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Mixed moment of GL(2) and GL(3) L-functions

O. Balkanova, G. Bhowmik, D. Frolenkov, N. Raulf

Abstract

Let f run over the set H4k of primitive cusp forms of level one and weight 4k, k ∈ N. We prove
an explicit formula for the mixed moment of the Hecke L-function L(f, 1/2) and the symmetric
square L-function L(sym2 f, 1/2), relating it to the dual mixed moment of a double Dirichlet
series and the Riemann zeta function weighted by the 3F2 hypergeometric function. Analysing
the corresponding special functions by means of the Liouville-Green approximation followed by
the saddle point method, we prove that the initial mixed moment is bounded above by log3 k.

1. Introduction

The asymptotic evaluation of moments of L-functions is a central problem of analytic number
theory with a rich variety of methods employed. The main terms for moments of all orders can
be predicted from conjectures based either on random matrix theory [15] or on the theory of
multiple Dirichlet series [18]. The structure of moments of L-functions can also be described
by identities and explicit formulae relating different moments to each other of which there exist
several types in literature.

The first type, called the reciprocity law, expresses a moment of twisted L-functions as the
same moment such that the twist and another parameter are interchanged. The first identity
of this kind was discovered by Conrey [14] for the twisted second moment of Dirichlet L-
functions. This result was refined by Young [33] and Bettin [5] and extended to the case
of rational function fields by Djankovic [17]. Much activity of this type is currently being
pursued for different families of L-functions, including Rankin-Selberg L-functions [1], cusp
form L-functions [9, 10] and triple product L-functions over a number field [36].

The second type of explicit formulae provides a relationship between a moment of one family
of L-functions and a dual moment of another family. One such formula is the expression of the
fourth moment of the Riemann zeta function in terms of the third moments of automorphic
L-functions as given by Motohashi [22]. Another example is due to Petrow who refined the
estimate of Conrey and Iwaniec [16] for the cubic moment of central L-values of level q cusp
forms twisted by quadratic characters of conductor q and showed that the role of the dual
moment is played by the weighted fourth moment of Dirichlet L-functions [27, Theorems 1,2].
See also [28, 29, 34] for related recent results.

The main result of the present paper is a new explicit formula of the second type. More
precisely, we prove an expression for the mixed moment of symmetric square L-functions and
Hecke L-functions relating it to the dual mixed moment of the Riemann zeta function and the
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following double Dirichlet series:

L−f (s) :=
Γ(3/4)

2
√
π

∑
n<0

Ln(1/2)

|n|s+1/2
, L−g (s) :=

Γ(3/4)

4
√
π

∑
n<0

L4n(1/2)

|n|s+1/2
,

where

Ln(s) :=
ζ(2s)

ζ(s)

∞∑
q=1

1

qs

 ∑
1≤t≤2q;t2≡n (mod 4q)

1

 . (1.1)

Note that the subscripts f and g in L−f and L−g indicate that these series are associated to two
different transforms of Maaß-Eisenstein series of half-integral weight (see Section 3 for details).

The appearance of Ln(s) and the associated double Dirichlet series as a part of the dual
moments turns out to be a specific characteristic of symmetric square L-functions. A similar
phenomenon for the second moment of symmetric square L-functions in the level aspect was
discovered by Iwaniec-Michel [20] and Blomer [8]. Furthermore, it is expected that by refining
the asymptotic formula of Munshi-Sengupta [24] for the mixed moment in the level aspect
it should be possible to obtain a second main term of size q−1/2 which would involve special
values of a similar double Dirichlet series.

In order to state our results rigorously we introduce some notation. LetH2k be the normalised
Hecke basis for the space of holomorphic cusp forms of even weight 2k ≥ 2 with respect to the
full modular group. Every function f ∈ H2k has a Fourier expansion of the form

f(z) =
∑
n≥1

λf(n)nk−1/2 exp(2πinz), λf(1) = 1. (1.2)

Consider the mixed moment at the critical point:

M(0, 0) :=
∑

f∈H4k

ω(f)L(f, 1/2)L(sym2 f, 1/2), ω(f) :=
12ζ(2)

(4k − 1)L(sym2 f, 1)
, (1.3)

where the corresponding L-functions are defined for <s > 1 as

L(f, s) :=

∞∑
n=1

λf(n)

ns
, L(sym2 f, s) := ζ(2s)

∞∑
n=1

λf(n
2)

ns
, (1.4)

and admit an analytic continuation to the whole complex plane. Note that we consider only
weights divisible by 4 in (1.3) because otherwise L(f, 1/2) is identically zero.

The mixed moment (1.3) with an extra smooth average over weight was studied in [3]
by combining an explicit formula for the first moment of symmetric square L-functions and
an approximate functional equation for the Hecke L-function. This approach along with the
Liouville-Green method appeared to be quite effective, producing an asymptotic formula with
an arbitrary power saving error term. However, the same problem without the extra smooth
averaging is much more difficult since in this case L-functions are averaged over the family of
size k instead of k2 which means that the non-diagonal terms require more involved analysis.
For this reason we modify the methods of [3], relying now entirely on analytic continuation.
More precisely, we prove an explicit formula for the mixed moment (1.3), which contains the
diagonal main term of size log k, the non-diagonal main term of size k−1/2 and dual mixed
moments weighted by 3F2 hypergeometric functions.

Theorem 1.1. For any ε > 0 the following formula holds

M(0, 0) = 2MD(0, 0) + 2MND(0, 0) +
1

2πi

∫
(0)

G2k(0, s)ds+O

(
kε

k

)
, (1.5)
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where

MD(0, 0) =
ζ(3/2)

2

(
π

2
− 3 log 2π + 3γ + 2

ζ ′(3/2)

ζ(3/2)
+ ψ(2k − 1/4) + ψ(2k + 1/4)

)

= ζ(3/2) log k +
ζ(3/2)

2

(
π

2
− 3 log 2π + 3γ + 2

ζ ′(3/2)

ζ(3/2)
+ 2 log 2

)
+O(k−1), (1.6)

MND(0, 0) =
23/2π

Γ(3/4)

Γ(2k − 1/4)

Γ(2k + 1/4)
L−g (1/4) =

2πL−g (1/4)

Γ(3/4)

1√
k

+O(k−3/2), (1.7)

G2k(0, s) =
25/2

Γ2(3/4)
Γ(2k − 1/4)Γ(3/4− 2k)Γ(1/2 + s)Γ(1/4− s)ζ(1/2− 2s)

×

((
1− 22s−1/2

)
L−f (s)−

(
1− 22s+1/2

)
22s

L−g (s)

)
3F2

(
2k − 1

4
,

3

4
− 2k,

1

4
− s; 1

2
,

3

4
; 1

)
. (1.8)

Remark 1. Note that the integral in (1.5) is absolutely convergent (see (6.33) and Lemma
5.8).

Remark 2. The error term in formula (1.5) is stated as O
(
k−1+ε

)
for simplicity but it

can be replaced by a completely explicit expression. See (6.2), Lemma 6.5 and Lemma 6.10 for
details.

The “recipe” of Conrey, Farmer, Keating, Rubinstein and Snaith [15] confirms thatMD(0, 0)
is indeed the main term, but the evaluation of the second main term MND(0, 0) of size k−1/2

is beyond the precision of “recipe conjectures”. The analysis of the third term given by the
integral of G2k(0, s) is the core of this paper and we show that this can be bounded by log3 k.
Consequently, we derive from Theorem 1.1 an upper bound for the mixed moment.

Theorem 1.2. The following upper bound holds

M(0, 0)� log3 k. (1.9)

The estimate of Theorem 1.2 is at the edge of current technology. However, we expect that the
integral of G2k(0, s) is very small because of the oscillatory behaviour of the corresponding 3F2

hypergeometric function. The proof of Theorem 1.2 consists in obtaining a sharp upper bound
for 3F2 and estimating the dual moment by absolute value. In order to improve this result and
to derive an asymptotic formula for the mixed moment, it is required to replace absolute value
estimates by a direct evaluation of the mixed moment with the oscillating multiple given by
the 3F2 hypergeometric function. Results of this paper yield a uniform approximation of 3F2

in terms of simpler functions which may be useful for further study of this problem.
We now sketch the main ideas of the proof of Theorems 1.1 and 1.2. In order to obtain (1.5)

we use the series representation for the Hecke L-function in (1.3) which allows us to reduce
the problem to the evaluation of the twisted first moment of symmetric square L-functions.
Applying the explicit formula proved in [4] to the latter moment we obtain sums of the following
shape: ∑

n,m≥1

L−m(1/2)g2k(0; 0;m/n2), (1.10)
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where g2k(0; 0;m/n2) is a multiple of the 2F1 hypergeometric function and some rational
function. In the next step we apply the Mellin inversion in order to separate the variables
m and n. This yields the term

1

2πi

∫
(0)

G2k(0, s)ds (1.11)

in (1.5). Equivalently, (1.11) can be written as the following weighted mixed moment:∫∞
−∞

L−f,g(ir)ζ(1/2− 2ir)ĝ2k(0, 0; ir)dr, (1.12)

where ĝ2k is the Mellin transform of g2k, which is up to some Gamma multiples given by the

3F2 hypergeometric function. The proof of Theorem 1.2 consists of a careful analysis of (1.12).
The contribution of |r| > 3k is negligibly small because in this range the function ĝ2k(0, 0; ir)
is of rapid decay (see Lemma 5.8). In the remaining range, we write ĝ2k(0, 0; ir) as an integral
of the 2F1 hypergeometric function, for which we can apply the Liouville-Green approximation
in terms of Y0 and J0 Bessel functions. Consequently, we prove (see Lemma 5.9 for details)
that for

k := 4k − 1 (1.13)

the following formula

ĝ2k(0, 0; ir) ∼ −23/2π1/2

∫π/2
0

(tanx)2ir

(sin(2x))1/2
Y0(kx)x1/2dx (1.14)

holds uniformly for |r| � k as k →∞. We remark that taking the absolute values to
estimate the integrals in (1.14) and using standard estimates for the Bessel functions yields
ĝ2k(0, 0; ir)� k−1/2, and consequently M(0, 0)� k1/2+ε. In order to improve these bounds,
we analyse the integrals in (1.14) further by making the partition of unity and replacing the
Bessel functions with their asymptotic formulas. Consequently, it is required to study the
oscillating integral (see Lemma 5.11)∫π/2

0

β(x) exp(ikh(x))

(sin(2x))1/2
dx, (1.15)

where β = β(x) is a smooth characteristic function vanishing at the end points, and

h(x) = −x+
2r

k
log(tanx).

A possible approach to estimate the integral (1.15) is the saddle point method. However, as
4r → k we encounter the problem of two coalescing saddle points. It is known that in this case
the considered integral has different behaviour in three different ranges where r is small, r is
near k/4 and r is large. As the standard saddle point method cannot be applied in such a
situation, we follow instead [7, Section 9.2], which describes the method that was originally
developed by Chester, Friedman and Ursell [12], with some additional ideas due to Bleistein
[6]. As a result, we obtain a uniform expansion of (1.15) in terms of the Airy function (see
(5.89)) which yields the following result.

Lemma 1.3. Let δ be some fixed constant such that 0 < δ < 1/4. For k1/2−δ < r ≤ k we
have

ĝ2k(0, 0; ir)� 1

k5/6
min

(
1,

k1/12

|k− 4r|1/4

)
+
k−1/4−3δ + k−1/2

r
. (1.16)

For the proof of Lemma 1.3 see Section 5.3.
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The paper is organised as follows. Section 2 contains background information on special
functions. Section 3 is devoted to the generalised Dirichlet L-functions and the associated
double Dirichlet series. In Section 4 we recall the explicit formula for the twisted first moment
of symmetric square L-functions. Section 5 is the core of the paper containing all required
estimates for special functions. Finally, in Section 6 we prove Theorem 1.1 and Theorem 1.2.

2. Background on special functions

This section contains material required for this paper included only for the convenience
of the reader. In particular, we describe some properties of the Gamma function, the Bessel
functions, the Gauss hypergeometric function and the generalised hypergeometric function,
most of which can be found, for example in the NIST handbook [25], [19] or in [2], respectively.
These formulae will be used later in the paper.

