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1 The First Proof

1.1 Introduction

This method here is based on Iosevich [2].
Here the main idea revolves around the estimation of the Fourier coefficients of
the characteristic function of a subset of [1, N ] assumed to contain no nontrivial
arithmetic progressions.

1.2 Statement of the theorem and some definitions

We first make a formal statement of Roth’s theorem.
Roth’s Theorem: If B is a subset of the positive integers of positive upper density,
i.e., if

lim sup
n→∞

|B ∩ [1, n]|
n

> 0, (1.2.1)

then B contains a nontrivial arithmetic progression of length 3.

Definition 1: A real-valued function f defined on a subset of the positive integers
N will be called subadditive if

f(m+ n) ≤ f(m) + f(n)

for all m and n in the domain of f .
We have a useful lemma about subadditve functions on subsets of N, called Fekete’s
Lemma, which we prove below for completeness.
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Chapter 1 The First Proof

Lemma 1. Fekete’s Lemma: Let f be a subadditive function on the set of the positive
integers. Then the limit

lim
n→∞

f(n)
n

exists and is equal to

inf
n≥1

f(n)
n

.

Proof of Fekete’s Lemma: Let us write

l := inf
n≥1

f(n)
n

;

let ε > 0. There exists K ∈ N such that

|f(K)
K
− l| < ε

2 .

Let L be large enough to guarantee that f(r)
KL < ε

2 for r < K.
Let n ≥ KL. Then there exist nonnegative integers q, r such that n = Kq + r, where
r < K. Clearly q ≥ L. Also

f(n)
n

≤ f(Kq)
Kq + r

+ f(r)
Kq + r

≤ qf(K)
Kq

+ f(Kq)
Kq

= f(K)
K

+ f(Kq)
Kq

< l + ε

2 + ε

2
= l + ε,

which shows that |f(n)
n − l| < ε for n ≥ KL; this means l = limn→∞

f(n)
n . N

Definition 2: Let n be a positive integer. We define A(n) to be the largest num-
ber of integers that can be chosen from {1, ..., n} such that no 3-term arithmetic
progression is formed (as in the introduction).
We shall show the subadditivity of the function A:

A(m+ n) ≤ A(m) + A(n) (1.2.2)

Suppose m and n are positive integers. Let {a1, ..., ak} be a subset of {1, ...,m+ n}
which does not contain any nontrivial arithmetic progression. Let ai1 , ..., air be
those ai which do not exceed m, and let aj1 , ..., ajs be those which exceed m, so that
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1.3 One observation

r + s = k. Then {ai1 , ..., air} and {aj1 − n, ..., ajs − n} are respectively subsets of
{1, ...m} and {1, ..., n} which do not contain any nontrivial arithmetic progressions
(note that if a set {a, b, c, ...} of integers does not contain any nontrivial 3-term
arithmetic progressions, then the set {a + n, b + n, c + n, ...} also does not contain
any nontrivial 3-term arithmetic progressions). Hence

r ≤ A(m)

and

s ≤ A(n)

by definition of A. So

k = r + s ≤ A(m) + A(n)

showing that

A(m+ n) ≤ A(m) + A(n). N

Therefore by Fekete’s lemma, the limit

lim
n→∞

A(n)
n

exists, and is equal to infn≥1
A(n)
n

. Call this limit l. Then obviously, 0 ≤ l ≤ A(n)
n

< 1
for all n.

1.3 One observation

It is easy to see that Roth’s theorem will be true if we can prove that l = 0. Indeed,
suppose l = 0. Let ε = 1

2δ
+(B) which is > 0 by assumption. Since

δ+(S) = lim sup
n→∞

|B ∩ [1, n]|
n

andε > 0 we can choose a positive integer N such that

δ+(B) < |B ∩ [1, n]|
n

+ ε.

for all n ≥ N . This gives that
∣∣∣B ∩ [1, n]

∣∣∣ > nε for n ≥ N . As l = 0 we can find
n ≥ N such that A(n) < nε.

Since
∣∣∣B ∩ [1, n]

∣∣∣ > nε and A(n) < nε we see that that B ∩ [1, n] and hence B must
contain a nontrivial 3-term aritmetic progression. And this is what Roth’s Theorem
says.
So now what we have to prove is: l = 0.
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Chapter 1 The First Proof

1.4 Start of the proof

We suppose, by way of contradiction, that l > 0. Let ε := l2

25 , which is a positive
number.
Let m be big enough to guarantee that

l ≤ A(n)
n

< l + ε (1.4.1)

for all n ≥ 2m+ 1.
Let us choose N ≥ 2m+ 1(we shall restrict N later, in fact many times).
Now [1, 2N ] has a subset S with |S| ≥ 2lN which does not contain any 3- term
arithmetic progression. Let T be the set of even elements of S, and let us write

S = {u1, ..., us}

and

T = {2v1, ..., 2vt}

Observe that

l ≤ s

2N < l + ε (1.4.2)

t ≤ N(l + ε) (1.4.3)

and, since the number of odd integers in S does not exceed A(N),

t ≥ A(2N)− A(N) ≥ 2lN −N(l + ε) = N(l − ε) (1.4.4)

We consider the Fourier sums

Ŝ(α) := Σu∈Se(αu)

and

T̂ (α) := Σ2v∈T e(αv)

for any real α, where e(x) := e2πix for real x. From Equation 1.2.1
Let the symbol

´
dx denote the sum over x = 0, 1

2N , ...,
2N−1

2N , so that, for example,
ˆ
e(x)dx = {2N, if x=0

0, otherwise (1.4.5)
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1.4 Start of the proof

From this it is easy to deduce thatˆ
Ŝ(α)T̂ (−α)2dα = 2Nt (1.4.6)

since we assumed that S does not contain any nontrivial arithmetic progressions of
length 3. Also

2Nt ≤ 2NN(l + ε) ≤ 3lN2 (1.4.7)

Now,

Ŝ(0)T̂ (0)2 = st2 ≥ 2lNN2(l − ε)2 ≥ l3N3 (1.4.8)

and

|Ŝ(0)T̂ (0)2 ≤ |
ˆ
Ŝ(α)T̂ (−α)2dα|+ |

ˆ
α 6=0

Ŝ(α)T̂ (−α)dα| (1.4.9)

which gives

l3N3 ≤ 3lN3 + y (1.4.10)

where y represents the second integral on the right of eqEquation 1.4.5. Suppose for
the moment that

|Ŝ(α)| ≤ 6εN (1.4.11)

for α 6= 0. Then one gets

y ≤ 6εN
ˆ
|T̂ (−α)2|dα

= 6εNΣj,k

ˆ
e(α(vj − vk))dα

= 6εN · 2Nt

≤ 6εN · 3lN2 = 18εlN3 (1.4.12)

whence, from inequality Equation 1.4.9,

l3N3 ≤ 3lN3 + 18εN3

which gives

7l2
25 ≤

3
N

which is untenable for large N , giving the required contradiction.
So it remains to prove Equation 1.4.11.
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Chapter 1 The First Proof

1.5 The main estimate

In this section, we carry out a proof of inequality Equation 1.4.11, which is the main
estimate of this theorem.
To this end, let M denote the largest interger less than

√
N , and let α be any

nonzero real number. By the rational approximation (discussed earlier) we can
choose integers p and q with 1 ≤ q ≤M such that |α− p

q
| ≤ 1

qM
. Write β := α− p

q
,

so |β| ≤ 1
qM

.
Now we have the elementary inequality

|e(x) + e(−x)
2 − 1| = | cos(x)− 1| ≤ x2

2 (1.5.1)

We shall prove Equation 1.4.11 by using the triangle inequality, with the help of
an ’intermediate term’. In fact, we employ the sum 1

