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Abstract. This article extends classical one variable results about Euler products, defined by
integral valued polynomial or analytic functions, to several variables. We show there exists a
meromorphic continuation up to a presumed natural boundary, and give a criterion, à la
Estermann-Dahlquist, for the existence of a meromorphic extension to Cn. In addition, we
precisely describe the boundaries of analyticity and meromorphy for a multivariable Euler
product determined by any toric variety (split over Q). Using our method, we are also able to
calculate a precise asymptotic for the number of n-fold products of integers that equal the n th

power of an integer, for any nb 3.
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Introduction

There are two fundamental problems in the study of Dirichlet series that admit an
Euler product expansion in a region of absolute convergence. The first problem is to
prove the existence of a meromorphic continuation into a larger region. Assuming
this is possible, the second problem is to describe precisely the boundary of the do-
main for this meromorphic function. For Dirichlet series in one variable, the first
important results are due to Estermann [6] who proved that if hðY Þ ¼

P
d F ðdÞY d ,

where F ðdÞ is a ‘‘ganzwertige’’ polynomial and F ð0Þ ¼ 1, then ZðsÞ ¼
Q

p hðp�sÞ is
absolutely convergent for <ðsÞ > 1 and can be meromorphically continued to the half
plane <ðsÞ > 0. Moreover, ZðsÞ can be continued to the whole complex plane if and
only if hðYÞ is a cyclotomic polynomial. Dahlquist [2] extended this result to h any
analytic function with isolated singularities within the unit circle. More than 30 years
later, Kurokawa’s deep work [9] extended that of Estermann by allowing poly-
nomials hðYÞ whose coe‰cients were integral linear combinations of complex num-
bers that depended upon the traces of a certain class of representations of a topo-
logical group.

This paper extends these two basic properties to a general class of multivariate
Dirichlet series that have an absolutely convergent Euler product expansion in some
open domain of Cn, nb 2. Thus, the object of our study is an Euler product
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Zðh; sÞ ¼
Q
p

hðp�s1 ; . . . ; p�sn ; pÞ

when hðXÞ ¼ 1þ
P

k hkðX1; . . . ;XnÞX k
nþ1 is either a polynomial or analytic function

with integral coe‰cients. On pg. 28 [ibid.], Kurokawa asserted that he had proved
certain multivariate analogues of his one variable results. To our knowledge, these
have not yet been published. As a result, a multivariate extension such as that done
here appears to be new. An essential role in our analysis is played by the polyhedra in
Rn, determined by the exponents of monomials appearing in the expression for each
summand hkðX1; . . . ;XnÞX k

nþ1. A variant of this polyhedron is a standard tool for
studying hypersurface singularities, so it is, perhaps, not too surprising to see it ap-
pear here as well.

We first show in Section 1 that there is a meromorphic continuation up to a presumed
natural boundary, whose geometry is that of a tube over a convex set with piecewise
linear boundary. Using the polyhedra, this is not di‰cult. Our second main result
applies to the case in which h depends only upon X1; . . . ;Xn. In this event, we prove
a very precise result that is the multivariate extension of the work of Estermann-
Dahlquist. This shows that the presumed natural boundary is the natural boundary
(in the sense given to this expression in §1.2), unless h is a ‘‘cyclotomic’’ polynomial.
A natural problem, to which we hope to return in the future, is to extend this result to
the much larger class of multivariable Euler products of interest to Kurokawa.

An application of these results is given in Section 2 to a general problem in multi-
plicative number theory. For any nb 3, we give the explicit asymptotic for the
number of n-fold products of relatively prime positive integers that equal the n th

power of an integer. Although earlier work had found the asymptotic when n ¼ 3,
nothing comparable for arbitrary n > 3 seems to have been published. As noted by
Batyrev-Tschinkel, see [10, pg. 253], this problem is equivalent to the asymptotic
description of a ‘‘height density function’’ on the maximal torus of the singular pro-
jective hypersurface x1 � � � xn ¼ xn

nþ1 in PnðQÞ.
In general terms, any ample line bundle L on a projective toric variety XðQÞ de-
termines a projective embedding of a maximal split torus iL : UðQÞ ,! Pn�1ðQÞ, for
some n, and therefore a parametrization of the points of iLUðQÞ. Using the stan-
dard height function HðxÞ ¼

Q
p maxifjxijpg on Pn�1ðQÞ, a natural problem, posed

first by Manin, is to give a precise asymptotic for the height density function
afx A iLUðQÞ : HðxÞa tg as t ! y. This problem reduces to the asymptotic in t for
the number of primitive lattice points ðm1; . . . ;mnÞ such that ðm1 : . . . : mnÞ A iLUðQÞ
and maxifjmijga t. Descriptions of the asymptotic have been given with increasing
levels of precision by [1], [10], and [4].

The starting point of each of these articles is with a desingularized model of the toric
variety, constructed by means of a ‘‘fan decomposition’’ of some RN into finitely
many simplicial integral cones (i.e. each cone is generated by N 1-simplex integral
vectors that generate ZN ). Typically, one chooses for L the anticanonical bundle on
the desingularized model, and assumes it is ample. This was the approach taken by
Batyrev-Tschinkel for the particular cubic hypersurface x1x2x3 ¼ x3

4 .
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The point of view adopted in this paper is rather di¤erent. We do not work with a
desingularized model of the toric. Rather, our starting point consists of a finite set of
simple defining equations for a toric variety X ðQÞ that determines implicitly a pro-
jective embedding UðQÞ ,! Pn�1ðQÞ. As a result, we avoid having to construct and
use a fan decomposition of Euclidean space N-space into simplical integral cones,
which can become rather cumbersome when N is allowed to be arbitrarily large. In
addition, it follows that we have no need for the hypothesis of ampleness of any line
bundle to begin our analysis. An advantage of our method is that we can then work
with some explicit examples in any number of variables, such as the hypersurface
fx1 � � � xn ¼ xn

nþ1g, nb 3, with a certain facility and reasonable precision.

We then adapt an idea of La Bretèche [4] by introducing a multivariable Dirichlet
series that encodes membership of each rational point on the embedded torus. The
multiplicative nature of the defining equations implies that this series equals an Euler
product in its domain of analyticity. Our Dirichlet series is rather di¤erent from that
used in [ibid.] since we use a di¤erent embedding of the variety. We can also say a
good deal more about this series than is done in [ibid.] (see the Remark at the end of
§2.2 for further precision on this point).

We prove three basic analytical properties of our Dirichlet series in §2.2. The first two
are given in Theorem 5, whose proof follows immediately from the discussion in
Section 1. Here we show the existence of a meromorphic extension outside the do-
main of absolute convergence. In addition, we give a precise criterion for the exis-
tence of a natural boundary. The third result, Theorem 6, requires considerably more
work to prove. This gives an intrinsic characterization of the entire boundary of the
domain of analyticity of the Dirichlet series. Combining these two theorems results
in a fairly complete description of the analytic behavior of this class of multivariable
Dirichlet series. In §2.3, Theorem 7 gives the precise asymptotic for the general
problem, described above, in multiplicative number theory. For this, an important
ingredient is the tauberian theorem, Théorème 2, of [5].

Notations. For the reader’s convenience, notations that will be used throughout the
article are assembled here.

1. N ¼ f1; 2; . . .g denotes the set of positive integers, N0 ¼ NW f0g and p always
denotes a prime.

2. The expression f ðl; y ; xÞfy gðxÞ uniformly in x A X and l A L means there exists
A ¼ AðyÞ > 0, which depends neither on x nor l, but could eventually depend on the
parameter vector y , such that:

Ex A X and El A L j f ðl; y ; xÞjaAgðxÞ:

3. For every x ¼ ðx1; . . . ; xnÞ A Rn, we set kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ � � � þ x2

n

q
resp. jx j ¼

jx1j þ � � � þ jxnj to denote the length resp. weight of x . We denote the canonical basis
of Rn by ðe1; . . . ; enÞ. For every a ¼ ða1; . . . ; anÞ A Nn

0 , we also set a! ¼ a1! . . . an!.
The standard inner product on Rn is denoted h ; i.

Meromorphic continuation of multivariable Euler products 3
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4. For every s A C, and for every non negative k, we define s
k

� �
¼ sðs�1Þ...ðs�kþ1Þ

k! .
For two complex numbers w and z, we define wz ¼ ez logw, using the principal branch
of the logarithm. We denote a vector in Cn by s ¼ ðs1; . . . ; snÞ, and write s ¼ sþ it,
where s ¼ ðs1; . . . ; snÞ and t ¼ ðt1; . . . ; tnÞ are the real resp. imaginary components
of s (i.e. si ¼ <ðsiÞ and ti ¼ =ðsiÞ for each i). We also write hx ; si for

P
i xisi if

x A Rn, s A Cn. The unit polydisc in Cn, that is, the domain fz A Cn : supijzij < 1g,
is denoted Pð1Þ.

5. Given a A Nn
0 , we write X a for the monomial X a1

1 � � �X an
n . For a polynomial

hðX1; . . . ;XnÞ ¼
P

a AN n
0
aaX

a, the set SðhÞ :¼ fa : aa 0 0g is called the support

of h. We set S �ðhÞ :¼ SðhÞnf0g and denote the boundary of the convex hull ofS
faþRn : a A S �ðhÞg by EðhÞ. This is called the Newton polyhedron of h. We

denote by ExtðhÞ the finite set of extremal points of EðhÞ (a point of EðhÞ is
extremal if it does not belong to the interior of any closed segment of EðhÞ).

