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1. Introduction

While studying analytic properties of Dirichlet series it is natural
to ask whether and how far they can be meromorphically continued
beyond their region of convergence. In general this is a difficult question
and when an answer can be found it usually corresponds to the intuitive
natural boundary. The consideration of random Dirichlet series that
can be shown to have natural boundaries almost surely comfort us in
our belief that Dirichlet series should be continuable to their expected
domains.

Random Dirichlet series and their convergence are differently treated
depending on the context. In this note we first give an overview of
existing results on natural boundaries. For the most part the series
considered are in one variable. We suggest, in the second part of our
note, a multiple analogue of random Dirichlet series. We indicate only
some initial tools whose applications enable us to compare the abscissa
of convergence of the Goldbach generating function with its random
version. A more detailed study of these multiple analogues might turn
out to be interesting.

2. One variable

We let (Ω, A, P ) or simply Ω be a probability space and we say that
an event E in A happens almost surely if P (E) = 1. Random Dirichlet
series are of the form

∑∞
n=1 Xn(ω)e

−λns, where the λi form an increasing
sequence of positive numbers, Xn(ω) are independent complex random
variables in (Ω, A, P ) and s = σ + it a complex number. A sequence
of independent random variables εn of Ω each of which takes only the
values ±1 with the same probability 1/2 is called a Rademacher se-
quence.

Relations between the different abscissae of convergence of random
Dirichlet series have been studied since long. For example Hartman in
1931 considered Dirichlet series of the form

∑∞
n=1(±an)n

−s. There exist
1
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numbers σc ≤ σu ≤ σa which are almost surely the abscissae of con-
vergence, uniform convergence and absolute convergence respectively
of such Dirichlet series. Hartman showed that σa − σu is atmost 1/2
and can be exactly 1/2 [10]. The Bohr-Toeplitz theorem says that the
same difference exists between the abscissae of absolute and uniform
convergence for the ordinary ordinary Dirichlet series

∑∞
n=1 ann

−s.
Dvoretzky in 1945 showed that for a given ordinary Dirichlet series∑∞
n=1 ane

−λns, and for any σ squeezed between its abscissae of con-
vergence and absolute convergence one can always construct a random
Dirichlet series

∑∞
n=1 εnane

−λns with <s = σ as its natural boundary
by an appropriate choice of εn = ±1 [5]. This is the analogue of the
Fatou-Pólya theorem for power series.

New developments in the theory of random Dirichlet series began in
1970s. Yu (1978) studied particular cases where λn satisfy the condi-
tions limn→∞

logn
λn

= 0 to obtain analogues of results on the radius of

almost sure convergence for random power series [18].
Where the random variables are symmetric (as for example the case

of Rademacher variables) the abscissa of convergence coincides almost
surely with the natural boundary. Kahane described a dichotomy for
the general case. The random series

∑∞
n=1 Xne

−λns either has the ab-
scissa of convergence as its natural boundary or there exists an ordinary
Dirichlet series

∑∞
n=1 ane

−λns with the same abscissa of convergence σc

and a number σ < σc such that the random series
∑∞

n=1(Xn−an)e
−λns

has σ as its natural boundary almost surely [11]. For the special series∑∞
n=1 ±n−s he showed that almost surely the abscissa of convergence

σc = 1/2 would be its natural boundary [12]. This is the analogue of
the Ryll-Nardzewski theorem for natural boundaries of random Taylor
series. Some generalisations can be found in [7], [17].

Ding and Xiao studied explicit natural boundaries for uniformly non-
degenerate variables Xn, i.e. supn≥0 supa∈C P (Xn = a) < 1 , which is
equivalent to the condition that there exists a sequence of positive num-
bers Rn such that supn≥0 supa∈C P (|Xn − a| ≤ Rn) < 1. If the abscissa

of convergence of
∑∞

n=1 Xne
−λns is the same as that for

∑∞
n=1 R

2
ne

−2λns

then this abscissa would almost surely be the natural boundary of the
first series [4].