2m+1Σu∈SΣ|j|≤me(α(u+ jq)) as
the intermediate term and show that both 1

2m+1Σu∈SΣ|j|≤me(α(u+ jq)) and Ŝ(α)−
1

2m+1Σu∈SΣ|j|≤me(α(u+ jq)) are small, which would obviously help us conclude that
Ŝ(α) is also small, in view of the triangle inequality.
Now, by a sequence of simple calculations,

|Ŝ(α)− 1
2m+ 1Σu∈SΣ|j|≤me(α(u+ jq))| = |Σu∈Se(αu)− 1

2m+ 1Σ|j|≤me(α(u+ jq))

= |Σu∈S
1

2m+ 1Σ|j|≤m[e(α(u+ jq)− e(αu)]|

= |Σu∈S
1

2m+ 1Σ|j|≤m[e(jβq)− 1]|

≤ 2
2m+ 1Σu∈S|Σm

j=1[e(jβq) + e(−jβq)
2 − 1]|

≤ 2
2m+ 1Σu∈SΣm

j=1
(jβq)2

2

= (βq)2

2m+ 1 |S|
m(m+ 1)(2m+ 1)

6

= |S|(βq)
2

6 m(m+ 1)

<
(βmq)2

2 |S|

≤ m2|S|
2M2

≤ m2

2M2N (1.5.2)
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1.5 The main estimate

and this bounds Ŝ(α) − 1
2m+1Σu∈SΣ|j|≤me(α(u + jq))|. So our next task is to give

an upper bound for 1
2m+1Σu∈SΣ|j|≤me(α(u+ jq))|. We claim that

| 1
2m+ 1Σu∈SΣ|j|≤me(α(u+ jq)| ≤ 5εN (1.5.3)

Now for any integer u with 0 ≤ u ≤ 2N − 1 let Wu := {u+ jq : |j| ≤ m} calculated
mod 2N . Observe that

Σu∈SΣ|j|≤me(α(u+ jq)) = Σ2N−1
r=0 e(αr)|Wr ∩ S| (1.5.4)

Note that for mq ≤ u ≤ 2N −mq, Wu is an arithmetic progression of length 2m+ 1
in [1, 2N ]. Therefore, since by assumption S does not contain any 3-term arithmetic
progression, we obtain

|S ∩Wu|
2m+ 1 < l + ε (1.5.5)

so for these 2N − 2mq values of u we have

0 ≤ Vu < ε (1.5.6)

where we have written Vu := 1
2m+1 |S ∩Wu| − l for all u with 0 ≤ u ≤ 2N . For the

other 2mq values of u we trivially have

Vu ≤ 1 (1.5.7)

Since every a ∈ S occurs in exactly 2m+ 1 of the sets Wu we have

Σ2N−1
r=0 |S ∩Wr| = (2m+ 1)|S| (1.5.8)

which implies that the average of the Vr is

1
2NΣ2N−1

r=0 Vr = |S|2N − l

which is ≥ 0 as |S| ≥ 2lN . Therefore we have

Σ2N−1
r=0 |Vr| ≤ 2Σr:Vr≥0 Vr

≤ 2((2N − 2mq)ε+ 2mq)
≤ 4εN + 4mq
≤ 4εN + 4mM

≤ 5εN (1.5.9)
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Chapter 1 The First Proof

for large N. This proves Equation 1.5.3.

Given the inequalities eqEquation 1.5.2 and eq Equation 1.5.9, we can complete the
proof as follows.
We have, by the triangle inequality,

|Ŝ(α)| ≤ |Ŝ(α)− 1
2m+ 1Σu∈SΣ|j|≤me(α(u+jq))|+| 1

2m+ 1Σu∈SΣ|j|≤me(α(u+jq))|

≤ m2

2M2N + 5εN

≤ 6εN

for large enough N which proves Equation 1.4.11 and hence completes the proof. �
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2 Roth’s 1953 Proof

2.1 Introduction

In this chapter we give an exposition of Roth’s 1953 proof. In fact, this version is
stronger than the one proved in chapter 1. The proof is also longer and needs a
much more delicate argument.

2.2 Statement and some remarks about the function
A

Roth’s Theorem(1953) Let (as in the previous chapter) A(x) denote the greatest
number of positive integers that can be chosen from the set [1, x] so that no three of
them forms an arithmetic progression. Then

A(x)
x

= O( 1
log log x).

We write a(x) := A(x)
x

so that the theorem may also be stated as

a(x) = O( 1
log log x). (2.2.1)

We note that A(x) also denotes the greatest number of integers that can be chosen
from any arithmetic progression of length x without forming any 3-term arithmetic
progression.
Now it is obvious that

1
n
≤ a(n) ≤ 1 ∀n ∈ N (2.2.2)

Also using eq Equation 1.2.2 repeatedly we have

A(mn) ≤ mA(n), A(m) ≤ A(([m
n

] + 1)n) ≤ m+ n

n
A(n)

which give

a(mn) ≤ a(n) (2.2.3)

9



Chapter 2 Roth’s 1953 Proof

and

a(m) ≤ (1 + n

m
)a(n) (2.2.4)

respectively, for all positive integers m and n.

2.3 Some basic results

Let, as in the first proof, S := {u1, ..., us} be a subset of [1, N ] which contains no
nontrivial arithmetic progression of length three.
We again consider the Fourier sum

Ŝ(α) := Σu∈Se(αu)

for any real α.
Using the Dirichlet Box Principle again, we can find integers n, q with 1 ≤ q ≤

√
N

such that, putting β = α− n
q

|β| ≤ 1
q
√
N
.

For any m < N write

Tm(α) := a(m)
q
{Σq

j=1e(
jn

q
)}{ΣN

k=1e(βk)}

so that Tm(α) = 0 if q > 1, since Σq
j=1e( jnq ) = 0 for q > 1.

Proposition: We have the asymptotic inequality

|Ŝ(α)− Tm(α)| < Na(m)− s+O(m
√
N) (2.3.1)

For this we first prove the relation

Ŝ(α) = 1
mq

Σq
j=1ΣN

k=1Σk≤u<k+mq,u≡j( mod q)e(αu) +O(mq) (2.3.2)

To prove this, first note that there exist mq integers k satisfying k ≤ u < k + mq
for fixed m, q and u. In fact the only integers k satisfying this relation are

u−mq + 1, u−mq + 2, ..., u− 1, u

Also, for mq ≤ u < N − mq all these mq integers k lie in [1, N ], i.e., for mq ≤
u < N −mq one has 1 ≤ k ≤ N . Hence for these mq values of u, the coefficient of
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2.3 Some basic results

e(αu) in (29) reduces to mq
mq

= 1. For the other values of u, that is, for u < mq or
u ≥ N−mq, which are at most (mq−1)+(N−(N−mq−1)) = 2mq in number, the
error term O(mq) gives the required compensation. This proves the above relation
Equation 2.3.2.
Now consider the relation Equation 2.3.2. In the inner sum in Equation 2.3.2 we
can write u = Qq + j for some integer Q, since u ≡ j mod q. So

e(αu) = e((β + n

q
)u)

= e(n
q

(Qq + j))e(βu)

= e(nQ)e(jn
q

)e(βu)

Since in the inner sum k ≤ u < k + mq we may also write u as k + v where
0 ≤ v < mq. So we can further express e(αu) as

e(αu) = e(nQ)e(jn
q

)e(β(k + v))

= e(jn
q

)e(βk)(e(nQ)e(βv))

≤ e(jn
q

)e(βk)(1 + nQ|β|v)

so that

e(αu) = e(jn
q

)e(βk) +O(mq|β|).