Similarly, if AHNn
0nf0g, we denote by EðAÞ the boundary of the convex hull ofS

fnþRn
þ j n A Ag and call it the Newton polyhedron of A. Its set of extremal points

is denoted by ExtðAÞ.

6. Let A be a finite subset of Rn. We set Ao :¼ fx A Rn
þ : En A A; hx ; nib 1g to

denote the dual of A. Let iðAÞ be the smallest weight of the elements of Ao. We call
iðAÞ the index of A. We define

RðAÞ :¼ fa A Ao : jaj ¼ iðAÞg:

For every a A RðAÞ, set EðA; aÞ :¼ fn A A : ha; ni ¼ 1g.

1 Analytic properties of multivariate Euler products

This section studies the analytic properties of an Euler product whose p th factor is
determined by a multivariate polynomial. We first show in §1.1 the existence of a
meromorphic continuation from a region of absolute convergence into a product of
halfplanes. The second result in §1.2 extends the classical Estermann criterion. This
gives a criterion that insures the existence of a meromorphic continuation to Cn.

1.1 Meromorphic continuation

We will first introduce some needed notations. Let L be an open subset of Cn,
l ¼ ðl1; . . . ; lrÞ : L ! Cr a vector of analytic functions, and a1; . . . ; ar integers. Define
the Euler product

Zl ðsÞ ¼ Zl ðs1; . . . ; snÞ ¼
Q
p

�
1þ

Pr
k¼1

ak

plkðsÞ

�
;

and for any d A R, set
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Wðl ; dÞ :¼ fs A L : Ei ¼ 1; . . . ; r <ðliðsÞÞ > dg:

It is clear that s 7! Zl ðsÞ converges absolutely and defines a holomorphic function in
the domain Wðl ; 1Þ.

Lemma 1. The function Zl ðsÞ can be continued into the domain Wðl ; 0Þ as a mer-

omorphic function as follows:

there exists a set fgðnÞ : n A Nr
0gHZ and for each d > 0 a holomorphic function GdðsÞ

that is expressible as an absolutely convergent and bounded Euler product on Wðl ; dÞ
such that

Zl ðsÞ ¼
Q

n¼ðn1;...;nrÞ AN r
0

1ajnja½d�1�

z

�Pr
j¼1

njljðsÞ
�gðnÞ

GdðsÞ:ð1Þ

Proof of Lemma 1. Let d A ð0; 1Þ be arbitrary. To describe the continuation of Zl ðsÞ
into Wðl ; dÞ, it will be convenient to work with a somewhat larger class of Euler
products defined as follows:

Zl ðRd; sÞ ¼
Q
p

�
1þ

Pr
k¼1

ak

plkðsÞ
þ Rdðp; sÞ

�
ð2Þ

where for all p; s 7! Rdðp; sÞ is a holomorphic function on Wðl ; dÞ satisfying
Rdðp; sÞfl ; d p

�2 uniformly in p and s A Wðl ; dÞ. Evidently, Zl ðsÞ ¼ Zl ðRd; sÞ when
Rdðp; sÞ1 0.

We next fix these notations:

1. For each m A N, set

LmðlÞ ¼ Lmðl1; . . . ; lrÞ :¼ fn1l1 þ � � � þ nrlr : n1 þ � � � þ nr bmg;

2. N ¼ ½2d�1�;

3. LðsÞ :¼
Qr

k¼1 zðlkðsÞÞ
�ak for s A Wðl ; 1Þ.

By elementary computations, we obtain that for any s A Wðl ; 1Þ:

LðsÞ ¼
Q
p

Qr
k¼1

1þ
PN
vk¼1

ak
vk

� �
ð�1Þvk

pvklkðsÞ
þHk

Nðp; sÞ

0
@

1
A

where, Ek ¼ 1; . . . ; r, s 7! Hk
Nðp; sÞ is a holomorphic function in Wðl ; dÞ such that:

Hk
Nðp; sÞfN p�dðNþ1Þ fN p�2 uniformly in p and s A Wðl ; dÞ.

Meromorphic continuation of multivariable Euler products 5
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It is also clear that if ak A N, then Hk
N ¼ 0 once N > ak.

Thus, there exist f1; . . . ; fm A L2ðlÞ and d1; . . . ; dm A Z such that:

LðsÞ ¼
Q
p

�
1�

Pr
k¼1

ak

plkðsÞ
þ

Pm
i¼1

di

p fiðsÞ
þ KNðp; sÞ

�

where s 7! KNðp; sÞ is a holomorphic function in Wðl ; dÞ that satisfies: KNðp; sÞ
fN p�2 uniformly in p and s A Wðl ; dÞ.

Now an easy computation shows that for every s A Wðl ; 1Þ:

Zl ðRd; sÞLðsÞ

¼
Q
p

�
1þ

Pr
k¼1

ak

plkðsÞ
þ Rdðp; sÞ

��
1�

Pr
k¼1

ak

plkðsÞ
þ

Pm
i¼1

di

p fiðsÞ
þ KNðp; sÞ

�

¼
Q
p

�
1þ

Pm
i¼1

di

p fiðsÞ
�

Pr
k1¼1

Pr
k2¼1

ak1ak2

plk1 ðsÞþlk2 ðsÞ
þ

Pr
k¼1

Pm
i¼1

akdi

plkðsÞþfiðsÞ
þ VNðp; sÞ

�

where s 7! VNðp; sÞ is a holomorphic function in Wðl ; dÞ that satisfies the bound:
VNðp; sÞfN p�2 uniformly in p and s A Wðl ; dÞ.

We have thus proved that there exist:

1. g1; . . . ; gm A L2ðlÞ and integers c1; . . . ; cm;

2. for each p a holomorphic function s 7! Rd;2ðp; sÞ on Wðl ; dÞ, that satisfies
Rd;2ðp; sÞfd p

�2 uniformly in p and s A Wðl ; dÞ,

such that for every s A Wðl ; 1Þ:

Zl ðRd; sÞ
Qr
k¼1

zðlkðsÞÞ�ak ¼
Q
p

�
1þ

Pm
k¼1

ck

pgkðsÞ
þ Rd;2ðp; sÞ

�
:ð3Þ

Since each gk A L2ðlÞ, it is clear that <ðgkðsÞÞ > 1 for any s A W l ; 12
� �

and k ¼
1; . . . ; m. This implies that for any d 0 > max 1

2 ; d
� �

:

s 7!
Q
p

�
1þ

Pm
k¼1

ck

pgkðsÞ
þ Rd;2ðp; sÞ

�

is an absolutely convergent and bounded Euler product that is holomorphic in the
domain Wðl ; d 0Þ.

It is now evident how to proceed by induction. Let M ¼ ½log2ðN þ 1Þ� þ 1 A N. Re-
peating the above process M times, we conclude that there exist:

6 G. Bhowmik, D. Essouabri, B. Lichtin
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1. functions h1; . . . ; hq A L1ðlÞ and integers g1; . . . ; gq;

2. functions u1; . . . ; un A L2M ðlÞ and integers b1; . . . ; bn;

3. for each p, a holomorphic function s 7! Rd;Mðp; sÞ on Wðl ; dÞ, satisfying
Rd;Mðp; sÞfd p

�2 uniformly in p and s A Wðl ; dÞ

such that for every s A Wðl ; 1Þ:

Zl ðRd; sÞ
Qq
k¼1

zðhkðsÞÞ�gk ¼
Q
p

�
1þ

Pn
k¼1

bk

pukðsÞ
þ Rd;Mðp; sÞ

�
;ð4Þ

where the right side is absolutely convergent and bounded on Wðl ; dÞ since 2�M <
d=2. We now define

GdðsÞ :¼ Zl ðRd; sÞ �
� Q

hk BLNþ1

zðhkðsÞÞ�gk

�
:

In Wðl ; 1Þ, it follows that

GdðsÞ ¼
Q

fk:hk ALNþ1ðlÞg
zðhkðsÞÞgk �

Q
p

�
1þ

Pn
k¼1

bk

pukðsÞ
þ Rd;Mðp; sÞ

�
:

The preceding shows that the Euler product on the right is absolutely convergent and
is bounded in Wðl ; dÞ. In addition, since hk A LNþ1ðlÞ implies <ðhkðsÞÞ > ðN þ 1Þd
> 2, the product over k also admits an analytic continuation into Wðl ; dÞ as an ab-
solutely convergent Euler product. Thus, GdðsÞ admits an analytic continuation from
Wðl ; 1Þ into Wðl ; dÞ as an absolutely convergent and bounded Euler product. This
completes the proof of Lemma 1. r

Let h0; . . . ; hd be polynomials in Z½X1; . . . ;Xn�. Define

hðX1; . . . ;Xn;Xnþ1Þ ¼ 1þ
Pd
k¼0

hkðX1; . . . ;XnÞX k
nþ1;

Zðh; sÞ ¼
Q
p

hðp�s1 ; . . . ; p�sn ; pÞ:

Given h; h0; . . . ; hd , and d A R, we set:

Vðh; dÞ :¼
Td
k¼0

fs A Cn : ha; si > k þ d Ea A ExtðhkÞg:

Meromorphic continuation of multivariable Euler products 7
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Theorem 1. s 7! Zðh; sÞ can be continued meromorphically from Vðh; 1Þ (where

Zðh; sÞ converges absolutely), into Vðh; 0Þ.