Queffélec enlarged the study by considering Euler products. Let pn
be the nth prime. He showed that

∏
(1− εnp

−s
n )−1, for (εn) a sequence

of independent Rademacher variables, has σ = 1/2 almost surely as
the natural boundary [14].

In the study of Euler products in both p and p−s (for prime p),
random variables were used in the exponents as an adaptation of the
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classical case. It was proved that the series
∏∞

n=1 ζ(ans + bn)
cn+εn ,

where an, bn, cn are increasing real sequences and εn a suitable se-
quence of independent real random variables, admits almost surely

σ = lim supn→∞

(
− bn

an

)
as its natural boundary [2].

Convergence of Random Dirichlet polynomials, finite versions of the
Dirichlet series, have been studied, for example in [13].

3. Several variables

Now we suggest a multiple analogue of Rademacher sequences and
associated Dirichlet series. Let m1, . . . ,mr ∈ N, and let εm1,...,mr be
independent random variables which take only the values ±1 and are
defined on a certain probability space (Ω, A, P ). Let

P (ω ∈ Ω | εm1,...,mr(ω) = 1) = P (ω ∈ Ω | εm1,...,mr(ω) = −1) =
1

2
.

(3.1)

The sequence {εm1,...,mr | m1, . . . ,mr ∈ N}may be called a Rademacher
sequence of r-tuple indices. The associated multiple Dirichlet series can
be defined as

Fr(s, ω) =
∞∑

m1=1

· · ·
∞∑

mr=1

εm1,...,mr(ω)X(m1, . . . ,mr)

(m1 + · · ·+mr)s
,(3.2)

where s ∈ C and X(m1, . . . ,mr) ∈ R.
We note that other definitions of multiple random Dirichlet series

exist (see, for example, [15] or [16]).
First we write Fr(s, ω) in a form of a single Dirichlet series:

Fr(s, ω) =
∞∑
n=1

Yr(n, ω)n
−s,(3.3)

where

Yr(n, ω) =
∑

m1+···+mr=n

εm1,...,mr(ω)X(m1, . . . ,mr).(3.4)

Since εm1,...,mr are independent variables, we see that Yr(n, ω) are also
independent of each other.

For each fixed ω ∈ Ω, the series (3.3) is a Dirichlet series, so we can
find its abscissa of convergence σc(Fr, ω). Then, according to the zero-
one law, we can find a constant σc(Fr) such that σc(Fr, ω) = σc(Fr)
almost surely (see [11, Section 6 of Chapter 4]). In general −∞ ≤
σc(Fr) ≤ ∞, but here we assume −∞ < σc(Fr) < ∞. The following
result is obtained simply.
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Proposition 1. The line <s = σc(Fr) is the natural boundary of
Fr(s, ω) almost surely.

Proof. We say that Yr(n, ω) is symmetric if Yr(n, ω) and −Yr(n, ω) have
the same distribution. We prove that Yr(n, ω) is symmetric; and the
conclusion then follows immediately from the expression (3.3) and [11,
Theorem 4 in Section 6 of Chapter 4].

Let L(n) be the number of tuples (m1, . . . ,mr) satisfying m1+ · · ·+
mr = n. Let b be any tuple of L(n) elements, each element being 1 or
−1. Write b = (bm1,...,mr)m1+···+mr=n, where bm1,...,mr ∈ {±1}. Define

Zr(n,b) =
∑

m1+···+mr=n

bm1,...,mrX(m1, . . . ,mr).

Let A be any Borel subset of R, and let B(A) be the set of all b such
that Zr(n,b) ∈ A. Then

P (ω ∈ Ω | Yr(n, ω) ∈ A)

=
∑

b∈B(A)

P (ω ∈ Ω | (εm1,...,mr(ω))m1+···+mr=n = b) .(3.5)

Since εm1,...,mr are independent, we have

P (ω ∈ Ω | (εm1,...,mr(ω))m1+···+mr=n = b) = 2−L(n),(3.6)

and the same equality holds if we replace b by −b. Therefore the
right-hand side of (3.5) is equal to∑

b∈B(A)

P (ω ∈ Ω | (εm1,...,mr(ω))m1+···+mr=n = −b)

= P (ω ∈ Ω | Yr(n, ω) ∈ −A).