Also, we know that the number of terms in the inner sum is at most A(m), using
the statement made immediately after eq Equation 2.2.1. Hence the number of
terms may be written as A(m)−D(j, k,m, q) where D(j, k,m, q) ≥ 0 is an integer
depending on j, k,m and q. Hence

Ŝ(α) = 1
mq

Σq
j=1ΣN

k=1Σk≤u<k+mq,u≡j( mod q)e(αu) +O(mq)

= 1
mq

Σq
j=1ΣN

k=1Σk≤u<k+mq,u≡j(mod q){e(
jn

q
)e(βk) +O(mq|β|)}+O(mq)

= 1
mq

Σq
j=1e(

jn

q
)ΣN

k=1(A(m)−D(j, k,m, q)){e(βk) +O(mq|β|)}+O(mq)

= A(m)
m

1
q

Σq
j=1e(

jn

q
)ΣN

k=1e(βk) +O(mNq|β|)

− { 1
mq

Σq
j=1e(

jn

q
)ΣN

k=1e(βk)D(j, k,m, q) +O(mNq|β|)}+O(mq)

11



Chapter 2 Roth’s 1953 Proof

i.e.,

Ŝ(α) = Tm(α)− 1
mq

Σq
j=1e(

jn

q
)ΣN

k=1e(βk)D(j, k,m, q)+O(mNq|β|)+O(mq). (2.3.3)

We can now prove Equation 2.3.1 To do this, we first estimate the sum Σq
j=1ΣN

k=1D(j, k,m, q).
For this let us take α = 0 in the functions on both sides of Equation 2.3.3. Then
any q with 1 ≤ q ≤

√
N and n = 0 will serve our purpose, in the sense that for

these values of β, n, q one has
∣∣∣β∣∣∣ = 0 ≤ 1

q
√
N
. We then have

Ŝ(0) = Tm(0)− 1
mq

Σq
j=1e(0)ΣN

k=1e(0)D(j, k,m, q) +O(0) +O(mq)

= Tm(0)− 1
mq

Σq
j=1ΣN

k=1D(j, k,m, q) +O(mq)

which gives

s = Na(m)− 1
mq

Σq
j=1ΣN

k=1D(j, k,m, q) +O(mq)

which implies that for α = 0,

Σq
j=1ΣN

k=1D(j, k,m, q) = mNqa(m)−mqs+O(mq).

For α 6= 0 we estimate as follows:

|Ŝ(α)− Tm(α)| = | − 1
mq

Σq
j=1e(

jn

q
)ΣN

k=1e(βk)D(j, k,m, q) +O(mq) +O(mNq|β|)|

<
1
mq

(mNqa(m)−mqs) +O(mq) +O(mNq|β|)

= Na(m)− s+O(mq) +O(mNq|β|)

≤ Na(m)− s+O(m
√
N) +O(mN 1√

N
)

= Na(m)− s+O(m
√
N)

which is Equation 2.3.1.

2.4 A functional inequality for a(x) and its
applications

2.4.1 Introduction

Let m be even, and let 2M = m4. Let S = {u1, ..., us} be a largest possible subset of
[1, 2M ] which does not contain any nontrivial 3-term arithmetic progression, so that

12 12



2.4 A functional inequality for a(x) and its applications

s = A(2M), and let T = {2v1, ...2vt} be the set of all even elements of S. Observe
that

s = 2Ma(2M) = 2Ma(m4) ≤ 2Ma(m) (2.4.1)

t ≤ A(M) = Na(M) ≤Ma(m) (2.4.2)

and, as in (6),

t ≥ A(2M)− A(M) ≥ 2Ma(2M)−Ma(m). (2.4.3)

The main aim of this section is to prove the asymptotic

a(m)2 = O

(
a(m)2

η2M2 + {ηMa(m) + 1}{a(m)− a(2M) +M− 1
4}+ a(m)

ηM

)
(2.4.4)

where η is a real number with 0 < η < 1
2 .

2.4.2 Proof of the functional inequality

As in the previous proof, we again consider the Fourier sums

Ŝ(α) := Σu∈Se(αu), T̂ (α) := Σ2v∈T e(αv)

and two further sums

σ(α) := a(m)Σ2M
j=1e(αj), τ(α) := a(m)ΣM

j=1e(αj).

Using Equation 2.4.1 and Equation 2.4.2, we have

Ŝ(α) = O(Ma(m)), T̂ (α) = O(Ma(m)) (2.4.5)

and it is obvious by definition that

σ(α) = O(Ma(m)), τ(α) = O(Ma(m)). (2.4.6)

In order to prove the above asymptotic Equation 2.4.4 we need the following suc-
cession of claims and propositions propositions.'

&

$

%

Claim: Two asymptotics

Ŝ(α)− σ(α) = O(M{a(m)− a(2M)}+M
3
4 ) (2.4.7)

and

T̂ (α)− τ(α) = O(M{a(m)− a(2M)}+M
3
4 ) (2.4.8)

13



Chapter 2 Roth’s 1953 Proof

Let us assume this for the moment and use them for proving the ensuing proposi-
tions.
Proposition 1: Another asymptotics For any α,

Ŝ(α)T̂ (−α)2 − σ(α)τ(−α)2 = O({Ma(m)}2(M{a(m)− a(2M)}+M
3
4 ).

Proposition 2: If η ∈ (0, 1) and 0 < η < α < 1− η, we have

Ŝ(α) = O(a(m)
η

+M{a(m)− a(2M)}+M
3
4 ).

Proposition 3: The condition that S does not contain any nontrivial 3-term arith-
metic progression can be expressed as

ˆ 1−η

−η
Ŝ(α)T̂ (−α)2dα = t.

Proposition 4: For 0 < η < 1
2 , we have

ˆ 1−η

η

Ŝ(α)T̂ (−α)2dα = O({a(m)
η

+M{a(m)− a(2M)}+M
3
4}Ma(m)).

Proposition 5: We have
ˆ η

−η
Ŝ(α)T̂ (−α)2dα =

ˆ η

−η
σ(α)τ(−α)2dα +O(η{a(m)

η

+M{a(m)− a(2M)}+M
3
4}Ma(m)2).

Proof of Proposition 5: Using Proposition 1, we can write
Ŝ(α)T̂ (−α)2 = σ(α)τ(α)2 +O({Ma(m)}2(M{a(m)− a(2M)}+M

3
4 ).

Integrating this from −η to η, the required equation results instantly. �

Proposition 6: We have the asymptotic formula
ˆ η

−η
σ(α)τ(−α)2dα =

ˆ 1
2

− 1
2

σ(α)τ(−α)2dα +O(a(m)3

η2 )

valid for 0 < η < 1
2 .
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2.4 A functional inequality for a(x) and its applications

Proposition 7: We have
ˆ 1

2

− 1
2

σ(α)τ(−α)2dα = M2a(m)3.

We will prove these results later. Let us first see how these can be used to prove the
main aim of this section.
Proof of Equation 2.4.4
Given the above claim and the nine propositions above, we can prove the functional
asymptotic as follows.
Using Proposition 6 we have

ˆ 1
2

− 1
2

σ(α)τ(−α)2dα =
ˆ η

−η
σ(α)τ(−α)2dα +O(a(m)3

η2 )

which, using Proposition 5, becomesˆ η

−η
Ŝ(α)T̂ (−α)2dα+O(a(m)3

η2 )+O(η{a(m)
η

+M{a(m)−a(2M)}+M 3
4}Ma(m)2)

which is equal to
ˆ 1−η

−η
Ŝ(α)T̂ (−α)2dα−

ˆ 1−η

η

Ŝ(α)T̂ (−α)2dα +O(a(m)3

η2 )+

O(η{a(m)
η

+M{a(m)− a(2M)}+M
3
4}Ma(m)2).