Proof. Apply the proof of Lemma 1 using the map l , defined as follows. Writing
hk ¼

P
a00 aa;kX

a1
1 . . .X an

n , set

l ¼ ðla;kÞða;kÞ; where la;kðsÞ ¼ ha; si� k i¤ a A SðhkÞ:

It is clear that for any d, s A Wðl ; dÞ if and only if s A Vðh; dÞ. The proof then follows
from the expression (1) for the continuation of Zðh; sÞ into each Vðh; dÞ, d > 0.

1.2 The natural boundary

This subsection studies the natural boundary of an Euler product

Zðh; sÞ ¼
Q
p

hðp�s1 ; . . . ; p�snÞ where h ¼ 1þ
P
a00

aaX
a A Z½X1; . . . ;Xn�:

Theorem 1 has shown that Zðh; sÞ can be meromorphically continued to Vðh; 0Þ.
Of interest here are conditions satisfied by h that imply Zðh; sÞ can or cannot be
extended still further. We use the expression ‘‘qVðh; 0Þ is the natural boundary of
Zðh; sÞ’’ to mean that Zðh; sÞ can not be continued meromorphically into Vðh; dÞ for
any d < 0.

In addition, we say that h is ‘‘cyclotomic’’ if there exists a finite set ðmjÞqj¼1 of ele-
ments of Nn

0nf0g, and a finite set of integers fgjg
q
j¼1 such that:

hðXÞ ¼
Qq
j¼1

ð1� Xmj Þgj ¼
Qq
j¼1

ð1� X
m1; j

1 . . .X mn; j
n Þgj :

The following result extends Estermann’s well known criterion [6] to several vari-
ables.

Theorem 2. Zðh; sÞ can be continued to Cn as a meromorphic function if and only if h

is cyclotomic. In all other cases qVðh; 0Þ is the natural boundary.

Proof. It is clear that if h is cyclotomic then Zðh; sÞ has a meromorphic extension to
Cn. So, it su‰ces to prove the converse. To do so, it su‰ces to assume only that
Zðh; sÞ admits a meromorphic extension to Vðh; d0Þ for some d0 < 0. The argument
to follow will then show that h must be cyclotomic, from which it follows immedi-
ately that Zðh; sÞ is meromorphically extendible to Cn.

It will first be convenient to reduce to the case in which Vðh; 1ÞXRn H ð0;yÞn. By a
permutation of coordinates, one can suppose that: fk A f1; . . . ; ng : ba A N s:t: aek A

8 G. Bhowmik, D. Essouabri, B. Lichtin
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S �ðhÞg ¼ f1; . . . ; rg. If the set is empty, then r ¼ 0. It is clear that if r ¼ n, then
Vðh; 1ÞXRn H ð0;yÞn.

Let us then suppose that r < n. We set

h�ðX1; . . . ;XnÞ ¼ hðX1; . . . ;XnÞ
Qn

k¼rþ1

ð1� XkÞ:

A straightforward calculation, left to the reader, now shows that for each k ¼
1; . . . ; n, there exists a smallest positive integer ck such that ckek A S �ðh�Þ. In partic-
ular, ck ¼ 1 if kb rþ 1. Moreover, it follows immediately that Vðh�; 1ÞXRn H
ð0;yÞn, and sk >

1
ck
for each kb 1 implies:

Zðh; sÞ
Qn

k¼rþ1

zðskÞ�1 ¼ Zðh�; sÞ:ð5Þ

Suppose that the theorem has been proved for h�, and that there exists d0 < 0 such
that s 7! Zðh; sÞ can be meromorphically continued to Vðh; d0Þ. We set d1 ¼ d0=2 �
ðsupa AS �ðhÞf

Pn
k¼1 ak=ckgÞ. It is easy to check (exercise left to reader) that Vðh�; d1ÞH

Vðh; d0Þ. This, together with (5), then implies that s 7! Zðh�; sÞ can be meromorph-
ically continued to Vðh�; d1Þ. It then follows that h� is cyclotomic, from which it is
clear that h must also be cyclotomic.

Thus, we may assume that a vector ckek appears in S �ðhÞ for each kb 1. We also
denote the elements of ExtðhÞ by setting ExtðhÞ ¼ fa1; . . . ; aqg.

By Theorem 1, the expression for (the continuation of ) Zðh; sÞ into each V h; 1
r

� �
,

r ¼ 1; 2; . . . is given by an equation (a priori, valid in Vðh; 1Þ)

Zðh; sÞ ¼
� Q

m AN n
0

1ajmjaNr

zðhm; siÞgðmÞ
�
� G1=rðsÞ;ð6Þ

where fgðmÞgm AN n
0
HZ, fNrg is an increasing sequence of positive integers, and

G1=rðsÞ is holomorphic in V h; 1
r

� �
, on which it equals an absolutely convergent Euler

product.

Set Ex :¼ fm A Nn
0nf0g : gðmÞ0 0g and Ex� :¼ fm A Nn

0nf0g : gðmÞ < 0g.

There are two cases that will be treated separately.

Case 1: Ex is infinite

As above, let d0 < 0 be such that Zðh; sÞ has a meromorphic continuation to Vðh; d0Þ.
Let r0 be any fixed (and necessarily nonreal) zero of the Riemann zeta function sat-
isfying <ðr0Þ ¼ 1

2 .

Fix b ¼ ðb1; . . . ; bnÞ A ð0;yÞn such that b1; . . . ; bn are Q-linearly independent, and
set ZbðtÞ :¼ Zðh; tbÞ.

Meromorphic continuation of multivariable Euler products 9

(AutoPDF V7 2/6/06 14:27) WDG (170�240mm) Tmath J-1468 Forum, : PMU: S(C) 19/05/2006 pp. 1–29 1468_06-11 (p. 9)



For all m A Ex we set tm ¼ 1
hm; bi if gðmÞ < 0, and tm ¼ r0

hm; bi if gðmÞ > 0.

In addition, choose for each m A K , rðmÞ A N satisfying:

rðmÞ > 2 � jmj � supi bi
inf jhaj ; bi

and rðmÞb jmj:

It follows that NrðmÞ b rðmÞb jmj. By (6), we have for each m A Ex and tb A

V h; 1
rðmÞ

� �
:

ZbðtÞ ¼ Zðh; tbÞ ¼ zðthm; biÞgðmÞ
� Q

m 0 AN n
0 nfmg

1ajm 0jaNrðmÞ

zðthm 0; biÞgðm
0Þ
�
G1=rðmÞðtbÞ:ð7Þ

From the definition of rðmÞ, it follows that for each aj A ExtðhÞ:

<ðhaj; tmbiÞb haj; bi

2 � hm; bi
b

haj; bi

2 � jmj � supi bi
>

1

rðmÞ :

Thus, t 7! G1=rðmÞðtbÞ is holomorphic in a neighbourhood of t ¼ tm.

We now distinguish two subcases:

First subcase: Ex� is infinite

Let m A Ex�, so that tm ¼ 1
hm; bi > 0. It follows that tm is not a pole of

zðthm 0; biÞgðm
0Þ for every m 0 0m A Nn

0 . This is clear if gðm 0Þ > 0 since the only
possible pole of this function occurs when t ¼ 1

hm 0; bi , which cannot equal tm because

tm ¼ 1
hm; bi 0

1
hm 0; bi . If gðm 0Þ < 0, then poles of zðthm 0; biÞgðm

0Þ must be zeroes of

zðthm 0; biÞ. A classical fact ([11], pg. 30) tells us that there are no positive zeroes
of zðsÞ. Thus, tm cannot be a pole of zðthm 0; biÞgðm

0Þ. On the other hand, gðmÞ < 0
implies that tm is a zero of ZbðtÞ since jmjaNrðmÞ.

Furthermore, it is clear that the sequence ftmgm AEx�
of zeroes of ZbðtÞ converges to

0 when jmj ! þy.

Now, if Zðh; sÞ had a meromorphic continuation to Vðh; d0Þ, then ZbðtÞ would have
to have a meromorphic continuation to Uðd1Þ :¼ ft A C : <ðtÞ > d1g, where d1 ¼
sup1ajaq

d0
haj ; bi

< 0. Thus, ZbðtÞ would have to be identically zero, which is impossi-
ble because each G1=rðsÞ is an absolutely convergent Euler product in Vðh; 1=rÞ, and
cannot therefore be identically zero. We conclude that in this subcase, Zðh; sÞ cannot
be meromorphically extended to any Vðh; dÞ when d < 0.

Second subcase: Ex� is finite

Choose a > 0 such that zðzÞ0 0 for jzja a.

10 G. Bhowmik, D. Essouabri, B. Lichtin
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Set

B :¼ 2 �
ðsupi biÞ � jr0j � ðsupm AEx� jmjÞ

a � ðinf i biÞ
> 0:

Define Exþ :¼ ExnEx�, and fix m A Exþ such that jmjbB. Then gðmÞ > 0 and
tm ¼ r0

hm; bi A CnR.