This implies that two random variables Yr(n, ω) and −Yr(n, ω) have
the same distribution. �

4. An example : The Goldbach generating functions

As an example, we will treat the case where X(m1, . . . ,mr) is a
product of the von Mangoldt functions, that is

Φr(s, ω) =
∞∑

m1=1

· · ·
∞∑

mr=1

εm1,...,mr(ω)Λ(m1) · · ·Λ(mr)

(m1 + · · ·+mr)s
.(4.1)

The ordinary multiple Dirichlet series

Φr(s) =
∞∑

m1=1

· · ·
∞∑

mr=1

Λ(m1) · · ·Λ(mr)

(m1 + · · ·+mr)s
(4.2)
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was introduced in [6] as the generating function of

Gr(n) =
∑

m1+···+mr=n

Λ(m1) · · ·Λ(mr),(4.3)

the latter being connected to the problem of expressing positive integers
as a sum of r prime numbers. Properties of Φr and Gr above have
been studied actively in the recent past (see [1] for references). It
may be interesting to note that under the assumption of the Riemann
Hypothesis (RH) for the Riemann zeta-function ζ(s) whose non-trivial
zeros are denoted by ρ,

∑
n≤X

Gk(n) =
1

k!
Xk +Hk(X) +Oε(X

r−1+ε)(4.4)

with

Hk(X) =
∑
ρ

Xk−1+ρ

ρ(1 + ρ) · · · (k − 1 + ρ)
.

Concerning the question of convergence of Φr(s) it was conjectured
in [6] that:

(C-r) The line <s = r − 1 would be the natural boundary of Φr(s).

The conjecture is out of reach for the moment. However one can
say more under the RH and other reasonable ones on the zeros of the
Riemann zeta function like the following due to Fujii [8] [9] :

(Z) Let I be the set of all imaginary parts of non-trivial zeros of ζ(s). If
γj ∈ I (1 ≤ j ≤ 4) and γ1 + γ2 = γ3 + γ4 6= 0, then {γ1, γ2} = {γ3, γ4}.

In [6] and [3], it was shown that (C-2) is indeed true under the RH and
a certain quantitative version of (Z) or (Z) itself. The case of (C-r) is
shown to be true if and only if (C-2) is.

The reason of introducing the random series (4.1) is to observe the
situation from a stochastic viewpoint. Let

Gr(n, ω) =
∑

m1+···+mr=n

εm1,...,mr(ω)Λ(m1) · · ·Λ(mr).(4.5)

Then

|Gr(n, ω)| ≤ nr−1(log n)r,(4.6)
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and hence (4.1), which can be written as

Φr(s, ω) =
∞∑
n=1

Gr(n, ω)n
−s,(4.7)

is absolutely convergent for <s > r. Computations of expectation and
variance give us :

Proposition 2. The random series (4.7) converges for <s > r/2 al-
most surely.

Proof. Let E(·) denote the expected value, and V (·) the variance. Write
Xn = Gr(n, ω)n

−s. From (4.6) we see that∫
Ω

|Xn|2dω ≤
(
nr−1(log n)r

nσ

)2 ∫
Ω

dω < +∞,(4.8)

that is Xn ∈ L2(Ω).
We use Theorem 2 in [11, Section 2 of Chapter 3], which asserts that

if Xn ∈ L2(Ω) are independent random variables satisfying E(Xn) = 0
and

∑∞
n=1 V (Xn) < +∞, then

∑∞
n=1 Xn converges almost surely.