Applying Proposition 3 and 4 respectively to the first and second integrals, we obtain

t+O

(
{a(m)

η
+M{a(m)− a(2M)}+M

3
4}Ma(m)

)
+

O(a(m)3

η2 ) +O(η{a(m)
η

+M{a(m)− a(2M)}+M
3
4}Ma(m)2)

which may be written as

O

(
Ma(m) + {a(m)

η
+M{a(m)− a(2M)}+M

3
4}Ma(m) + a(m)3

η2

+η{a(m)
η

+M{a(m)− a(2M)}+M
3
4}Ma(m)2

)

15



Chapter 2 Roth’s 1953 Proof

(note that we have used the fact that t ≤ Ma(m), which is Equation 2.4.2). So,
using Proposition 7,

a(m)2 = O

(
Ma(m)
M2a(m) + {a(m)

η
+M{a(m)− a(2M)}+M

3
4} Ma(m)
M2a(m)

+ a(m)3

η2M2a(m) + η

M2a(m){
a(m)
η

+M{a(m)− a(2M)}+M
3
4}Ma(m)2

)

= O

(
1
M

+ {a(m)
η

+M{a(m)− a(2M)}+M
3
4} 1
M

+ a(m)2

η2M2

+ η

Ma(m){
a(m)
η

+M{a(m)− a(2M)}+M
3
4}a(m)

)

= O

(
1
M

+ {a(m)
Mη

+ {a(m)− a(2M)}+M− 1
4}+ a(m)2

η2M2

+ 1
M

+ η{a(m)− a(2M)}+M− 1
4}
)

= O

(
a(m)
Mη

+ a(m)− a(2M) + a(m)2

η2M2

+ η{a(m)− a(2M)}+M− 1
4}
)

= O

(
a(m)
ηM

+ a(m)2

η2M2 + (ηMa(m) + 1){a(m)− a(2M) +M− 1
4}
)

which is the required asymptotics. �

2.4.3 Applications of the asymptotic

Before we prove the above chain of results, we first indicate how the asymptotic
leads to the completion of the proof of Roth’s theorem.

For this purpose, we have the following function b(x) related to a(x), defined in the
following proposition.

16 16



2.4 A functional inequality for a(x) and its applications

Proposition 8: If, for any positive integer x we define

b(x) := a(24x),

\then we have

b(x)2 < c1

{
b(x)δ + b(x)2δ2 + (b(x)

δ
+ 1)

(
b(x)− b(x+ 1) + 2−4x

)}
,

where c1is an absolute constant and δ = 1
Mη

.

Proof of Proposition 8: Using the asymptotic Equation 2.4.4 we can write, by
substituting δ = 1

ηM

a(m)2 = O(a(m)δ + a(m)2δ2 + (a(m)
δ

+ 1){a(m)− a(2M) + 1
M

1
4
})

= O(a(m)δ + a(m)2δ2 + (a(m)
δ

+ 1){a(m)− a(m4) + 2 1
4

m
})

which is the same as saying that

a(m)2 <c1(a(m)δ + a(m)2δ2 + (a(m)
δ

+ 1){a(m)− a(m4) + 1
m
})

for an absolute constant c1. Now b(x) = a(24x) =⇒ b(x + 1) = a(24x+1) =
a((24x)4) = a(m4) where m = 24x is even. Substituting these values in the above
inequality one obtains

b(x)2 < c1(b(x)δ + b(x)2δ2 + (b(x)
δ

+ 1){b(x)− b(x+ 1) + 1
24x }). �

We can clearly choose c1 > 1 in the above inequality. Consequently we can choose
0 < η < 1

2 such that c1 = b(x)
2δ . This gives

c1{b(x)δ + b(x)2δ2} ≤ b(x)2{1
2 + 1

4c1
} < 3

4b(x)2.

Moreover, by the definition of δ and Equation 2.2.2,

η = 1
Mδ

= 4c1

m4a(m) < c2
1
m3 ,

where c2 = 4c1. This shows, since the constants c1 and c2 are absolute, that 0 <
η < 1

2 is satisfied for large enough m. Hence from Proposition 9 we can write

b(x)2 <
3
4b(x)2 + c1((b(x)

δ
+ 1){b(x)− b(x+ 1) + 1

24x })

17



Chapter 2 Roth’s 1953 Proof

which gives

b(x)2 < 4c1((b(x)
δ

+ 1){b(x)− b(x+ 1) + 1
24x }),

and which, in turn, gives (using the fact that c1 = b(x)
2δ )

b(x)2 < 4c1((2c1 + 1){b(x)− b(x+ 1) + 1
24x })

= c3{b(x)− b(x+ 1) + 1
24x }

for large enough x, say for x > c4.
Now Equation 2.2.3 implies that b is a decreasing function. Therefore, for any
positive integer k one has

kb(2k)2 ≤ Σ2k−1
j=k b(j)2 < c3Σ2k−1

j=k {b(j)− b(j + 1) + 2−4j}
= c3(b(k)− b(2k)) + c3Σ2k−1

j=k 2−4j

< c3(b(k)− b(2k)) + c3k

24k

< c5{b(k)− b(2k) + 2c5

k
},

for k > c4, where c5 is a constant.
We can now use these results to complete the proof of the theorem as follows.
Let k > c4and suppose 2kb(2k) > 4c5. Then

2kb(2k) < 1
4c5
{2kb(2k)} < k{b(k)− b(2k) + 2c5

k
} < kb(k);

this clearly implies that if 2r > 2r0 > c4,

2rb(2r) ≤ max{4c5, 2r0b(2r0)}

whence

b(2r) = O(2−r)

for large enough r.
We claim that this implies

b(x) = O( 1
x

)

for large enough x.
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2.4 A functional inequality for a(x) and its applications

Let x be large; in fact let x > 2r0 > c4. If x is a power of 2, we are done. So suppose
it is not. Then we can choose k such that 2k > x > 2k−1 ≥ 2r0 . Since b is decreasing,
then

O(2−k) = b(2k) ≤ b(x) ≤ b(2k−1) = O(2−(k−1));

since O(2−k) = 2−(k−1) we have

b(x) = O(2−k).

But since 2−k ≤ x−1 we have

b(x) = O( 1
x

),

which proves the claim.

Finally we have

a(x) = O( 1
log log x).

We prove this as follows. Let x be any large integer. Then we can choose an integer
y to satisfy

24y

< x ≤ 24y+1
.

Using (27) we have

a(x) ≤ (1 + x−124y)a(24y)
≤ 2a(24y)
= 2b(y)

= O(1
y

);

but since 2y < log2 log2 x ≤ 2(y + 1) and log2 log2 x = log log2 x
log 2 = log log x−log log 2

log 2 we
clearly have

a(x) = O( 1
log log x). ���

This is what we set out to prove.

It now remains to demonstrate the above chain of propositions
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Chapter 2 Roth’s 1953 Proof

2.5 Proof of the claim (Two asymptotics, eqs
Equation 2.4.7 and Equation 2.4.8)

2.5.1 Proof of Equation 2.4.7

2.5.1.1 Case I: q = 1

We let N = 2M in Equation 2.3.1 and consider Ŝ(α), σ(α). Not that for this case

Tm(α) = a(m)e(n)Σ2M
j=1e(βj)

= a(m)Σ2M
j=1e(n+ βj)

= a(m)Σ2M
j=1e(nj + βj)

= a(m)Σ2M
j=1e(αj)

= σ(α)

so

|Ŝ(α)−σ(α)| = |Ŝ(α)−Tm(α)| < 2Ma(m)−s+O(m
√

2M) = 2Ma(m)−2Ma(2M)+O(m
√
M)

which gives that

Ŝ(α)− σ(α) = O(2Ma(m)− 2Ma(2M) +m
√
M)

= O(2Ma(m)− 2Ma(2M) +M
3
4 ) (2.5.1)

using the fact that 2M = m4, whence m = O(M 1
4 ).

Next we consider T̂ (α), τ(α). For this we set N = M in Equation 2.3.1. In that
case we observe that

Tm(α) = a(m)e(n)ΣM
k=1e(βk)

= a(m)ΣM
k=1e((β + n)k)

= a(m)ΣM
k=1e(αk)

= τ(α).