Euler’s reflection formula [25, (5.5.3)] for the Gamma function can be stated as

Γ(z)Γ(1− z) =
π

sin(πz)
. (2.1)

In the special case that z = 1
2 + it this formula becomes

Γ(1/2 + it)Γ(1/2− it) =
π

cosh(πt)
(2.2)

(see also [25, (5.4.4)]). Another important property of the Gamma function is the Legendre
duplication formula (see [25, (5.5.5)])

Γ(2z) = π−1/222z−1Γ(z)Γ(z + 1/2). (2.3)

Furthermore, by [25, (5.6.6)] the following inequality holds

|Γ(x+ it)| ≤ |Γ(x)| (2.4)

and Stirling’s formula (see [25, (5.11.3)]) provides us with the relation

Γ(z) ∼
√

2πe−zzz−1/2. (2.5)

Another function that shows up in this paper is the polygamma function that is given by

ψ(z) =
Γ′

Γ
(z) = log(z)− 1

2z
+O(z−2) (2.6)

(see [25, (5.11.2)]). For n ∈ Z it satisfies the identity

ψ(3/4− n) = ψ(1/4 + n) + π (2.7)

(see [19, (8.365.10)]). According to [25, (5.5.2)]

ψ(x+ 1) =
1

x
+ ψ(x). (2.8)

The Gamma function also appears when calculation certain integrals. Namely, it follows from
[25, (5.12.1)] that ∫1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)

Γ(a+ b)
, (2.9)

and from [25, (5.12.3)] that ∫1

0

xa−1

(1 + x)a+b
dx =

Γ(a)Γ(b)

Γ(a+ b)
. (2.10)
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Now let us turn to the Bessel functions. As x→ 0 we have the following asymptotic relations
for J and Y -Bessel functions of order 0 (see [25, (10.7.1)]):

J0(x) ∼ 1, Y0(x) ∼ 2

π
log x. (2.11)

Moreover, as x→∞ we have ([19, (8.451.1)])

J0(x) =

(
2

πz

)1/2

(cos(z − π/4)C1(x)− sin(z − π/4)C2(x)) (2.12)

and

Y0(x) =

(
2

πz

)1/2

(sin(z − π/4)C1(x) + cos(z − π/4)C2(x)) , (2.13)

where

C1(x) := 1 +

n−1∑
k=1

ak
x2k

+O(x−2n), C2(x) :=

n−1∑
k=0

bk
x2k+1

+O(x−1−2n). (2.14)

Here ak and bk are some constants independent of x. Using [25, (10.25.3)], we find that as
x→∞ the following asymptotic relation holds for the K-Bessel function

Kν(x) ∼
( π

2z

)1/2

e−x. (2.15)

As a consequence of [25, (10.30.2)] and [25, (10.30.3)] we get the following asymptotic
behaviour for x→ 0 and <ν > 0

Kν(x) ∼ 2ν−1Γ(ν)

xν
, K0(x) ∼ − log x. (2.16)

Although hypergeometric functions can be defined more generally we are only interested in
the so-called Gauß hypergeometric function 2F1 and the generalised hypergeometric function

3F2 in this paper. A good reference for the theory of hypergeometric functions is [2]. We start
by introducing the Pochhammer symbol: For a ∈ R and j ∈ N it is given by

(a)j :=
Γ(a+ j)

Γ(a)
= a(a+ 1) . . . (a+ j − 1)

and we set (a)0 := 1. Then for |z| < 1 the Gauß hypergeometric function is defined by the series

2F1(a, b, c; z) :=

∞∑
j=0

(a)j(b)j
j!(c)j

zj =
Γ(c)

Γ(a)Γ(b)

∞∑
j=0

Γ(a+ j)Γ(b+ j)

Γ(c+ j)

zj

j!
= 1 +

ab

c
z + . . . (2.17)

(see ([25, (15.2.1)])) and it admits an analytic continuation to z ∈ C \ [1,+∞). Note that

2F1(a, b, c; z) is analytic as a function of a and b and is meromorphic as a function of c with
poles at c = 0,−1,−2, . . .. If <(c− a− b) > 0 then the series given in (2.17) also converges for
z = 1 and we can evaluate 2F1(a, b, c; 1) explicitly in terms of Gamma functions

2F1(a, b, c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(2.18)

(see [25, (15.4.20)]). One property that is useful when working with Gauß hypergeometric
functions is that we know how these functions transform if we permute their arguments. We
have, e.g.,

2F1(a, b, c; z) = (1− z)c−a−b2F1(c− a, c− b, c; z). (2.19)

(see [19, (9.131.1)]). Furthermore, the Gauss hypergeometric function satisfies the so-called
Gauß’s contiguous relations, one of them being

c 2F1(a, b, c; z)− c 2F1(a, b+ 1, c; z) + az 2F1(a+ 1, b+ 1, c+ 1; z) = 0. (2.20)
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(see [19, (9.137.11)]). The definition of the Gauß hypergeometric function can be generalised
and for |z| < 1 the generalised hypergeometric function 3F2 is defined similarly to the Gauß
hypergeometric function by the series

3F2(a1, a2, a3; b1, b2; z) :=
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

∞∑
j=0

Γ(a1 + j)Γ(a2 + j)Γ(a3 + j)

Γ(b1 + j)Γ(b2 + j)

zj

j!

= 1 +
a1a2a3

b1b2
z + . . .

(2.21)

(see ([25, (16.2.1)]) and it admits the analytic continuation to z ∈ C \ [1,+∞). Note that

3F2(a1, a2, a3; b1, b2; z) is analytic as a function of a1, a2, a3 and is meromorphic as a function of
b1, b2 with poles at bi = 0,−1,−2, . . ., i = 1, 2. A useful fact when working with hypergeometric
functions is that they can be simplified if one of the parameters aj , j = 1, 2, 3, is equal to one
of the bi, i = 1, 2. Namely, by the definition of the hypergeometric function we get

3F2(a1, a2, a3; b1, a3; z) = 2F1(a1, a2, b1; z). (2.22)

3. Generalised Dirichlet L-functions

In this section, we gather various results related to generalised Dirichlet L-functions that are
required for the evaluation of the non-diagonal terms.

Consider

Ln(s) =
ζ(2s)

ζ(s)

∞∑
q=1

1

qs

 ∑
1≤t≤2q;t2≡n (mod 4q)

1

 , <s > 1.

It follows from [35, Proposition 3] that Ln(s) has a meromorphic continuation to the whole
complex plane. The completed L-function

L ∗n (s) = (π/|n|)−s/2Γ(s/2 + 1/4− sgnn/4)Ln(s)

satisfies the functional equation (see [35, Proposition 3, p. 130])

L ∗n (s) = L ∗n (1− s). (3.1)

According to [11, Section 1], the function Ln(s) considered as a function of s does not
identically vanish only if n ≡ 0, 1 (mod 4). This is due to the fact that t2 ≡ n (mod 4) does
not have any solutions if n 6≡ 0, 1 (mod 4).

For any ε > 0 we have (see [4, Lemma 4.2])

Ln(1/2)� |n|θ+ε, (3.2)

where θ = 1/6 is the best known subconvexity exponent for Dirichlet L-functions obtained by
Conrey and Iwaniec in [16]. It follows from (3.2) and the Phragmen-Lindelöf principle that for
any ε > 0 and <u > 0 the following upper bound holds

Ln(1/2 + u)� |n|max(θ(1−2<u),0)+ε. (3.3)

The generalised Dirichlet L-function Ln(s) shows up in the Fourier expansion of a linear
combination of half-integral weight Eisenstein series. To be more precise we briefly summarise
the principal arguments of [3, Section 2]: let Γ0(4) be the Hecke congruence subgroup of level
4 and ν be the weight 1/2 multiplier system related to the theta series

θ(z) := y1/4
∑
m∈Z

e2πim2z.

It is well-know that Γ0(4) has three cusps which we denote by a1 =∞, a2 = 0 and a3 = 1/2.
Then for a cusp a of Γ0(4) we define Ea(z; s; 1/2) to be the Eisenstein series of weight 1/2 for
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the group Γ0(4) at the cusp a with respect to the multiplier system ν. Then Ln(1/2) appears
in the Fourier expansion of the following linear combination of the Maaß-Eisenstein series of
weight1/2 and level 4 at the cusps ∞ and 0:

f = f(z; s) := ζ(4s− 1)

(
E∞(z; s; 1/2) +

1 + i

4s
E0(z; s; 1/2)

)
. (3.4)

Namely,

f(z; s) =
1

2
y1/2 log y + (γ − log 4π)y1/2

+
1

2
√
π

∑
n 6=0

Ln(1/2)

|n|1/2
Γ

(
1

2
− sgnn

4

)
Wsgnn/4,0 (4π|n|y) exp (2πinx).

Furthermore, we define g by

g = g(z; s) :=
1

2

(
f
(z

4
; s
)

+ f

(
z + 2

4
; s

))
. (3.5)

The properties of Ln(s) imply that the function f belongs to the Kohnen plus space, as defined
in [30] for Maaß forms, so that g has the following Fourier expansion

g(z; s) =
1

4
y1/2 log y +

1

2
(γ − log 8π)y1/2

+
1

4
√
π

∑
n6=0

L4n(1/2)

|n|1/2
Γ

(
1

2
− sgnn

4

)
Wsgnn/4,0 (4π|n|y) exp (2πinx).

As usual we can associate to the functions f and g the double Dirichlet series

L+
f (s) :=

Γ(1/4)

2
√
π

∑
n>0

Ln(1/2)

ns+1/2
, L−f (s) :=

Γ(3/4)

2
√
π

∑
n<0

Ln(1/2)

|n|s+1/2
, (3.6)

L+
g (s) :=

Γ(1/4)

4
√
π

∑
n>0

L4n(1/2)

ns+1/2
, L−g (s) :=

Γ(3/4)

4
√
π

∑
n<0

L4n(1/2)

|n|s+1/2
, (3.7)

where the plus and minus sign indicate the sign of n. Their analytic properties as well as
functional equations result from the fact that f and g satisfy the important transformation
property

exp (πi/4)
(
f
∣∣
1/2

J
)

(z; s) =
√

2g(z/4; s), J =

(
0 −1
1 0

)
, (3.8)

where the slash operator is given by(
f
∣∣
1/2

M
)

(z; s) =

(
cz + d

|cz + d|

)−1/2

f(Mz), M =

(
a b
c d

)
.

Using this transformation property as well as the Rankin-Selberg method yields:

Theorem 3.1. The functions L±f (s) and L±g (s) have a meromorphic continuation to the
whole complex plane and satisfy the functional equations

L+
g (s) =

−π2s+2

√
2Γ2(1/2 + s) sin2 πs

(
sinπ(−s− 1/4)

π
L+
f (−s)−

L−f (−s)
Γ2(3/4)

)
, (3.9)

L−g (s) =
π2s+2

√
2Γ2(1/2 + s) sin2 πs

(
− sinπ(−s+ 1/4)

π
L−f (−s) +

L+
f (−s)

Γ2(1/4)

)
. (3.10)

Furthermore, L±f (s) and L±g (s) are holomorphic in C except for a double pole at s = 1/2.
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Proof. See [3, Theorem 2.3].

Theorem 3.2. Writing the Laurent expansion of L±f,g as

L±f,g(s+ 1/2) =
c±f,g(−2)

s2
+
c±f,g(−1)

s
+O(1) (3.11)

we obtain that the coefficients c±f , c±g satisfy the following identities:

c+f (−2)

Γ(1/4)
−
c−f (−2)

Γ(3/4)
= 0, (3.12)

c+f (−1)

Γ(1/4)
−
c−f (−1)

Γ(3/4)
+
c−f (−2)π

Γ(3/4)
= 0, (3.13)

16
√
π

Γ(3/4)

(
c−f (−2)(1−

√
2) + c−g (−2)(

√
2− 1/2)

)
= 1. (3.14)

Remark 3. The identities of Theorem 3.2 will be used in Section 6 to combine the main
terms coming from Lemma 4.1.

Proof. The proof the the theorem consists of three steps. First, we investigate certain
linear combinations of hypergeometric functions. These results are then used to write down
the Laurent expansion for the different double Dirichlet series. Finally, the identities given in
the theorem result from these expansions.

As in [23] we define

Γα(s) := 2α
Γ2(s+ 1/2)

Γ(s+ 1− α)
2F1 (1/2− α, 1/2− α; s+ 1− α; 1/2) (3.15)

and set

F (s+ 1/2) :=
1

Γ2(s+ 1)

(
Γ3/4(s+ 1/2)− 1

4
Γ−1/4(s+ 1/2)

)
. (3.16)

Using the definition of Γα and a Gauß contiguous relation (see (2.20)) this expression can be
simplified to

F (s+ 1/2)

=
23/4

Γ(s+ 3/4)

(
2F1 (−1/4,−1/4; s+ 3/4; 1/2)− 1

8(s+ 3/4)
2F1 (3/4, 3/4; s+ 7/4; 1/2)

)

=
23/4

Γ(s+ 3/4)
2F1 (−1/4, 3/4; s+ 3/4; 1/2) . (3.17)

This expression has the advantage that, as s→ 0, the second and the third argument of the
hypergeometric function become equal so that the hypergeometric function simplifies and can
be calculated as a binomial series. Furthermore, it is advantageous to permute the arguments
of the first hypergeometric function appearing in (3.17). This will enable us later to see directly
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the first terms of the Laurent expansion. From (2.17) we infer

2F1 (−1/4, 3/4; s+ 3/4; 1/2) =

(
1

2

)s+1/4

2F1 (s+ 1, s; s+ 3/4; 1/2)

=

(
1

2

)s+1/4
(

1 +
Γ(s+ 3/4)

Γ(s+ 1)Γ(s)

∞∑
n=0

Γ(s+ 2 + n)Γ(s+ 1 + n)

(n+ 1)!Γ(s+ 7/4 + n)

(
1

2

)n+1
)
,

and therefore,

F (s+ 1/2) =
21/2−s

Γ(s+ 3/4)
+

2−(s+1/2)

Γ(s)Γ(s+ 1)

∞∑
n=0

Γ(s+ 2 + n)Γ(s+ 1 + n)

(n+ 1)!Γ(s+ 7/4 + n)

(
1

2

)n
. (3.18)

Another linear combination that appears when treating our double Dirichlet series is the
following:

G(s+ 1/2) :=
1

Γ2(s+ 1
2 )

(
1

4
Γ−3/4(s+ 1/2) + Γ1/4(s+ 1/2)

)
. (3.19)

Using the definition of Γα and a Gauß contiguous relation (see (2.20)) as before this expression
can be simplified to

G(s+ 1/2) =
21/4

Γ(s+ 9/4)

(
1

8
2F1 (5/4, 5/4; s+ 9/4; 1/2) + (s+ 5/4)2F1 (1/4, 1/4; s+ 5/4; 1/2)

)
=

21/4

Γ(s+ 5/4)
2F1 (1/4, 5/4; s+ 5/4; 1/2) . (3.20)

Using, as before, (2.17) we get

G(s+ 1/2) =
21/2−s

Γ(s+ 5/4)
2F1 (s+ 1, s; s+ 5/4; 1/2)

=
21/2−s

Γ(s+ 5/4)
+

2−1/2−s

Γ(s)Γ(s+ 1)

∞∑
n=0

Γ(s+ 2 + n)Γ(s+ 1 + n)

(n+ 1)!Γ(s+ 9/4 + n)

(
1

2

)n
.

(3.21)

Furthermore, we define

M(f, s) :=

∫∞
0

(f(iy)−A0(f, y)) ys−1dy, (3.22)

where A∞,0(y) denotes the zeroth Fourier coefficient in the Fourier expansion of the
automorphic form f . This means if f is the function defined in (3.4) we have

A0(f, y) = (γ − log 4π)y1/2 +
1

2
y1/2 log y

which in order to simplify the notation we write in the form

A0(f, y) = a0y
1/2 + b0y

1/2 log y.

Here we set a0 = γ − log 4π and b0 = 1/2. Furthermore, for the function g defined in (3.5) we
have

A0(g, y) =
1

2
(γ − log 8π)y1/2 +

1

4
y1/2 log y = â0y

1/2 + b̂0y
1/2 log y,

where â0 := (γ − log 8π)/2 and b̂0 = 1/4. Replacing the automorphic form f by its Fourier
expansion in (3.22) we see that this integral equals a double Dirichlet series multiplied by
a hypergeometric function. This function appears as the Mellin transform of the Whittaker
function. According to [23, Eq. 52] the Laurent expansion of M(f, s+ 1/2) about 0 is

M(f, s+ 1/2) =
1

25/2s2
+

2â0 − log 2

23/2s
+O(1). (3.23)
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Moreover, the Laurent expansion of M(E1/2f, s+ 1/2) about 0 equals

M(E1/2f, s+ 1/2) =
1

29/2s2
+

1

27/2s
(2â0 − log 2 + 2) +O(1). (3.24)

Here E1/2 denotes the Maaß lowering operator which is given by

E1/2 = y

(
i
∂

∂x
− ∂

∂y

)
+

1

4
(3.25)

The Laurent expansions of M(f,−(s+ 1/2)) and M(E1/2 f,−(s+ 1/2)) about 0 are given by

M(f,−(s+ 1/2)) =
1

2s2
+
a0

s
+O(1) (3.26)

and

M(E1/2f,−(s+ 1/2)) = − 1

23s2
− a0 + 2

4s
+O(1) (3.27)

(see [23, Eq. 52, 53]).

Now we have all the necessary prerequisites for determining the different Laurent expansions.
By [23, Eq. 30, 48] we obtain

L+
f (s+ 1/2) =

(2π)s+1/2

2Γ2(s+ 1)

(
Γ3/4(s+ 1/2)M(f, s+ 1/2)− Γ−1/4(s+ 1/2)M(E1/2f, s+ 1/2)

)
.

(3.28)
Using (3.28), (3.23) and (3.24) we obtain

23/2

(2π)s+1/2
L+
f (s+ 1/2) =

1

4s2
F (s+ 1/2)

+
1

s

((
â0 −

1

2
log 2

)
F (s+ 1/2)− 1

29/4Γ(s+ 7/4)
2F1 (3/4, 3/4; s+ 7/4; 1/2)

)
+O(1).

(3.29)

with F being the function defined in (3.16). Using (3.18) we infer

L+
f (s+ 1/2) =

πs+1/2

25/2Γ(s+ 3/4)

1

s2
+

1

s

(
πs+1/2

27/2Γ2(s+ 1)

∞∑
n=0

Γ(s+ 2 + n)Γ(s+ 1 + n)

(n+ 1)!Γ(s+ 7/4 + n)

(
1

2

)n
+
πs+1/2

(
â0 − 1

2 log 2
)

21/2Γ(s+ 3/4)
− (2π)s+1/2

215/4Γ(s+ 7/4)
2F1 (3/4, 3/4; s+ 7/4; 1/2)

)
+O(1). (3.30)

This yields the Laurent expansion of L+
f (s+ 1/2) about s = 0 once we have determined the

coefficients of 1/s2 and 1/s in (3.30). For the coefficient of 1/s2 we get π1/2/
(
25/2Γ(s+ 3/4)

)
.

In order to obtain the coefficient of 1/s we note that

πs+1/2

Γ(s+ 3/4)
=

π1/2

Γ(3/4)
+

π1/2

Γ(3/4)
(log π − ψ(3/4)) s+O

(
s2
)

and that by (2.19)

lim
s→0

πs+1/2

27/2Γ2(s+ 1)

∞∑
n=0

Γ(s+ 2 + n)Γ(s+ 1 + n)

(n+ 1)!Γ(s+ 7/4 + n)

(
1

2

)n
=
π1/2

27/2

∞∑
n=0

Γ(1 + n)Γ(1 + n)

n!Γ(7/4 + n)

(
1

2

)n
=

π1/2

27/2Γ(7/4)
2F1 (1, 1; 7/4; 1/2)

=
1

213/4Γ(7/4)
2F1 (3/4, 3/4; 7/4; 1/2) .
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Thus the series and the hypergeometric series appearing in (3.30) do not contribute to the
coefficient of 1/s and we finally infer

L+
f (s+ 1/2) =

π1/2

25/2Γ(3/4)

1

s2

+
π1/2

21/2Γ(3/4)

(
1

4
(log π − 2 log 2− ψ(3/4)) + â0

)
1

s
+O(1).

(3.31)

Determining the Laurent expansion of L−f (s+ 1/2) will follow the same ideas. First, we
remark that [23, Eq. 30, 49] gives

L−f (s+ 1/2) =

(2π)s+1/2

2Γ2(s+ 1)

(
(1/4)2Γ−3/4(s+ 1/2)M(f, s+ 1/2) + Γ1/4(s+ 1/2)M(E1/2f, s+ 1/2)

)
.

(3.32)

By (3.23) and (3.24) this implies

23/2

(2π)s+1/2
L−f (s+ 1/2) =

1

42s2
G(s+ 1/2) +

â0 − 1
2 log 2

4s
G(s+ 1/2)

+
1

27/4Γ(s+ 5/4)s
2F1 (1/4, 1/4; s+ 5/4; 1/2) +O(1),

where the function G is defined in (3.19). Using (3.21) gives

L−f (s+ 1/2) =
πs+1/2

29/2Γ(s+ 5/4)

1

s2
+

1

s

(
πs+1/2

211/2Γ2(s+ 1)

∞∑
n=0

Γ(s+ 2 + n)Γ(s+ 1 + n)

(n+ 1)!Γ(s+ 9/4 + n)

(
1

2

)n
+
πs+1/2

(
â0 − 1

2 log 2
)

25/2Γ(s+ 5/4)
+

(2π)s+1/2

213/4Γ(s+ 5/4)
2F1 (1/4, 1/4; s+ 5/4; 1/2)

)
+O(1).

(3.33)

In order to simplify this expression we note that by (2.19) and (2.20)

lim
s→0

1

Γ2(s+ 1)

∞∑
n=0

Γ(s+ 2 + n)Γ(s+ 1 + n)

(n+ 1)!Γ(s+ 9/4 + n)

(
1

2

)n
=

1

Γ(9/4)
2F1 (1, 1; 9/4; 1/2)

=
1

21/4Γ(9/4)
2F1 (5/4, 5/4; 9/4; 1/2)

=
211/4

Γ(5/4)
(1F0 (1/4; 1/2)− 2F1 (1/4, 1/4; 5/4; 1/2)) .

Furthermore, we note that the hypergeometric function 1F0 is related to a binomial series and
can therefore be explicitly evaluated. Namely, we have

1F0 (1/4; 1/2) =

(
1

2

)−1/4

= 21/4

so that

L−f (s+ 1/2) =
π1/2

25/2Γ(1/4)

1

s2

+
π1/2

25/2Γ(1/4)
(log π − ψ(5/4) + 4 + 4â∞,0 − 2 log 2)

1

s
+O(1).

(3.34)

In order to determine the Laurent expansions of L±g (s+ 1/2) it is necessary to know the
Laurent expansions of M(f,−(s+ 1/2)) and M(E1/2 f,−(s+ 1/2)) about s = 0 as we have
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according to [23, Eq. 54]

M(g, s+ 1/2) =
1

23/2+2s
M(f,−(s+ 1/2)) (3.35)

and

M(E1/2 g, s+ 1/2) =
1

23/2+2s
M(E1/2 f,−(s+ 1/2)). (3.36)

Then, as for L+
f (s+ 1/2) and L−f (s+ 1/2) (see (3.28) and (3.32)) we get

L+
g (s+ 1/2) =

(2π)s+1/2

25/2+2sΓ2(s+ 1)

(
Γ3/4(s+ 1/2)M(f,−(s+ 1/2)) + Γ−1/4(s+ 1/2)M(Eκf,−(s+ 1/2))

)
and

L−g (s+ 1/2) =
(2π)s+1/2

25/2+2sΓ2(s+ 1)

((
1

4

)2

Γ−3/4(s+ 1/2)M(f,−(s+ 1/2))

− Γ1/2(s+ 1/2)M(E1/2 f,−(s+ 1/2)

)
.

Let us first look at L+
g (s). By (3.26), (3.27) and (3.18) we infer

L+
g (s+ 1/2) =

(2π)1/2

23Γ(3/4)

1

s2
+

1

s

(2π)1/2

23Γ(3/4)
(log(π/4)− ψ(3/4) + 2a0) +O(1) (3.37)

using the same arguments that led to the Laurent expansion of L+
f (s+ 1/2). Similarly, the

same arguments that gave the Laurent expansion of L−f (s+ 1/2) together with (3.26), (3.27)
and (3.21) imply

L−g (s+ 1/2) =
(2π)1/2

23Γ(1/4)

1

s2
+

1

s

(2π)1/2

23Γ(1/4)
(log(π/4)− ψ (1/4) + 2a0) +O(1). (3.38)

Having determined the Laurent expansions of L±f (s+ 1/2), and L±g (s+ 1/2) we now prove
the various identities of Theorem 3.2. The identity (3.12) follows immediately from the
expansion (3.31) and (3.34) for L+

f (s+ 1/2) and L−f (s+ 1/2). Furthermore, (3.31) and (3.34)
also imply

c+f (−1)

Γ(1/4)
−
c−f (−1)

Γ(3/4)
+
c−f (−2)π

Γ(3/4)
=

(2π)1/2

23Γ(1/4)Γ(3/4)
(π − ψ(3/4)− (−ψ(5/4) + 4))

=
(2π)1/2

23Γ(1/4)Γ(3/4)
(π − ψ(3/4) + ψ(1/4)) = 0,

where we used (2.8) and (2.7). Finally, (3.34), (3.38) and the reflection formula (2.1) yield

16
√
π

Γ(3/4)

(
c−f (−2)

(
1−
√

2
)

+ c−g (−2)
(√

2− 1/2
))

=
16
√
π

Γ(3/4)

(
(2π)1/2

23Γ(1/4)

(
1−
√

2
)

+
(2π)1/2

23Γ(1/4)

(√
2− 1/2

))

=
21/2π

Γ(3/4)Γ(1/4)

= 1.
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Theorem 3.3. The following estimates hold∫T
0

|L±g (it)|2dt� T (log T )4,

∫T
0

|L±f (it)|2dt� T (log T )4. (3.39)

Proof. We recall that the series L±f and L±g are associated to the automorphic forms f and
g that satisfy the transformation property (3.8). Thus the theorem is a direct consequence of
[23, Theorem 5.1 (iv)].

4. Explicit formula for the twisted first moment of symmetric square L-functions

For 0 < x < 1 and 0 ≤ <u < 2k − 3/2 let

Ψk(u;x) := xk
Γ(k − 1/4− u/2)Γ(k + 1/4− u/2)

Γ(2k)
2F1

(
k − 1

4
− u

2
, k +

1

4
− u

2
; 2k;x

)
, (4.1)

Φk(u;x) :=
Γ(k − 1/4− u/2)Γ(3/4− k − u/2)

Γ(1/2)
2F1

(
k − 1

4
− u

2
,

3

4
− k − u

2
; 1/2;x

)
, (4.2)

where 2F1(a, b; c;x) is the Gauss hypergeometric function. For simplicity, let us introduce the
following notation

Ψk(x) := Ψk(0;x), Φk(x) := Φk(0;x). (4.3)

For our purpose, it is required to evaluate certain integrals involving Ψk(x) and Φk(x). To this
end, it is convenient to use the Mellin-Barnes representation for these functions. For <u > 0,
1− 2k < ∆ < 1/2−<u let

Ik(u;x) :=
1

2πi

∫
(∆)

Γ(k − 1/2 + w/2)

Γ(k + 1/2− w/2)
Γ(

1

2
− u− w) sin

(
π

1/2 + u+ w

2

)
xwdw. (4.4)

According to [4, (5.3)], for x > 2 we have

Ik(u;x) = (−1)k
cos(π(1/4 + u/2))

21/2+uπ1/2
xΨk

(
u;

4

x2

)
. (4.5)

According to [4, (5.5)], for 0 < x < 2 we have

Ik(u;x) = (−1)k
sin(π(1/4 + u/2))

π1/2
x1/2−uΦk

(
u;
x2

4

)
. (4.6)

Note that Equations (4.5) and (4.6) provide the analytic continuation of Ik(u;x) to <u = 0.
Using (4.4), we find that Ψk(u;x) ∼ xk and Φk(u;x) ∼ 1 as x→ 0.
Now we are ready to state the explicit formula for the twisted first moment of symmetric

square L-functions.

Lemma 4.1. For 0 ≤ <u < 4k − 3/2 we have∑
f∈H4k

ω(f)λf(l)L(sym2 f, 1/2 + u) = MD(u, l)δl=� +MND(u, l) + ET1(u, l) + ET2(u, l),

where

δl=� =

{
1 if l is a full square,

0 otherwise,
(4.7)
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MD(u, l2) =
ζ(1 + 2u)

l1/2+u
+
√

2(2π)3u cosπ(1/4 + u/2)×

ζ(1− 2u)

l1/2−u
Γ(2k − 1/4− u/2)Γ(2k + 1/4− u/2)Γ(1− 2u)

Γ(2k + 1/4 + u/2)Γ(2k − 1/4 + u/2)Γ(1− u)
, (4.8)

MND(u, l) =
(2π)1/2+u

2l1/4−u/2
Γ(2k − 1/4− u/2)

Γ(2k + 1/4 + u/2)
L−4l(1/2 + u), (4.9)

ET1(u, l) = (2π)1/2+u
∑

1≤n<2
√
l

Ln2−4l(1/2 + u)

n1/2−u I2k

(
u;

n

l1/2

)
, (4.10)

ET2(u, l) = (2π)1/2+u
∑
n>2
√
l

Ln2−4l(1/2 + u)

n1/2−u I2k

(
u;

n

l1/2

)
. (4.11)

Proof. See [4, (2.9), (5.6)].

Remark 4. The role of the shift u is to guarantee the absolute convergence of the integral
(4.4).

5. Estimates on special functions

In this section we introduce two special functions that appear in the study of the mixed
moment in Section 6 and prove various estimates on the Mellin transforms of these functions.
For a function h(x), we denote its Mellin transform by

ĥ(s) =

∫∞
0

h(x)xs−1dx. (5.1)

Let us define for 0 < x < 1

f2k(u, v;x) :=
x1/2+v

(1− x)1/2+v
I2k

(
u;

2

(1− x)1/2

)
, (5.2)

and f2k(u, v;x) := 0 for x > 1.
For 0 < x <∞ let

g2k(u, v;x) :=
x1/2+v

(1 + x)1/2+v
I2k

(
u;

2

(1 + x)1/2

)
. (5.3)

Now we analyse the Mellin transforms of the functions f2k(u, v;x) and g2k(u, v;x).