Since

E(Xn) =
1

ns

∑
m1+···+mr=n

Λ(m1) · · ·Λ(mr)

∫
Ω

εm1,...,mr(ω)dω,(4.9)

and εm1,...,mr is an element of a Rademacher sequence, it is obvious that
E(Xn) = 0 for any n. Next consider V (Xn) = E(|Xn − E(Xn)|2) =
E(|Xn|2). We see that

V (Xn) =
1

n2σ

∑
m1+···+mr=n

m′
1+···+m′

r=n

Λ(m1) · · ·Λ(mr)Λ(m
′
1) · · ·Λ(m′

r)

×
∫
Ω

εm1,...,mr(ω)εm′
1,...,m

′
r
(ω)dω.

(4.10)

If (m1, . . . ,mr) 6= (m′
1, . . . ,m

′
r), then

P (ω ∈ Ω | εm1,...,mr(ω) = ±1, εm′
1,...,m

′
r
(ω) = ±1) =

1

4

for any choice of double signs, hence∫
Ω

εm1,...,mr(ω)εm′
1,...,m

′
r
(ω)dω = 0.
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Therefore

V (Xn) =
1

n2σ

∑
m1+···+mr=n

Λ(m1)
2 · · ·Λ(mr)

2

∫
Ω

εm1,...,mr(ω)
2dω

=
1

n2σ

∑
m1+···+mr=n

Λ(m1)
2 · · ·Λ(mr)

2,

(4.11)

and the sum on the right-hand side can be estimated as ≤ nr−1(log n)2r.
Therefore

∞∑
n=1

V (Xn) ≤
∞∑
n=1

nr−1−2σ(log n)2r,(4.12)

which is convergent if σ > r/2. �

Proposition 2 thus gives the upper-bound σc(Φr) ≤ r/2. We also
comment on its lower-bound. Since Gr is symmetric (as we have seen
in the proof of Proposition 1), we have the criterion that

∑∞
n=1 Xn

converges almost surely if and only if
∑∞

n=1 V (X ′
n) converges, where

X ′
n(ω) =

{
Xn(ω) if |Xn(ω)| ≤ 1
Xn(ω)/|Xn(ω)| if |Xn(ω)| > 1

(4.13)

([11, Theorem 7 in Section 5 of Chapter 3]).
In the case r = 1, we have Xn(ω) = εn(ω)Λ(n)n

−s. Hence if σ > 0
then |Xn(ω)| ≤ 1 for sufficiently large n, so we may assume X ′

n = Xn

if σ > 0. From (4.11) we have

∞∑
n=1

V (Xn) =
∞∑
n=1

Λ(n)2

n2σ
,(4.14)

which is convergent if and only if σ > 1/2. This implies that σc(Φ1) =
1/2, and hence, by Proposition 1, the line <s = 1/2 is the natural
boundary of Φ1(s, ω) almost surely.

Next consider the case r = 2. Then

Xn(ω) =
1

ns

∑
m1+m2=n

εm1,m2Λ(m1)Λ(m2).

If σ > 1 then we may assume X ′
n = Xn for sufficiently large n. From

(4.11) we have

∞∑
n=1

V (Xn) =
∑

m1+m2=n

Λ(m1)
2Λ(m2)

2

n2σ
,(4.15)



8 GAUTAMI BHOWMIK AND KOHJI MATSUMOTO

whose right-hand side is

≥ 1

n2σ

∑
pi,p2:prime
p1+p2=n

(log p1)
2(log p2)

2 � (log n)2

n2σ

∑
pi,p2:prime
p1+p2=n

1,(4.16)

because one of p1 or p2 is ≥ n/2. If the Hardy-Littlewood conjectural
asymptotic formula for the Goldbach conjecture is true, then the last
sum of (4.16) is � n(log n)−2. This implies that (4.15) diverges for
σ = 1. Though σ = 1 is out of the range where X ′

n = Xn is valid, this
argument suggests that σc(Φ2) = 1, and hence <s = 1 would be the
natural boundary of Φ2(s, ω) almost surely. This is consistent with the
existent conditional natural boundary of Φ2(s).

The above observation in the cases r = 1 and r = 2 further suggests
that in the case r ≥ 3, perhaps σc(Φr) = r/2 would hold.
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