Note that themaximality of the set S was not used at all in our bound Equation 2.3.1,
so we can use the same bound for the present case; i.e.,

|T̂ (α)− τ(α)| = O(Ma(m)− t+O(m
√
M)
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2.5 Proof of the claim (Two asymptotics, eqs 2.4.7 and 2.4.8)

which, using Equation 2.4.3and the fact that m = O(M 1
4 ), reduces to

|T̂ (α)− τ(α)| = O(Ma(m)− {2Ma(2M)−Ma(m)}+O(M 3
4 )

= O(2Ma(m)− 2Ma(2M) +O(M 3
4 )

= O(M{a(m)− a(2M)}+M
3
4 )

which is what we wanted. ~

2.5.1.2 Case II: q 6= 1

First we have the following lemma'

&

$

%

Lemma 1: For any real α and any positive integer N , we have

|ΣN
j=1e(αj)| ≤ min{N, 1

2
∥∥∥α∥∥∥}

where
∥∥∥α∥∥∥is the distance of the nearest integer from α.

Proof of Lemma 1: If for a fixed N , we denote fN(α) := |ΣN
j=1e(αj)|, gN(α) :=

min{N, 1
2
∥∥∥α∥∥∥}, we see that both fN and gN are even functions with period 1. So it

is enough to prove the result for 0 ≤ α ≤ 1
2 .

Now

ΣN
j=1e(αj) = e(αN)− 1

e(α)− 1 e(α).

First of all, let us note that for 0 ≤ α ≤ 1
2 , we have the inequality

|e(α)− 1| = 2π sin(πα) ≥ 4α = 4
∥∥∥α∥∥∥

where the inequality follows from Jordan’s inequality

2x
π
≤ sin x ≤ x

for x ∈ [0, 1
2 ], and the equality α =

∥∥∥α∥∥∥ is obvious since α ∈ [0, 1
2 ].

Let us suppose that 0 ≤ α ≤ 1
2N . Then by the triangle inequality

∣∣∣ΣN
j=1e(αj)

∣∣∣ ≤ N = min{N, 1
2
∥∥∥α∥∥∥}.
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Chapter 2 Roth’s 1953 Proof

It remains to prove for 1
2N < α ≤ 1

2 . In this case we have

∣∣∣ΣN
j=1e(αj)

∣∣∣ = |e(αN)− 1
e(α)− 1 e(α)|

= |e(αN)− 1
e(α)− 1 |

≤ 2
4
∥∥∥α∥∥∥

= 1
2
∥∥∥α∥∥∥

= min{N, 1
2
∥∥∥α∥∥∥}

which completes the proof of the lemma. �

Using the lemma, we have, since 1∥∥∥α∥∥∥ ≥ 1,

∣∣∣ΣN
j=1e(αj)

∣∣∣ ≤ min{N, 1
2
∥∥∥α∥∥∥}

≤ min{ N∥∥∥α∥∥∥ , 1
2
∥∥∥α∥∥∥}

which proves that

ΣN
j=1e(αj) = O( 1∥∥∥α∥∥∥) (2.5.2)

for all real α. ~

�



�
	Lemma 2: If q 6= 1 then α > 1√

N
.

Proof of Lemma 2: Now

α = n

q
+ β,

so that if q 6= 1, then∥∥∥α∥∥∥ = r

q
± β,
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2.5 Proof of the claim (Two asymptotics, eqs 2.4.7 and 2.4.8)

where 1 <
∣∣∣r∣∣∣ ≤ ∣∣∣n∣∣∣. Also, since 1 < q ≤

√
N , one has

∥∥∥α∥∥∥ ≥ r√
N
± β,

from which, using the fact that q|β| ≤ 1√
N
, it follows that

∥∥∥α∥∥∥ ≥ r − 1√
N

>
1√
N
,

which completes the proof of the lemma. �

Given these two lemmas, we can now complete the proof of the second case as
follows.
Since q > 1, we have Tm(α) = 0, so by Equation 2.3.1,

Ŝ(α) = ±
∣∣∣Ŝ(α)

∣∣∣ = ±
∣∣∣Ŝ(α)− Tm(α)

∣∣∣ < Na(m)− s+O(m
√
N),

which means that

Ŝ(α) = O(Ma(m)− {2Ma(2M)−Ma(m)}+M
3
4 )

= O(2Ma(m)− 2Ma(2M) +M
3
4 ).

Also,

σ(α) = a(m)Σ2N
j=1e(αj) = O( 1∥∥∥α∥∥∥)

using Lemma 1, and hence

σ(α) = O(
√
M)

using Lemma 2. So using the triangle inequality, we can write

|Ŝ(α)− σ(α)| ≤
∣∣∣Ŝ(α)

∣∣∣+ ∣∣∣σ(α)
∣∣∣

≤ O(M(a(m)− a(2M)) +M
3
4 ) +O(

√
M)

which immediately gives that

Ŝ(α)− σ(α) = O(M{a(m)− a(2M)}+M
3
4 ),

and our first claim Equation 2.4.7is proven.
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2.5.2 Proof of Equation 2.4.8

We now proceed to Equation 2.4.8.

Here again, using the two lemmas succesively as in the above case, we can see that

τ(α) = O(
√
M).

Next, as in the paragraph immediately after eqEquation 2.5.1,

T̂ (α) = ±
∣∣∣T̂ (α)

∣∣∣ < Ma(m)− t+O(m
√
M),

which immediately leads to

T̂ (α) = O(2Ma(m)− 2Ma(2M) +M
3
4 )

so that, as before,

∣∣∣T̂ (α)− τ(α)
∣∣∣ ≤ ∣∣∣T̂ (α)

∣∣∣+ |τ(α)|

= O(M{a(m)− a(2M)}+M
3
4 ) +O(

√
M)

= O(M{a(m)− a(2M)}+M
3
4 )

which completes the proof of our claim. �

The proof of our claim being finished, we must next demonstrate the propositions.

2.6 Proofs of the propositions

In this section we complete the proof of the theorem, by proving Proposition 1-
Proposition 7.

Proof of Proposition 1: Using the triangle inequality, we get the inequality

∣∣∣Ŝ(α)T̂ (−α)2 − σ(α)τ(−α)2
∣∣∣ = |Ŝ(α){T̂ (−α)2 − τ(−α)2}

+ τ(−α)2{Ŝ(α)− σ(α)}|
≤ |Ŝ(α)||T̂ (−α) + τ(−α)||T̂ (−α)− τ(−α)|
+ |τ(−α)2||Ŝ(α)− σ(α)|
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2.6 Proofs of the propositions

to which we apply the bounds we have already obtained, namely (40), (41), (42) and
(43) to get the asymptotics

Ŝ(α)T̂ (−α)2 − σ(α)τ(−α)2 = O(Ma(m))2O(Ma(m))O(M{a(m)− a(2M)}+M
3
4 )

+O(Ma(m))2O(M{a(m)− a(2M)}+M
3
4 ),

which, by the rules of asymptotics, reduces immediately to

Ŝ(α)T̂ (−α)2 − σ(α)τ(α)2 = O({Ma(m)}2(M{a(m)− a(2M)}+M
3
4 )

which is what we wanted to show. �

Proof of Proposition 2: We have proved (Equation 2.4.7) that

Ŝ(α) = σ(α) +O(M{a(m)− a(2M)}+M
3
4 ).

Therefore it is enough to prove that for 0 < η < α < 1− η we have

σ(α) = O(a(m)
η

).

Now as α ∈ (0, 1) we know that
∥∥∥α∥∥∥ is equal to either the distance of α from 0 or

the distance of α from 1. But since 0 < η < α < 1 − η it follows that
∥∥∥α∥∥∥ > η.

Hence

|σ(α)| = a(m)|Σ2M
j=1e(αj)|

≤ a(m) min{2M,
1

2
∥∥∥α∥∥∥}

≤ a(m)
2
∥∥∥α∥∥∥

≤ a(m)
2η

which proves the result. �

Proof of Proposition 3: The integral
´ 1−η
−η Ŝ(α)T̂ (−α)2dα is equal to

ˆ 1−η

η

Σs
j=1e(αuj){Σt

k=1e(−αvk)}2dα
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Chapter 2 Roth’s 1953 Proof

= Σs,t,t
i,j,k

ˆ 1−η

−η
e(α(ui − vj − vk))dα

and by changing the limits of integration, this is in turn equal to

Σs,t,t
i,j,k

ˆ 1

0
e(α(ui − vj − vk))dα.

But now,
ˆ 1

0
e(α(ui − vj − vk))dα =

{1, if ui−vj−vk=0

0, otherwise.

From this it follows instantly that

Σs,t,t
i,j,k

ˆ 1

0
e(α(ui− vj − vk))dα = |{(i, j, k) : ui = vj + vk, 1 ≤ i ≤ s, 1 ≤ j, k ≤ t}|

= t

as the quantity |{(i, j, k) : ui = vj + vk, 1 ≤ i ≤ s, 1 ≤ j, k ≤ t}| is exactly the
number of 3-term arithmetic progressions, and since by assumption, this number is
t. This proves the proposition (see Equation 2.4.2). �

Proof of Proposition 4:We have

|
ˆ 1−η

η

Ŝ(α)T̂ (−α)2dα| ≤ | max
ξ∈[η,1−η]

|Ŝ(ξ)|
ˆ 1−η

η

T̂ (−α)2dα|

= O(a(m)
η

+M{a(m)− a(2M)}+M
3
4 )|
ˆ 1−η

η

T̂ (−α)2dα| (using Porposition 2)

so it is enough to prove that
ˆ 1−η

η

T̂ (−α)2dα = O(Ma(m)). (2.6.1)

Now

|
ˆ 1−η

η

T̂ (−α)2dα| ≤ |
ˆ 1−η

η

|T̂ (−α)2|dα|

=
∣∣∣´ η1−η |T̂ (α)2|dα

∣∣∣
≤
ˆ 1

0
|T̂ (α)2|dα
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2.6 Proofs of the propositions

since η, 1− η ∈ [0, 1]. Now
ˆ 1

0
|T̂ (α)2|dα = Σt

j,k=1

ˆ 1

0
e(α(vj − vk))dα

which, by the orthogonality of e and the fact that α 6= 0, reduces immediately to t,
which is, by Equation 2.4.2, ≤Ma(m), completing the proof of the proposition. �

Proof of Proposition 6: We split the integral
´ η
−η σ(α)τ(−α)2dα as follows:

ˆ η

−η
σ(α)τ(−α)2dα =

ˆ 1
2

− 1
2

σ(α)τ(−α)2dα−
{ˆ 1

2

η

σ(α)τ(−α)2dα+
ˆ −η
− 1

2

σ(α)τ(−α)2dα
}

which can be simplified as

ˆ η

−η
σ(α)τ(−α)2dα =

ˆ 1
2

− 1
2

σ(α)τ(−α)2dα−
ˆ 1

2

η

{σ(α)τ(−α)2 + σ(−α)τ(α)2}dα.

(2.6.2)

Consider now the latter integral
ˆ 1

2

η

{σ(α)τ(−α)2 + σ(−α)τ(α)2}dα

which is equal to
ˆ 1

2

η

{σ(α)τ(−α)2 + σ(α)τ(−α)2}dα.

Taking the absolute value we get the following inequality

∣∣∣´ 1
2
η
{σ(α)τ(−α)2dα + σ(α)τ(−α)2}dα

∣∣∣ ≤ ˆ 1
2

η

{|σ(α)τ(−α)2|+ |σ(α)τ(−α)2|}dα

= 2
ˆ 1

2

η

|σ(α)τ(−α)2|dα. (2.6.3)

So we can now concentrate on tha integral
´ 1

2
η
|σ(α)τ(−α)2|dα.

Since 0 < η < 1
2 , we have [η, 1

2 ] ⊂ [η, 1 − η]. Then the argument of Proposition 2
proves that

σ(α) = O(a(m)
η

).
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An almost exactly similar argument proves that

τ(−α) = O(a(m)
η

).

Using these two bounds in Equation 2.6.3, we have
∣∣∣´ 1

2
η
{σ(α)τ(−α)2dα + σ(α)τ(−α)2}dα

∣∣∣ = O((η − 1
2){a(m)

η
}3)

= O(a(m)3

η2 )

and the proof of the proposition is complete with this. �

Proof of Proposition 7: Expanding the integral using the definitions of σ(α) and
τ(−α) we have

ˆ 1
2

− 1
2

σ(α)τ(−α)2dα = a(m)3Σ2M
x=1ΣM

y=1ΣM
z=1

ˆ 1
2

− 1
2

e(α(x− y − z))dα.

But now the integral
´ 1

2
− 1

2
e(α(x− y − z))dα is one or zero according as x− y − z is

zero or not. That is
ˆ 1

2

− 1
2

e(α(x− y − z))dα =
{1, if x−y−z=0

0, otherwise.

Hence the integral Σ2M
x=1ΣM

y=1ΣM
z=1
´ 1

2
− 1

2
e(α(x− y − z))dα counts the number of solu-

tions of the equation

x = y + z

with 1 ≤ x ≤ 2M, 1 ≤ y, z ≤M and this number is easily seen to be M2. �
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3 A generalisation of Roth’s theorem

3.1 Statement

Let A be a subset of the positive integers with

lim
n→∞

∣∣∣A ∩ [1, n]
∣∣∣

n
> 0

Let x1, ..., xk be nonzero integers with
x1 + · · ·+ xk = 0.

Then there exist distinct a1, · · · , ak ∈ A such that
a1x1 + · · ·+ akxk = 0.

Proof: We may assume without any loss that gcd(x1, x2, · · · , xk) = 1.
Such integers a1, · · · , ak will be said to form an x-progression.
We will prove this in the form given below.
For each N ∈ N there is a density δ = δ(N) such that if A ⊂ [1, N ] has density ≥ δ,
then A contains distinct elements a1, · · · , ak such that

a1x1 + · · ·+ akxk = 0. (3.1.1)

3.2 Roth’s Uniformity Lemma

We shall need the following Lemma of Roth.
Lemma 2. : (Roth’s Uniformity Lemma). For all 1 ≤M ≤ N∥∥∥1̂A − δ1̂N∥∥∥∞ ≤ 2N(EA(M)− δ)) + 17M

√
N (3.2.1)

where

EA(M) = 1
M

max{
∣∣∣A ∩ P ∣∣∣ : P ∈M − prog}.

Here M − prog denotes the set of all arithmetic progressions of length M in Z.
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Chapter 3 A generalisation of Roth’s theorem

Proof: Let us write

f := 1A − δ1N .

We have

f̂(α) =
∑
n

f(n)e(−nα)

= 1
qM

∑
n∈Z

∑
m∈Z

f(n)e(−αn)

= 1
qM

∑
m∈Z

∑
n∈Im

f(n)e(−αn) (3.2.2)

where Im is the interval [m,m+ qM [ of length qM , and q is a positive integer. Note
that each interval Im can be partitioned into q disjoint intervals of length M each,
namely

Im =
q⊔
r=1

Im ∩ {x ∈ Z : x ≡ r mod q}.

Now for any a ∈ Z if we put β = α− a
q
then we have by the mean value theorem

e(αn) = e(αr/q)e(βm) +O1(2π|β|qM)

where by f = O1(g) we mean
∣∣∣f ∣∣∣ ≤ g. Using this in 3.2.2 we get

f̂(α) = 1
qM

q∑
r=1

∑
m∈Z

∑
n∈Im

f(n)e(αr/q)e(βm) +O1(2π|β|
q∑
r=1

∑
m∈Z

∑
n∈Im

|f(n)|)

= 1
qM

q∑
r=1

e(ar/q)
∑
m∈Z

e(βm)
∑

n∈Im∩r
f(n) +O1(2πqM

∣∣∣β∣∣∣ ∑
n∈Z

∣∣∣f(n)
∣∣∣)

Now, f(n) = 1A(n)− δ1N(n), so that

∑
n∈Z

∣∣∣f(n)
∣∣∣ =

N∑
n=1

∣∣∣f(n)
∣∣∣

=
∣∣∣A∣∣∣ (1− δ) + (N −

∣∣∣A∣∣∣)δ
= 2δ(1− δ)N
≤ 2δN

so that we have the asymptotic

f̂(α) = 1
qM

q∑
r=1

e(ar/q)
∑
m∈Z

e(βm)
∑

n∈Im∩r
f(n) +O1(4πqM

∣∣∣β∣∣∣ δN). (3.2.3)
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3.2 Roth’s Uniformity Lemma

Now we simplify the first term on the right of 3.2.3. We know that Im ∩ [1, N ] = ∅
unless m ≤ N and Im 6= ∅, i.e., unless 1− qM < m ≤ N . Therefore we can write

q∑
r=1

e(ar/q)
∑
m∈Z

e(βm)
∑

n∈Im∩r
f(n) =

q∑
r=1

e(ar/q)
∑

1−qM<m≤N
e(βm)

∑
n∈Im∩r

f(n).

Now clearly for each choice of q,M there exists a non-negative integer D(m,M, q, r)
(1 ≤ r ≤ q, 1− qM < m ≤ N such that∑

n∈Im∩r
f(n) = MEA(M)−D(m,M, q, r)− δ

∣∣∣Im ∩ r ∩ [1, N ]
∣∣∣

= M(EA(M)− δ) + δ
∣∣∣Im ∩ r\[1, N ]

∣∣∣−D(m,M, q, r).

Thus
q∑
r=1

e(ar/q)
∑
m∈Z

e(βm)
∑

n∈Im∩r
f(n)

=
q∑
r=1

e(ar/q)
∑

1−qM<m≤N
e(βm)

(
M(EA(M)−δ)+δ

∣∣∣Im ∩ r\[1, N ]
∣∣∣−D(m,M, q, r)

)
.

(3.2.4)

Taking a = 0, α = 0 so that β = 0 3.2.4 becomes
q∑
r=1

∑
m∈Z

∑
n∈Im∩r

f(n) = qM
∑
m∈Z

f(m) = 0

which means that
q∑
r=1

∑
1−qM<m≤N

D(m,M, q, r) =
q∑
r=1

∑
1−qM<m≤N

(M(EA(M)− δ) + δ
∣∣∣Im ∩ r\[1, N ]

∣∣∣
= qM(qM +N − 1)(EA(M)− δ) + δ

q∑
r=1

∑
1−qM<m≤N

∣∣∣Im ∩ r\[1, N ]
∣∣∣

(3.2.5)
= qM(qM +N − 1)(EA(M)− δ) + δ

∑
1−qM<m≤N

∣∣∣Im\[1, N ]
∣∣∣

= qM(qM +N − 1)(EA(M)− δ) + δqM(qM − 1)
= qMN(EA(M)− δ) + qM(qM − 1)EA(M)

so

1
qM

q∑
r=1

∑
1−qM<m≤N

D(m,M, q, r) = N(EA(M)− δ) + (qM − 1)EA(M) (3.2.6)

≤ N(EA(M)− δ) + qM. (3.2.7)
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Chapter 3 A generalisation of Roth’s theorem

Now using the triangle inequality we have

1
qM
|
q−1∑
r=0

e(ar/q)
∑

1−qM<m≤N
e(βm)

(
M(EA(M)− δ) + δ

∣∣∣Im ∩ r\[1, N ]
∣∣∣−D(m,M, q, r)

)
|

≤ δ

qM

∑
1−qM<m≤N

∣∣∣Im\[1, N ]
∣∣∣+ 1

qM

q∑
r=1

∑
1−qM<m≤N

D(m,M, q, r)

≤ δ

2(qM − 1) +N(EA(M)− δ) + qM

≤ N(EA(M)− δ) + 2qM.

Using this in 3.2.4 we get

1
qM

q−1∑
r=0

e(ar/q)
∑
m∈Z

e(βm)
∑

n∈Im∩r
f(n)

= EA(M)− δ
q

q∑
r=1

e(ar/q)
∑
m∈Z

e(βm) +O1(N(EA(M)− δ) + 2qM),

which gives

f̂(α) = EA(M)− δ
q

q∑
r=1

e(ar/q)
∑
m∈Z

e(βm)+O1(4π
∣∣∣β∣∣∣ δqMN+N(EA(M)−δ)+2qM).

(3.2.8)

Now f̂(α) = f̂(α + 2π) so we may assume that α ∈ [−1
2 ,

1
2 ]. This implies that the

distance
∥∥∥α∥∥∥ of α from the nearest integer is equal to its absolute value

∣∣∣α∣∣∣.
Assume first that

∥∥∥α∥∥∥ > 1√
N
. Then as we have done earlier we can find a ∈ Z,

1 ≤ q ≤
√
N with gcd(a, q) = 1 such that∣∣∣aq − α∣∣∣ ≤ 1

q
√
N
,

which together with
∥∥∥α∥∥∥ > N−

1
2 obviously implies that q > 1, whence

q∑
r=1

e(ar/q) = 0.

By 3.2.5 and 3.2.8 we get∣∣∣f̂(α)
∣∣∣ ≤ N(EA(M)− δ) + qM(4π

∣∣∣β∣∣∣N + 2)

≤ 2N(EA(M)− δ) + qM(4π
∣∣∣β∣∣∣N + 3)

≤ 2N(EA(M)− δ) + 16M
√
N. (3.2.9)
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3.3 Proof of the theorem.

Next for the case
∥∥∥α∥∥∥ ≤ 1√

N
. Taking a = 0, q = 1 in 3.2.8 we have

f̂(α) = (EA(M)− δ)
∑

1−M<m≤N
e(αm) +O1

(
M(4π

∣∣∣α∣∣∣N + 2) +N(EA(M)− δ)
)
.

Hence
∣∣∣f̂(α)

∣∣∣ ≤ N

( ∣∣∣EA(M)− δ
∣∣∣+ (EA(M)− δ)

)
+M(4π

√
N + 2).

For EA(M)− δ ≥ 0 this gives∣∣∣f̂(α)
∣∣∣ ≤ 2(EA(M)− δ)) +M(4π

√
N + 3), (3.2.10)

whereas if EA(M)− δ < 0, by 3.2.5 0 ≤ N(EA(M)− δ) +M so that∣∣∣f̂(α)
∣∣∣ ≤M(4π

√
N + 2)

≤ 2N(EA(M)− δ) +M(4π
√
N + 4). (3.2.11)

Since 4π
√
N + 4 ≤ 17

√
N we get the bound∣∣∣f̂(α)

∣∣∣ ≤ 2N(EA(M)− δ) + 17M
√
N

for all α, establishing the lemma.�

3.3 Proof of the theorem.

Suppose A has density δ in [1, N ]. We define

fi(α) =
∑
u∈A

e(−αuxi)

for i = 1, ..., k.
We also define

gi(α) =
∑

1≤u≤N
e(−αuxi)

and

hi = fi − gi,

for i = 1, ..., k.
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Chapter 3 A generalisation of Roth’s theorem

Further let

K(B) = #{(a1, · · · , ak) ∈ B × · · · ×B : a1x1 + akxk = 0.

for any subset B of [1, N ]. If
∣∣∣B∣∣∣ = n we may write K(n) instead of K(B).

Then we have
ˆ
f1(α) · · · fk(α)dα =

ˆ ∑
ai∈A

e(−α(a1x1 + · · ·+ akxk))dα

= N ·K(A)

since
´
e(rα)dα = 0 ⇐⇒ r 6= 0. Here we denote the sum over α = 0, 1

N
, · · · ,N−1

N

by the symbol
´
dα. It is obvious that A contains nontrivial x-progressions iff

K(A) >
∣∣∣A∣∣∣ .

We have

K(A) = δkK(N) + 1
N

ˆ
(f1(α) · · · fk(α)− δkg1(α) · · · gk(α))dα. (3.3.1)

Let us write

Fj =
∏
i<j

fi
∏
i>j

δgi

We then have

f1 · · · fk − δ3g1 · · · gk =
k∑
i=1

Fihi,

so that

|
ˆ

(f1(α) · · · fk(α)− δkg1(α) · · · gk(α))dα| ≤
k∑
i=1

∥∥∥Fi∥∥∥∞ ∥∥∥hi∥∥∥1
(3.3.2)

where ‖‖∞ and
∥∥∥·∥∥∥

1
denote respectively the supremum norm and the `1-norm. That

is ∥∥∥F∥∥∥
∞

= sup
x∈A

∣∣∣F (x)
∣∣∣

∥∥∥h∥∥∥
1

=
ˆ
|h(x)|dx.

Obviously,∥∥∥fi∥∥∥∞ ≤ δN
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3.3 Proof of the theorem.

and ∥∥∥gi∥∥∥∞ ≤ N.

We also observe that
∥∥∥fi∥∥∥2

= (
ˆ ∣∣∣fi(α)

∣∣∣2 dα) 1
2

= (N ·
∣∣∣A∣∣∣) 1

2

= δ
1
2N

and similarly

∥∥∥gi∥∥∥ = (
ˆ ∣∣∣gi(α)

∣∣∣2 dα) 1
2

= N

which implies∥∥∥δgi∥∥∥ ≤ δN

≤ δ
1
2N

=

We easily deduce from these that

∥∥∥Fi∥∥∥1
= (δ 1

2N)2(δN)k−3

= (δN)k−2N.

Also, as ‖hi‖∞ = ‖fi − gi‖∞ =
∥∥∥(1̂A − δ1̂N)

∥∥∥
∞

we have from Equation 3.3.2 that

|
ˆ

(f1(α) · · · fk(α)− δkg1(α) · · · gk(α))dα| ≤ kN(δN)k−2
∥∥∥1̂A − δ1̂N∥∥∥∞ .

We use this in Equation 3.3.1 to get

K(A) ≥ δkK(N)− k(δN)k−2
∥∥∥(1̂− δ1̂N)

∥∥∥
∞
.

If we suppose that Equation 3.1.1 has only trivial solutions in A then we would have
K(A) = δN and this together with the last equation gives

∥∥∥(1̂A − δ1̂N)
∥∥∥
∞
≥ δkK(N)
k(δN)k−2 −

1
k(δN)k−3 . (3.3.3)
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Chapter 3 A generalisation of Roth’s theorem

We shall use Roth’s Uniformity Lemma and the following Lemma to prove the above
result.
Lemma 3. : K(N)�x N

k−1.

Proof of Lemma: We define

ci = xi
−xk

(1 ≤ i ≤ k)

and

C+ =
∑
ci>0

ci, C− = −
∑
ci<0

ci.

Then C+ − C− = 1 and C+ > 0. Write

IN = [N2 ,
N

2 + N

2C+
] ∩ Z.

We claim that
If y1, · · · , yk−1 ∈ IN then

c1y1 + · · ·+ ck−1yk−1 ∈]0, N ].

To prove the claim we note that

c1y1 + · · ·+ ck−1yk−1 ≥
C+N

2 − C−
(
N

2 + N

2C+

)

= N

2C+
> 0

and

c1y1 + · · ·+ ck−1yk−1 ≤
(
N

2 + N

2C+

)
C+ −

N

2 C− = N,

which proves the claim.
Next it is easy to see that:
For n = (n1, · · · , nk−1) ∈ Ik−1

N the following conditions are equivalent:
• c1n1 + · · ·+ ck−1nk−1 ∈ Z.
• n1x1 + · · ·+ nk−1xk−1 ≡ 0 mod

∣∣∣xk∣∣∣,
and that the latter condition holds when ni ∈ r for some r ∈ [1, xk]. Now by
the pigeon-hole principle, there exists an r such that

∣∣∣IN ∩ r∣∣∣ ≥
∣∣∣IN ∣∣∣∣∣∣xk∣∣∣ .
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3.3 Proof of the theorem.

Therefore

K(N) =
∣∣∣{n ∈ [1, N ]k : n1x1 + · · ·+ nkxk = 0

∣∣∣
=
∣∣∣{n ∈ [1, N ]k−1 : c1n1 + · · ·+ ck−1nk−1 ∈ [1, N ]}

∣∣∣
≥
∣∣∣{n ∈ Ik−1

N : c1n1 + · · ·+ ck−1xk−1 ∈]0, N ] ∩ Z}
∣∣∣

=
∣∣∣{n ∈ Ik−1

N : c1n1 + · · ·+ ck−1xk−1 ∈ Z
∣∣∣

≥
∣∣∣IN ∩ r∣∣∣k−1

≥
(∣∣∣IN ∣∣∣∣∣∣xk∣∣∣

)k−1

.

Now if N ≥ 6C+ then∣∣∣∣∣
[
N
2 ,

N
2 + N

2C+

]
∩ Z

∣∣∣∣∣ ≥ N

2C+
− 1 ≥ N

3C+
,

which means that for N ≥ 6C+ we have

K(N) ≥
(

N

3C+

∣∣∣xk∣∣∣
)k−1

= CNk−1

where C = (3C+

∣∣∣xk∣∣∣)1−k. Write

C0 =
∣∣∣x1
∣∣∣+ · · ·+ ∣∣∣xk∣∣∣ .

Then

C+

∣∣∣xk∣∣∣ ≤ ∣∣∣x1
∣∣∣+ · · ·+ ∣∣∣xk−1

∣∣∣ ≤ C0.

Also, as
∣∣∣xk∣∣∣ ≥ 1, we have C+ ≤ C0. Therefore we can conclude that

for N ≥ 6C0 we have

K(N) ≥
(
N

3C0

)k−1

,

which completes the proof of the lemma. �
We now complete the proof of the theorem.
Using 3.3.3 and the previous lemma, one has∥∥∥1̂A − δ1̂N∥∥∥�x Nδ

2 − 1
(δN)k−3 ≥ Nδ2 − 1.
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Chapter 3 A generalisation of Roth’s theorem

Choose N big enough, namely N �x δ
−4 and put N0 =

⌈
4
√
N

⌉
, the smallest positive

integer greater than the fourth root of N . Then Roth’s Uniformity Lemma gives

EA(N0)− δ �x

(
δ2

2 − 9N− 1
4

)
�x δ

2.

Thus we may state

N
1
4 �x δ

−2 =⇒ EA(N)− δ �x δ
2, (3.3.4)

or, assuming the implied constants to be respectively η0 and κ0, we can state it as

N
1
4 ≥ η0δ

−2 =⇒ EA(N)− δ ≥ κ0δ
2 (3.3.5)

We now settle the theorem. We are supposing that A ⊂ [1, N ] has density δ > 0
and contains no x-progressions. If N 1

4 ≥ η0δ
−2 then by 3.3.5 and Roth’s Uniformity

Lemma we can obtain a subset A0 of [1, N0], where N0 = dN 1
4 e, of density δ0 ≥

δ + κ0δ
2 which does not contain any x-progression.

Again, if N
1
4

0 ≥ η0δ
−2
0 , we can iterate the previous step to obtain a subset A1 of

[1, N1], where N1 = dN
1
4

0 e, of density δ1 ≥ δ0 + κ0δ
2
0 which does not contain any

x-progression.

Now note that since N0 ≥ N
1
4 and δ0 ≥ δ, the condition for the second step (i.e.,

the condition N0 ≥ η0δ
−2
0 ) is satisfied if N 1

16 ≥ η0δ
−2 (note that we can choose η0 to

be ≥ 1).

We thus weaken to conclusion as follows: If N 1
16 ≥ η0δ

−2, then there exists a subset
A1 of [1, N1] of density δ1 ≥ δ+ 2κ0δ

2 ( observe that in fact we have earlier obtained
a density δ1 ≥ δ0 + κ0δ

2
0, where the term on the right, δ0 + κ0δ

2
0, is much greater

than δ + 2κ0δ
2). Thus by iteration, we can state the following:
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3.3 Proof of the theorem.

for any n ∈ N, N 1
4n ≥ η0δ

−2 =⇒ ