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We study the algebra of the arithmetic of integer matrices. A link is established
between the divisor classes of matrices and lattices. The algebra of arithmetical
functions of integral matrices is then shown to be isomorphic to an extension of the
Hecke algebra, also called a Hall algebra in combinatorics. The dictionary helps
translate results from one setting to another. One important application is the
study of subgroups of a finite abelian group. Q 1998 Academic Press

I. INTRODUCTION

ŽAlthough integral matrices have been intensively studied see, for in-
w x w x w x w x.stance, H , Ne , N4 , T3 and some arithmetical notions like GCD and

divisibility have been introduced, the set of divisor classes of a given matrix
still remains unsatisfactorily understood; in this paper we wish to fill this
gap. Let M be the algebra of r = r matrices with coefficients in Z. Wer
shall pay special attention to nonsingular matrices, i.e., to In¨ , the subsetr

Ž .of M consisting of those matrices M for which det M / 0. The set ofr
Ž Ž . .invertible elements UU some authors use GL Z instead , which is ther r

Ž .subset of M consisting of matrices M verifying det M s "1, willr
feature prominently in our discussion. Although we do not do so in this
paper, we could as well have worked with singular matrices, the arithmetic

w xof which would be adapted on the lines of BN .
We recall that if M is in In¨ , a left divisor class of M is an integralr

matrix A that is a canonical representative of A ? UU for which there existsr
an integral matrix B such that AB s M. In particular, we take A in
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Ž .Hermite Normal Form HNF . We use the notation A N M to indicate
Ž .divisibility. The set containing left divisor classes of M is denoted by

Ž .LD M and is known to be of finite cardinality.
The classical way to study the arithmetic of commutative structures is

through the description of ideals of M . This approach is not obviouslyr
adapted to noncommutative situations, and in this paper we shall derive
information from the action of M over Z r. To do so, we choose a basis BBr
of Z r and identify a matrix M with the endomorphism w whose matrix inM

Ž r .BB is M. We consider the image M Z , which depends only on the
Ž .unimodular class of M, i.e., the HNF of M and its cokernel G M s

r Ž r . ŽZ rM Z . If we wished to study singular matrices as well, we would take
. Ž .only the torsion part of the cokernel. It is known that G M is a finite

abelian group independent of the chosen basis, and its invariant factors
are the same as that of M.

w xNotwithstanding partial efforts like those of Hua H, Chap. 14 or
w xThompson T2, T3 , in the past matrices have been used only as a tool in

Ž w x w x.the study of finite abelian groups see, e.g., B , Ne, II.21.a without any
formal connection having been established. Here we prove

THEOREM 1.1. Let M g In¨ . The arrowr

D : LD M ª subgroups of G M ,� 4Ž . Ž .
A ¬ A Z r rM Z rŽ . Ž .

Ž Ž . Ž ..is one-to-one and order-preser̈ ing i.e., if A N A then D A > D A .1 l 2 1 2
Ž y1 . Ž .Furthermore, G A M ( D A .

As an immediate corollary we get

COROLLARY 1.2. The number of dï isor classes of M g In¨ is equal tor
Ž .the number of subgroups of G M .

The interpretation of divisor classes in terms of lattices and finite groups
has other applications. The left GCD D and right multiple M of A andl r

Ž r . Ž r . Ž r . Ž r .B in In¨ can be defined simply as D Z s A Z q B Z and M Z sr l r
Ž r . Ž r .A Z l B Z . This enables us to give another proof of a recent result of

Ž w x w x .Thompson see T1 and N1 for two other proofs on the classical lines of
Grassman’s formula.

Ž . Ž . Ž . Ž .COROLLARY 1.3. G A = G B ( G D = G M .l r

Ž .As another important application, we determine ind S , the index of a
matrix S, which is the number of Hermite Normal Forms H having a
given Smith Normal Form S. We recall that S is a canonical representative
of UU ? H ? UU .r r



BHOWMIK AND RAMARÉ196

Ž .COROLLARY 1.4. Let p be a prime number and l s l , . . . , l be a1 r
partition. The number of Hermite Normal Forms whose Smith Normal Form

Ž lr l1.is diag p , . . . , p is gï en by

Xr Xl1Ý l Ž ryl .is1 iq1 iX X X X X p ,l y l , l y l , . . . , l1 2 2 3 l1 p

X w xwhere l is the conjugate partition of l and . . . is the gaussian multino-p
mial.

We shall see that this index function is the classical homomorphism
from an abstract Hecke algebra to C.

It is well known that if G is a finite abelian p-group, there exist positive
integers l G l G ??? G l such that G is isomorphic to Ł ZrpliZ. The1 2 s i

Ž . Žpartition l s l , . . . , l is called the type of G also sometimes called its1 s
.Segre characteristic . A subgroup H of G has a type m and a cotype n ,

Žw x.which, by definition, is the type of GrH. Klein K has shown that there
exists a polynomial g l with integer coefficients such that the number ofm, n

l Ž .subgroups of G of type m and cotype n is g p . These polynomials arem, n

called Hall polynomials. The corresponding notion for matrices is the
notion of invariant factors. If M g In¨ has a determinant that is ar
power of a prime p, then UU ? M ? UU contains a unique diagonal matrixr r

Ž lr l1.diag p , . . . , p with l G ??? G l . This representative is called the1 r
Ž .Smith Normal Form of M and is denoted by SNF M . As a corollary to

Theorem 1.1, we get

COROLLARY 1.5. Let p be a prime number, let M g In¨ be of determi-r
nant a power of p, and let m and n be partitions of length r. We put

Ž . Ž lr l1.SNF M s diag p , . . . , p . Then the number of dï isors A of M such that
Ž . Ž m r m1. Ž y1 . Ž n r n1.SNF A s diag p , . . . , p and SNF A M s diag p , . . . , p is

l Ž .equal to g p .m, n

w xIn T3 Thompson established that the two quantities under considera-
tion are simultaneously nonzero. In the same paper Thompson addresses
the following important problem: given three finite abelian groups G, H,
and K, what would be the necessary and sufficient conditions in terms of
divisibility relations between the invariant factors of these three groups for
K to be a subgroup of G with GrK ( H. In the same paper Thompson
proves some intricate inequalities necessarily verified by these invariant
factors. A necessary and sufficient condition is of course given by the
nonvanishing of the corresponding Hall polynomial and in turn by the
existence of a rather intricate combinatorial object called a Littlewood]

Ž .Richardson sequence hereafter abbreviated as LR-sequence . We shall
describe LR-sequences in a way that helps us give simpler proofs for some
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of Thompson’s results. Note that links between the arithmetic of matrices
and that of partitions have been shown earlier in some special situations
Ž w x w x w x w x w x.see N2 , B0 , B3 , Ne , and M .

In the final part of this paper we interpret arithmetical functions of
matrices in the context of divisibility in terms of lattices. A function f :

Ž .In¨ ª C is said to be arithmetical whenever f A depends only on ther
Smith Normal Form of A. This formalization helps us determine the
pointwise value of arithmetical functions that are given as a convolution of

Žtwo simpler functions for instance, the number of divisors of a given
. w x Žmatrix . Pointwise evaluations have been treated in C for the symmetric

. w x ŽEuler-f function , in N2 for the norm, the t-norms, Euler-f functions,t
. w x w x Ž .and Mobius function , in RS and N3 for Ramanujan sums , and more¨

w x Ž .recently in B3 for the divisor function . A unified account of these
w xresults will be found in BN . Since these quantities are often difficult to

evaluate, it is of interest to have a description that enables us to compare
them or to have an idea of their forms. With this aim we shall give
formulas for the Dirichlet series of a convolution product of two functions

Ž w x.in the context of the Hall algebra generalizing the result of BR .
We shall finally use the divisor class]sublattice correspondence to deal

w xwith the algebra of arithmetical functions as defined in N4 . Note, how-
w xever, that unlike in N4 , we restrict our attention to r = r integral

matrices with nonzero determinant to get a more complete description.
We shall identify in a natural way the ‘‘p-component’’ of this algebra as
the completion of the abstract Hecke algebra built over In¨ and ther , p

Ž w x.unimodular group see Kr , where In¨ is the set of r = r integerr , p
matrices whose determinant is a power of p. From this we shall deduce
that this p-component is isomorphic to the algebra of formal power series
with r indeterminates over C. As a further consequence we shall get

THEOREM 1.6. The ring of arithmetical functions is isomorphic as a
C-algebra to the ring of formal power series in countably many unknowns
o¨er C.

From the above we infer that this ring does not have any zero divisors
Ž Ž w x.and that it is factorial a property shown by Cashwell and Everett cf. CE

.while studying the case r s 1 .

II. NOTATIONS

Let r G 1 be the dimension.

� 4M s integer r = r matrices with coefficients in Z ,r

In¨ s M g M rdet M / 0 , UU s M g M rdet M s "1 .� 4 � 4Ž . Ž .r r r r
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We need similar notations for the p-primary components when p is a
prime number. We will use M to denote the set of matrices ofr , p
determinant "pn, n g N, and

In¨ s M g M rdet M / 0 .Ž .� 4r , p r , p

< < < <We finally put M s det M .
Ž .Any M g In¨ is equivalent over Z to a unique diagonal matrix diag a ,r i

where a is a positive integer, and a N a , which we call its Smith Normali i iq1
Ž . Ž .form or SNF. We shall also write SNF M s a . If RR is a free Z-modulei

Ž .of rank r and e , . . . , e is a basis of RR, then M g In¨ can be considered1 r r
Ž r . Ž . Ž . Ž r .as a mapping. If M Z s M RR , then the cokernel G M s RRrM Z is

a finite abelian group. It has a unique decomposition of the form
r Ž .Ł Zra Z with a N a . We shall call diag a its Smith Normal Form or,is1 i i iq1 i

Ž r .when required, we shall call it the SNF of M Z . It is of course equal to
Ž . Ž .SNF M and does not depend either on RR or on e , . . . , e . Where only1 r

li Ž .p-groups are concerned, we have a s p , and we shall call l thei ryiq1
Ž Ž . Ž r ..type of M or of G M or of M Z .

Ž .A partition is a sequence l s l , l , . . . , l , 0, 0, . . . with l G l ,1 2 t i iq1
l g N. For a partition l we let lX denote its conjugate partition andi

Ž . Ž .define n l s Ý i y 1 l . We associate the following diagram with ai i
Ž .partition: build a vertical line i.e., a column of l squares; to the right of1

this column put a column of l squares with its upper end level with that2
of the previous column, and so on. We thus get a triangular shape

< <containing l s l q l q ??? squares.1 2

III. AN INTERPRETATION IN TERMS OF LATTICES

In this section we interpret the divisibility of matrices in terms of lattices
and define the left GCD and right LCM in this context.

Ž r .We denote the category of our objects by VV Z , the set of all lattices
Ž . r Ž r .[ submodules of rank r of Z . If V and V are two elements of VV Z ,1 2
then the morphisms between V and V are defined as the Z-linear1 2

r r Ž .mappings from Z to Z of rank r such that w V ; V . We let Ab1 2 r
denote the category of abelian torsion groups that are free products of r
cyclic groups equipped with the usual morphisms.

Ž r . rWe consider the functor VV Z ª Ab , which associates Z rV withr
Ž r .every module V of VV Z and transforms a morphism g from V to V1 2

into

g U : Z rrV ª Z rrV1 2

x ¬ g x .Ž .
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We have

LEMMA 3.1. E¨ery morphism f : Z rrV ª Z rrV can be written as f s g U
1 2

Ž .with g g In¨ and g V ; V . Moreo¨er, f is injectï e if and only ifr 1 2
Ž . Ž r .g V s V l g Z .1 2

Ž . r Ž .Proof. Let e , e , . . . , e be a basis of Z such that a e , . . . , a e is a1 2 r 1 1 r r
Ž . r Ž .basis of V , and let e , e , . . . , e be a basis of Z such that b e , . . . , b e1 1 2 r 1 1 r r

is a basis of V . We can write2

r

f e s m q b Z e j s 1, . . . rŽ . Ž .Ž .Ýi i j j j
js1

for some choice of m . Let N be a large integer parameter. We modifyi j
the m into mX by mX s m q b N. If N is taken large enough, thei j i j i i i i i

