{n \to \infty} \frac{\ell_{\tau}(n)}{\sqrt{n} (\log_2 n)^6} \ge \lim_{k \to \infty} \frac{\ell_{\tau}(n_{k,m})}{\sqrt{n_{k,m}} (\log_2 n_{k,m})^6} = e^{6\gamma} \prod_p (1 - 1/p)^6 \left(1 + \sum_{1 \le j \le m-2} (2j+1)(j+1)/p^j\right).$$

We let $m \to \infty$ and together with (6.3), we obtain the first assertion of Theorem 4. The lower bound is trivial, since $\ell_{\tau}(n) \ge 2$ and $\ell_{\tau}(p) = 2$. \Box

For verifying Corollary 2, we can write

$$\ell_{\tau}(n_{k,1}) = A(n_{k,1}) - A(n_{k,1}-1) + E(n_{k,1}) - E(n_{k,1}-1).$$

Since $A(n_{k,1}) - A(n_{k,1} - 1) \ll (\log n_{k,1})^2$, the first relation of (6.1) implies immediately $|E(n_{k,1}) - E(n_{k,1} - 1)| \gg \sqrt{n_{k,1}} (\log_2 n_{k,1})^6$.

7. Proof of Theorem 5. For each z > 0, the function $\ell_{\tau}(n) z^{\omega(n)}$ is multiplicative and

$$\sum_{n=1}^{\infty} \ell_{\tau}(n) z^{\omega(n)} n^{-s} = \zeta(s)^{2z} \zeta(2s-1)^{z} G(s,z) \quad (\mathfrak{Re} \, s > 1),$$

where G(s, z) is a Dirichlet series absolutely convergent for $\Re e s > \frac{1}{2}$ and for any z > 0 fixed. By the Selberg–Delange method (Chapter II.5 of [15], with minor modification), we can show

$$\sum_{n \leq x} \ell_{\tau}(n) z^{\omega(n)} \ll x (\log x)^{3z-1}.$$

Hence we deduce that

$$\sum_{\substack{n \leq x \\ |\omega(n) - 3\log_2 x| > \varepsilon \log_2 x}} \ell_{\tau}(n) \leq \sum_{n \leq x} \ell_{\tau}(n) \left\{ \left(1 + \frac{1}{3}\varepsilon\right)^{\omega(n) - (3+\varepsilon)\log_2 x} + \left(1 - \frac{1}{3}\varepsilon\right)^{\omega(n) - (3-\varepsilon)\log_2 x} \right\}$$
$$\ll x (\log x)^{2-3\eta},$$

where η is defined as in the formulation of Theorem 5. Combining this with (1.2) yields the second assertion. \Box

References

- [1] G. BHOWMIK and H. MENZER, On the number of subgroups of finite abelian groups. Abh. Math. Sem. Univ. Hamburg, to appear.
- [2] G. BHOWMIK and O. RAMARÉ, Average orders of multiplicative arithmetical functions of integer matrices. Acta Arith. 66, 45–62 (1994).
- [3] G. BHOWMIK and O. RAMARÉ, Factorisation of matrices, partitions & Hecke algebra. Manuscript.
- [4] G. BHOWMIK and O. RAMARÉ, A Turán-Kubilius inequality for integral matrices. Pub. IRMA 42, No. 2, Lille 1957.
- [5] E. COHEN, On the average number of direct factors of a finite abelain group. Acta Arith. 6, 159– 173 (1960).
- [6] S.W. GRAHAM and G. KOLESNIK, Van der Corput's Method of Exponential sums. Cambridge 1991.
- [7] F.J. GRUNEWALD, D. SEGAL and G. C. SMITH, Subgroups of finite index in nilpotent groups. Inven. Math. 93, 185-223 (1988).
- [8] M. N. HUXLEY, Exponential sums and lattice points. Proc. London Math. Soc. 66, 279-301 (1993).
- [9] A. IVIĆ, The Riemann zeta-function. New York-Chichester-Brisbane-Toronto-Singapore 1985.
- [10] G. KOLESNIK, On the number of abelian groups of a given order. J. Reine Angew. Math. 329, 164– 175 (1981).
- [11] H.-Q. LIU, Divisor problems of 4 and 3 dimensions. Acta Arith. 73, 249-269 (1995).
- [12] V. C. NANDA, Arithmetic functions of matrices and polynomial identities. Colloq. Math. Soc. János Bolyai 34, 1107–1126 (1984).
- [13] P. SARGOS and J. WU, Exponential sums with monomials and their applications in number theory. Preprint.
- [14] M. P. F. DE SAUTOY, Counting congruence subgroups in arithmetic subgroups. Bull. London Math. Soc. 26, 255-262 (1994).
- [15] G. TENENBAUM, Introduction to analytic and probabilistic number theory. Cambridge 1995.
- [16] M. VOGTS, Many-dimensional generalized problems. Math. Nachr. 124, 103-121 (1985).

Eingegangen am 1. 3. 1996

Anschriften der Autoren:

Gautami Bhowmik	Jie Wu
Département de Mathématiques	Laboratoire de Mathématiques
B.P. 311	Institut Elie Cartan - UMR CNRS 9973
Université Valenciennes	Université Henri Poincaré, Nancy 1
59304 Valenciennes Cédex	54506 Vandœuvre-lès-Nancy
France	France