5.1. Mellin transform of f2k

Lemma 5.1. For <s > −1/2−<v and <v < 2k, 0 ≤ <u < 4k − 1, the Mellin transform of
the function (5.2) can be written in three different ways:

f̂2k(u, v; s) =
2 cos(π(1/4 + u/2))

21/2+uπ1/2

∫1

0

(1− x)s+v−1/2

x1+v
Ψ2k (u;x) dx, (5.4)

f̂2k(u, v; s) = Γ(1/2 + s+ v)
1

2πi

∫
(∆)

Γ(2k − 1/2 + w/2)

Γ(2k + 1/2− w/2)

× Γ(
1

2
− u− w) sin

(
π

1/2 + u+ w

2

)
Γ(1/2− v − w/2)

Γ(1 + s− w/2)
2wdw, (5.5)
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where 1− 4k < ∆ < min(1− 2<v, 1/2−<u), and

f̂2k(u, v; s) =
21/2−u sin(π(3/4 + u/2))

π1/2
Γ(1/2 + s+ v)

× Γ(2k − 1/4− u/2)Γ(2k + 1/4− u/2)Γ(2k − v)

Γ(4k)Γ(2k + 1/2 + s)

× 3F2

(
2k − 1

4
− u

2
, 2k +

1

4
− u

2
, 2k − v; 4k, 2k + 1/2 + s; 1

)
. (5.6)

Proof. It follows from the definition of the Mellin transform (5.1) that

f̂2k(u, v; s) =

∫1

0

xs+v−1/2

(1− x)1/2+v
I2k

(
u;

2

(1− x)1/2

)
dx. (5.7)

Substituting (4.5) into (5.7) we obtain (5.4).
Assuming first that <u > 0, we substitute (4.4) to (5.7). For <u > 0, <w < 1− 2<v,

<s > −1/2−<v, the resulting double integral converges absolutely. Changing the order of
integration and using (2.9), namely∫1

0

xs+v−1/2

(1− x)1/2+w/2+v
dx = Γ(1/2 + s+ v)

Γ(1/2− v − w/2)

Γ(1 + s− w/2)
,

we obtain (5.5). Note that the integral on the right-hand side of (5.5) converges absolutely
provided that <s > −1/2−<u−<v.

Moving the line of integration in (5.5) to the left and crossing the poles at w = 1− 4k − 2j,
we finally prove (5.6) by applying (2.21).

Lemma 5.2. For −1/4 < <v < 2k we have

f̂2k(0, v;−1/4) =
Γ2(1/4 + v)

π1/2

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
. (5.8)

Proof. Rewriting (5.6) for u = 0 and using (2.22), we obtain

f̂2k(0, v;−1/4) =
Γ(1/4 + v)

π1/2

Γ(2k − 1/4)Γ(2k − v)

Γ(4k)
2F1

(
2k − 1

4
, 2k − v; 4k; 1

)
.

Then (5.8) follows by applying (2.18).

Lemma 5.3. The following estimates hold

f̂2k(0, 0; 1/2),
∂

∂s
f̂2k(0, 0; s)

∣∣∣∣∣
s=1/2

� kε

k2
. (5.9)

Proof. To prove (5.9) we apply (5.4) together with the Liouville-Green approximation of
the function Ψ2k (x) obtained in [4]. More precisely, using [4, (6.58), (6.62), (6.64), (6.68)], we
have that for 0 < ξ <∞ the following asymptotic formula holds

Ψ2k

(
1

cosh2√ξ/2

)(
ξ sinh2

√
ξ
)1/4

= C(k)

(√
ξK0

(
k
√
ξ

2

)
− 2ξ

k
K1

(
k
√
ξ

2

)
B(0; ξ)

)
+O

(√
ξK0

(
k
√
ξ

2

)
k−3 min

(√
ξ,

1

ξ

))
, (5.10)
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where k is defined by (1.13), C(k) is a function independent of ξ for which we have the
asymptotic formula C(k) = 2 +O(k−1), and

B(0; ξ) =
1

16

(
coth

√
ξ/4√
ξ

− 2

ξ

)
.

Note that there is a typo in the formula [4, (6.58)] for B(0; ξ). Instead of coth
√
ξ there should

be coth
√
ξ/4. It follows from (5.10) and the standard bounds on the K-Bessel functions (2.15),

(2.16) that

Ψ2k

(
1

cosh2√ξ/2

)(
ξ sinh2

√
ξ
)1/4

�
√
ξK0

(
k
√
ξ

2

)
. (5.11)

Applying (5.4) and making the change of variable x = cosh−2√ξ/2, we obtain

f̂2k(0, 0; 1/2)�
∫1

0

x−1Ψ2k (x) dx�
∫∞
0

Ψ2k

(
1

cosh2√ξ/2

)
sinh
√
ξ/2

cosh
√
ξ/2

dξ

ξ1/2
.

Then according to (5.11) we have

f̂2k(0, 0; 1/2)�
∫∞
0

∣∣∣∣K0

(
k
√
ξ

2

)∣∣∣∣ tanh
√
ξ/2

sinh1/2√ξ
dξ

ξ1/4
. (5.12)

Estimating the K-Bessel function by the means of (2.15), (2.16) completes the proof of the
first estimate in (5.9). The derivative of f̂2k(0, 0; s) can be estimated similarly since it follows
from (5.4) that

∂

∂s
f̂2k(0, 0; s)

∣∣∣∣∣
s=1/2

�
∫1

0

log(1− x)

x
Ψ2k (x) dx.

Lemma 5.4. For r ∈ R the following estimate holds

f̂2k(0, 0; ir)� kε

k(1 + |r|)2
. (5.13)

Proof. For |r| � 1 we estimate (5.4) trivially:

f̂2k(0, 0; ir)�
∫1

0

(1− x)−1/2

x
Ψ2k (x) dx.

Repeating the arguments of Lemma 5.3, we obtain

f̂2k(0, 0; ir)�
∫∞
0

∣∣∣∣K0

(
k
√
ξ

2

)∣∣∣∣ dξ

ξ1/4 sinh1/2√ξ
.

Using (2.15), (2.16) we prove (5.13).
Now let us consider the case |r| � 1. Introducing the notation

T2k(x) := (1− x)1/2Ψ2k(x), (5.14)

we have

f̂2k(0, 0; ir) =
1

π1/2

∫1

0

(1− x)ir−1

x
T2k(x)dx. (5.15)

Integrating (5.15) by parts three times, we obtain

f̂2k(0, 0; ir)� 1

(1 + |r|)3

∫1

0

(1− x)ir+2
(
T2k(x)x−1

)′′′
dx. (5.16)
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According to [4, (6.47)], the function T2k(x) satisfies the differential equation

T ′′2k(x)− ((k/2)2α(x) + β(x))T2k(x) = 0, (5.17)

where k is given by (1.13) and

α(x) :=
1

x2(1− x)
, β(x) := − 1

4x2(1− x)2
+

3

16x(1− x)
. (5.18)

Differentiating (5.17) yields

T ′′′2k(x) = ((k/2)2α′(x) + β′(x))T2k(x) + ((k/2)2α(x) + β(x))T ′2k(x).

Consequently,

(
T2k(x)x−1

)′′′
=

(
(k/2)2α(x) + β(x)

x
+

6

x3

)
T ′2k(x)

+

(
(k/2)2α′(x) + β′(x)

x
− 3

(k/2)2α(x) + β(x)

x2
− 6

x4

)
T2k(x). (5.19)

Substituting (5.19) into (5.16), we have

f̂2k(0, 0; ir)� 1

(1 + |r|)3

×
∫1

0

(1− x)2

(
(k/2)2|α′(x)|+ |β′(x)|

x
+

(k/2)2|α(x)|+ |β(x)|
x2

+
1

x4

)
|T2k(x)|dx

+
1

(1 + |r|)3

∣∣∣∣∫1

0

(1− x)2+ir

(
(k/2)2α(x) + β(x)

x
+

6

x3

)
T ′2k(x)dx

∣∣∣∣ . (5.20)

To estimate the second integral in (5.20), we integrate it by parts, getting

1

(1 + |r|)3

∫1

0

(1− x)2+ir

(
(k/2)2α(x) + β(x)

x
+

6

x3

)
T ′2k(x)dx

� 1

(1 + |r|)2

∫1

0

(1− x)

(
(k/2)2|α(x)|+ |β(x)|

x
+

1

x3

)
|T2k(x)|dx+∫1

0

(1− x)2

(1 + |r|)3

(
(k/2)2|α′(x)|+ |β′(x)|

x
+

(k/2)2|α(x)|+ |β(x)|
x2

+
1

x4

)
|T2k(x)|dx. (5.21)

Note that various constants are omitted since we are using the� sign. Substituting (5.21) into
(5.20), we obtain

f̂2k(0, 0; ir)� 1

(1 + |r|)3

×
∫1

0

(1− x)2

(
(k/2)2|α′(x)|+ |β′(x)|

x
+

(k/2)2|α(x)|+ |β(x)|
x2

+
1

x4

)
|T2k(x)|dx

+
1

(1 + |r|)2

∫1

0

(1− x)

(
(k/2)2|α(x)|+ |β(x)|

x
+

1

x3

)
|T2k(x)|dx. (5.22)
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Consider the second integral in (5.22). Using (5.14), (5.18) and making the change of variable
x = cosh−2√ξ/2, we show that

1

(1 + |r|)2

∫1

0

(1− x)

(
(k/2)2|α(x)|+ |β(x)|

x
+

1

x3

)
|T2k(x)|dx

� 1

(1 + |r|)2

∫1

0

(1− x)1/2

(
(k/2)2

x3
+

1

x3(1− x)

)
|Ψ2k(x)|dx

� 1

(1 + |r|)2

∫∞
0

∣∣∣Ψ2k

(
1

cosh2√ξ/2

) ∣∣∣((k/2)2 cosh2

√
ξ

2
sinh2

√
ξ

2
+ cosh4

√
ξ

2

)
dξ

ξ1/2
. (5.23)

Applying (5.11) and estimating the K-Bessel function using (2.15), (2.16), we obtain

1

(1 + |r|)2

∫1

0

(1− x)

(
(k/2)2|α(x)|+ |β(x)|

x
+

1

x3

)
|T2k(x)|dx

� 1

(1 + |r|)2

∫∞
0

|K0((k/2)
√
ξ)|

sinh1/2√ξ

(
(k/2)2 cosh2

√
ξ

2
sinh2

√
ξ

2
+ cosh4

√
ξ

2

)
dξ

ξ1/4

� kε

k(1 + |r|)2
. (5.24)

Consider the first integral in (5.22). Using (5.18), we have for 0 < x < 1

α′(x)� 1

x3(1− x)
+

1

x2(1− x)2
, β′(x)� − 1

x3(1− x)2
+

1

x2(1− x)3
. (5.25)

Using (5.18), (5.25), (5.14) and making the change of variable x = cosh−2√ξ/2, we obtain

1

(1 + |r|)3

∫1

0

(1− x)2

(
(k/2)2|α′(x)|+ |β′(x)|

x
+

(k/2)2|α(x)|+ |β(x)|
x2

+
1

x4

)
|T2k(x)|dx

� 1

(1 + |r|)3

∫1

0

(1− x)1/2

(
(k/2)2(1− x)

x4
+

(k/2)2

x3
+

1

x4
+

1

x3(1− x)

)
|Ψ2k(x)| dx

� 1

(1 + |r|)3

∫∞
0

∣∣∣∣Ψ2k

(
1

cosh2√ξ/2

)∣∣∣∣
(

(k/2)2 cosh2

√
ξ

2
sinh4

√
ξ

2
+

+ (k/2)2 cosh2

√
ξ

2
sinh2

√
ξ

2
+ cosh4

√
ξ

2
sinh2

√
ξ

2
+ cosh4

√
ξ

2

)
dξ

ξ1/2
. (5.26)

Applying (5.11) and the standard bounds on the K-Bessel function (2.15), (2.16), we have

1

(1 + |r|)3

∫1

0

(1− x)2

(
(k/2)2|α′(x)|+ |β′(x)|

x
+

(k/2)2|α(x)|+ |β(x)|
x2

+
1

x4

)
|T2k(x)|dx

� kε

k(1 + |r|)2
. (5.27)

Substituting (5.27) and (5.24) into (5.22), we complete the proof of (5.13).

5.2. Mellin transform of g2k

Lemma 5.5. Assume that −1/2−<v < <s < 1/4−<u/2 and 0 ≤ <u < 4k − 1/2. Then
the Mellin transform of the function g2k(u, v;x) can be written as follows:

ĝ2k(u, v; s) =
21/2−u sin(π(1/4 + u/2))

π1/2

∫1

0

(1− x)s+v−1/2

xs+u+3/4
Φ2k (u;x) dx, (5.28)
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ĝ2k(u, v; s) = Γ(1/2 + s+ v)
1

2πi

∫
(∆)

Γ(2k − 1/2 + w/2)

Γ(2k + 1/2− w/2)
Γ(

1

2
− u− w)

× sin

(
π

1/2 + u+ w

2

)
Γ(w/2− s)

Γ(1/2 + v + w/2)
2wdw, (5.29)

where max(1− 4k, 2<s) < ∆ < 1/2−<u,

ĝ2k(u, v; s) =
21/2−u sin(π(1/4 + u/2))

π1/2
Γ(1/2 + s+ v)

× Γ(2k − 1/4− u/2)Γ(3/4− 2k − u/2)Γ(1/4− u/2− s)
Γ(1/2)Γ(3/4 + v − u/2)

× 3F2

(
2k − 1

4
− u

2
,

3

4
− 2k − u

2
,

1

4
− u

2
− s; 1

2
,

3

4
+ v − u

2
; 1

)
. (5.30)

Proof. It follows from (5.1) and (5.3) that

ĝ2k(u, v; s) =

∫∞
0

xs+v−1/2

(1 + x)1/2+v
I2k

(
u;

2

(1 + x)1/2

)
dx. (5.31)

Applying (4.6) to evaluate (5.31), we obtain (5.28). Assuming that <u > 0, we substitute (4.4)
to (5.31). For <u > 0, <w > 2<s, <s > −1/2−<v, the resulting double integral converges
absolutely. Changing the order of integration and applying (2.10), namely∫∞

0

xs+v−1/2

(1 + x)1/2+w/2+v
dx = Γ(1/2 + s+ v)

Γ(w/2− s)
Γ(1 + v + w/2)

,

we prove (5.29). Note that the integral on the right-hand side of (5.29) converges absolutely
provided that <s > −1/2−<u−<v. Moving the line of integration in (5.29) to the right and
crossing the poles at w = 1/2− u+ j, we obtain (5.30) by applying (2.21).

Lemma 5.6. For <v > −1/4 the following equality holds

ĝ2k(0, v;−1/4) = −
√

2 sin(πv)
Γ2(1/4 + v)

π1/2

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
. (5.32)

In particular,

ĝ2k(0, 0;−1/4) = 0. (5.33)

Proof. According to (5.30) and (2.22) we have

ĝ2k(0, v;−1/4) =
Γ(1/4 + v)Γ(2k − 1/4)Γ(3/4− 2k)

Γ(3/4 + v)π1/2 2F1

(
2k − 1

4
,

3

4
− 2k;

3

4
+ v; 1

)
.

Applying (2.18), this expression simplifies to

ĝ2k(0, v;−1/4) =
Γ2(1/4 + v)

π1/2

Γ(2k − 1/4)Γ(3/4− 2k)

Γ(1 + v − 2k)Γ(2k + v)
.

Finally, using the reflection formula (2.1) we obtain (5.32).

Lemma 5.7. For v → 1/4 the following asymptotic formulas hold

ĝ2k(0, v; 1/2− v) =
23/2

2v − 1/2

Γ(2k − 1/4)

Γ(2k + 1/4)
+O(1), (5.34)
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∂

∂s
ĝ2k(0, v; s)

∣∣∣∣∣
s=1/2−v

=
25/2

(2v − 1/2)2

Γ(2k − 1/4)

Γ(2k + 1/4)
+O(1). (5.35)

Furthermore,

ĝ2k(0, 0; 1/2) = 23/2Γ(−1/2) +O(k−1+ε), (5.36)

∂

∂s
ĝ2k(0, 0; s)

∣∣∣∣∣
s=1/2

= −25/2Γ(−1/2)ψ(−1/2)

+ 23/2Γ(−1/2) (2ψ(2k) + 2 log 2− π) +O(k−1+ε). (5.37)

Proof. For u = 0, 0 ≤ <v ≤ 1/2 and 0 < <s < 1/4, we move the line of integration in (5.29)
to −2 + 2<s < ∆ < 2<s crossing the pole at w = 2s. Hence

ĝ2k(0, v; s) = 22s+1 Γ(2k − 1/2 + s)

Γ(2k + 1/2− s)
Γ(

1

2
− 2s) sin

(
π

1/2 + 2s

2

)
+ Γ(1/2 + s+ v)

1

2πi

∫
(∆)

Γ(2k − 1/2 + w/2)

Γ(2k + 1/2− w/2)
Γ(

1

2
− u− w)

× sin

(
π

1/2 + u+ w

2

)
Γ(w/2− s)

Γ(1/2 + v + w/2)
2wdw, (5.38)

where −2 + 2<s < ∆ < min(2<s, 1/2). Therefore, (5.38) is now valid for <s < 5/4. Choosing
∆ = 0, we obtain

ĝ2k(0, v; 1/2− v) = 22−2v Γ(2k − v)

Γ(2k + v)
Γ(2v − 1

2
) sin(3π/4− πv)+

+
1

π

∫∞
−∞

Γ(2k − 1/2 + ir)

Γ(2k + 1/2− ir)
Γ(

1

2
− 2ir)

sin(π/4 + πir)22irdr

(ir − 1/2 + v)
. (5.39)

Estimating the integral above trivially using Stirling’s formula, we conclude the proof of (5.36).
Another direct consequence of the representation (5.39) is (5.34). Finally, the formulas (5.35)
and (5.37) can also be derived from (5.38) by taking the derivative with respect to s.

Lemma 5.8. For r ∈ R such that |r| > 3k and any A > 0 we have

ĝ2k(0, 0; ir)� 1

|r|A
. (5.40)

Proof. Using the representation (5.30), we obtain

ĝ2k(0, 0; ir) =
Γ(1/2 + ir)

π1/2

∞∑
j=0

(−1)j

j!

Γ(2k − 1/4 + j)Γ(3/4− 2k + j)Γ(1/4− ir + j)

Γ(1/2 + j)Γ(3/4 + j)
.

It follows from (2.2), (2.4) that

|Γ(1/2 + ir)| � exp(−π|r|/2) and |Γ(1/4− ir + j)| ≤ Γ(1/4 + j).

Consequently,

ĝ2k(0, 0; ir)� exp(−π|r|/2)

∞∑
j=0

|Γ(3/4− 2k + j)|Γ(2k − 1/4 + j)Γ(1/4 + j)

Γ(1 + j)Γ(1/2 + j)Γ(3/4 + j)
.
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According to Euler’s reflection formula (2.1) we have |Γ(3/4− 2k + j)| = π
√

2|Γ(2k + 1/4−
j)|−1. Furthermore,

Γ(1/4 + j)

Γ(1 + j)Γ(1/2 + j)Γ(3/4 + j)
� 1

Γ2(1 + j)
.

As a result,

ĝ2k(0, 0; ir)� exp(−π|r|/2)

2k−1∑
j=0

Γ(2k − 1/4 + j)

Γ(2k + 1/4− j)Γ2(1 + j)
+

exp(−π|r|/2)

∞∑
j=2k

Γ(2k − 1/4 + j)Γ(j + 3/4− 2k)

Γ2(1 + j)
. (5.41)

Using Stirling’s formula (2.5) we obtain that for 0 < j < 2k − 1

Γ(2k − 1/4 + j)

Γ(2k + 1/4− j)Γ2(1 + j)
� (2k + j)−1/4

(2k − j)1/4j2

Γ(2k + j)

Γ(2k − j)Γ2(j)
�

(2k + j)−3/4

(2k − j)−1/4j

(2k + j)2k+j

(2k − j)2k−jj2j
=

(2k − j)1/4

(2k + j)3/4j
exp(s1(k, j)),

where

s1(k, j) := (2k + j) log(2k + j)− (2k − j) log(2k − j)− 2j log j.

The function s1(k, j) attains its maximum at the point j = k
√

2, and therefore,

exp(−π|r|/2)

2k−1∑
j=0

Γ(2k − 1/4 + j)

Γ(2k + 1/4− j)Γ2(1 + j)
�

exp(−π|r|/2)

2k−1∑
j=1

(2k − j)1/4

(2k + j)3/4j
exp(s1(k, j))�

exp(−π|r|/2 + s1(k, k
√

2))k1/2 � 1

|r|A
(5.42)

for |r| > 3k. In the same way we show that for j > 2k

Γ(2k − 1/4 + j)Γ(j + 3/4− 2k)

Γ2(1 + j)
� (j − 2k)1/4

(2k + j)3/4j
exp(s2(k, j)),

where

s2(k, j) := (2k + j) log(2k + j)− (j − 2k) log(j − 2k)− 2j log j.

The function s2(k, j) is decreasing. For j = 2k it follows from the duplication formula (2.3)
that

Γ(2k − 1/4 + j)Γ(j + 3/4− 2k)

Γ2(1 + j)
� Γ(4k − 1/4)

Γ2(2k + 1)
� 24k

k7/4
.

Finally, we obtain

exp(−π|r|/2)

∞∑
j=2k

Γ(2k − 1/4 + j)Γ(j + 3/4− 2k)

Γ2(1 + j)
� exp(−π|r|/2)

∞∑
j=2k

24k

j3/2
� 1

|r|A
(5.43)

for |r| > 3k. Substituting (5.42) and (5.43) into (5.41), we prove the lemma.

To investigate the behaviour of the function ĝ2k(0, 0; ir) for |r| ≤ 3k we use the formula
(5.28).
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Lemma 5.9. For k = 4k − 1 we have

ĝ2k(0, 0; ir) = −23/2π1/2

∫π/2
0

(tanx)2ir

(sin(2x))1/2
Y0(kx)x1/2dx−

− 23/2π1/2

∫π/2
0

(tanx)2ir

(sin(2x))1/2
J0(kx)x1/2dx+O(k−3/2), (5.44)

ĝ2k(0, 0; ir)� 1

k1/2
. (5.45)

Proof. It follows from (5.28) that

ĝ2k(0, 0; ir) =
1

π1/2

∫π2/4

0

(tan
√
ξ)2ir

(cos
√
ξ)1/2

Φ2k

(
cos2

√
ξ
) dξ√

ξ
. (5.46)

In order to prove (5.44), we apply the following approximation of the function Φ2k (see [4,
Theorems 6.5 and 6.10, Corollary 6.9] for details):

Φ2k(cos2
√
ξ) =

−π
ξ1/4(sin

√
ξ)1/2

[√
ξY0(k

√
ξ) +

√
ξJ0(k

√
ξ) +O

(
1

k

∣∣∣√ξY0(k
√
ξ)
∣∣∣)].
(5.47)

Substituting (5.47) into (5.46) and estimating the error term using standard estimates on the
Y -Bessel function (2.11), (2.12), (2.13), we obtain (5.44). Applying (2.11), (2.12), (2.13) to
estimate the integrals in (5.44) we prove (5.45).

The estimate (5.45) is sufficiently good for our purposes only if r � k1/2−δ. For r � k1/2−δ,
it is required to analyse (5.44) more carefully. We consider further only the first integral in
(5.44), as the second integral can be treated similarly.

The idea is to replace the Y -Bessel function in (5.44) by its asymptotic formula (2.13). To
this end, we first make the following partition of unity:

α1(x) + β(x) + α2(x) = 1 for 0 ≤ x ≤ π

2
, (5.48)

where α1,2(x), β(x) are smooth infinitely differentiable functions such that for some small ε > 0
(to be chosen later), we have

α1(x) = 1 for 0 ≤ x ≤ ε, α1(x) = 0 for x ≥ 2ε, (5.49)

α2(x) = 1 for
π

2
− ε ≤ x ≤ π

2
, α2(x) = 0 for 0 ≤ x ≤ π

2
− 2ε, (5.50)

β(x) = 1 for 2ε ≤ x ≤ π

2
− 2ε, β(x) = 0 for 0 ≤ x ≤ ε, π

2
− ε ≤ x ≤ π

2
, (5.51)

and α
(j)
1,2(x)� ε−j , β(j)(x)� ε−j .

Lemma 5.10. For r ∈ R such that |r| > 1 the following holds

ĝ2k(0, 0; ir)�

∣∣∣∣∣
∫π/2
0

β(x)(tanx)2ir

(sin(2x))1/2
Y0(kx)x1/2dx

∣∣∣∣∣+∣∣∣∣∣
∫π/2
0

β(x)(tanx)2ir

(sin(2x))1/2
J0(kx)x1/2dx

∣∣∣∣∣+
k−1+ε + k1/2ε3/2

r
. (5.52)
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Proof. As in the first step, we use the partition of unity (5.48) to rewrite the integrals in
(5.44). Then to prove the lemma, it is required to estimate the contribution of integrals with
α1,2(x). All these integrals can be analysed similarly. Therefore, we consider only

I1 :=

∫π/2
0

α1(x)Y0(kx)x1/2

(sin(2x))1/2
(tanx)2irdx. (5.53)

Integrating by parts we obtain

I1 �
1

r

∫π/2
0

∂

∂x

[
α1(x)Y0(kx)x1/2(sin(2x))1/2

]
(tanx)2irdx. (5.54)

Evaluating the derivative and estimating the integral trivially with the use of (2.11), (2.13),
we complete the proof of (5.52).

For simplicity, let us assume further that r > 0. The case r < 0 can be treated in the same
way.

Lemma 5.11. Let δ be some fixed constant such that 0 < δ < 1/4. Then for r > 1 and
ε = k−1/2−2δ we have

ĝ2k(0, 0; ir)� 1

k1/2

∣∣∣∣∣
∫π/2
0

β(x) exp(ikh(x))

(sin(2x))1/2
dx

∣∣∣∣∣+
k−1/4−3δ + k−1/2

r
+

1

k5/4−δ , (5.55)

where

h(x) = −x+
2r

k
log(tanx). (5.56)

Proof. We substitute the asymptotic formulas for Bessel functions (2.12), (2.13) into (5.52)
and estimate the error terms by its absolute value, obtaining

ĝ2k(0, 0; ir)� 1

k1/2

∑
±

∣∣∣∣∣
∫π/2
0

β(x) exp(ih±(x))

(sin(2x))1/2
dx

∣∣∣∣∣+
k−1/4−3δ

r
+

1

k5/4−δ ,

where

h±(x) = ±kx+ 2r log(tanx). (5.57)

Consider the integral with h+. Splitting the interval of integration into the parts where the
function β(x)(sin(2x))−1/2/h

′

+(x) is monotonic and applying [31, Lemma 4.3], we have

1

k1/2

∣∣∣∣∣
∫π/2
0

β(x) exp(ih+(x))

(sin(2x))1/2
dx

∣∣∣∣∣� 1

k1/2
max

0<x<π/2

β(x)(sin(2x))1/2

k sin(2x) + 4r
� 1

rk1/2
.

The classical approach to estimate the integral on the right-hand side of (5.55) is the saddle
point method (also called the method of steepest descent). Another possibility is the stationary
phase method, which is in some sense (see discussion in [7, pp. 276–279]) an analogue of
the saddle point method for Fourier-type integrals. The first step in all these methods is to
determine the so-called saddle points of the function h(x) defined as zeros of h′(x) = 0. Using
(5.56) we find that

h′(x) = −1 +
4r

k

1

sin(2x)
. (5.58)
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It is convenient to introduce two new parameters ϑ and µ such that:

sin(2ϑ) =
4r

k
, 0 < ϑ <

π

4
if 4r ≤ k, (5.59)

cosh(2µ) =
4r

k
, µ > 0 if 4r > k. (5.60)

Then the saddle points of the function h(x) are

x1 = ϑ, x2 =
π

2
− ϑ if 4r ≤ k, (5.61)

x3 =
π

4
− iµ, x4 =

π

4
+ iµ if 4r > k. (5.62)

We consider only the case 4r ≤ k since the second case can be analysed similarly. Note that
the condition r � k1/2−δ implies that

ϑ� k−1/2−δ > k−1/2−2δ = ε. (5.63)

Thus both saddle points belong to the interval of integration.
An important observation is that as 4r → k the saddle points coalesce. It is known that in

this case the integral has a different behaviour in three different ranges:

– r is small,
– r is near k/4,
– r is large.

The case of coalescing saddle points is usually described in books, see [7, Section 9.2] and
[32, Section 7.4]. It is well known that the standard saddle point method does not work in
this situation and a more refined analysis is required. Therefore, we mainly follow [7, Section
9.2]. This approach was originally developed by Chester, Friedman and Ursell [12], with some
additional ideas due to Bleistein [6].

The main idea of the method is to change the variable of integration such that the integral
can be written in terms of the Airy function, which has for real x the following representation:

Ai(ax2/3) =
x1/3

2π

∫∞
−∞

exp

(
ix

(
y3

3
+ ay

))
dy. (5.64)

For simplicity, let us denote

g(x) :=
β(x)

(sin(2x))1/2
. (5.65)

Our goal is to estimate the integral (see (5.55))

I =

∫π/2
0

g(x) exp(ikh(x))dx, h(x) = −x+
sin 2ϑ

2
log(tanx). (5.66)

To this end, following [7, (9.2.6)] we define a new variable t such that:

t3

3
− γ2t+ ρ = h(x), (5.67)

where the constants γ and ρ are chosen such that the point x = x1 corresponds to t = −γ and
the point x = x2 corresponds to t = γ. These conditions yield

h(x1) =
2γ3

3
+ ρ, h(x2) = −2γ3

3
+ ρ,

and therefore,

4γ3

3
= h(x1)− h(x2), 2ρ = h(x1) + h(x2). (5.68)
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Evaluating h(x1,2) we find that ρ = −π/4 and

4γ3

3
=
π

2
− 2ϑ+ sin(2ϑ) log(tanϑ). (5.69)

Note that for 0 < ϑ < π/4 the right-hand side of (5.69) is positive, and that for ϑ = π/4 we
obtain γ = 0. It follows from (5.69) that there are three choices for γ. In order to determine γ
uniquely we apply [7, (9.2.17)], getting

γ =

(
3

4

(π
2
− 2ϑ+ sin(2ϑ) log(tanϑ)

))1/3

. (5.70)

Changing the variable x in the integral (5.66) by t defined by (5.67), we obtain an analogue of
[7, (9.2.18), (9.2.19)], namely

I = exp(ikρ)

∫∞
−∞

G0(t, ϑ) exp
(
ik(t3/3− γ2t)

)
dt, (5.71)

where

G0(t, ϑ) = g(x(t))
dx

dt
. (5.72)

Following [7, (9.2.21),(9.2.22)]), we define

a0 :=
G0(γ, ϑ) +G0(−γ, ϑ)

2
, a1 :=

G0(γ, ϑ)−G0(−γ, ϑ)

2γ
. (5.73)

Further, using [7, (9.2.20)] we define H0(t, ϑ) via the following equation

G0(t, ϑ) = a0 + a1t+ (t2 − γ2)H0(t, ϑ). (5.74)

Note that a0 and a1 are chosen such that the function H0(t, ϑ) has a finite derivative at points
t = ±γ.

To evaluate a0,1, as well as to analyse the properties of H0(t, ϑ), we need some preliminary
results.

Lemma 5.12. For ϑ < π/4 we have

dx

dt

∣∣∣∣∣
t=±γ

=
√
γ tan(2ϑ), (5.75)

d2x

dt2

∣∣∣∣∣
t=±γ

= ∓1

3

(
4γ + 2γ tan2(2ϑ)−

√
tan(2ϑ)

γ

)
. (5.76)

For ϑ = π/4 we have

dx

dt

∣∣∣∣∣
t=0

= 2−1/3,
d2x

dt2

∣∣∣∣∣
t=0

= 0,
d3x

dt3

∣∣∣∣∣
t=0

= −1. (5.77)

Proof. First, consider the case ϑ < π/4, t = −γ. We can write

x− ϑ =

∞∑
n=0

bn(t+ γ)n, h′(x) =

∞∑
n=0

cn(t+ γ)n. (5.78)

Let us compute bi, ci for i = 0, 1, 2. Note that b0 = 0 since the point x = ϑ corresponds to
t = −γ. We have

h′(x) = −1 +
sin(2ϑ)

sin(2x)
= −2(x− ϑ)

tan(2ϑ)
+ (x− ϑ)2

(
4

tan2(2ϑ)
+ 2

)
+O((x− ϑ)3). (5.79)



MIXED MOMENT OF GL(2) AND GL(3) L-FUNCTIONS Page 27 of 42

Substituting the expansion for (x− ϑ) from (5.78) into (5.79), we show that

c0 = 0, c1 = − 2b1
tan(2ϑ)

, c2 = − 2b2
tan(2ϑ)

+ b21

(
4

tan2(2ϑ)
+ 2

)
. (5.80)

It follows from (5.67) that

h′(x)
dx

dt
= t2 − γ2 = −2γ(t+ γ) + (t+ γ)2. (5.81)

Substituting (5.78) into (5.81) yields

c1b1 = −2γ, c2b1 + 2c1b2 = 1. (5.82)

Using (5.82) and (5.80), we obtain

b1 =
√
γ tan(2ϑ), b2 =

1

6

(
4γ + 2γ tan2(2ϑ)−

√
tan(2ϑ)

γ

)
.

This proves (5.75) and (5.76) for t = −γ. The case t = γ is similar.
Second, consider ϑ = π/4. In that case γ = 0. We can write

x− π

4
=

∞∑
n=0

dnt
n, h′(x) =

∞∑
n=0

ent
n. (5.83)

We proceed to compute di, ei for i = 0, 1, 2, 3. Note that d0 = 0. Furthermore, we have

h′(x) = −1 +
1

sin(2x)
= 2

(
x− π

4

)2

+
10

3

(
x− π

4

)4

+O

((
x− π

4

)6
)
. (5.84)

Substituting the expansion for (x− π/4) from (5.83) into (5.84), we show that

e0 = e1 = 0, e2 = 2d2
1, e3 = 4d1d2, e4 = 2d2

2 + 4d1d3 +
10

3
d4

1. (5.85)

Substituting (5.83) into (5.81) gives

e2d1 = 1, 2e2d2 + e3d1 = 0, 3e2d3 + 2e3d2 + e4d1 = 0. (5.86)

Using (5.86) and (5.85) we finally show that

d1 = 2−1/3, d2 = 0, d3 = −1

6
.

This completes the proof of (5.77).

Lemma 5.13. For ϑ < π/4 we have

a0 =

√
γ

cos(2ϑ)
, a1 = 0, (5.87)

and for ϑ = π/4 we have

a0 = 2−1/3, a1 = 0. (5.88)

Proof. Consider the case ϑ < π/4. It follows from (5.73), (5.72), (5.75) and (5.65) that

a0 =
β(ϑ) + β(π/2− ϑ)

2

√
γ

cos(2ϑ)
, a1 =

β(π/2− ϑ)− β(ϑ)

2γ

√
γ

cos(2ϑ)
.

As a consequence of (5.63) we obtain (5.87).
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Consider the case ϑ = π/4. It follows from (5.73), (5.72), (5.77) and (5.65) that a0 = 2−1/3

and

a1 =
d

dt
G0

(
t,
π

4

)∣∣∣
t=0

= g′(π/4)

(
dx

dt

∣∣∣
t=0

)2

+ g(π/4)
d2x

dt2

∣∣∣
t=0

=
d2x

dt2

∣∣∣
t=0

= 0.

This proves (5.88).

Substituting (5.74) into (5.71) and using Lemma 5.13, we obtain the following representation
for our integral

I = exp(ikρ)a0

∫∞
−∞

exp
(
ik(t3/3− γ2t)

)
dt+

exp(ikρ)

ik

∫∞
−∞

H0(t, ϑ)d exp
(
ik(t3/3− γ2t)

)
.

Using (5.64) and integrating by parts yields

I = exp(ikρ)
2a0π

k1/3
Ai(−γ2k2/3)− exp(ikρ)

ik

∫∞
−∞

d

dt
(H0(t, ϑ)) exp

(
ik(t3/3− γ2t)

)
dt.

Since the function H0(t, ϑ) has a finite number of intervals of monotonicity, we can estimate
the integral in the formula above by its absolute value, getting

I = exp(ikρ)
2a0π

k1/3
Ai(−γ2k2/3) +O

(
1

k
max
t
|H0(t, ϑ)|

)
. (5.89)

The final step is to estimate the function H0(t, ϑ).

Lemma 5.14. For ϑ ≤ π/4 satisfying (5.63) we have

max
t
|H0(t, ϑ)| � 1√

ϑ
. (5.90)

Proof. Since the function H0(t, ϑ) is continuous and piecewise smooth, it attains the
extreme values at critical points. Consequently, it is required to analyse the behaviour of
this function at the points t = ±γ and as t→ ±∞. Note that for ϑ = π/4, the critical points
t = γ and t = −γ coincide, and therefore, this case should be treated separately. Furthermore,
since we aim to obtain an estimate uniform in ϑ, the case when ϑ→ 0 should also be studied
separately. To sum up, we consider three different cases: ϑ→ π

4 , ϑ→ 0 and the remaining case
when ϑ is some fixed number.

First, let us assume that ϑ is some fixed number. Then γ (see (5.69)) is also some fixed
number. We start by estimating H0(t, ϑ) near the points t = ±γ. According to [7, (9.2.24)] and
since a1 = 0 by Lemma 5.13, we have

lim
t→±γ

H0(t, ϑ) = ± 1

2γ

d

dt
G0(t, ϑ)

∣∣∣
t=±γ

. (5.91)

Using (5.65), (5.72) and Lemma 5.12, we prove that H0(t, ϑ) is bounded near the points t = ±γ.
Other critical points of H0(t, ϑ) are t→ ±∞. In this case we use (5.65), (5.74) and (5.81),
getting

H0(t, ϑ) =
g(x(t))

h′(x(t))
− a0

t2 − γ2
=
β(x(t))

√
sin(2x(t))

sin(2ϑ)− sin(2x(t))
− a0

t2 − γ2
. (5.92)

Consequently, for all t that do not belong to a neighbourhood of ±γ, the function H0(t, ϑ) is
trivially bounded by a constant.
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Second, consider the case ϑ→ π
4 . It is enough to prove (5.90) for ϑ = π/4. In this case we

have γ = 0 and (see (5.91))

lim
t→0

H0(t, π/4) =
1

2

d2

dt2
G0(t, π/4)

∣∣∣
t=0

. (5.93)

It follows from (5.72) that

d2

dt2
G0(t, π/4) = g′′(x(t))

(
dx

dt

)3

+ 3g′(x(t))
dx

dt

d2x

dt2
+ g(x(t))

d3x

dt3
. (5.94)

Using the fact that all derivatives of g(x) at x = π/4 are finite and applying Lemma 5.12, we
conclude that the limit in (5.93) is finite. For t outside of a neighbourhood of 0, the function
H0(t, π/4) is trivially bounded by a constant using (5.92).

Third, consider the case ϑ→ 0. Let us estimate the right-hand side of (5.91). We remark
that γ is a constant for small ϑ . Therefore, it is only required to estimate the derivative of
G0(t, ϑ). It follows from (5.72) that

d

dt
G0(t, ϑ) = g′(x(t))

(
dx

dt

)2

+ g(x(t))
d2x

dt2
.

Using (5.65) and Lemma 5.12 we obtain the estimate

d

dt
G0(t, ϑ)

∣∣∣
t=±γ

� tan(2ϑ)

sin3/2(2ϑ)
+

1

sin1/2(2ϑ)
� 1

ϑ1/2
, (5.95)

which completes the proof of (5.90).

5.3. Proof of Lemma 1.3

Substituting (5.90) into (5.89) we obtain for k1/2−δ < r ≤ k/4 (see (5.63)) that

I = exp(ikρ)
2a0π

k1/3
Ai(−γ2k2/3) +O

(
1

(rk)1/2

)
. (5.96)

According to [25, (9.7.9), (9.4.1)] we have Ai(−x)� min(1, x−1/4), and therefore

I � 1

k1/3
min

(
1,

1

γ1/2k1/6

)
+

1

(rk)1/2
. (5.97)

It follows from (5.59) and (5.69) that

γ = 21/3
(π

4
− ϑ

)
+O

(
(π/4− ϑ)5

)
= 2−2/3 arccos

4r

k
+O

(
arccos5 4r

k

)
=

= 2−1/6

(
1− 4r

k

)1/2

+O
(

(1− 4r/k)3/2
)
.

Consequently,

I � 1

k1/3
min

(
1,

1

(1− 4r/k)1/4k1/6

)
+

1

(rk)1/2
. (5.98)

Using (5.98) to estimate the integral in (5.55), we finally prove Lemma 1.3.

6. Explicit formula for the mixed moment

This section is devoted to proving an explicit formula for the mixed moment∑
f∈H4k

ω(f)L(f, 1/2)L(sym2 f, 1/2).



Page 30 of 42 O. BALKANOVA, G. BHOWMIK, D. FROLENKOV, N. RAULF

To this end, we introduce two complex variables u, v with sufficiently large real parts and
consider the shifted moment

M(u, v) =
∑

f∈H4k

ω(f)L(f, 1/2 + v)L(sym2 f, 1/2 + u). (6.1)

This enables us to use the technique of analytic continuation.
Let us assume for simplicity that 0 < <u < 1 and <v > 3/4 + <u/2. Using (1.4) and Lemma

4.1 we obtain

M(u, v) =MD(u, v) +MND(u, v) + ET 1(u, v) + ET 2(u, v), (6.2)

where

MD(u, v) =

∞∑
l=1

MD(u, l2)

l1+2v
, MND(u, v) =

∞∑
l=1

MND(u, l)

l1/2+v
, (6.3)

ET 1(u, v) =

∞∑
l=1

ET1(u, l)

l1/2+v
, ET 2(u, v) =

∞∑
l=1

ET2(u, l)

l1/2+v
. (6.4)

As a consequence of (4.8) and (6.3) we obtain

MD(u, v) = ζ(3/2 + 2v + u)ζ(1 + 2u)

+ ζ(3/2 + 2v − u)ζ(1− 2u)
√

2(2π)3u cosπ(
1

4
+
u

2
)

× Γ(2k − 1/4− u/2)Γ(2k + 1/4− u/2)Γ(1− 2u)

Γ(2k + 1/4 + u/2)Γ(2k − 1/4 + u/2)Γ(1− u)
, (6.5)

MD(0, v) =
ζ(3/2 + 2v)

2

(
−3 log 2π +

π

2
+ 3γ

+ 2
ζ ′(3/2 + 2v)

ζ(3/2 + 2v)
+ ψ(2k − 1/4) + ψ(2k + 1/4)

)
. (6.6)

Similarly, it follows from (3.7), (4.9) and (6.3) that

MND(u, v) =
(2π)1/2+u

2

Γ(2k − 1/4− u/2)

Γ(2k + 1/4 + u/2)

∞∑
l=1

L−4l(1/2 + u)

l3/4+v−u/2 , (6.7)

MND(0, v) =
23/2π

Γ(3/4)

Γ(2k − 1/4)

Γ(2k + 1/4)
L−g (1/4 + v). (6.8)

We remark that a part of the main term is also contained in ET 1(u, v) and ET 2(u, v), which
we analyse in detail in the next two subsections.

6.1. Analysis of ET 2(u, v)

Lemma 6.1. For 0 < <u < 1, <v > 3/4 + <u/2 + max(θ(1− 2<u), 0) we have

ET 2(u, v) = (2π)1/2+u21+2v 1

2πi

×
∫
(σ)

 ∑
n≥1
n≡0(2)

∑
m≥1
m≡0(4)

+
∑
n≥1
n≡1(2)

∑
m≥1
m≡1(4)

 Lm(1/2 + u)

m1/2+v+sn1/2−u−2s
f̂2k(u, v; s)ds, (6.9)

where 1/2−<v + max(θ(1− 2<u), 0) < σ < −1/4−<u/2.
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Proof. Substituting (4.11) into (6.4) we obtain

ET 2(u, v) =

∞∑
l=1

(2π)1/2+u

l1/2+v

∑
n>2
√
l

Ln2−4l(1/2 + u)

n1/2−u I2k

(
u;

n

l1/2

)
. (6.10)

It follows from (4.4) that I2k (u;x) ∼ x1−4k as x→∞. Thus using (3.3) we have
∞∑
l=1

1

l1/2+v

∑
n>2
√
l

Ln2−4l(1/2 + u)

n1/2−u I2k

(
u;

n

l1/2

)
�

∞∑
l=1

l1/4+<u/2+max(θ(1−2<u),0)

l1/2+<v .

And we see that the double series on the right-hand side of (6.10) converges absolutely provided
that <v > 3/4 + <u/2 + max(θ(1− 2<u), 0). Changing the order of summation in (6.10) and
making the change of variables m = n2 − 4l, we obtain

ET 2(u, v) = (2π)1/2+u
∑
n≥1

∑
0<m<n2

m≡n2(4)

Lm(1/2 + u)21+2v

(n2 −m)1/2+vn1/2−u I2k

(
u;

2n

(n2 −m)1/2

)
.

Rewriting this using (5.2) yields

ET 2(u, v) = (2π)1/2+u21+2v

 ∑
n≥1
n≡0(2)

∑
m≥1
m≡0(4)

+
∑
n≥1
n≡1(2)

∑
m≥1
m≡1(4)


× Lm(1/2 + u)

m1/2+vn1/2−u f2k

(
u, v;

m

n2

)
. (6.11)

Applying the Mellin inversion formula for f2k

(
u, v;m/n2

)
completes the proof.

Lemma 6.2. For <v > 3/4 we have

ET 2(0, v) =
1

2πi

∫
(σ)

F2k(v, s)ds, (6.12)

where 1/2−<v < σ < −1/4 and

F2k(v, s) = (2π)1/221+2v

((
1− 22s−1/2

) 2
√
π

Γ(1/4)
L+
f (s+ v)−

−
(

1− 22s+1/2
) 4π1/2

21+2v+2sΓ(1/4)
L+
g (s+ v)

)
ζ(1/2− 2s)f̂2k(0, v; s). (6.13)

Proof. We first let u = 0 in (6.9). Then for <v > 3/4 + θ the following formula holds

ET 2(0, v) = (2π)1/221+2v 1

2πi

∫
(σ)

 ∑
n≥1
n≡0(2)

∑
m≥1
m≡0(4)

+
∑
n≥1
n≡1(2)

∑
m≥1
m≡1(4)


× Lm(1/2)

m1/2+v+sn1/2−2s
f̂2k(0, v; s)ds, (6.14)

where 1/2−<v + θ < σ < −1/4. It follows from (3.7) that∑
m≥1
m≡0(4)

Lm(1/2)

m1/2+v+s
=

4π1/2

41/2+v+sΓ(1/4)
L+
g (s+ v). (6.15)
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Since Ln(s) vanishes if n ≡ 2, 3 (mod 4), we obtain using (3.6) and (6.15) that∑
m≥1
m≡1(4)

Lm(1/2)

m1/2+v+s
=
∑
m≥1

Lm(1/2)

m1/2+v+s
−

∑
m≥1
m≡0(4)

Lm(1/2)

m1/2+v+s

=
2
√
π

Γ(1/4)
L+
f (s+ v)− 4π1/2

41/2+v+sΓ(1/4)
L+
g (s+ v). (6.16)

Furthermore, ∑
n≥1
n≡0(2)

1

n1/2−2s
=
ζ(1/2− 2s)

21/2−2s
, (6.17)

∑
n≥1
n≡1(2)

1

n1/2−2s
=

(
1− 1

21/2−2s

)
ζ(1/2− 2s). (6.18)

Substituting (6.15), (6.16), (6.17) and (6.18) into (6.14) we prove (6.12).

Lemma 6.3. For 1/2 < <v < 3/4 we have

ET 2(0, v) =
1

2πi

∫
(0)

F2k(v, s)ds+

√
2π22v Γ2(1/4 + v)

Γ(1/4)

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
L+
f (v − 1/4), (6.19)

where F2k(v, s) is defined by (6.13).

Proof. The function F2k(v, s) has a simple pole at s = −1/4 coming from ζ(1/2− 2s).
Moving the line of integration in (6.12) to σ = 0 we cross this pole, obtaining

ET 2(0, v) = − ress=−1/4 F2k(v, s) +
1

2πi

∫
(0)

F2k(v, s)ds. (6.20)

The right-hand side of (6.20) shows that ET 2(0, v) can be continued to the region <v > 1/2.
To prove (6.19) it remains to evaluate the residue. Using (6.13) we have

ress=−1/4 F2k(v, s) =
21/2+2vπ

Γ(1/4)
f̂2k(0, v;−1/4)L+

f (v − 1/4).

Applying (5.8) we prove the lemma.

Lemma 6.4. For 0 ≤ <v < 1/2 we have

ET 2(0, v) = ress=1/2−v F2k(v, s) +
1

2πi

∫
(0)

F2k(v, s)ds

+
√

2π22v Γ2(1/4 + v)

Γ(1/4)

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
L+
f (v − 1/4), (6.21)

where F2k(v, s) is defined by (6.13).

Proof. The function F2k(v, s) has a double pole at s = 1/2− v coming from L+
f,g(s+ v).

To prove the analytic continuation of ET 2(0, v) to the region <v < 1/2, we first change the
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contour of integration to

γ1 = (−i∞,−i=v − iε) ∪ Cε ∪ (−i=v + iε, i∞), (6.22)

where Cε is a semicircle in the right half-plane of radius ε. Consequently, we obtain

ET 2(0, v) = − ress=−1/4 F2k(v, s) +
1

2πi

∫
γ1

F2k(v, s)ds. (6.23)

The right-hand side of (6.23) provides the analytic continuation of ET 2(0, v) to the region
1/2− ε < <v < 1/2. Next, we decompose the contour γ1 as the sum of the line <s = 0 and the
contour γ2 = Cε ∪ (−i=v + iε,−i=v − iε). Since

1

2πi

∫
γ2

F2k(v, s)ds = ress=1/2−v F2k(v, s), (6.24)

we show that for 1/2− ε < <v < 1/2

ET 2(0, v) = ress=1/2−v F2k(v, s)− ress=−1/4 F2k(v, s) +
1

2πi

∫
(0)

F2k(v, s)ds. (6.25)

This concludes the proof.

Lemma 6.5. The following formula holds

ET 2(0, 0) =MND(0, 0) + ress=1/2−v F2k(v, s) +
1

2πi

∫
(0)

F2k(v, s)ds. (6.26)

Proof. Comparing (6.8) and (6.21), we find that in order to prove (6.26), it is required to
show that

√
2πΓ(1/4)L+

f (−1/4) =
23/2π

Γ(3/4)
L−g (1/4).

Since Γ(1/4)Γ(3/4) = π
√

2 we need to verify that

√
πL+

f (−1/4) = 21/2L−g (1/4),

and this follows from (3.10).

Lemma 6.6. For any ε > 0 we have

ET 2(0, 0) =MND(0, 0) +O

(
kε

k

)
, (6.27)

ET 2(0, 0)� k−1/2. (6.28)

Proof. This follows immediately from (6.26), (6.13), Lemma 5.3, Theorem 3.3 and the
estimate (5.13).
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6.2. Analysis of ET 1(u, v)

Lemma 6.7. Assume that 0 < <u < 1 and <v > 3/4 + <u/2 + max(θ(1− 2<u), 0). Then
the following formula holds

ET 1(u, v) = (2π)1/2+u21+2v×

1

2πi

∫
(σ)

 ∑
n≥1
n≡0(2)

∑
m≥1
m≡0(4)

+
∑
n≥1
n≡1(2)

∑
m≥1
m≡1(4)

 L−m(1/2 + u)

m1/2+v+sn1/2−u−2s
ĝ2k(u, v; s)ds, (6.29)

where 1/2−<v + max(θ(1− 2<u), 0) < σ < −1/4−<u/2.

Proof. Substituting (4.10) into (6.4) we show that

ET 1(u, v) =

∞∑
l=1

(2π)1/2+u

l1/2+v

∑
0<n<2

√
l

Ln2−4l(1/2 + u)

n1/2−u I2k

(
u;

n

l1/2

)
. (6.30)

It follows from (4.4) that I2k (u;x) ∼ x1/2−<u as x→ 0. Using this fact and applying (3.3), we
obtain

∞∑
l=1

1

l1/2+v

∑
0<n<2

√
l

Ln2−4l(1/2 + u)

n1/2−u I2k

(
u;

n

l1/2

)
�

∞∑
l=1

1

l1/2+<v
l1/2+max(θ(1−2<u),0)+ε

l1/4−<u/2
.

Therefore, the double series on the right-hand side of (6.30) converges absolutely provided
that <v > 3/4 + <u/2 + max(θ(1− 2<u), 0). Changing the order of summation in (6.30) and
making the change of variables −m = n2 − 4l, we have

ET 1(u, v) = (2π)1/2+u
∑
n≥1

∑
m≥1

m+n2≡0(4)

L−m(1/2 + u)21+2v

(n2 +m)1/2+vn1/2−u I2k

(
u;

2n

(n2 +m)1/2

)
.

Applying (5.3), we obtain

ET 1(u, v) = (2π)1/2+u21+2v

 ∑
n≥1
n≡0(2)

∑
m≥1
m≡0(4)

+
∑
n≥1
n≡1(2)

∑
m≥1

m≡−1(4)


× L−m(1/2 + u)

m1/2+vn1/2−u g2k

(
u, v;

m

n2

)
. (6.31)

Using the Mellin inversion formula for g2k

(
u, v;m/n2

)
we prove the lemma.

Lemma 6.8. For <v > 3/4 the following representation takes place

ET 1(0, v) =
1

2πi

∫
(σ)

G2k(v, s)ds, (6.32)

where 1/2−<v < σ < −1/4 and

G2k(v, s) = (2π)1/221+2v

((
1− 22s−1/2

) 2
√
π

Γ(3/4)
L−f (s+ v)−

−
(

1− 22s+1/2
) 4π1/2

21+2v+2sΓ(3/4)
L−g (s+ v)

)
ζ(1/2− 2s)ĝ2k(0, v; s). (6.33)
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Proof. Letting u = 0 in (6.29), we obtain for <v > 3/4 + θ

ET 1(0, v) = (2π)1/221+2v×

1

2πi

∫
(σ)

 ∑
n≥1
n≡0(2)

∑
m≥1
m≡0(4)

+
∑
n≥1
n≡1(2)

∑
m≥1

m≡−1(4)

 L−m(1/2)

m1/2+v+sn1/2−2s
ĝ2k(0, v; s)ds, (6.34)

where 1/2−<v + θ < σ < −1/4. It follows from (3.7) that∑
m≥1
m≡0(4)

L−m(1/2)

m1/2+v+s
=

4π1/2

41/2+v+sΓ(3/4)
L−g (s+ v). (6.35)

Recall that Ln(s) vanishes for n ≡ 2, 3 (mod 4). Consequently, using (3.6) and (6.35) we show
that ∑

m≥1
m≡−1(4)

L−m(1/2)

m1/2+v+s
=
∑
m≥1

L−m(1/2)

m1/2+v+s
−

∑
m≥1
m≡0(4)

L−m(1/2)

m1/2+v+s

=
2
√
π

Γ(3/4)
L−f (s+ v)− 4π1/2

41/2+v+sΓ(3/4)
L−g (s+ v). (6.36)

Applying (6.17), (6.18), (6.35) and (6.36) to evaluate (6.34), we prove (6.32).

Lemma 6.9. For 1/2 < <v < 3/4 the following formula holds

ET 1(0, v) =
1

2πi

∫
(0)

G2k(v, s)ds

−
√
π21+2v sin(πv)

Γ2(1/4 + v)

Γ(3/4)

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
L−f (v − 1/4), (6.37)

where G2k(v, s) is defined by (6.33).

Proof. The function G2k(v, s) has a simple pole at s = −1/4 from ζ(1/2− 2s). Moving the
line of integration in (6.32) to σ = 0 we cross this pole, getting

ET 1(0, v) = − ress=−1/4G2k(v, s) +
1

2πi

∫
(0)

G2k(v, s)ds. (6.38)

The right-hand side of (6.38) proves the analytic continuation of ET 1(0, v) to the region <v >
1/2. Then to complete the proof of (6.37), it remains to evaluate the residue. Using (6.33) we
have

ress=−1/4G2k(v, s) =
21/2+2vπ

Γ(1/4)
ĝ2k(0, v;−1/4)L−f (v − 1/4).

The lemma follows by applying (5.32).

Lemma 6.10. For 0 ≤ <v < 1/2 we have

ET 1(0, v) = ress=1/2−v G2k(v, s) +
1

2πi

∫
(0)

G2k(v, s)ds

−
√
π21+2v sin(πv)

Γ2(1/4 + v)

Γ(1/4)

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
L+
f (v − 1/4), (6.39)
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where G2k(v, s) is defined by (6.33) and

ress=1/2−v G2k(v, s) = M1(v) +M2(v), (6.40)

M1(v) =
25/2+2vπ

Γ(3/4)

[
c−f (−1)ζ(2v − 1/2)ĝ2k(0, v; 1/2− v)

(
1− 21/2−2v

)
+ c−f (−2)

(
ζ(2v − 1/2)

(
1− 21/2−2v

) ∂

∂s
ĝ2k(0, v; s)

∣∣∣∣∣
s=1/2−v

− 2ζ ′(2v − 1/2)ĝ2k(0, v; 1/2− v)
(

1− 21/2−2v
)

− ζ(2v − 1/2)ĝ2k(0, v; 1/2− v)23/2−2v log 2

)]
, (6.41)

M2(v) =
8π

Γ(3/4)

[
c−g (−1)ζ(2v − 1/2)ĝ2k(0, v; 1/2− v)

(
1− 22v−3/2

)
+ c−g (−2)

(
ζ(2v − 1/2)

(
1− 22v−3/2

) ∂

∂s
ĝ2k(0, v; s)

∣∣∣∣∣
s=1/2−v

− 2ζ ′(2v − 1/2)ĝ2k(0, v; 1/2− v)
(

1− 22v−3/2
)

+ ζ(2v − 1/2)ĝ2k(0, v; 1/2− v)22v−1/2 log 2

)]
. (6.42)

Proof. The function G2k(v, s) has a double pole at s = 1/2− v from L−f,g(s+ v). To prove
the analytic continuation of ET 1(0, v) to the region <v < 1/2 we apply [13, Corollary 2.4.2, p.
55]. Consequently, for <v < 1/2 we have

ET 1(0, v) = ress=1/2−v G2k(v, s)− ress=−1/4G2k(v, s) +
1

2πi

∫
(0)

G2k(v, s)ds. (6.43)

Then it follows from (6.33) that

ress=1/2−v G2k(v, s) =

25/2+2vπ

Γ(3/4)
ress=1/2−v

(
ζ(1/2− 2s)ĝ2k(0, v; s)

(
1− 22s−1/2

)
L−f (s+ v)

)

+
8π

Γ(3/4)
ress=1/2−v

(
ζ(1/2− 2s)ĝ2k(0, v; s)

(
1− 2−2s−1/2

)
L−g (s+ v)

)
. (6.44)

Let H(s) be an arbitrary function that is holomorphic at s = 1/2− v. Using (3.11), we obtain
the Laurent series

H(s)L−f,g(s+ v) =
c−f,g(−2)H(1/2− v)

(s+ v − 1/2)2

+
c−f,g(−1)H(1/2− v) + c−f,g(−2)H ′(1/2− v)

s+ v − 1/2
+O(1). (6.45)

Applying (6.45) to evaluate (6.44), we prove (6.40).
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6.3. Analytic continuation

Finally, we obtain the following decomposition for the mixed moment.

Theorem 6.11. For <v ≥ 0 we have

M(0, v) =MD(0, v) +MND(0, v) + ET 1(0, v) + ET 2(0, v), (6.46)

whereMD(0, v) is defined by (6.6) andMND(0, v) by (6.8). Furthermore, the terms ET 1(0, v)
and ET 2(0, v) are given by (6.32) and (6.12) for <v > 3/4, by (6.37) and (6.19) for 1/2 < <v ≤
3/4 and by (6.39) and (6.21) for 0 ≤ <v < 1/2.

Proof. In order to prove the theorem, it remains to show that the right-hand side of (6.46)
is holomorphic for <v ≥ 0. More precisely, we need to consider points v = 3/4 and v = 1/4.
The only summands on the right-hand side of (6.46) that are not holomorphic at v = 3/4 come
from (6.37) and (6.19), namely:

√
2π22v Γ2(1/4 + v)

Γ(1/4)

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
L+
f (v − 1/4)−

−
√
π21+2v sin(πv)

Γ2(1/4 + v)

Γ(3/4)

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
L−f (v − 1/4) =

=
√
π22vΓ2(1/4 + v)

Γ(2k − 1/4)Γ(2k − v)

Γ(2k + 1/4)Γ(2k + v)
×( √

2

Γ(1/4)
L+
f (v − 1/4)− 2 sin(πv)

Γ(3/4)
L−f (v − 1/4)

)
. (6.47)

Therefore, to prove that the right-hand side of (6.46) is holomorphic at v = 3/4, it is sufficient
to show that

√
2

Γ(1/4)
L+
f (v − 1/4)− 2 sin(πv)

Γ(3/4)
L−f (v − 1/4) (6.48)

is holomorphic at v = 3/4. Using Theorem 3.2 and the asymptotic formula

sin(πv) =
1√
2
− π(v − 3/4)√

2
+O((v − 3/4)2),

we obtain

√
2

Γ(1/4)
L+
f (v − 1/4)− 2 sin(πv)

Γ(3/4)
L−f (v − 1/4) =

=
1

(v − 3/4)2

(
c+f (−2)

√
2

Γ(1/4)
−
c−f (−2)

√
2

Γ(3/4)

)
+

+
1

v − 3/4

(
c+f (−1)

√
2

Γ(1/4)
−
c−f (−1)

√
2

Γ(3/4)
+
c−f (−2)π

√
2

Γ(3/4)

)
+O(1) = O(1). (6.49)

Thus the right-hand side of (6.46) is holomorphic at v = 3/4.
The only summands on the right-hand side of (6.46) that are not holomorphic at v = 1/4

come from (6.8) and (6.40), namely

MND(0, v) + ress=1/2−v G2k(v, s).
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Let us consider the M1(v) part of ress=1/2−v G2k(v, s) given by (6.41). Using (5.34) and
(5.35), we obtain a Laurent series for M1(v) at the point v = 1/4:

M1(v) =
25/2π

Γ(3/4)
c−f (−2)

(
ζ(2v − 1/2)

(
22v − 21/2

) ∂

∂s
ĝ2k(0, v; s)

∣∣∣∣∣
s=1/2−v

− 23ζ(0) log 2

2v − 1/2

Γ(2k − 1/4)

Γ(2k + 1/4)

)
+O(1). (6.50)

Using (5.35) and the fact that

ζ(2v − 1/2)
(

22v − 21/2
)

= (2v − 1/2)ζ(0)21/2 log 2 +O((2v − 1/2)2),

we show that M1(v) = O(1) as v → 1/4.
Let us consider the M2(v) part of ress=1/2−v G2k(v, s) given by (6.42). Applying (5.34), we

obtain

M2(v) =
8π

Γ(3/4)
c−g (−2)ζ(2v − 1/2)

(
1− 22v−3/2

) ∂

∂s
ĝ2k(0, v; s)

∣∣∣∣∣
s=1/2−v

+
1

2v − 1/2

8π

Γ(3/4)

Γ(2k − 1/4)

Γ(2k + 1/4)

(
c−g (−1)ζ(0)21/2

+ c−g (−2)

(
−23/2ζ ′(0) + ζ(0)23/2 log 2

))
. (6.51)

In order to evaluate a Laurent series for the remaining term we use (5.35) together with the
following formula

ζ(2v − 1/2)
(

1− 22v−3/2
)

=
ζ(0)

2
+
ζ ′(0)− ζ(0) log 2

2
(2v − 1/2) +O((2v − 1/2)2).

Consequently,

M2(v) =
8π

Γ(3/4)

Γ(2k − 1/4)

Γ(2k + 1/4)

c−g (−2)23/2ζ(0)

(2v − 1/2)2
+

+
8π

Γ(3/4)

Γ(2k − 1/4)

Γ(2k + 1/4)

c−g (−1)21/2ζ(0)

2v − 1/2
+O(1). (6.52)

It follows from (6.8) and (3.11) that

MND(0, v) =
27/2π

Γ(3/4)

Γ(2k − 1/4)

Γ(2k + 1/4)

c−g (−2)

(2v − 1/2)2
+

+
25/2π

Γ(3/4)

Γ(2k − 1/4)

Γ(2k + 1/4)

c−g (−1)

2v − 1/2
+O(1). (6.53)

Since M1(v) = O(1), applying (6.52) and (6.53) we conclude that the sum

MND(0, v) + ress=1/2−v G2k(v, s),

and consequently the right-hand side of (6.46), are holomorphic at v = 1/4.

Lemma 6.12. The following asymptotic formula holds

ress=1/2G2k(0, s) =MD(0, 0) +O(k−2). (6.54)
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Proof. We compare the leading terms. It follows from (2.6) that

2ψ(2k) = ψ(2k − 1/4) + ψ(2k + 1/4) +O(k−2). (6.55)

Therefore, (6.6) implies that the leading term of MD(0, 0) is equal to

ζ(3/2)ψ(2k). (6.56)

Let us compute the leading term of ress=1/2G2k(0, s). It follows from (5.34) and (5.35) that
the leading term is

2ψ(2k)
16π

Γ(3/4)

(
c−f (−2)(1−

√
2)ζ(−1/2)Γ(−1/2)+

+ c−g (−2)(
√

2− 1/2)ζ(−1/2)Γ(−1/2)

)
. (6.57)

Using the functional equation for the Riemann zeta function, we have

ζ(−1/2)Γ(−1/2) =
ζ(3/2)

2
√
π
.

Consequently, the leading term of ress=1/2G2k(0, s) is as follows:

ψ(2k)ζ(3/2)
16
√
π

Γ(3/4)

(
c−f (−2)(1−

√
2) + c−g (−2)(

√
2− 1/2)

)
. (6.58)

Finally, applying (3.14), we find that (6.58) is equal to (6.56).

6.4. Proof of main theorems

Proof of Theorem 1.1. Asymptotic formula (1.5) is a direct consequence of (6.46) for v = 0.
More precisely, we replace ET 2(0, v) by (6.27), ET 1(0, v) by (6.39), and apply (6.54).

Proof of Theorem 1.2. Consider (1.5) and note that all summands except the integral can
be trivially bounded by log k. The final step is to show that

1

2πi

∫
(0)

G2k(0, s)ds� log k3. (6.59)

In view of (6.33), it is required to estimate

I :=
1

2πi

∫
(0)

L−f,g(s)ζ(1/2− 2s)ĝ2k(0, 0; s)ds. (6.60)

Let r = =s. By Lemma 5.8 the contribution of |r| > 3k is negligible.
Consider |r| ≤ 3k. Let δ be some fixed constant such that 0 < δ < 1/4. For |r| < k1/2−δ we

use the trivial bound (5.45) showing that

I =
1

2π

∫
k1/2−δ<|r|<3k

L−f,g(ir)ζ(1/2− 2ir)ĝ2k(0, 0; ir)dr + o(1). (6.61)

Next, we apply Lemma 1.3, Theorem 3.3, the following estimate for the second moment of the
Riemann zeta function ∫T+H

T

|ζ(1/2 + ir)|2dr � H log T (6.62)

over short intervals H � T 1/3, and the Cauchy-Schwarz inequality. Consequently, we prove
that the contribution of the second summand on the right-hand side of (1.16) to (6.61) is
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negligibly small and

I �
∫3k

k1/2−δ
|L−f,g(ir)ζ(1/2− 2ir)| 1

k5/6
min

(
1,

k1/12

|k− 4r|1/4

)
dr + 1. (6.63)

Opening the minimum we obtain three integrals:∫r2
r1

|L−f,g(ir)ζ(1/2− 2ir)|
k3/4|k− 4r|1/4

dr +

∫r3
r2

|L−f,g(ir)ζ(1/2− 2ir)| dr
k5/6

+∫r4
r3

|L−f,g(ir)ζ(1/2− 2ir)|
k3/4|k− 4r|1/4

dr, (6.64)

where r1 = k1/2−δ, r2 = k/4− k1/3, r3 = k/4 + k1/3, r4 = 3k. To estimate the second integral
we apply the Cauchy-Schwarz inequality, Theorem 3.3 and (6.62), getting∫r3

r2

|L−f,g(ir)ζ(1/2− 2ir)| dr
k5/6

� log5/2 k

k1/6
. (6.65)

Let us now consider the first integral in (6.64). Applying the Cauchy-Schwarz inequality and
Theorem 3.3, we obtain∫r2

r1

|L−f,g(ir)ζ(1/2− 2ir)|
k3/4|k− 4r|1/4

dr � log2 k

k1/4

(∫r2
r1

|ζ(1/2− 2ir)|2

|k− 4r|1/2
dr

)1/2

. (6.66)

Making the change of variable k− 4r = x, and then performing a dyadic partition of unity, we
prove using (6.62) that ∫r2

r1

|ζ(1/2− 2ir)|2

|k− 4r|1/2
dr � k1/2 log2 k, (6.67)

where one of the logarithms comes from the partition of unity. Substituting (6.67) into (6.66)
we obtain ∫r2

r1

|L−f,g(ir)ζ(1/2− 2ir)|
k3/4|k− 4r|1/4

dr � log3 k. (6.68)

Finally, the third integral in (6.64) can be estimated in the same way as the first one. This
completes the proof.
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