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1. Introduction

The contents of this paper were presented as lectures at the Miura Winter School
on Zeta and L-functions held in 2008. Though the analytic continuation of zeta
functions beyond its region of absolute convergence is a fundamental question, in
general not much is known about the conditions that guarantee a meromorphic
continuation. It is also interesting to know how far such a function can be continued,
that is where the natural boundary of analytic continuation lies.

The choice of functions that are considered here are ‘arbitrary’, that is a matter
of personal taste and expertise. Most of the work reported is on what I have studied
or actually contributed to together with my co-authors. The word ‘some’ in the
title is to indicate that though the paper is expository, it is not exhaustive. Only
outlines of proofs have sometimes been provided.

In the first part we consider Euler products. One of the most important appli-
cations of zeta functions is the asymptotic estimation of the sum of its coefficients
via Perron’s formula, that is, the use of the equation

∑

n≤x

an =
1

2πi

c+i∞
∫

c−i∞

(

∑

n≥1

an

ns

)xs

s
ds.

To use this relation, one usually shifts the path of integration to the left, thereby
reducing the contribution of the term xs. This becomes possible only if the function
D(s) =

∑ an

ns is holomorphic on the new path. In Section 3 details of certain
examples from height zeta functions and zeta functions of groups have been given.

Clearly all zeta functions do not have Euler product expansions, one important
class of examples being multiple zeta functions which have been studied often in
recent years. Not many general methods exist and here I treat the case of the
Goldbach generating function associated to Gr(n), the number of representations
of n as the sum of r primes

∞
∑

k1=1

· · ·
∞
∑

kr=1

Λ(k1) . . .Λ(kr)

(k1 + k2 + · · · + kr)s
=

∞
∑

n=1

Gr(n)

ns
.

where Λ is the classical von-Mangoldt function.
In almost all examples the natural boundary, if it can be obtained, corresponds

to the intuitively expected boundary and this can in fact be proved in a probabilistic
sense. However one of the difficulties in actually obtaining the boundary is that our
analyses often depend on the distribution of zeros of the Riemann zeta function,
and thus on yet unproved hypotheses (see, for example, Theorem 3 or Theorem 7
below).
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I would like to thank Jean-Pierre Kahane for his comments on Theorem 4 and to
Kohji Matsumoto for honouring me with a kanji name. Qu’ils soient ici remerciés !

2. Euler products

Many Dirichlet-series occurring in practice satisfy an Euler product and if this
product is simple we often get some information on the domain of convergence of the
Dirichlet series. Among such cases is the product over all primes p of a polynomial
in p−s. One of the oldest ideas is due to Estermann [20] who obtained a precise
criterion for the continuation to the whole complex plane of the Euler product of
an integer polynomial in p−s. He proved the existence of the following dichotomy :

Theorem 1. Let

h(X) = 1 + a1X + · · · + adX
d =

d
∏

j=1

(1 − αjX) ∈ Z[X ]

then Z(h; s) =
∏

p h(p−s) is absolutely convergent for ℜ(s) > 1 and can be mero-

morphically continued to the half plane ℜ(s) > 0. If h(X) is a product of cyclotomic

polynomials, i.e. if |αj | = 1 for every j, then and only then can Z(h; s) be contin-

ued to the whole complex plane. In all other cases the imaginary axis is the natural

boundary.

The strategy of his proof was to show that every point on the line ℜ s = 0 is an
accumulation point of poles or zeros of Z. Estermann’s method was subsequently
generalised by many authors.

Dahlquist [14], for example, extended the above case to h being any analytic
function with isolated singularities within the unit circle. He used the concept
of vertex numbers and showed that except for the case where h(p−s) has a finite
number of factors of the form (1 − p−νs)−βν , there is a natural boundary of the
zeta function at ℜ s = 0.

Later, Kurokawa [26] continued on the idea of Estermann to cases where h
depends on the traces of representations of a topological group and solved Lin-
nik’s problem for the analytic continuation of scalar products of the Hecke-L series
L(s; χi) where χi are Grösssencharakters (not necessarily of finite order) of finite
extensions of an algebraic number field. His result can be stated more precisely as :

Let F/Q be a finite extension and Ki/F be r finite extensions of degree ni each.
The scalar product L(s; χ1, . . . , χr) has the imaginary axis as the natural boundary
except when

(n1, . . . , nr) = (1, . . . . . . , 1, ⋆) or

= (1, . . . . , 1, 2, 2),

in which case L(s; χ1, . . . , χr) can be continued to the whole of C (ibid. Part II,
Theorem 4).

There is of course, no reason to believe that the natural boundary would always
be a line. In an example involving the Euler-phi function [32]

Z(s) =

∞
∑

n=1

1

φ(n)s
=

∏

p

(

1 + (p − 1)−s(1 − p−s)−1
)

,

the boundary of continuation is an open, simply connected, dense set of the half-
plane ℜ s > −1.
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The question of analytic continuation of Euler products in several variables occur
naturally in very many contexts. To cite just one example, in the study of strings
over p−adic fields [10], products of 5-point amplitudes for the open strings are
considered, where the amplitudes are defined as p−adic integrals

Ap
5(ki) =

∫

Q2
p

| x |k1k2 | y |k1k3 | 1 − x |k2k4 | 1 − y |k3k4 | x − y |k2k3 dxdy.

The product
∏

p Ap
5 can be analytically continued to the whole of C, which gives

interesting relations of such amplitudes with real ones.
We would thus like a multivariable Estermann type of theorem. For this we need

some notation [4]. Let us consider n-variable integer polynomials hk and let

h(X1, . . . , Xn, Xn+1) = 1 +
d

∑

k=0

hk(X1, . . . , Xn)Xk
n+1.

The exponents of the monomial occurring in this expression determine a polyhedron
in Rn and enable us to give a description of the domain of convergence for the Euler
product in n complex variables Z(h; s1, . . . , sn) =

∏

p prime h(p−s1 , . . . , p−sn). Thus
we define, for δ ∈ R,

V (h; δ) :=
d

⋂

k=0

{s ∈ Cn | ℜ(〈α, s〉) > k + δ ∀ α ∈ Ext(hk)}

where Ext(hk) is the set of those points which do not belong to the interior of any
closed segment of the Newton polyhedron of hk. We show that the geometry of the
natural boundary is that of a tube over a convex set with piecewise linear boundary
and give a criterion for its existence which is analogous to Theorem 1.

A polynomial h in several variables is called cyclotomic, if there exists a finite
set of non-negative integers mi,j and a finite set of integers (γj)j=1,...,q such that:

h(X) =

q
∏

j=1

(1 − X
m1,j

1 . . . Xmn,j
n )γj .

In [4] we prove that either h is cyclotomic, or it determines a natural boundary of
meromorphy, i.e.

Theorem 2. The Euler product

Z(h; s) = Z(h; s1, . . . , sn) =
∏

p

h(p−s1 , . . . , p−sn)

converges absolutely in the domain V (h; 1) and can be meromorphically continued

to the domain V (h; 0).
Moreover, Z(h; s) can be continued to the whole complex space Cn if and only if

h is cyclotomic. In all other cases V (h; 0) is a natural boundary.

Using Newton polyhedra we can write the above as a product of Riemann zeta
functions and a holomorphic function in V (h; 1/r), for every natural number r, i.e.

Z(h; s) =
(

∏

1≤|m|≤Nr

ζ(〈m, s〉)γ(m)
)

G1/r(s)
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where m is a n-tuple of positive integers, {Nr} an increasing sequence of positive
integers and G(s) an absolutely convergent Euler product. We then treat sepa-
rately the cases where the set {m : γ(m) 6= 0} is finite or infinite to show that a
meromorphic continuation to V (h; δ) is not possible for any δ < 0.

A result similar to the above theorem can also be obtained for Euler products
of analytic functions on the unit poly-disc P (1) in Cn rather than polynomials
(op.cit. Theorem 4). However Theorem 2 is in general not enough to treat Euler
products of the form

∏

p h(p, p−s) which occur, for example, in zeta functions of
groups and height zeta functions. In certain cases authors have been able to find
natural boundaries of such Euler products while even for an apparently simple case

like f(s) =
∏

p

(

1 + p−s + p1−2s
)

[15] we might be unable to provide a complete

answer (see the next section).
In fact it does not suffice to prove that each point is a limit point of poles or

zeros of the single factors, since poles and zeros could cancel. In certain situations
it is possible to find conditions which ensure that too much cancellation among
potential singularities is impossible and thereby get information on series like the
one just cited. For instance, in [6] we obtain :

Theorem 3. Assume the Riemann ζ-function has infinitely many zeros off the line
1
2 +it. Suppose that f is a function of the form f(s) =

∏

ν≥1 ζ(ν(s− 1
2 )+ 1

2 )nν where

the exponents nν are rational integers and the series
∑ nν

2ǫν converges absolutely for

every ǫ > 0. Then f is holomorphic in the half plane ℜs > 1 and has meromorphic

continuation in the half plane ℜs > 1
2 . Denote by P the set of prime numbers p,

such that np > 0, and suppose that for all ǫ > 0 we have P((1 + ǫ)x) − P(x) ≫
x

√
5−1

2 log2 x. Then the line ℑs = 1
2 is the natural boundary of f ; more precisely,

every point of this line is accumulation point of zeros of f .

To get this result we need some combinatorial geometry on the lines of Dahlquist
[14]. The following is a sketch of the argument to get the above natural boundary.
By assumption of the falsity of the Riemann hypothesis, for every ǫ > 0 and every t
there is a zero ρ = σ+iT of ζ, such that P(T/t)−P(T/((1+ǫ)t)) ≫ (T/t)θ log2(T/t),

where θ =
√

5−1
2 . Instead of showing that this particular ρ cannot be cancelled out

by poles or zeros of other factors,, we show that not all zeros can be cancelled

out. If ρ−1/2
p + 1

2 is not a zero of f for any p ∈ P and any T
p ∈ [t, (1 + ǫ)t], using

combinatorial arguments we reach the contradictory conclusion that θ <
√

5−1
2 . So

in every square of the form {s : ℜ s ∈ [ 12 , 1
2 + ǫ],ℑ s ∈ [t, t+ ǫ]}, there is a zero of f .

Concerning general Euler products of polynomials in p and p−s, there exists a
conjecture [16].

Conjecture 1. Let W (x, y) =
∑

n,m an,mxnym be an integral polynomial with

W (x, 0) = 1. Then D(s) =
∏

p W (p, p−s) is meromorphically continuable to the

whole complex plane if and if only if it is a finite product of Riemann ζ-functions.

Moreover, in the latter case if β = max{ n
m : an,m 6= 0}, then ℜ s = β is the natural

boundary of D.

Though all known examples confirm this it is still far from being resolved. In
fact we believe that any refinement of Estermann’s method is not enough to prove
this conjecture [8].
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We define an obstructing point z to be a complex number with ℜ z = β, such
that there exists a sequence of complex numbers zi, ℜ zi > β, zi → z, such that D
has a pole or a zero in zi for all i. Obviously, each obstructing point is an essential
singularity for D, the converse not being true in general.

Since D may not be convergent on the half-plane ℜ s > β, to continue it mero-
morphically it is written as a product of Riemann ζ-functions and a function R(s)
holomorphic, zero-free, and bounded on every half-plane ℜ s > β + ǫ. Thus there
exist integers cn,m such that

D(s) =
∏

n,m

ζ(ns + m)cn,m × R(s).

When approximating D(s) by a product of Riemann ζ-functions, the main contri-
bution comes from monomials an,mxnym with n

m = β. We collect these monomials

together in W̃ that is, we have

W (x, y) = W̃ (x, y) +
∑∗

n,m
an,mxnym,

where
∑∗

means summation over all pairs n, m with n
m < β (in [17] the terminology

‘ghost polynomial’ is used).
We can classify such polynomials into exclusive, non-empty cases as follows :

(1) W = W̃ and W is cyclotomic; in this case, D is a finite product of Riemann
ζ-functions;

(2) W̃ is not cyclotomic; in this case, every point of the line ℜ s = β is an
obstruction point;

(3) W 6= W̃ , W̃ is cyclotomic, and there are infinitely many pairs n, m with
an,m 6= 0 and n

m < β < n+1
m ; in this case, β is an obstruction point;

(4) W 6= W̃ , W̃ is cyclotomic, there are only finitely many pairs n, m with
an,m 6= 0 and n

m < β < n+1
m , but there are infinitely many primes p such

that the equation W (p, p−s) = 0 has a solution s0 with ℜ s0 > β; in this
case every point of the line ℜ s = β is an obstruction point;

(5) None of the above; in this case, no point on the line ℜ s = β is an obstruction
point.

In the third case we need an understanding of the zeros of the Riemann-zeta
function to have information about the meromorphic continuation and as we will
see in the next section that this may only give conditional answers. However in the
last case we might be able to say nothing about the analytic continuation as we
will see in the example of D(s) =

∏

p(1 − p2−s + p−s).
We would need some really new ideas to understand Euler products of polyno-

mials in p and p−s.

2.1. A random series. From a probabilistic point of view, it is usual to study
random Dirichlet series and show that almost surely they have natural boundaries.
Such generic conditions comfort us in the belief that for a Dirichlet series there
should be meromorphic continuation up to an expected domain.

Often in the definition of a random series the coefficients are random (for example
in Kahane [25] or Quéffelec [29]). In the following [6] we use random variables in
the exponent to resemble the Euler products W (p, p−s) discussed before.
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We call a function regular in a domain if it is meromorphic up to a discrete set of
branch points in the domain, that is, it is holomorphic with the exception of poles
and branch points. We can now state the following probabilistic result :

Theorem 4. Let (aν), (bν), (cν) be real sequences, such that aν , bν → ∞, and set

σh = lim sup
ν→∞

− bν

aν
. Let ǫν be a sequence of independent real random variables, such

that

lim inf
ν→∞

max
x∈R

P (ǫν = x) = 0,

and suppose that for σ > σh the series

∞
∑

ν=1

|cν + ǫν |
2aνσ+bν

converges almost surely. Then with probability 1 the function

Z(s) =

∞
∏

ν=1

ζ(aνs + bν)cν+ǫν

is regular in the half-plane ℜ s > σh and has the line ℜ s = σh as its natural

boundary.

To give an idea of the arguments used in the proof we let s0 = σh + it be a point
on the supposed boundary with t 6= 0 rational, and consider the square S with side
length 2

n centred in s0. For ǫ > 0 given, we show that with probability > 1 − ǫ the
function Z is either not meromorphic on S, or has a zero or a pole in S. Then for
a suitably chosen index µ we consider

Zµ(s) =
∞
∏

ν 6=µ

ζ(aνs + bν)cν+ǫν .

such that if Z is meromorphic on S, so is Zµ. Let D1 be the divisor of the restriction
of Zµ to S, and let D2 be the divisor of ζ(aµs + bµ) restricted to S. We show that
D1 + (cµ + ǫµ)D2 is non-trivial with probability > 1 − ǫ. The number of zeros of
ζ(aµs+bµ) in S equals N(T +h)−N(T ), where N denotes the number of zeros of ζ
with imaginary part ≤ T , and T and h are certain real numbers satisfying T ≥ 1000
and h ≥ 6. Using a classical estimate [2], we can show that D2 is non-trivial.

We note that in the initial statement of the above theorem, the term ‘holomor-
phic’ appeared instead of ‘regular’ (Theorem 3, ibid.). In fact, as pointed out by
J-P. Kahane, the finite product of ζ-functions dominating the behaviour of Z in a
half-plane ℜ s > σh +ǫ can yield branch points at all poles and zeros of the involved
ζ-functions.

3. Examples

3.1. Zeta function of a symplectic group. The local zeta function associated
to the algebraic group G is defined as

Zp(G, s) =

∫

G+
p

| det(g) |−s
p dµ

where G+
p = G(Qp) ∩ Mn(Zp) , | . |p denotes the p-adic valuation and µ is the

normalised Haar measure on G(Zp). In [17], du Sautoy and Grunewald prove that
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the natural boundary of the zeta function Z(G, s) of the symplectic group GSp6

given by [24]

Z(s/3) = ζ(s)ζ(s − 3)ζ(s − 5)ζ(s − 6)
∏

p

(

1 + p1−s + p2−s + p3−s + p4−s + p5−2s
)

has a natural boundary at ℜ s = 4
3 . To show that every point on the boundary is an

accumulation point of zeros, we could consider the equation 1+(1+V +V 2+V 3)U+
V 3U2 = 0 where V = p−1, U = p4−s. For V small, we can neglect the powers of V
and then there exists a solution for the above equation in U0 = −1 + V + O(p−2)
for p large enough. Thus for every integer n there is a solution

s = 4 − log(1 − p−1 + O(p−2))

log p
+

(2n − 1)πi

log p
.

Now for a large prime p and a fixed point A with ℜ s = 4 on the boundary we can

find a sequence of integers np such that
(2np−1)π

log p → ℑ(A). Further the fact that

− log(1 − p−1 + O(p−2))

log p
> 0

for large enough p means that Z(s/3) cannot be continued beyond its assumed
boundary ℜ s = 4.

Notice that this is an example of the ‘lucky’ situation we encountered in the
fourth case of the classification of

∏

W (p, p−s).

3.2. Height zeta functions. Several people in the recent past have studied the
analytic properties of height zeta functions associated to counting rational points
on algebraic varieties. Of particular interest is the case of a variety with ample anti-
canonical bundle (called a Fano variety) V over a number field k whose k-rational
points are Zariski dense in V , for a height function H defined naturally over the
anti-canonical sheaf. Here an important motivation is Manin’s conjecture that, for
U a suitably defined open subset of V ,

|{x ∈ U(k) : H(x) ≤ t}| ∼ Ct(log t)r−1

as t → ∞. In the above, C is a non zero constant and r the rank of the Picard
group of V . There is a further conjecture, due to Peyre [28], on the constant C
relating it to the Tamagawa measure.

We will concentrate on Pn, the projective n-space over the field Q with the clas-
sical normalised height function Hn : Pn−1 → R>0 defined by H(x) = maxi{|xi|},
where gcd(x1, . . . , xn+1) = 1. (Other definitions of the height exist but we shall not
treat them here. The interested reader could see, for example, [19]).

We now give details of analytic continuation and boundaries of a few zeta func-
tions in the above context which have Euler products in several variables.

3.2.1. A cubic surface. For studying the above case, it is possible to first choose
the anti-canonical line bundle and assume that it be ample. This then determines
a projective embedding of the desingularised model of the variety using a fan de-
composition into finitely many simplical integral cones (for details see, for example,
[12] or [30]). The zeta function is then defined, for ℜ s large enough, as

ZU (s) =
∑

x∈U

1

H(x)s
.
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De la Breteche and Swinnerton-Dyer [13] proved that the zeta function associated
to singular cubic surfaces has a natural boundary at ℜ s = 3/4. We follow the
treatment of [11] to give a summary of their original proof where they study the
multi-variable function

Z(s1, s2, s3) =
∑

x1x2x3=x3
4

gcd(x1,x2,x3)=1

1

xs1

1 xs2

2 xs3

3

outside the union of three lines in the hyper-surface x4 = 0. The Euler product of
this function is given by

∏

p

1 +
∑

(1 − p3si)p−(2sj+sk) − p−(3s1+3s2+3s3)

(1 − p3s1)(1 − p3s2)(1 − p3s3)

where in the sum each of i, j, k take the values 1, 2, 3. The above is then written
with the help of functions ‘convenient’ for ℜ s > 3

4 and F (s) which involves the
Euler product of a rational function in two variables

W (x, y) = 1 + (1 − x3y)(x6y−2 + x5y−1 + x4 + x2y2 + xy3 + y4) − x9y3

with x = p−1/4, y = p3/4−s which is convergent in a certain strip. Here again the
authors succeed in establishing that every point on the assumed boundary is the
limit point of a subset of zeros of the function

F (s) =
∏

p

W (p−1/4, p3/4−s)
∏

j∈J

(1 − p−(1+j(s−1))

with J = {−2,−1, 0, 2, 3, 4}. For a fixed prime p, the number of zeros with ℜ s > 3
4

of W , i.e.
3

4
+

1

4
√

2p1/4 log p
+ O

( 1

p3/4 log p

)

is large. Now for ℜs > 3
4 + 1

N , there exist suitably chosen finite number of integers
b(k, k′) such that

F (s) =
∏

k,k′

k−k′/4+k′/N>1

ζ(k + k′(s − 1))b(k,k′)
∏

p

WN (p−1/4, p3/4−s)

where

WN (p−1/4, p3/4−s) = W (p−1/4, p3/4−s)
∏

k,k′

k−k′/4+k′/N>1

(1 − p(k+k′(s−1)))b(k,k′).

The zeros of WN (p−1/4, p3/4−s) and W (p−1/4, p3/4−s) are the same. Further for
every real τ one can construct a sub-sequence of its zeros which converge to 3

4 + iτ
and which are not poles of

∏

k,k′

k−k′/4+k′/N>1

ζ(k + k′(s − 1))b(k,k′).

These zeros are again the zeros of F (s) and therefore no continuation is possible
beyond the assumed boundary.

For what concerns the asymptotics, it is known that

|
{

x ∈ U : H(x) ≤ t
}

| = tQ(log t) + O(t7/8+ǫ)
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where the degree of Q is 6 and the leading coefficient is 1
6

∏

p{(1− 1/p)7(1 + 7/p +

1/p2)}.

3.2.2. An n-fold product. In [4], we consider instead an implicit projective embed-
ding determined by a finite set of equations and do not need a fan decomposition.

Let X be a toric variety and Ad,n = A a d × n integer matrix all of whose row
sums are zero. The rational points of the toric variety are defined by

X(A) := {(x1, · · · , xn) ∈ Pn−1(Q) :
∏

i:aj,i≥0

x
aj,i

i =
∏

i:aj,i<0

x
−aj,i

i ∀j}

and the maximal torus U(A) comprises of those elements of X(A) the product of
whose coordinates is non-zero. Each point in the maximal torus corresponds to a
unique n-tuple of co-prime positive integers which we denote by (m1, · · · , mn).

We define a multivariable zeta function, for ℜ si > 1, comparable to the one used
for toric varieties in [12] as

ZA(s) =
∑

mi∈N

FA(m1, · · · , mn)

ms1

1 . . . msn
n

,

where

FA(m1, · · · , mn) = 1 if gcd (m1, · · · , mn) = 1,
∏

i

m
aj,i

i = 1 ∀j,

= 0 otherwise.

The defining equations are multiplicative and we thus get an Euler product
expansion of an analytic function in n complex variables

ZA(s) =
∏

p

hA(ps1 , . . . , psn).

Now the function hA(X) is expressed as a rational function
∏

ν∈K

(1 − Xν)−c(ν)W (X)

for positive integers c(ν), a finite index set K and an integer n-variable polynomial
W . We can prove, using Theorem 2, that ZA(s) has a natural boundary. In fact, it
is possible to explicitly describe the whole boundary of analytic continuation (see
[4], Theorem 6). The description of the analytic continuation of this zeta function
can now be used to deduce the asymptotic properties of the height density function
on U(A) because of the equation

|
{

x ∈ U(A) : H(x) = max
i

|mi(x)| ≤ t
}

| = C(A)
∑

mi≤t

FA(m1, · · · , mn)

where C(A) is a computable constant.
As a special case, we get asymptotic results for the number of n-fold products of

relatively prime positive integers that equal the nth power of an integer. Batyrev
and Tschinkel [3] showed that this problem is equivalent to the asymptotic de-
scription of the height density function on the maximal torus of the hyper-surface
x1 · · ·xn = xn

n+1. Now that there is only one equation involved, i.e. d = 1, we use
the matrix An = (1, · · · , 1,−n) and the rational points are

U(An) := {(x1, · · · , xn+1) ∈ Pn(Q) : x1 · · ·xn = xn
n+1, , x1 · · ·xn 6= 0}.
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To express hAn
(X) precisely as a rational function on the unit poly-disc P (1) we

notice that if
hAn

(X) =
∑

α

Xα

for α ∈ Nn+1
0 , to satisfy the definition of FAn

we require that An(α) = 0. Thus for a
n-tuple r, we use the notation |r| for its weight, i.e. the sum of its n coordinates and
for all r such that |r|/n is a non-negative integer, we let l(r) = (r1, . . . , rn, |r|/n).
Further we ensure that the condition of coprimality of the pαi is met and obtain

hAn
(X) = (

n
∏

i=1

(1 − Xn
i Xn+1)

−1)
∑

|r|/n∈N0

Xr1

1 . . . Xrn
n X

|r|/n
n+1 .

The sum in the expression above is not cyclotomic and this gives the natural bound-
ary of

ZAn
(s) = R ×

∏

p

(
∑

r∈Dn

1

p〈l(r),s〉 )

for R a finite product of Riemann zeta functions, to be

V (0) = {s ∈ Cn+1 | ℜ(〈l(r), s〉) > 0 ∀ r ∈ Dn}.
Using the above analytic properties and a multivariable Tauberian theorem [12] we
prove that

Theorem 5. There exists θ > 0 such that

|
{

x ∈ U(An) : H(x) ≤ t
}

| = tQn(log t) + O(t1−θ)

where Qn(log t) is a non-vanishing polynomial of degree dn =
(

2n−1
n

)

− n − 1.

Actually we can describe the last polynomial rather precisely for all n ≥ 3 ([4],
Theorem 7).

3.3. Unlucky cases. In the last two subsections we could give satisfactory de-
scriptions of the analytic behaviour of the Euler products. This need not always be
possible. In the following we can only show the existence of a conditional natural
boundary [6].

Proposition 1. Suppose that there are infinitely many zeros of ζ off the line 1
2 +it.

Then the function

f(s) =
∏

p

(

1 + p−s + p1−2s
)

has meromorphic continuation to the half plane ℜs > 1
2 , and the line ℜs = 1

2 is the

natural boundary of f .

This is an example of case (3) of our classification of the previous section. We
notice that the real parts of the zeros of f(s) are exactly 1

2 and thus we can not
construct a sub-sequence of zeros or poles which would converge on each point of
the presumed natural boundary ℜs = 1

2 . The conditional result above is attained

by expressing f(s) as a product of functions ‘convenient’ for ℜs > 1
2 and

∏

m≥1

ζ((4m + 1)s − 2m)

ζ((4m + 3)s − 2m − 1)
,

which is of the type considered in Theorem 3.
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We next consider the Euler product D(s) =
∏

p(1 − p2−s + p−s) which can be
written as

D(s) =
∏

p

(1 − p2−s)
∏

p

(1 +
p−s

1 − p2−s
) = ζ(s − 2)D∗(s).

We expect a natural boundary at ℜ s = 2, or at least an essential singularity at
s = 2, and our only method to prove this is to approach this point from the right.
But for ℜ s = σ > 2 we estimate the second product as

∑

p

∑

n≥1

|p2n−(2n+1)s| ≤
∑

p

p−2
∑

n≥1

p−n(σ−2) ≤
∑

p

p−2 1

1 − 2σ−2
.

So the product for D∗ converges absolutely in the half-plane ℜ s > 2, in particular,
D∗ does not have any zeros or poles in this half-plane. This example falls under
case (5) of the classification mentioned. It is worse than Proposition 1 where we
could not unconditionally prove the existence of zeros or poles clustering on the
assumed boundary whereas here such zeros or poles do not even exist.

4. No Euler products

There are numerous contexts in which we come across zeta functions that do not
have an Euler product. We cite just two examples. The first, mentioned because
it comes from a context quite different from the other examples we treated, is that
of Dirichlet series generated by finite automata.

Roughly speaking, a sequence (un) with values in a finite set is d-automatic if
we can compute the n-th term of the sequence by feeding the base d representation
of n to a finite state machine. One of the best known among 2-automatic cases is
the Thue-Morse sequence,

01 10 1001 10010110 · · ·
generated by the substitution maps 0 → 01, 1 → 10. The Dirichlet series

∑∞
n=0

un

ns

corresponding to a d-automatic sequence can be meromorphically continued to the
whole complex plane. Among consequences it is proved [1] that automatic sequences
have logarithmic densities. It would be interesting to know how Dirichlet series
associated to non automatic sequences (like the infinite Fibonacci word generated
by the substitutions 0 → 01, 1 → 0) behave.

The second example is in several variables. The Euler-Zagier sum defined as

ζr(s1, · · · , sr) =

∞
∑

m1=1

· · ·
∞
∑

mr=1

m−s1

1 (m1 + m2)
−s2 · · · (m1 + · · · + mr)

−sr

has been studied with much enthusiasm. This function can be analytically contin-
ued to the whole Cr space. Matsumoto introduced the generalised multiple zeta
function

ζr((s1, · · · , sr); (α1, · · · , αr), (w1, · · · , wr)) =

r
∑

j=1

∞
∑

mj=0

r
∏

i=1

(αi+m1w1 · · ·+miwi)
−si

where wi, mi are complex parameters with branches of logarithms suitably defined.
This too can be continued as a meromorphic function to the whole Cr plane. We
do not wish to elaborate on this subject but the interested reader can find details
elsewhere (see, for example, the expository paper [27] for references).
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4.1. Goldbach zeta function. Here we consider the number Gr(n), r ≥ 2, of
representations of n as the sum of r primes. Egami and Matsumoto[18] introduced
the generating function

Φr(s) =

∞
∑

k1=1

· · ·
∞
∑

kr=1

Λ(k1) . . .Λ(kr)

(k1 + k2 + · · · + kr)s
=

∞
∑

n=1

Gr(n)

ns

using the von Mangoldt function Λ. This series is absolutely convergent for ℜ s > r,
and has a simple pole at s = r. It is clear that to study the analytic properties
in this context it is necessary to have information on the zero-free region of ζ, the
Riemann zeta function, and the presence of even one zero of ζ may prevent us
from having useful information. All results that we will talk about will therefore
be under the assumption of the Riemann Hypothesis (RH).

We can show that from the analytic point of view, under RH, Φr is determined
by the case r = 2 [7].

Theorem 6. Suppose that the Riemann Hypothesis is true. Then for any r ≥ 3
there exist polynomials fr(s), gr(s), hr(s), such that

Φr(s) = fr(s)ζ(s − r + 1) + gr(s)
ζ′

ζ
(s − r + 1) + hr(s)Φ2(s − r + 2) + R(s),

where R(s) is holomorphic in the half-plane ℜs > r − 1 and uniformly bounded in

each half-strip of the form ℜs > r + 1, T < ℑs < T + 1, with T > 0.

This is done by computing the function using the circle method which give the
three main terms. A bound (under RH) for

∑

n≤x

Λ(n)e2πiαn −
∑

n≤x

e2πiαn

gives an error term of order O(xr−1−δ) for some δ positive for all but the above
three terms.

It is thus important to consider the situation of r = 2. We recall that this
case occurs in the consideration of the Goldbach conjecture that every even integer
larger than 2 is the sum of two primes. To study this problem often it is natural
to consider the corresponding problem for Λ and try to show that G2(n) > C

√
n.

Now, assuming the RH, the authors in [18] described the analytic continuation
of Φ2 and for obtaining a natural boundary they used unproved assumptions on
the distribution of the imaginary parts of zeros of ζ. In this context we denote the
set of imaginary parts of non-trivial zeros of ζ by Γ. The belief that the positive
elements in Γ are rationally independent is folkloric and Fujii[21] used the following
special case :

Conjecture 2. Suppose that γ1 + γ2 = γ3 + γ4 6= 0 with γi ∈ Γ. Then {γ1, γ2} =
{γ3, γ4}.

In [18] an effective version of the above conjecture is formulated, i.e.

Conjecture 3. There is some α < π
2 , such that for γ1, . . . , γ4 ∈ Γ we have either

{γ1, γ2} = {γ3, γ4}, or

|(γ1 + γ2) − (γ3 + γ4)| ≥ exp
(

− α(|γ1| + |γ2| + |γ3| + |γ4|)
)

,

and it is proven that:
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Theorem 7. Suppose the Riemann hypothesis holds true. Then Φ2(s) can be mero-

morphically continued into the half-plane ℜs > 1 with an infinitude of poles on the

line 3
2+it. If in addition Conjecture 3 holds true, then the line ℜ s = 1 is the natural

boundary of Φ2. More precisely, the set of points 1+ iκ with limσց1 |Φ(σ+κ)| = ∞
is dense on R.

In [ibid.] the authors conjectured that under the same assumptions the domain
of meromorphic continuation of Φr should be the half-plane ℜs > r − 1. Notice
that a direct consequence of Theorem 6 confirms the following :

Theorem 8. If the RH holds true, then Φr(s) has a natural boundary at ℜs = r−1
for all r ≥ 2 if and only if Φ2(s) has a natural boundary at ℜs = 1.

In [7] it is also shown that if the RH and Conjecture 2 hold true, then Φ2(s) does
have a natural boundary at ℜs = 1 and a singularity can be described precisely as

Theorem 9. If the RH holds true, then Φ2 has a singularity at 2ρ1, where ρ1 =
1
2 + 14.1347 . . . i is the first root of ζ. Moreover,

lim
σց0

(σ − 1)|φ2(2ρ1 + σ)| > 0.

This last result helps us obtain an Ω- result for Gr(n). We consider the oscillating
term

Hr(x) = −r
∑

ρ

xr−1+ρ

ρ(1 + ρ) . . . (r − 1 + ρ)

where the summation runs over all non-trivial zeros of ζ. The generating Dirichlet
series for

∑

n≤x

Gr(n) − 1

r!
xr − Hr(x)

has a singularity at 2ρ1 + r − 1, which gives the following :

Corollary 1. Suppose that RH holds true. Then we have

∑

n≤x

Gr(n) =
1

r!
xr + Hr(x) + Ω(xr−1).

In fact the quality of the error term does not improve with increasing r. We
mention a few historical facts about the error term. Fujii[21] obtained under the
RH

∑

n≤x

G2(n) = x2/2 + O(x3/2)

which he later improved [22], by explicitly writing the oscillating term, to
∑

n≤x

G2(n) = x2/2 + H2(x) + O((x log x)4/3).

Further, in [9] we used the distribution of primes in short intervals to estimate
exponential sums close to the point 0 and proved that

Theorem 10. Suppose that the RH is true. Then we have

∑

n≤x

G2(n) =
1

2
x2 + H2(x) + O(x log5 x),
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and
∑

n≤x

G2(n) =
1

2
x2 + H2(x) + Ω(x log log x).

which confirms the conjectural value of the error term [18, Conj. 2.2].
Recently Granville[23] used the error term O((x log x)4/3) to obtain a new charac-

terisation of the RH, i.e. for the ‘twin prime constant’ C2, the Riemann Hypothesis
is equivalent to the estimate

∑

n≤x

(G2(n) − nC2

∏

p|n

p − 1

p − 2
) ≪ x3/2+o(1).

Using the GRH one could similarly find bounds for the exponential sums in
question which would give

Theorem 11. The Generalised Riemann Hypothesis for Dirichlet L-functions L(s, χ),
χ mod q, is equivalent to the estimate

∑

n≤x, q|n
G2(n) =

1

φ(q)

∑

n≤x

G2(n) + O(x1+o(1)),

as announced in [ibid.Theorem 1C].

5. Consequences

One of the amusing consequences of the existence of a natural boundary is to
suggest that there is a ‘natural’ limit to what can be achieved for asymptotic results
associated to Dirichlet series by using complex analysis. A natural boundary could
show the non-existence of certain asymptotic results involving error terms and thus
imply the existence of an inverse result, i.e. an Ω-term. Usually when proving an
Ω-result we first derive an explicit formula with oscillating terms and then show
that these terms cannot cancel each other out for all choices of the parameters. In
[6] we show that even if we allow for infinite oscillatory sums to be part of the main
terms, we still get lower bounds for the error terms. Thus a natural boundary at
ℜs = σ precludes the existence of an explicit formula with main terms over the
zeros of the Riemann zeta function and an error term O(xσ). We state this more
precisely as :

Proposition 2. Let an be a sequence of complex numbers such that the generating

Dirichlet-series has a natural boundary at ℜs = σh. Then there does not exist an

explicit formula of the form

A(x) :=
∑

n≤x

an =
∑

ρ∈R
cρx

ρ + O(xθ)

for any sequence c with |cρ| ≪ (1+ |ρ|)c and |R∩{s : ℜs > θ, |ℑs| < T }| ≪ T c and

for any θ < σh. In particular, for any sequence αi, βi, 1 ≤ i ≤ k and any ǫ > 0 we

have

A(x) =
∑

αix
βi + Ω(xσh−ǫ).

In practice, the integral taken over the shifted path need not always converge and
we may not be able to obtain an explicit formula. This can happen even when the
series is meromorphic in the entire plane, for example, the age-old divisor problem
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where we have an Ω-estimate of size x1/4 though the corresponding Dirichlet-series
ζ2(s) is meromorphic on C.

However, in certain cases we can actually obtain explicit formulae if we find
bounds on the growth of the Dirichlet-series. We consider a case of an Euler product
∏

p W (p, p−s) which we have already encountered as the p-adic zeta function of

GSp6. This can be interpreted as a counting function [5] by establishing a bijection
between right cosets of 2t× 2t symplectic matrices and sub modules of finite index
of Z2t which are equal to their duals and called polarised.

Theorem 12. Denote by an the number of polarised sub modules of Z6 of order n.

Then we have for every ǫ > 0

(1) A(x) :=
∑

n≥1

ane−n/x = c1x
7/3 + c2x

2 + c3x
5/3 +

∑

ρ

αρx
ρ+8

6 + O(x4/3+ǫ),

where ρ runs over all zeros of ζ, and the coefficients c1, c2, c3, and αρ are nu-

merically computable constants. Moreover, the error term cannot be improved to

O(x4/3−ǫ) for any fixed ǫ > 0.

The interpretation above allows us to use the zeta function Z(GSp6, s) as the
generating function for an. Applying the Mellin transform we obtain

A(x) =
1

2πi

3+i∞
∫

3−i∞

Z(s)Γ(s)xs ds.

For σ and ǫ > 0 fixed, we have Γ(σ + it) ≪ e−( π
2
−ǫ)t. We now choose a path

(following Turán [31, Appendix G]) to shift the integration. The integral on this
new path is bounded above by x4/3+ǫ. Hence, we obtain the formula

A(x) =
∑

ℜρ>4/3+ǫ

Γ(ρ)xρress=ρZ(s) + O(x4/3+ǫ),

where ρ runs over the poles of Z(s), and all complex numbers 4/3+ρ/6. We already
saw that ℜ s = 4

3 is the natural boundary for Z(s) and as in Proposition 2, we now
get an Ω-result.

The moral of the story is not necessarily to get the best possible Ω-result but to
show that a non-trivial result is obtainable by this method.
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liées à la fonction zêta de Riemann , thèse de doctorat, Université de Bordeaux (2008).
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U.M.R. CNRS 8524,
59655 Villeneuve d’Ascq Cedex,
France.
bhowmik@math.univ-lille1.fr