Ž . r Xdeterminant of the map g e s Ý m e for i s 1, . . . r is asymptotic toi js1 i j j
N rb ??? b and thus is nonzero if N G N , say. We take N s N , and1 r 0 0

Ž . Ž . Ž .verify further that g x s f x . Moreover, f 0 s 0, so that g V ; V .Ž . 1 2

Ž r . Ž .To describe Hom Z , V we define Epi V , V as the subset of1 1 2
Ž . Ž .Hom V , V consisting of elements g such that g V s V . We also let1 2 1 2

Ž . Ž . Ž .Iso V s Epi V, V . Every element of Iso V induces an isomorphism on
Ž .V since its determinant is "1 . We have

Ž r . Ž r .LEMMA 3.2. If g g Epi Z , V and c g Hom Z , V then there exists
Ž r r .k g Hom Z , Z such that c s gk .

r Ž . rProof. For any x in Z , c x is in V. Thus there exists a unique y in Z
Ž . Ž .such that g y s c x .

Ž r . Ž r . Ž r r .LEMMA 3.3. Let g g Epi Z , V . Then Hom Z , V s g (Hom Z , Z .0 0

Proof. One inclusion is clear. For the other let BB be a basis of Z r and
Ž r . Ž . Ž .g g Hom Z , V . Then g BB can be expressed in terms of g BB . Hence0

the result.

Ž . rLet us fix a basis BB s e , e , . . . , e of Z . With any M g M we1 2 r r
associate the linear mapping w of Z r, whose matrix is M in BB andM
Ž r . Ž r .M Z s w Z . Whenever convenient, we shall write M instead of w .M M

Ž . r Ž r . Ž .We also define G M s Z rM Z . It is well known that G M is in
one-to-one correspondence with the SNF of M.

We now define divisors:

Left Dï isors: V is a left divisor of V iff V ; V . The set of left1 2 2 1
Ž . Ž .divisors of V will be denoted by LD V . Note that LD V is naturally

ordered by inclusion.
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Weak Complementary Dï isors: Let V and V be two submodules of1 2
Z r. We say that UU ? V is a weak complementary divisor of V if therer 1 2

Ž .exists g g Epi V , V . Such a definition would make sense only if V s1 2 1
Ž X . Ž .u V for u g UU , and if for a morphism g of Epi V , V the map belongs1 r 1 2

Ž X .to Epi V , V . The set of weak complementary divisors of V will be1 2
Ž .denoted by WCD V .

Ž .Furthermore, for M g In¨ , we let LD M be the set of left divisorr
classes of M. This set is naturally ordered by divisibility. We now describe
the links between these three sets of ‘‘divisors.’’ To this end we define the
three following arrows:

Q : LD M , N ª LD M Z r , > ,Ž . Ž .Ž . Ž .Ž .
M ? UU ¬ M Z r ,1 r 1

˜ rQ : LD M Z , > ª LD M , N ,Ž . Ž .Ž . Ž .Ž .
V ¬ M ? UU ,1 1 r

and
C : LD M ª WCD M Z r ,Ž . Ž .Ž .

M ? UU ¬ UU ? My1M Z r ,Ž .1 r r 1

Ž r .where M is the matrix in BB of any u g Epi Z , V . We show that these1 1
arrows are well defined. This is clearly so for Q and C. We note also that

˜C depends only on the HNF of M and that Q is well defined by Lem-
ma 3.3.

˜ ˜ ˜rWe check that Q(Q s Id and Q(Q s Id , so that Q sLD ŽM . LDŽM ŽZ ..
Qy1. We show that C is a surjection by taking an element of

Ž Ž r .. Ž Ž r ..WCD M Z , UU ? V , and one of Epi V , M Z and then letting V sr 2 2 1
Ž r . Ž r . y1 rg Z > M Z . We then have g w Z s V , as required.M 2

˜ < <Finally, we prove that Q and Q are order-preserving. Let M M M.1 2
Ž r . Ž r .Then M s M N for some N g In¨ , which implies M Z ; M Z , as2 1 r 2 1

Ž r . Ž r .required. Conversely, if M Z > M Z , then M N M by the sheer fact1 2 1 2
˜that the mapping Q associated with M is well defined.2

˜We have thus proved a sharper form of Theorem 1.1, i.e., Q and Q are
one-to-one and order-preser̈ ing and are in¨erses of one another. Furthermore,
C is a surjection.

y1 ˜We will henceforth use Q instead of Q. In fact, a bit more can be
said, since C actually identifies the SNF of the complementary divisor.

THEOREM 3.4. Let V be a left dï isor of V and choose V so that1 2
y1Ž . Ž . Ž r .CQ V s UU ? V . Then there exists g g Epi V , V l Epi Z , V . For1 r 2 2 1

Ž .any such choice V , g , we ha¨e an exact sequence,2
gU

r r r0 ª Z rV ª Z rV ª Z rV ª 0.2 1
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Proof. With obvious notations we have UU ? V s UU ? My1MZ r. Thusr 2 r 1
y1 r y1 Ž .V s u( M MZ and g s M (u is a point of Epi V , V such that2 1 1 2

Ž r . U U Ž r .g Z s V . Thus g is injective and g Z rV s V rV, which proves1 2 1
the exactness of the above sequence.

Theorem 3.4 tells us that V rV is isomorphic to the SNF of the1
complementary divisor.

COROLLARY 3.5. The number of dï isor classes M of M such that1
Ž . Ž y1 .SNF M s S and SNF M M s S is equal to the number of subgroups1 1 1 2

Ž . Ž . Ž . Ž .G of G M such that G ( G S and G M rG ( G S .2 1

Furthermore, we have Corollary 1.2.
Ž .We now consider lattices V verifying w V ; V for every w g

Ž r r . rHom Z , Z . It is easily seen that the lattices mZ verify this property and
that they are the only ones to do so. Furthermore, given any lattice V, we

Ž . r Žhave V > det V Z corresponding to the fact that any algebraic extension
.of Q is contained in a Galois extension . This property extends to several

lattices, so that the intersection of two lattices is yet another lattice. We
shall call such lattices diagonal lattices whose mere existence is enough to
prove Corollary 1.4.

Proof of Corollary 1.4. For this proof we need the material presented in
Section IV. Let m s g q ??? qg . The HNF’s we are looking for are the1 r

m r Ž .lattices L contained in p Z whose cotypes are n s g , . . . , g . It is thusr 1
Žm , . . . , m.Ž . Ž .the sum over all possible types a of g p cf. Section IV . The firsta , n

part of the theorem follows readily. To get the precise expression, we
l l Žfirst use the fact that g s g , and then use Birkhoff’s result Proposi-m, n n , m

.tion 4.5 .

We note, finally, that this index is an important quantity in Hecke
w xalgebras. Following Krieg Kr , it would already have been possible to show

that the index is a polynomial in p.
One obtains that the index is a homomorphism from HH to Z, and that HHr r

is a polynomial algebra generated by some T , . . . , T for which we knowr , 0 r , r
rŽ . Žthat ind T s . See Remark 7.3.b, Proposition 7.2 and Theorem 8.1r , j j p

w x .of Chapter 5 as well as Corollary 4.5 of Chapter 1 of Kr . Obtaining the
degree of the polynomial by this approach does not seem to be easy.

We shall give definitions of left GCD and right LCM in terms of lattices.

v Given A and B in In¨ , there exists a D , unique up to multiplica-r l
Ž r . Ž r .tion on the right by a unimodular matrix, such that A Z q B Z s

Ž r . ŽD Z which is, by the way, the analogue of the definition given inl
w x.H, Theorem 9.7, Chap. 14 .



BHOWMIK AND RAMARÉ202

v
r r rŽ . Ž . Ž .Similarly, A Z l B Z s M Z , where M is a right commonr r

Žmultiple this intersection is yet another lattice by virtue of the remark
.following Corollary 3.5 . Note that we have the exact sequence

0ªG M ªG A = G B ªG D ª 0Ž . Ž . Ž . Ž .r l

x ¬ x , yxŽ .
x , y ¬ x q y ,Ž .

which finally yields Corollary 1.3; although first we need two auxiliary
results on the ranks of finite abelian groups.

LEMMA 3.6. If H is a subgroup of a finite abelian group G, there exists H ,0
a direct factor of G, of the same rank as H, such that H ; H ; G.0

Proof. We lift the situation in Z r where the rank of G is r. We take
V ; Z r such that Z rrV ( G and denote this surjection by s. Now there

r r Ž .exists a submodule W of Z such that V ; W ; Z and s W s H with
Ž . Ž . Ž . rrank W s rank H . We can find a basis e , . . . , e of Z for which there1 r

exist integers a , . . . , a such that W s Ýr Z ? a e . With a suitable re-1 r is1 i i
ordering of the e -s we could assume that for i F t, t being the rank of H,i
a / 0 and that a s ??? s a s 0. We set W s Ýt Z ? e and W si tq1 r 0 is1 i 1
Ýr Z ? e , so that Z r s W [ W and W ; W . From this we infer thatis tq1 i 1 0 0

Ž . Ž .G s s W q s W . To prove that this sum is direct, we simply show that1 0
Ž . Ž .W q V l W q V s V. Let w s w q ¨ . Then ¨ s ¨ q ¨ . This1 0 1 0 1 0

Ž .gives w y ¨ s w q ¨ s 0. Hence w s ¨ g V. Now H s s W satis-1 1 0 0 1 1 0 0
fies our requirement.

Ž .LEMMA 3.7. Let G, H, K be finite abelian groups with rank G G
Ž . Ž .rank H q rank K . If there exists an exact sequence

f g
0 ª H ª G ª K ª 0,

then G ( H = K.

Ž .Proof. By Lemma 3.6 we can write G s H [ H, where H > f H0 0
Ž Ž 1 1.and is of the same rank as H. With obvious notations, let g k q k ,1 0

Ž s s .. Ž 1 s.. . . , g k q k be a basis of K. But k , . . . , k generates H , for the1 0 1 1 1
cardinality of the subgroup of H generated by the above elements is the1

² 1 1cardinality of K and hence of H . Let H be generated by k q k ,1 2 1 0
s s:. . . ,k q k . We check that H q H s G.1 0 2 0

To prove that the above sum is direct, we use the fact that

dim H rpG q dim H rpG F dim GrpG ,Ž . Ž . Ž .2 0

� 4which gives H l H s 0 . Thus H [ H s G. By definition H ( K.2 0 2 0 2
Ž . Ž .Hence g H s 0, i.e., H s Ker g s f H .0 0
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Proof of Corollary 1.3. We notice that D is a GCD of A and B if andl
only if pD is a GCD of pA and pB. The same is true for LCM. We canl

Ž . Ž .thus assume the ranks of both G A and G B to be equal to r. Since the
Ž . Ž .ranks of G D and G M are at most r, the conclusion follows.l r

w xWe note that other proofs of Corollary 1.3 can be found in T1 and
w x Ž . Ž . Ž . Ž .N1 , and that by duality we also obtain G A = G B ( G D = G M .r l

IV. PARTITIONS AND MATRICES

Throughout this section p is a fixed prime number. We study some links
between partitions and matrices and start with a description of the LR-
sequence of a subgroup H of an abelian p-group G. By the structure

Žtheorem of finite abelian groups which can easily be derived from the
.study above , G is isomorphic to a group.

Zrpl1Z = ??? = ZrplrZ l G l G ??? G l .Ž .1 2 r

w x w xFollowing K and M , we define the type of G as being the partition
Ž . Ž .l G s l , . . . , l . Given a subgroup H of G, we have access to its type1 r
Ž . Ž .l H and to its cotype l GrH . Further invariants are obtained by taking
Ž i .l Grp H for i G 0.
We now need to recall the definition of a LR-sequence. A LR-sequence

Ž . Ž Ž1. Ž s..of type m, n ; l is an increasing sequence l , . . . , l of partitions with
lŽ1. s m and lŽ s. s l. A third batch of properties involving n is also
imposed. To explain it we build the diagram associated with lŽ1.

Ž .cf. Section II and write 0 over all of the squares. On top of this diagram,
put the one for lŽ2., with the upper left corners of the two diagrams coin-
ciding. Write 1 over the new squares created. Continue in this way with
lŽ3., . . . , lŽ s.. We end up with a diagram representing l s lŽ s., where the
squares are numbered 0 to s y 1. We assume the following properties to
hold true:

Ž . Ž .i When a horizontal line i.e., a row is read from left to right, the
symbols are weakly increasing.

Ž . Ž .ii When a vertical line i.e., a column is read from top to bottom,
Ž .starting after the last 0, the symbols if any are strictly increasing.

Ž .iii For any i G 1 and any k G 1, the number of symbols in the last
Ž .k columns starting from the left is not less than the number of symbols

i q 1.
Ž .iv For any i G 1, the number of symbols i in the whole diagram

is n X.i
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As a useful additional property, one checks that

Ž . Ž .v The k th row starting from the top contains some or all of the
symbols 0, 1, . . . , k.

Given such a diagram, its north is the top of the page, its east is the
right-hand side of the page, and so on. Here is an example of an

ŽŽ . Ž . Ž ..LR-sequence of type 3, 2, 1 , 6, 4, 3, 1 ; 7, 6, 6, 2 :

0 0 0 1

0 0 1 2

0 0 2

1 1 3

2 3 4

3 4 5

6

The LR-sequence itself is the sequence of partitions

3, 3, 1 , 4, 4, 2, 1 , 5, 4, 3, 2 , 6, 5, 4, 2 ,Ž . Ž . Ž . Ž .Ž
6, 6, 5, 2 , 6, 6, 6, 2 , 7, 6, 6, 2 .Ž . Ž . Ž . .

We define a string of length k as being a line linking symbols k, k y
1, . . . ,1, with exactly one of these symbols, each segment of this line being
oriented between north and northeast. We now have

Ž .LEMMA 4.1. Gï en a LR-sequence of type m, n ; l , it is possible to build
n X strings such that each symbol G 1 belongs to a string and that two distinct1
strings do not intersect.

Proof. We prove this lemma by recursion on the highest symbol k. For
k s 1, it is trivial. Let us suppose our strings to be built until the symbol k,
and let us add the symbol k q 1. Take the symbol k q 1, which is the most
east, say square S. Then there exists a symbol k north and east of S by

Ž . Ž . Ž .property iii . Such a symbol is forcibly north of S by i and ii . We take
the easternmost of such symbols. We continue in a similar fashion.

Ž w x.Green cf. G has shown that the sequence

S H s l GrH , l GrpH , . . . , l GrpsH s l GŽ . Ž . Ž . Ž . Ž .Ž .
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Ž Ž . Ž . Ž ..for a large enough s is a LR-sequence of type l H , l GrH ; l G . We
shall count subgroups according to their LR-sequence. It would be inter-
esting to describe such classes. In this direction we have

CONJECTURE 4.2. Let p be a prime number. Let G be a finite abelian
p-group and H and K be two of its subgroups. Then there exists an

Ž .automorphism s of G such that s H s K if and only if H and K have
the same LR-sequence.

ŽNote that in the Appendix we prove this conjecture for some special
.cases.

ŽWe recall the following theorem announced by P. Hall in the 1950s it
.was probably already stated by Frobenius in the beginning of the century

w xand proved by T. Klein in 1969 K .

Ž .THEOREM 4.3 T. Klein . Let p be a prime number. Let G be a finite
abelian p-group of type l. The number of subgroups of G ha¨ing a gï en
LR-sequence and being of type m and cotype n is a monic polynomial in p

Ž . Ž . Ž .with integer coefficients and of degree n l y n m y n n .

Summing over all possible LR-sequences having a fixed type m and a
fixed cotype n tells us that the number of subgroups of G having type m

l Ž .and cotype n is a polynomial in p, which we denote by g p of degreem, n

Ž . Ž . Ž . ln l y n m y n n , and the leading coefficient of which is c , them, n

number of LR-sequences of type m and cotype n . Summing over all
possible types and cotypes and recalling Corollary 3.5, we get that the
number of divisors of a matrix g In¨ is a polynomial in p, a fact that isr , p

w xproved in a very short way in B3 .
w xNote: In T3 Thompson also considers LR-sequences. However, the

reader should be aware of the fact that his definition is not compatible
with McDonald’s or with ours; what Thompson calls an LR-sequence is

Ž .what we call the type of an LR-sequence, i.e., the triple l, m, n up to
some reordering. There might be several LR-sequences having the same
type.

Having described LR-sequences and their relations with subgroups, we
turn toward their use. The concept of strings will turn out to be helpful.
We present a very simple proof of an inequality relating the invariant

w x Ž .factors of A, B, and C s AB T2 . We denote these factors by s M Nr
Ž . Ž .s M N ??? N s M .ry1 1

PROPOSITION 4.4. Let C s AB, where A and B are r = r integer nonsingu-
lar matrices. Then

s C s C ??? s C s A s A ??? s A s B s B ??? s BŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .l l l i i i j j j1 2 t 1 2 t 1 2 t



BHOWMIK AND RAMARÉ206

whene¨er

i - ??? - i , j - ??? - j , l s i q j y m , 1 F m F t .1 t 1 t m m m

Proof. It is enough to assume that the determinant of C is a power of a
Ž Ž .. Ž Ž .. Ž Ž ..prime p. Let l s l G C , m s l G B , and n s l G C be the associ-

ated partitions. Let u s l y m . We will provem i qj ym mm m

t t

n G u .Ý Ýj mm
ms1 ms1

The case t s 1 is obvious. For t s 2, we consider the u th nonzero1
Ž .element in column l and the j y 1 elements to the right of it in thei 11

Ž .same row. Let these j elements comprise what we call sr subrow 1 . We1 1
Ž .similarly construct sr with j y 1 elements.2 2

Let k elements of sr be included in the strings passing through the1 2
elements of sr . By definition, the elements of sr are at least equal to u .1 1 1
We let the minimum value be u q u . Thus n s u q u , u G 0. Now1 1 j 1 1 11

Ž .there are j y 1 y k elements of sr that have not been counted in2 1 2
Ž .these strings and which, therefore, give at least j y 1 y k strings of2 1

length at least u . For 0 F k - j , we already have j y j strings2 1 1 2 1
of length at least u , and hence n G u .2 j 22

For k s j , we consider the column representing l . Since a string1 1 i1
Ž .passing through the l th column into sr can utilize at most u q u y ui 2 1 1 21

elements of the column, there is an element at least u y u on this2 1
column, which makes up for the missing string, and we have

n G u y u .j 2 12

We now use induction on t. Let n s u y u q u for 1 F n F t. Forj n ny1 nn

n s t q 1, we use the same reasoning as above to find, in the worst case
Ž .i.e., when k s j y t , one additional string of length u y u , given byt t tq1 t
an element of at least this value, which can be found on the column
representing l . Thusi t

n G u y u ,j tq1 ttq 1

which concludes the recursion.

In fact, the condition satisfied by the indices in Proposition 4.4 can be
w xgeneralized, as was done by Thompson T3 . We need the concept of a row

Ž .LR-sequence, to be differentiated from the column LR that we have used
up to now. To the best of our understanding, the definition of a row

w xLR-sequence can be drastically simplified from that of Thompson’s T3
which we do here.
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Ž Ž0. Ž1. Ž s..DEFINITION. The sequence of increasing partitions a , a , . . . , a is
˜Ž .a row LR-sequence of type a, b, c if and only if the sequence of˜ ˜

Ž Ž0.X Ž1.X Ž s.X .conjugate partitions a , a , . . . , a is a column LR-sequence of type
Ž X X X.a , b , c , where n denotes the conjugate partition of n written in increas-˜
ing order.

Ž Ž0. Ž1. Ž s..Note that the diagram of a row LR-sequence a , a , . . . , a and a
Ž Ž0.X Ž1.X Ž s.X.column LR-sequence a , a , . . . , a are the same; their types are

mutual conjugates.

EXAMPLE. The column LR-sequence of the last example is a row
Ž . Ž . Ž .LR-sequence of type a, b, c , with a s 2, 2, 3 , b s 1, 1, 2, 3, 3, 4 , and

Ž .c s 1, 3, 3, 3, 3, 4, 4 .
Thompson’s proof for the condition of divisibility in terms of row and

column LR-sequences is very long, and we believe that it can be simplified
along the lines of the proof of Proposition 4.4.

In 1933 G. Birkhoff had already established a partial result in the
Ž w x.direction of Theorem 4.3, and his result cf. B has the advantage that the

involved polynomials are more explicit. His formulation is rather compli-
w xcated, and we state his result in the form given in Bu .

Ž .PROPOSITION 4.5 G. Birkhoff . Let G be a finite abelian p-group of type
l, and let n be the type of a subgroup of G. The number of subgroups of G
ha¨ing type n is gï en by

X X
X X X l y ni iq1n Žl yn .iq1 i ip ,X XŁ n y ni iq1iG1 p

w xwhere . . . is the gaussian polynomial.p

Using Corollary 1.2 together with the above proposition, we get an
w xexplicit expression for the number of divisors of an integer matrix. In B3 ,

the first named author has given another way of evaluating this function.
The proof is short and thus gives a simple method of obtaining the total

Žnumber of subgroups of a finite abelian group in fact, the number of
.subgroups having a given cardinality is also obtained .

V. THE STRUCTURE OF THE ALGEBRA OF
ARITHMETICAL FUNCTIONS

The value of an arithmetical function is invariant on matrices A,

0 0ž /0 A



BHOWMIK AND RAMARÉ208

and

1 0 .ž /0 A

Furthermore, this value is the same on all matrices equivalent to A. Thus
we can confine our attention to nonsingular matrices. We consider the set
of functions that depend only on the double cosets, i.e.,

ˆ � 4HH s f : UU _ In¨ rUU ª C .r r r r

ˆAlternatively, HH can be seen as the set of functions In¨ ª C that dependr r
only on the SNF or as the set of formal infinite linear combinations of

ˆŽ .double cosets. HH , q, ? is, of course, a vector space over C.r
w xThe convolution product N4 over all divisor classes H of S is given by

w
y1f g S s f H g SH ,Ž . Ž . Ž . Ž .Ý

HNS

which we write as

fw g S s f S g S a S , S ; S ,Ž . Ž . Ž . Ž . Ž .Ý 1 2 1 2
S , S in SNF1 2

Ž .where the ‘‘weight’’ a S , S ; S is the number of H in HNF that divide S1 2
and whose SNF is S , and such that the SNF of Hy1S is S . With this1 2

ˆŽ .product HH , q, w, ? is a commutative C-algebra.r
We retrace the definition of this product in the context of an abstract

Ž Ž . . Ž w x.Hecke algebra HH . Since GL Q , UU is a Hecke pair see Kr , we simplyr r r
have a product over the set

ˆHH s f g HH rf S s 0 except in finitely many points .Ž .� 4r r

The product is defined as follows. Let

Ž .d Sl

UU SUU s UU H disjoint with d S s aUU _ UU SUUŽ .Dr r r m l r r r
ms1

and

Ž .d Tr

UU T UU s L UU disjoint with d T s aUU T UU rUU .Ž .Dr r n r r r r r
ns1
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Ž . Ž .Note that d S s d S because of the transposition. It is the number ofr l
Ž . Žw x .HNF of SNF S and is denoted by ind S Kr , p. 11 . We have

UU SUU ? UU T UU s a S, T ; R UU RUU ,Ž . Ž . Ž .Ýr r r r r r
RgUU _UU SUU T UU rUUr r r r r

where

a S, T ; R s a m , n rH L g UU RŽ . Ž .� 4m n r

˜ ˜ ˜y1s a UU LrUU L ; UU T UU , RL g UU SUU ,½ 5r r r r r r

and this last expression is exactly how we have defined a earlier, so that HHr
ˆis a subalgebra of HH .r

The convolution product of arithmetical functions then gives a natural
definition for the Hecke product on HH . We could use this definition tor
prove, for example, the associativity of the Hecke product, an otherwise
difficult exercise. On the other hand, this correspondence helps us to

ˆprove below that HH is factorial.r
When p is a prime number, we define the primary component HH byr , p

HH s f : UU _ In¨ rUU ª C, rf S s 0 except in finitely many points .Ž .� 4r , p r r , p r

w x w xIn Kr , it is shown that HH is isomorphic as a C-algebra to C X , . . . , Xr , p 1 r
ˆand that HH is isomorphic to the tensor product of the HH ’s. Defining HHr r , p r , p

ˆin a similar way, we thus see that HH is isomorphic as a C-algebra tor , p
the algebra of formal power series in r variables, which we denote by

ˆww xxC X , . . . , X , from which we deduce that HH is a local noetherian1 r r , p
ˆfactorial ring with no zero divisors. As for HH , we see that it is isomorphicr

wwto the ring of formal power series in countably many unknowns C X ,i, p
xx1 F i F r, p prime . The factoriality of this latter ring has been shown by

Ž w x.Cashwell and Everett in 1959 cf. CE .
ˆTo prove Theorem 1.6 it is useful to introduce a norm over HH . For anyr

ˆnonzero f in HH , putr

5 5 < <y1f s sup M , for M g In¨ , f M / 0Ž .� 4r

5 5and extend it by 0 s 0. We then verify that

5 5 5 5 5 5 5 5 5 5 5 5 5 5f q g F max f , g , fw g F f g , f - 1 iff f Id s 0.Ž .Ž .

It is then a routine matter to identify the invertible elements: denoting by
Ž . Ž . < <h the function defined by h Id s 1 and h M s 0 whenever M ) 1, we

5 5check that h y g is invertible if and only if g - 1, which is obtained in
w xanother way in N4, Theorem 3.12 .



BHOWMIK AND RAMARÉ210

VI. APPLICATION: ZETA FUNCTION OF THE
CONVOLUTION PRODUCT

The interpretation of divisor classes in terms of lattices has another
important corollary, which is that the primary component HH of HH isr , p r

Ž w x.isomorphic to the Hall algebra see M . It is interesting to realize that
when studied from an algebraical point of view this algebra is called a
Hecke algebra, and when studied from a combinatorial viewpoint it is
called a Hall algebra, although often there is not much interaction be-
tween researchers in these two areas. Here we indicate an application of
the isomorphism of algebras.

If we wish to associate a zeta function with the convolution product of
arithmetical functions mentioned in Section V, we realize that the zeta
function is not a simple product of those of the components of the
convolution. Because of the sublattices involved, there is a weight attached

l Ž .that is the sum of g p , the Hall polynomials mentioned in Section IV.m, n

From the foregoing discussions we find that this weight is exactly the sum
Ž .of coefficients of the Hecke product of Section V, a S , S ; S , where S is1 2 1

of type m, S is of type n , and S is of type l. More precisely, we have2

x w x SŽ .1 2Ž r .Z x w x , s sŽ . Ý s1 2 < <SSSNF

x S x SŽ . Ž .1 1 2 2s a S , S ; SŽ .Ý Ýs s 1 2< < < <S S1 2S , S SNF S SNF1 2

x S x SŽ . Ž .1 1 2 2 ls g p .Ž .Ý Ýs s m , n< < < <S S1 2S , S SNF1 2

Ž r .Ž .To determine Z x w x , s in the two-dimensional case, we have com-1 2
Ž . l Ž . Ž .puted the constant a S , S ; S . Thus g p for m s m q k, k , n s1 2 m , n

Ž . Ž .n q l, l , and l s t q m q k q l, k q l q n y t is known, and we have

¡ np 1 q 1rp if t s 0, m s n ,Ž .
np if t s 0, m / n ,

l ~g p sŽ .m , n nytp 1 y 1rp if 0 - t - n y m ,Ž .¢ mp if t s n y m / 0,

w xBR, Proposition 1 . However, a general result of this kind is not yet
accessible.
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The understanding of this zeta function should throw light on the Hall
algebra. In particular, if we consider both x and x to be the constant1 2

Ž Ž . .function | | M s 1 for all M , then the zeta function associated has
the easier formulation,

g l pŽ .m , nŽ r . wZ | |, s s ,Ž . Ý s< <S

Ž w x.about which some information is already available for example, in BW .

Ž .APPENDIX: ENDOMORPHISMS OF G M

This appendix provides some evidence in support of our belief that for
two subgroups H and K of a finite abelian p-group, there exists an

Ž .automorphism s such that s H s K if and only if H and K have the
Ž .same LR-sequence Conjecture 4.2 . A step toward understanding this

situation is the study of the automorphisms of G. We define an invariant
Ž . Ž . Ž .r y of an element y of G such that r y s r z if and only if there exists

Ž .an automorphism f of G such that f y s z. This characterization, in
Ž .turn, reveals part of the structure of G as a module over HG M , its ring

of endomorphisms, and enables us to prove the above conjecture when H
Ž . Žis an HG M -submodule of G in this case the proof of the conjecture

Ž .reduces to showing that no two distinct HG M -submodules of G have
.the same LR-sequence .

Consider the set of classes of matrices T such that TMZ r s MHZ r for
some H g M , i.e., such that My1TM g M . If T and T are congruentr r 1 2
modulo M and if T is a homomorphism, then so is T . Note that we have1 2

Ž . Ž .a multiplication over HG M induced by composition, so that HG M is a
ring with unity. We first describe it through coordinates. Let us take M in

liŽ . Ž .the form diag p , where l F l ??? F l . Then T s t is a homomor-1 2 r i, j
phism if and only if

l ylj it ' 0 p j - i .Ž .i , j

l jNote also that t is to be taken modulo p . In this way we easily get thei, j
Ž . Ž Ž ..type of the abelian group HG M to be min l , l . Note further thati j i, j

for any subgroup H ; G there exists a homomorphism T such that
Ž . Ž .T G s H obtained by taking a divisor class .

Ž . Ž .Let us see a counterexample. The condition Im f s Im g does not
ensure that there exists hrf s gh. For example, assume p2e s pe s 01 2

Ž . Ž . Ž .and define f by f e s e and f e s pe q e and g e s pe and1 2 2 1 2 1 1
Ž .g e s e . We verify that h does not exist.2 2



BHOWMIK AND RAMARÉ212

On applying standard results we see the following.

Ž . Ž . �THEOREM A.1. Let y g G M . Then HG M ? y s z s Ý z e ri i
r iŽ y . 4 Ž Ž ..p N z . Furthermore, the type of this subgroup is l y r y and itsi k k k

Ž Ž ..cotype is r y .k k

We present another interesting counterexample: it is false to say that if
Žy and z have the same order and the depth of y is equal to that of z the

h .depth being defined as the largest h such that ' x with y s p x , then
Ž . Ž . 3 2there exists f g HG M such that f y s z. To see this, take p e s p e1 2

s pe s 0, y s pe q pe q e , and z s pe q e q pe . We verify that1 1 2 3 1 2 3
this ‘‘property’’ can be violated only if r G 3.

Ž . Ž Ž ..Before going any further, we study this sequence r y s r y asso-k k
ciated with y.

Ž . Ž .THEOREM A.2. The sequence r y ¨erifies l y l G r y yk kq1 k
Ž . Ž .r y G 0 for 1 F k F r y 1, or equï alently, the sequences r y andkq1
Ž .l y r y are decreasing. Reciprocally, for any sequence u ¨erifying these

Ž .properties there exists a y with u s r y .

Ž . Ž .Note that as a corollary of this theorem, we have that r y s r yk kq1
as soon as l s l .k kq1

Proof. All of that follows from the definition. It is worth mentioning
Ž .that r y is a fixed point for

R: m ¬ min max 0, l y l q m .Ž . Ž .Ž .k k i iž /
1FiFr

Ž .We now give another characterization of the r y ’s.k

Ž Ž . lk . rkŽ y . lkLEMMA A.3. Hom G M , Zrp Z ? y s p Zrp Z.

Ž . Ž . rkŽ y .Proof. Since ' f g HG M with f y s p e , we get one inclusion.k
Ž Ž . lk .For the reverse assume that there exists F g Hom G M , Zrp Z such

Ž . rkŽ y .y1 Ž . Ž . Ž .that F y s p . Then f z s F z e is in HG M }hence the con-k
tradiction.

Ž .Using the invariant r y , we can be even more precise.

Ž .THEOREM A.4. There exists an automorphism f such that f y s z if and
Ž . Ž .only if r y s r z .

Proof. It is, of course, a necessary condition. To prove that it is
sufficient, we shall send y by an automorphism to z s Ý p rkŽ y .e . Letk
y s Ýr x e . By using mappings of the typeis1 i i

e ¬ e q t pmaxŽ0 , lhyl k .e , e ¬ e i / kŽ .k k k h i i
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Ž maxŽ0, lhyl k . .for k / h, we can change x modulo gcd x p , k / h . Puttingh k
m i Ž .x s p a with 0 F m F l and a , p s 1, we see that x can be takeni i i i i i

t Ž Ž . .modulo p with t s min m q max 0, l y l , k / h . Now, if m sk h k h
Ž . Ž . Ž . Žr y , we do not move it, else t s r y , and we get m F r y i.e.,h h h h

.equality without changing the other m ’s. Using this process repeatedly,k
we reach a point

yX s a p rkŽ y .e , a , p s 1.Ž .Ý k k k

Note that we have only used transforms of determinant 1. It is then easy to
conclude the proof.

Ž . Ž .We say that a subgroup H ; G M is characteristic if f H ; H for
Ž . Ž .any f g HG M . Such subgroups are the submodules of G M for its

Ž .structure of the HG M -module. The smallest of these subgroups are the
Ž .HG M ? y, and any characteristic subgroup is a sum of such subgroups.

Ž minŽ r1Ž y., r1Ž z .. minŽ r rŽ y ., r rŽ z .. . Ž .Since p e , . . . , p e is a basis of HG M ? y q1 r
Ž . Ž .HG M ? z, we see that such a sum is yet another HG M ? x, so that any

Ž .characteristic subgroup H is in fact a HG M ? x, and that we can define
Ž . Ž .r H to be r x . We easily prove that a characteristic subgroup is

Ž .characterized by its function r H .
Ž .From the above we see that in case f H s K, H is a characteristic

Ž .subgroup if and only if K is one. Furthermore, f H s K implies that
Ž . Ž .r H s r K , which in turn gives that the cotypes of H and K are equal

Ž .Theorem A.4 . Thus a necessary and sufficient condition for H and K to
Ž . Ž .be equal is that r H s r K , and we have proved the conjecture for our

restricted H.
Ž .We are now in a position to characterize ideals of HG M .

Ž .THEOREM A.5. The correspondences between ideals of HG M and char-
Ž .acteristic subgroups of G M gï en by

� 4I s frf H s 0 , H s xrI ? x s 0� 4Ž .

are one to one and are reciprocals of one another.

Ž . � Ž . 4 ŽProof. The set I H s frf H s 0 is, of course, an ideal i.e., a left
. Ž .and right ideal . Reciprocally, let I be an ideal of HG M , and let H

be the intersection of the kernels of points of I. It is a characteristic sub-
Ž . Ž .group since if y g H, g g HG M , and f g I, then fg y s 0, since

Ž . Ž .fg g I. Thus HG M ? H ; H. Then I ; I H . Moreover, for any y f H,
Ž . maxŽ0, r kŽH .y1.there exists f g I with f y / 0. Take y s p e . Then compos-k

Ž . Ž .ing with a projector, we can find f g I such that f Ý x e s f x e andk k i i k k k
Ž . rkŽH . Žf x e s 0 if and only if p N x since there exists an f withk k k k
Ž maxŽ0, r kŽH .y1. . . Ž .f p e / 0 . Furthermore, we can take f Ý x e sk k , h i i
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maxŽ0, lhyr kŽH .. Ž .x p e . Then any f in I H is a linear combination of thesek h
Ž .f ; we get the inclusion I H ; I as required.k , h

Ž .COROLLARY A.6. Ideals of HG M are principal.

Ž . lkyr kŽH . Ž .Proof. Put f e s p e and look at the ideal J s HG M ? f ?k k
Ž . Ž . Ž .HG M . We have f H s 0 and thus hfg H s 0, which means that
Ž . Ž .J ; I H . Since Ker f s H, we get the reverse inclusion and hence the

result.
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