We then observe the following:

1. for all m 0 A Exþ satisfying m 0 0m, tm is not a pole of zðthm 0; biÞgðm
0Þ (since the

only possible pole of this function is 1
hm 0; bi A R and tm B R);

2. for all m 0 A Ex�, tm is not a pole of zðthm 0; biÞgðm
0Þ. (if this were false, then

r :¼ tmhm 0; bi would be a zero of zðsÞ satisfying:

jrj ¼ jtmj � hm 0; bi ¼ jr0j � hm 0; bi

hm; bi
a

jr0j � jm 0j � ðsupi biÞ
jmj � ðinf i biÞ

a
a � B
2 � jmj a

a

2
;

which is impossible).

By (7) and the fact that jmjaNrðmÞ, we conclude that for each m A Exþ satisfy-
ing jmjbB, tm is a zero of ZbðtÞ. Since tm ! 0 when jmj ! þy, it follows that
ftmgfjmjbBg contains a sequence of zeroes of ZbðtÞ with accumulation point in Uðd1Þ
if Zðh; sÞ could be meromorphically extended to Vðh; d0Þ. As in the first subcase, this
is not possible.

Case 2: Ex is finite

Set GðsÞ :¼ ð
Q

m AEx zðhm; siÞ�gðmÞÞZðh; sÞ. We will prove that GðsÞ1 1.

By choosing r su‰ciently large in the equation (6), we deduce that:

1. GðsÞ is an Euler product of the form GðsÞ ¼
Q

p

�P
a AN n

0

ma

pha; si

�
, where m0 ¼ 1,

and there exist C;D > 0 such that ma aCð1þ jajDÞ for all a.

2. GðsÞ converges absolutely in Vðh; 0Þ ¼
S

r V h; 1
r

� �
.

Suppose that GðsÞD 1. Then there exists a0 0 such that ma 0 0. Now fix b ¼
ðb1; . . . ; bnÞ A ð0;yÞn as in Case 1. It follows that the Euler product

t 7! RbðtÞ :¼ GðtbÞ ¼
Q
p

� P
a AN n

0

ma

ptha;bi

�

converges absolutely in the halfplane ft A C : <ðtÞ > 0g.

Set S :¼ fa A Nn
0 : ma 0 0g. Since ha; bi ! þy as jaj ! þy, it is clear that there

exists n0 0 A S such that hn; bi ¼ infa00 ASha; bi > 0. We fix this n in the sequel.

Let N ¼ 8hn; bi
inf i bi

h i
þ jnj þ 1 A N. Then we have for <ðtÞ > 1

2hn; bi and uniformly in p:

Meromorphic continuation of multivariable Euler products 11
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P
jajbNþ1

ma

ptha;bi

����
����f P

jajbNþ1

jajD

p<ðtÞ�jaj�ðinf i biÞ

f
P

jajbNþ1

jajD

p<ðtÞ�jaj=2�ðinf i biÞ
� 1

p<ðtÞ�ðNþ1Þ=2�ðinf i biÞ

f
1

p<ðtÞ�ðNþ1Þ=2�ðinf i biÞ
P

jajbNþ1

jajD

2jaj inf i bi=4hn;bi

f
1

p<ðtÞ�ðNþ1Þ=2�ðinf i biÞ
f

1

p2
:

From this we deduce that

RbðtÞ ¼ GðtbÞ ¼
Q
p

� P
a AN n

0

jajaN

ma

ptha;bi
þ VNðp; tÞ

�
;

where t 7! VNðp; tÞ is a holomorphic function that satisfies the bound VNðp; tÞfN

p�2 uniformly in p and all t A C such that <ðtÞ > 1
2hn; bi . Since this Euler product

converges absolutely for t ¼ 1
hn; bi > 0, it follows that

Q
p

�
1þ

P
0<jajaN

ma

ptha;bi

�

also converges absolutely for t ¼ 1
hn; bi . However, since jnjaN it follows thatP

p
mn

pthn; bi

��
t¼1=hn;bi

must also converge, which is not possible. Thus, we conclude that

GðsÞ1 1.

As a result, we must have the following equation for all s A Vðh;AÞ:

Zðh; sÞ ¼
Q

m AEx
zðhm; siÞgðmÞ ¼

Q
m AEx

Q
p

ð1� p�hm;siÞ�gðmÞ

¼
Q
p

Q
m AEx

ð1� p�hm;siÞ�gðmÞ ¼
Q
p

h�ðp�s1 ; . . . ; p�snÞ;

where

h�ðXÞ ¼ h�ðX1; . . . ;XnÞ ¼
Q

m AEx
ð1� XmÞ�gðmÞ ¼

Q
m AEx

ð1� X m1

1 . . .X mn
n Þ�gðmÞ:

Since the Euler product factorization is unique, we conclude that hðXÞ ¼ h�ðXÞ. This
completes the proof of Theorem 2. r
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Remark. It is not di‰cult to extend the preceding discussion to analytic functions.
Since these results will not be used in the article, we will give their statements and
leave details of the straightforward proofs to the reader. Let h0; . . . ; hd be analytic
functions on the unit polydisc Pð1Þ in Cn, satisfying the property hkð0Þ ¼ 0 for each
k. We also assume that each coe‰cient in the power series expansion of each hk on
Pð1Þ is an integer. Define

hðX1; . . . ;Xn;Xnþ1Þ ¼ 1þ
Pd
k¼0

hkðX1; . . . ;XnÞX k
nþ1;

Zðh; sÞ ¼
Q
p

hðp�s1 ; . . . ; p�sn ; pÞ:

For each d A R, define

Vaðh; dÞ :¼
Td
k¼0

fs A Cn : ha; si > k þ d Ea A ExtðhkÞ; and si > d Eig;

and for d > 0 define:

1. N ¼ 2ðdþ2Þ
d

h i
þ 1;

2. YN :¼ fða; kÞ A Nn
0 � ½0; d � : a A SðhkÞ and 1a jajaNg, rN :¼aYN , and NðdÞ :¼

fn ¼ ðna;kÞ A NrN
0 : 1a jnja d�1g.

Theorem 3. There exists A > 0 such that Zðh; sÞ converges absolutely in Vaðh;AÞ. In
addition, Zðh; sÞ can be continued into the domain Vaðh; 0Þ as a meromorphic function

as follows. For any d > 0, there exists fgðnÞ : n A NðdÞgHZ and GdðsÞ, a bounded

holomorphic function on Vaðh; dÞ, such that the equation

Zðh; sÞ ¼
Q

n¼ðna; kÞ ANðdÞ
z

� P
ða;kÞ AYN

na;kðha; si� kÞ
�gðnÞ

� GdðsÞ;ð8Þ

a priori valid in Vaðh;AÞ, extends to Vaðh; dÞ outside the polar divisor of the product

over n A NðdÞ. Moreover Gd can be expressed as an absolutely convergent Euler

product in Vaðh; dÞ.

Now assume d ¼ 0 and let h ¼ 1þ
P

a00 aaX
a denote the power series expansion for

h in Pð1Þ.

Theorem 4. If there exist C;D > 0 such that for all a A Nn
0 , jaajaCð1þ jajÞD, then

Zðh; sÞ can be continued to Cn as a meromorphic function if and only if h is the quo-

tient of cyclotomic polynomials. In all other cases the boundary qVðh; 0Þ is the natural
boundary.

Meromorphic continuation of multivariable Euler products 13

(AutoPDF V7 2/6/06 14:27) WDG (170�240mm) Tmath J-1468 Forum, : PMU: S(C) 19/05/2006 pp. 1–29 1468_06-11 (p. 13)



2 An application in diophantine geometry

We study in the first two subsections the analytic properties of a multivariable
Dirichlet series whose coe‰cients encode membership in the maximal torus of a toric
variety X . In §2.3, we apply our discussion to the toric defined by the equation
x1 � � � xn ¼ xn

nþ1. We start with a given projective embedding, determined by a set of
d monomial defining equations in n variables. This is not an unreasonable starting
point since problems in multiplicative number theory, as one example, can sometimes
be formulated in terms of such equations.

The set of exponents of the pertinent monomials therefore determines a d � n matrix
A with entries in Z, whose rows aj ¼ ðaj;1; . . . ; aj;nÞ each satisfy the property thatP

i aj; i ¼ 0. The rational points of the variety resp. its maximal torus are defined as
follows:

XðAÞ :¼
	
ðx1 : . . . : xnÞ A Pn�1ðQÞ :

Q
fi:aj; ib0g

x
aj; i
i ¼

Q
fi:aj; i<0g

x
�aj; i
i Ej



;

UðAÞ :¼ fðx1 : . . . : xnÞ A XðAÞ : x1 . . . xn 0 0g:

To each point x of UðAÞ there corresponds a unique primitive lattice point m ¼
mðxÞ ¼ ðm1; . . . ;mnÞ A Nn, that is, gcdðm1; . . . ;mnÞ ¼ 1, and ðm1 : . . . : mnÞ A UðAÞ.

Adapting an idea of Batyrev-Tschinkel [1], which was subsequently modified by
La Bretèche [4] to exploit the formalism of universal torsors, see [10], we define a
multivariable Dirichlet series with Euler product in the open set W :¼ fs : si > 1;
i ¼ 1; . . . ; ng by first introducing the function FA : Nn ! Z:

1. FAðm1; . . . ;mnÞ ¼ 1 if gcdðm1; . . . ;mnÞ ¼ 1 and
Q

i m
aj; i
i ¼ 1 Eja d,

2. FAðm1; . . . ;mnÞ ¼ 0 if not.

It is clear that FA is multiplicative (see [5] for the definition), FAðm1; . . . ;mnÞ ¼ 1 i¤
ðm1 : . . . : mnÞ A UðAÞ, and that for each p and all n A Nn

0 ,

FAðpn1 ; . . . ; pnnÞ ¼ 1 i¤ n A TðAÞ :¼ fn A Nn
0 : AðnÞ ¼ 0g:

Our Dirichlet series is initially defined, if s A W, to equal

ZAðsÞ :¼
P

ðm1;...;mnÞ AN n

FAðm1; . . . ;mnÞ
ms1

1 . . .msn
n

¼
Q
p

hAðp�s1 ; . . . ; p�snÞ;

where hAðXÞ :¼
P

n ATðAÞ X
n is analytic on the polydisc Pð1Þ. The three properties

of ZAðsÞ, described in the Introduction, are proved in §2.2. The remark at the end of
§2.2 compares in more detail this work with that in [4]. The reader may find this to be
of value.
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As shown in §2.3, a tauberian theorem, combined with knowledge of the analytic
properties of ZAðsÞ, can be used to deduce the asymptotic behavior of a height den-
sity function on UðAÞ. The reason for this is as follows. Using the preceding nota-
tion, the function x A X ðAÞ ! maxijmij, where m ¼ mðxÞ, equals a height function
on X ðAÞ that is induced from the standard height on Pn�1ðQÞ (see Introduction).
Defining the constant

CðAÞ :¼ 1

2
�a

	
� A fG1gn :

Qn
i¼1

�
aj; i
i ¼ 1 for all j ¼ 1; . . . ; d



;

the equation

afx A UðAÞ : HðxÞa tg ¼ CðAÞ �
P

ðm1;...;mnÞ AN n

1amiat Ei

FAðm1; . . . ;mnÞð9Þ

therefore interprets the height density function on UðAÞ at t in terms of the sum of
those coe‰cients of ZAðsÞ contained in a box, each of whose sides has length t.

2.1 A basic property of hA(X )

As noted above, the only thing that we know of for sure about the function hAðXÞ is
that it is analytic on the polydisc Pð1Þ. However, we must be more precise. The cru-
cial property is the following.

Definition 1. An analytic function h on Pð1Þ is unitary if there exist a finite set
KHNn

0nf0g, positive integers fcðnÞgn AK , and a polynomial W A Z½X1; . . . ;Xn�, such
that for all X A Pð1Þ:

hðXÞ ¼
� Q

n AK
ð1� X nÞ�cðnÞ

�
WðXÞ:

The data ðK ; hcðnÞin AK ;WÞ determines a presentation of h when 1� X n does not
divide WðXÞ for each n A K .

The result we will need in §2.2 is the following.

Lemma 2. The function hAðXÞ is unitary.

Lemma 2 is a simple consequence of a more general result which analyzes the be-
havior of an analytic function, all of whose monomial exponents belong to an a‰ne
plane

TðA;bÞ :¼ fn A Nn
0 : AðnÞ ¼ bg:
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Lemma 3. For any integral d � n matrix A (the rows of which need not sum to 0!), and
any b A Zd , the function

hA;bðX Þ :¼
P

n ATðA;bÞ
X n

is unitary.

Proof that Lemma 3 implies Lemma 2. For all X ¼ ðX1; . . . ;XnÞ A Pð1Þ we have:

hAðXÞ ¼
P

n ATðA;0Þ
n1...nn¼0

X n ¼
P

n ATðA;0Þ
X n �

P
n ATðA;0Þ

n1b1;...; nnb1

X n

¼ ð1� X1 . . .XnÞhA;0ðXÞ:

Since Lemma 3 says that hA;0 is unitary it follows that hA is also unitary. r

Proof of Lemma 3. We shall prove the lemma by induction on n.

For n ¼ 1 the result is trivially true.

Let nb 2. The induction hypothesis allows us to assume that for any m < n, any
d �m integral matrix A 0, and any b 0 A Zd , we have that hA 0;b 0 ðX1; . . . ;XmÞ is uni-
tary.

Now, let A be a d � n integral matrix, and b ¼ ðb1; . . . ; bdÞ A Zd . It su‰ces to as-
sume that TðA;bÞ0j since the proof of Lemma 2 is trivial when TðA;bÞ ¼ j.

It will be convenient to distinguish two cases:

Case 1: f0gWTðA; 0Þ
We choose and fix a0 0 A TðA; 0Þ in the following. For any I H f1; . . . ; ng, we
define

LðI ; aÞ :¼ fn A TðA;bÞ : ni b ai i¤ i A Ig;

and

hA;bðI ; a;X Þ :¼
P

n ALðI ;aÞ
X n:ð10Þ

If LðI ; aÞ ¼ j, the value is defined to be 0. A straightforward calculation then
shows:

ð1� X aÞhA;bðXÞ ¼
P

IHf1;...;ng
I0f1;...;ng

hA;bðI ; a;X Þ EX A Pð1Þ:ð11Þ
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So, we need to show that each hA;bðI ; a;XÞ is unitary. By permuting coordinates, it
su‰ces to prove this for any Iq :¼ f1; 2; . . . ; qg with qa n� 1.

To express the necessary equation in a concise manner, we first introduce the fol-
lowing notations:

1. X ¼ ðY ;ZÞ with Y ¼ ðX1; . . . ;XqÞ and Z ¼ ðXqþ1; . . . ;XnÞ;

2. x 0 ¼ ðx1; . . . ; xqÞ and x 00 ¼ ðxqþ1; . . . ; xnÞ, for any n-vector x , and A 0 is the d � q

matrix with rows a 0
j ¼ ðaj;1; . . . ; aj;qÞ for each ja d;

3. Dð¼ DðaÞÞ :¼ fn 00 ¼ ðnqþ1; . . . ; nnÞ A
Qn

i¼qþ1f0; 1; 2; . . . ; ai � 1gg;

4. En 00 A D,

lðn 00Þ :¼ ðb1 � ha 00
1 ; n

00i� ha 0
1; a

0i; . . . ; bd � ha 00
d ; n

00i� ha 0
d ; a

0iÞ:

We then observe that for all X ¼ ðY ;ZÞ A Pð1Þ,

hA;bðIq; a;XÞ ¼
P

n ATðA;bÞ
Eiaq nibai and Ei>q ni<ai

X n

¼
P

n 00¼ðnqþ1;...; nnÞ AD

P
m¼ðm1;...;mqÞ AN

q

0

ða 0þm; n 00Þ ATðA;bÞ

Y a 0þmZ n 00

¼
P

n 00¼ðnqþ1;...; nnÞ AD
Y a 0

Z n 00 P
m¼ðm1;...;mqÞ ATðA 0; lðn 00ÞÞ

Y m:

So the following equation is true:

hA;bðIq; a;X Þ ¼
P

n 00 AD
Y a 0

Z n 00hA 0; lðn 00ÞðY Þ:ð12Þ

We conclude by induction.

Case 2: TðA; 0Þ ¼ f0g
Since TðA;bÞ0j, there exists g A TðA;bÞ. We begin by observing that: n A TðA;bÞ
is equivalent to one of the two following conditions:

1. n ¼ g (i.e. ni b gi Ei implies n� g A TðA; 0Þ ¼ f0g);

2. n A TðA;bÞ and bi A f1; . . . ; ng such that ni < gi.

This observation implies that for all X A Pð1Þ:

hA;bðXÞ ¼ X g þ
P

IHf1;...;ng
I0f1;...;ng

hA;bðI ; g;XÞ
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where each hA;bðI ; g;X Þ is defined as in (10), replacing a by g. We now conclude by
induction as in Case 1. This completes the proof of Lemma 3. r

Remark. The proof of Lemma 3 actually gives an explicit procedure to find a pre-
sentation of hA. This is used in §2.3.

2.2 Analytic properties of ZA(s)

The essential first step needed to deduce the analytic properties of ZAðsÞ is given by
Lemma 2, which gives a presentation of hAðXÞ as a rational function:

hAðX Þ ¼
Q
n AK

ð1� X nÞ�cðnÞ �WðX Þ:ð13Þ

Note. Although K and W certainly depend upon A, the notation will not indicate this
for the sake of simplicity. The reader should not find this confusing. r

Since both hAðX Þ and each ð1� X nÞ�cðnÞ equal 1 when X ¼ 0, it is clear that W is a
polynomial with integer coe‰cients that satisfies Wð0Þ ¼ 1. Define the Euler product
ZðW ; sÞ ¼

Q
p Wðp�s1 ; . . . ; p�snÞ.

We set I ¼ K WS �ðWÞ, and define for every d A R, VðI ; dÞ :¼ fs A Cn : hn; si > d

En A Ig. It is then clear that ZAðsÞ converges absolutely in VðI ; 1Þ and for any
s A VðI ; 1Þ:

ZAðsÞ ¼
� Q

m AK
zðhn; siÞcðnÞ

�
� ZðW ; sÞ:ð14Þ

Theorems 1, 2 (whose notations are used below) can now be immediately applied to
tell us the following.

Theorem 5. 1. s 7! ZAðsÞ can be meromorphically continued to VðW ; 0Þ;

2. s 7! ZAðsÞ can be meromorphically continued to Cn if and only if W is cyclotomic;

3. if W is not cyclotomic, then qVðW ; 0Þ is the natural boundary of meromorphic

continuation.

To proceed, we will need to introduce some additional notations, and prove a
preliminary result. First, we fix the expression for W by setting WðX1; . . . ;XnÞ ¼
1þ

P
n AS �ðW Þ uðnÞX n.

We note that qVðI ; 1Þ ¼ qI o (see Notations). For any a A qVðI ; 1Þ, we set EðI ; aÞ ¼
fn A I : ha; ni ¼ 1g.

Finally, for all n A I , we define c 0ðnÞ as follows:
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1. c 0ðnÞ ¼ cðnÞ if n A KnS �ðWÞ;

2. c 0ðnÞ ¼ uðnÞ if n A S �ðWÞnK;

3. c 0ðnÞ ¼ cðnÞ þ uðnÞ if n A K XS �ðWÞ.

The following lemma plays an important role in the proof of Theorem 6 below.

Lemma 4. For each a A qVðI ; 1Þ, and each n A EðI ; aÞ, c 0ðnÞ ¼ 1.

Proof. We start with the presentation (13), and choose h < 1
4 minn A InEðI ;aÞðha; ni� 1Þ

if EðI ; aÞ0 I . Otherwise, we choose h A ð0; 1=6Þ.

We set F ¼ fe A ð0; 1Þ2n : 1; e1; . . . ; e2n are linearly independant over Qg.

For each e A F we define:

1. aðeÞ ¼ ða1ðeÞ; . . . ; anðeÞÞ, where aiðeÞ ¼ ð1� eiÞai þ enþi for all i ¼ 1; . . . ; n;

2. geðtÞ ¼ hAðta1ðeÞ; . . . ; tanðeÞÞ for all t A ð0; 1Þ.

By using the bound for h, as above, and the fact that haðeÞ; ni ¼ ha; niþOðjejÞ as
jej ! 0 (since I is finite), it is clear that one can choose e A F with jej so small that the
following property is satisfied:

ð15Þ n A EðI ; aÞ implies

haðeÞ; ni < 1þ h and geðtÞ ¼ 1þ
P

n AEðI ;aÞ
c 0ðnÞthaðeÞ; ni þOeðt1þhÞ ðt ! 0Þ:

We fix any such e in the following.

On the other hand, it is also clear that there exist N ¼ Nðh; eÞ such that

geðtÞ ¼
P

n ATðAÞ
jnjaN

thaðeÞ; ni þOeðt1þhÞ ðt ! 0Þ:ð16Þ

Since � A F, it follows that if n0 n 0 A Nn
0 , then haðeÞ; ni0haðeÞ; n 0i. In particular,

this insures that for any n A EðI ; aÞ, the coe‰cient of thað�Þ; ni in (15) equals c 0ðnÞ, and
in (16) equals 1. Since the two partial asymptotic expansions must be equal up to
terms of order t1þh, this shows that c 0ðnÞ ¼ 1 if n A EðI ; aÞ. r

We know that ZAðsÞ converges absolutely in VðI ; 1Þ. Our second basic observation
identifies the boundary of this domain as the boundary of the domain of analyticity
of ZAðsÞ.

Theorem 6. For each point a A qVðI ; 1Þ, the meromorphic continuation of ZAðsÞ is not
analytic at a.
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Proof. Let a A qVðI ; 1Þ be arbitrary and fixed, and assume s is such that si > ai for
each i. It is then clear that ZAðsÞ converges absolutely since hs; ni > ha; nib 1 for
any n A I .

We next introduce the product of linear forms LaðsÞ :¼
Q

n AEðI ;aÞ hn; si, and use
Lemma 4 to write it as follows:

LaðsÞ ¼
Q

n AKXEðI ;aÞ
hn; sicðnÞ �

Q
n AS �ðW ÞXEðI ;aÞ

hn; siuðnÞ:

The function HaðsÞ :¼ ZðFA; aþ sÞ �LaðsÞ is evidently analytic in VðI ; 0Þ. We first
show that it is analytic in some larger domain VðI ;�d1Þ for some positive d1, by
grouping each factor in LaðsÞ with an appropriate factor of ZðFA; aþ sÞ obtained
from (14).

For the leftmost factor on the rightside of (14), we have:

Q
n AK

zðhn; aiþ hn; siÞcðnÞ �
Q

n AKXEðI ;aÞ
hn; sicðnÞ

¼
Q

n AKXEðI ;aÞ
½hn; si � zð1þ hn; siÞ�cðnÞ �

Q
n AKnEðI ;aÞ

zðhn; aiþ hn; siÞcðnÞ:

For d0 chosen small enough, it is clear that each of the two products on the last line,
one over n A K XEðI ; aÞ, the other over n A K � EðI ; aÞ, is analytic in VðI ;�d0Þ.

For the rightmost factor on the right side of (14), observe first that (14) and the proof
of Lemma 1 imply that there exists d A ð0; 1Þ such that

GdðsÞ :¼ ZðW ; sÞ �
Q

n AS �ðWÞXEðI ;aÞ
zðhn; siÞ�uðnÞð17Þ

is analytic and bounded in VðW ; 1� dÞ.

Thus,

ZðW ; aþ sÞ
Q

n AS �ðW ÞXEðI ;aÞ
hn; siuðnÞ

¼
Q

n AS �ðW ÞXEðI ;aÞ
½hn; sizð1þ hn; siÞ�uðnÞ � Gdðaþ sÞ;

and Gdðaþ sÞ is analytic for s A VðI ;�d 00Þ, for some d 00 > 0.

We conclude that HaðsÞ can be written in VðI ; 0Þ as follows:
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HaðsÞ ¼
Q

n AKXEðI ;aÞ
½hn; si � zð1þ hn; siÞ�cðnÞ �

Q
n AKnEðI ;aÞ

zðhn; aiþ hn; siÞcðnÞ

�
Q

n AS �ðW ÞXEðI ;aÞ
½hn; si � zð1þ hn; siÞ�uðnÞ � Gdðaþ sÞ

¼
Q

n AKXEðI ;aÞ
½hn; si � zð1þ hn; siÞ�cðnÞ

�
Q

n AS �ðW ÞXEðI ;aÞ
½hn; si � zð1þ hn; siÞ�uðnÞ

�
Q

n AKnEðI ;aÞ
zðhn; aiþ hn; siÞcðnÞ � Gdðaþ sÞ:

Moreover, we know that there exists d 01 > 0 such that the product of the two func-
tions on the last line is analytic in VðI ;�d 01Þ.

Applying Lemma 4 a second time now shows that for any s A VðI ; 0Þ:

ð18Þ HaðsÞ ¼
Q

n AEðI ;aÞ
½hn; si � zð1þ hn; siÞ�

�
Q

n AKnEðI ;aÞ
zðhn; aiþ hn; siÞcðnÞ � Gdðaþ sÞ:

We then deduce the existence of d1 > 0, such that the product over n A EðI ; aÞ in the
first line of (18) is analytic in VðI ;�d1Þ. Since the product of functions on the second
line is analytic if d1 is chosen su‰ciently small, we have verified what we needed to
show, that is, HaðsÞ is analytic in some neighborhood VðI ;�d1Þ containing s ¼ 0.

The second part of the argument is an immediate consequence of the following es-
sential property:

Hað0Þ0 0:ð19Þ

To prove this, we start with (18) and rewrite the product by writing

1 ¼
Q

n AKXEðI ;aÞ
zð1þ hn; siÞcðnÞ �

Q
n AKXEðI ;aÞ

zð1þ hn; siÞ�cðnÞ:

Multiplying together all the terms with exponent �cðnÞ withQ
n AS �ðW ÞXEðI ;aÞ zð1þ hn; siÞ�uðnÞ (a term that equals a factor in (17) when eval-

uated at aþ s), and applying Lemma 4 again, gives a factor of HaðsÞ that

equals
Q

n AEðI ;aÞ zð1þ hn; siÞ�1. Multiplying together all the terms with exponent
cðnÞ with the product over n A K � EðI ; aÞ in (18) gives a factor equal to
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Q
m AK zðhn; aþ siÞcðnÞ. Thus, we find a di¤erent expression for HaðsÞ as a product

of functions, each of which is analytic, at least, in VðI ; 0Þ:

ð20Þ HaðsÞ ¼
Q

m AK
zðhn; aþ siÞcðnÞ �

Q
n AEðI ;aÞ

zð1þ hn; siÞ�1 � ZðW ; aþ sÞ

�
Q

n AEðI ;aÞ
½hn; si � zð1þ hn; siÞ�:

Since there exists a neighborhood of s ¼ 0 in which the function
Q

n AEðI ;aÞ½hn; si �
zð1þ hn; siÞ� is both analytic and never 0, it follows that the product in (20) is
actually analytic in a neighborhood of s ¼ 0. In such a neighborhood, we therefore
have:

HaðsÞ ¼
Q
p

Hðp; sÞ �
Q

n AEðI ;aÞ
½hn; si � zð1þ hn; siÞ�;ð21Þ

where

Hðp; sÞ ¼
Q
n AK

ð1� p�hn;ai�hn;siÞ�cðnÞ �
Q

n AEðI ;aÞ
ð1� p�1�hn;siÞ �Wðp�a1�s1 ; . . . ; pan�snÞ:

The function s !
Q

p Hðp; sÞ is analytic at s ¼ 0, but we still need to understand its
value at this point. For r A ð0; 1Þ we define the open neighborhood BðrÞ ¼ VðI ; 0ÞW
fs A Cn j jsij < rg of 0, and write out Hðp; sÞjBðrÞ. For our purposes, it now su‰ces

to observe the existence of u > 1 such that the following holds, to which we apply
Lemma 4 for the last equation:

Hðp; sÞ ¼
�
1þ

P
n AKXEðI ;aÞ

cðnÞ
p1þhn;si

þOðp�uþrÞ
�

�
�
1�

P
n AEðI ;aÞ

1

p1þhn;si
þOðp�uþrÞ

�

�
�
1þ

P
n AS �ðW ÞXEðI ;aÞ

uðnÞ
p1þhn;si

þOðp�uþrÞ
�

¼ 1�
P

n AEðI ;aÞ

1� cðnÞ � uðnÞ
p1þhn;si

þOðp�uþrÞ

¼ 1�
P

n AEðI ;aÞ

1� c 0ðnÞ
p1þhn;si

þOðp�uþrÞ

¼ 1þ Oðp�uþrÞ uniformly in s A BðrÞ:
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Thus, by choosing r so small that �uþ r < �1 for all s A BðrÞ, we conclude that
s 7!

Q
p Hðp; sÞ also converges absolutely in BðrÞ. We can therefore evaluate both

sides of (21) at s ¼ 0. In this way, we find the following Euler product expansion that
converges to Hað0Þ:

Hað0Þ ¼
Q
p

�
ð1� p�1ÞaEðI ;aÞ �Wðp�a1 ; . . . ; p�anÞ �

Q
n AK

ð1� p�hn;aiÞ�cðnÞ
�
:ð22Þ

The distinct advantage of (22) is that it easily is seen to imply that Hað0Þ > 0. Indeed,
we know that

Wðp�a1 ; . . . ; p�anÞ �
Q
n AK

ð1� p�hn;aiÞ�cðnÞ ¼ hAðp�a1 ; . . . ; p�anÞ > 0 for each p:

Thus, each factor of the Euler product in (22) is positive. This implies Hað0Þ is also
positive. As a result, the equation that gives the meromorphic continuation of ZAðsÞ
in a neighborhood of a,

ZAðaþ sÞ ¼ HaðsÞ
LaðsÞ

;

now implies that the right side cannot be analytic at s ¼ 0. This completes the proof
of Theorem 6. r

Remark. It may be instructive for the reader to compare the preceding discussion
with that in [4]. As noted in the Introduction, the starting point of [ibid.] is an explicit
projective embedding (defined by choosing the anticanonical line bundle and assum-
ing it is ample) of a desingularized model of the variety into Pd�1ðQÞ for an appro-
priate d. The model is constructed by patching together a set of a‰ne charts that is
bijective with a set of simplicial cones with integral 1-skeletal vectors that forms a
‘‘fan decomposition’’ of Rd . Following the discussion in [10, §11], the 1-skeletal vec-
tors then determine the entries of an n�m integral matrix B (where n denotes the
number of 1-skeletal vectors and m the number of cones of maximal dimension).
To each rational point on the maximal torus of height t, there corresponds (see
[10, (11.4), (11.5)]), a unique point ðxb1 ; . . . ; xbmÞ, where x ¼ ðx1; . . . ; xnÞ A Nn, the
bj denote the column vectors of B , and maxjfxbjg ¼ t. The point is also subject to a
certain gcd condition that is important but need not be defined here. Up to an addi-
tional scalar factor, this gives the analogue of (9).

The analogue of ZAðsÞ in [op cit., §4.2] is the series denoted Fðs1; . . . ; smÞ, which also
has an Euler product expression. Note however that its coe‰cients are no longer
restricted to 0, 1 in value. The analogue of (14) for this product is as follows:

Fðs1; . . . ; smÞ ¼
Q
i

zðhc i; ðs1; . . . ; smÞiÞ � G; where G ¼
Q
p

gðp�s1 ; . . . ; p�smÞ

is such that gðYÞ :¼
P

n ANl
0
mðpn1 ; . . . ; pnlÞ

Qm
j¼1Y

hn;bji
j is a polynomial, and

c1; . . . ; cn denote the rows of B . The details of this were worked out in [10]. An

Meromorphic continuation of multivariable Euler products 23

(AutoPDF V7 2/6/06 14:27) WDG (170�240mm) Tmath J-1468 Forum, : PMU: S(C) 19/05/2006 pp. 1–29 1468_06-11 (p. 23)



approximation to the support of g is also given in [4], see §4.2. The preceding equa-
tion actually gives a meromorphic extension of F because it is shown in [ibid., Lemme
4.2 (iv)] that G is absolutely convergent in the region

T
if<ðc i � ðs1; . . . ; smÞÞ > kg for

some k < 1.

The analogue of Theorem 6 is, however, only proved at exactly one real point
a ¼ 1

m
ð1; . . . ; 1Þ. Moreover, the proof that GðaÞ0 0, that is, the analogue of the

nonvanishing property (19), is indirect, and actually is a consequence of the version
of Manin’s conjecture proved in [1]. As a result, this argument would not seem to
extend to find other points on the boundary of analyticity of F . It would therefore be
interesting to know if the proof of Theorem 6 can be adapted to give more complete
information about the polar locus of Fðs1; . . . ; smÞ.

2.3 How often is the product of n integers an n th power?

A natural problem in multiplicative number theory is to describe the asymptotic
density of n-fold products of positive integers that equals the n th power of an integer.
When n ¼ 3, several authors have given a precise asymptotic for the density [7], [8],
[3]. Our starting point was an observation of Batyrev-Tschinkel ([10], 11.50) who
noted that the problem is equivalent to finding the asymptotic of the height density
function on a certain singular cubic toric variety. This interpretation naturally ex-
tends to any nb 3. However, until now, no extension of these results to arbitrary
n seems to have been published in the literature, although we have learned from the
referee that Salberger lectured about the case n ¼ 4 in 1998.

This subsection solves the problem for arbitrary nb 3 by combining the method in
§2.2 with a tauberian theorem of La Bretèche [5].

In the following discussion, we use the notations from the preceding subsections and
the introduction to §2, with the role of the matrix A played here by the 1� ðnþ 1Þ
matrix An ¼ ð1; . . . ; 1;�nÞ. Note that the torus UðAnÞ of the toric XðAnÞ is now de-
fined to equal

UðAnÞ ¼ fx ¼ ðx1 : . . . : xnþ1Þ A PnðQÞ : x1 � � � xn ¼ xn
nþ1 and x1 � � � xn 0 0g;

and the Dirichlet series ZA n
ðsÞ of interest becomes a function of s ¼ ðs1; . . . ; snþ1Þ.

Setting r ¼ ðr1; . . . ; rnÞ and jr j ¼ r1 þ � � � þ rn, we also define

Jn ¼ fr þ enþ1 : r A f0; . . . ; ngn and jr j ¼ ngnfð1; . . . ; 1Þg;

Dn ¼ fr A f0; . . . ; n� 1gn : n j jr jg;

lðrÞ ¼ ðr1; . . . ; rn; jr j=nÞ for any r A Dn;

and for every d A R;

VðdÞ ¼ fs A Cnþ1 : hlðrÞ; si > d Er A Dng:
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Theorem 7. For any nb 3 the following three assertions are satisfied.

1. s 7! ZA n
ðsÞ converges absolutely in Vð1Þ and satisfies:

ZA n
ðsÞ ¼

Qn
i¼1 zðnsi þ snþ1Þ

zðs1 þ � � � þ snþ1Þ
�
Q
p

� P
r ADn

1
phlðrÞ; si

�
;

2. s 7! ZA n
ðsÞ can be meromorphically continued to Vð0Þ and qVð0Þ is the natural

boundary of ZA n
ðsÞ;

3. there exists y > 0 such that:

a

	
x A UðAnÞ : HðxÞ ¼ max

i
jmiðxÞja t



¼ tQnðlog tÞ þOðt1�yÞ as t ! y;

where Qn is a non-vanishing polynomial of degree dn ¼ 2n�1
n

� �
� n� 1 satisfying

Qnðlog tÞ ¼ C0ðnÞt�1 VolðAnðtÞÞ þOðlogdn�1ðtÞÞ as t ! y;

AnðtÞ is defined with the help of the vector b :¼ 1; . . . ; 1; 1þ 1
dnþ1

� �
to equal

AnðtÞ ¼
	
x ¼ ðxnÞn A Jn A ½1;þy½dnþn:

Q
n A Jn

xnj
n a tbj Ej ¼ 1; . . . ; nþ 1



;

and

C0ðnÞ ¼ 2n�1 �
Q
p

�
ð1� p�1Þdnþ1 �

P
r ADn

p�jr j=n
�
> 0

Proof. Defining

TðAnÞ ¼ fa A Nnþ1
0 : a1 þ � � � þ an ¼ nanþ1 and a1 . . . anþ1 ¼ 0g;

we first need to construct an explicit presentation of

hA n
ðXÞ ¼

P
a ATðA nÞ

X a1
1 . . .X anþ1

nþ1 :

To do so, we observe that for every X A Pð1Þ:

hA n
ðX Þ ¼

P
a1þ���þan¼nanþ1

a1...anþ1¼0

X a ¼ ð1� X1 . . .Xnþ1Þ �
P

a1þ���þan¼nanþ1

X a

¼ ð1� X1 . . .Xnþ1Þ �
P

nja1þ���þan

X a1
1 . . .X an

n X
ða1þ���þanÞ=n
nþ1
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¼ ð1� X1 . . .Xnþ1Þ �
P

r ADn

X r1
1 . . .X rn

n X
jr j=n
nþ1 �

P
a AN n

0

X na1
1 . . .X nan

n X
jaj
nþ1

¼
�Qn

i¼1

ð1� X n
i Xnþ1Þ�1

�
�WnðX1; . . . ;Xnþ1Þ:

We conclude that ðK ; hcðnÞin AK ;WnÞ is a presentation of hAn
ðXÞ where:

WnðX1; . . . ;Xnþ1Þ ¼ ð1� X1 . . .Xnþ1Þ �
P

r ADn

X r1
1 . . .X rn

n X
jr j=n
nþ1

¼
P

r ADn

r0ð1;...;1Þ

X r1
1 . . .X rn

n X
jr j=n
nþ1

�
P

r ADn

r0ð0;...;0Þ

X 1þr1
1 . . .X 1þrn

n X
1þjr j=n
nþ1

K ¼ fnei þ enþ1 : i ¼ 1; . . . ; ng

cðnÞ ¼ 1 En A K :

Assertion 1 and the first part of Assertion 2 of the Theorem now follow immediately
from Theorem 5.

To prove that qVð0Þ is the natural boundary of ZA n
ðsÞ, it su‰ces to show that the

polynomial Wn is not cyclotomic when nb 3. We show this by contradiction.

Thus, suppose that Wn is cyclotomic. It is then clear that the polynomial

W �
n ðX1; . . . ;Xnþ1Þ :¼

P
r ADn

X r1
1 . . .X rn

n X
jr j=n
nþ1

is also cyclotomic. From this it follows that the polynomial in one variable RðtÞ :¼
W �

n ðt; t; 0; . . . ; 0; 1Þ ¼ 1þ ðn� 1Þtn is cyclotomic. But this is impossible since RðtÞ
has roots of modulus di¤erent from 1. This completes the proof of Assertion 2.

Proof of Assertion 3. We first note that the constant CðAnÞ, defined at the end of the
Introduction to §2, satisfies CðAnÞ ¼ 2n�1. Thus,

a

	
x A UðAnÞ : HðxÞ ¼ max

i
jmiðxÞja t



¼ 2n�1 P

1amiat Ei
FA n

ðm1; . . . ;mnþ1Þ:

Setting In ¼ K WS �ðWnÞ, it is elementary to check that a :¼ 1
n
; . . . ; 1

n
; 0

� �
A qVðIn; 1Þ,

and iðInÞ ¼ 1. We then define HaðsÞ :¼ ð
Q

n AEðIn;aÞ hn; siÞZA n
ðaþ sÞ, and apply both
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Theorem 6 (see (17) and (19) in particular) and a standard growth estimate for the
Riemann zeta function to conclude the following:

(23.i) there exists d > 0 such that HaðsÞ is analytic in VðIn;�dÞ;

(23.ii) Hað0Þ0 0;

(23.iii) there exists u > 0 such that for all s A VðIn;�dÞ,

HaðsÞfe

Q
n AEðIn;aÞ

ð1þ jhn; tijÞð1�uminf0;hn;sigÞ �
�
1þ

�Pn
i¼1

jtij
���

:

We now try to apply the multivariable tauberian theorem, Théorème 2 of [5], with
pole a and exponent vector ð1; . . . ; 1Þ, whose components determine the exponents of
t (this vector is denoted b in [ibid.]). The first point is to identify the sets of vectors
JðaÞ and EðIn; aÞ as well as the rank of their union. To this end, it is elementary to
check the following:

� JðaÞ :¼ fei j ai ¼ 0g ¼ fenþ1g and EðIn; aÞ ¼ Jn;

� RankðEðIn; aÞW JðaÞÞ ¼ nþ 1 andaEðIn; aÞ ¼ 2n�1
n

� �
� 1 ¼ dn þ n.

The second point is more delicate since ð1; . . . ; 1Þ need not satisfy the criterion in
part (iv) of Théorème 2 [ibid.]. That is, there may not exist fgngn A JnWfenþ1g H ð0;yÞ
such that ð1; . . . ; 1Þ ¼

P
n A JnWfenþ1g gnn. To circumvent this di‰culty, the idea is to

find an equivalent vector as follows. Setting b ¼ 1; . . . ; 1; 1þ 1
dnþ1

� �
:¼ ðb1; . . . ; bnþ1Þ,

it is clear that Eðm1; . . . ;mnþ1Þ A Nnþ1 satisfying ðm1 : . . . : mnþ1Þ A UðAnÞ and
gcdðm1; . . . ;mnþ1Þ ¼ 1, we have

max
i

mi a t , mj a tbj Ej ¼ 1; . . . ; nþ 1; Etb 1:

To finish the proof, it su‰ces to show that b does belong to the interior of the cone
generated by Jn W fenþ1g. We first define tðnÞ ¼afr A f0; . . . ; n� 1gn : jr j ¼ ng. It is
well known that tðnÞ ¼ dn þ 1. Next, we set

gn ¼ tðnÞ�1 En A ðJn W fenþ1gÞnfnei þ enþ1gni¼1;

gneiþenþ1
¼ 1=ntðnÞ Ei ¼ 1; . . . ; n:

We then note that the value of
P

r A f0;...;n�1g n

jr j¼n

rj is independent of j and satisfies:

P
r A f0;...;n�1g n

jr j¼n

rj ¼
1

n

Pn
i¼1

P
r A f0;...;n�1g n

jr j¼n

ri ¼
1

n

P
r A f0;...;n�1g n

jr j¼n

jr j ¼ tðnÞ:

A straightforward computation then shows:
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P
n A JnWfenþ1g

gnn ¼ ð1þ tðnÞ�1Þenþ1 þ
Pn
j¼1

tðnÞ�1

� P
r A f0;...;n�1gn

jr j¼n

rj

�
ej

¼ ð1þ tðnÞ�1Þenþ1 þ
Pn
j¼1

ej ¼ b:

We can now apply Théorème 2 of [5] with pole a and exponent vector b for t to finish
the proof of Assertion 3, and complete the proof of Theorem 7.

Concluding Remark. Additional information about the distribution of primitive inte-
gral solutions to the equation x1 � � � xn ¼ xn

nþ1 can also be deduced. This uses two
facts. The first is that Theorem 6 characterizes all the boundary points of analyticity
as poles of ZA n

ðsÞ at which (23.i)–(23.iii) are satisfied. The second is that the tau-
berian theorem of La Bretèche gives an explicit asymptotic for the sum of coe‰cients
FA n

ðm1; . . . ;mnþ1Þ when each mi is allowed to grow at a di¤erent rate in t. Precisely,
given a vector g ¼ ðg1; . . . ; gnþ1Þ A ð0;yÞnþ1, one can also calculate a precise (and
nonzero!) asymptotic for the counts

P
f1amiat gi Eig

FA n
ðm1; . . . ;mnþ1Þ;

provided that g is a ‘‘generic’’ vector, that is, g belongs to an open dense subset of
ð0;yÞnþ1. The expression for the dominant term is similar to that in part 3 of The-
orem 7. Working out the details in general for this multiplicative equation, as well
as any other, that is, xk1

1 � � � xkn
n ¼ xl1

nþ1 � � � x
lq
nþq with

P
ki ¼

P
lj, would seem to be an

interesting problem.
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(1998), 31–49

28 G. Bhowmik, D. Essouabri, B. Lichtin

(AutoPDF V7 2/6/06 14:27) WDG (170�240mm) Tmath J-1468 Forum, : PMU: S(C) 19/05/2006 pp. 1–29 1468_06-11 (p. 28)



[8] Heath-Brown D. R. and Moroz B. Z.: The density of rational points on the cubic surface
x3
0 ¼ x1x2x3. Math. Proc. Camb. Philos. Soc. 125 (1999), 385–395

[9] Kurokawa N.: On the meromorphy of Euler products I, II. Proc. London Math. Soc. 53
(1986), 1–47 and 209–236

[10] Salberger P.: Tamagawa measures on universal torsors and points of bounded height
on Fano varieties. Peyre, Emmanuel (ed.), Nombre et répartition de points de hauteur
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Université de Caen, UFR des Sciences, Campus 2, Laboratoire de Math. Nicolas Oresme,
CNRS UMR 6139, Bd. Mal Juin, B.P. 5186, 14032 Caen, France

essoua@math.unicaen.fr

Rochester N.Y., USA
lichtin@math.rochester.edu

Meromorphic continuation of multivariable Euler products 29

(AutoPDF V7 2/6/06 14:27) WDG (170�240mm) Tmath J-1468 Forum, : PMU: S(C) 19/05/2006 pp. 1–29 1468_06-11 (p. 29)


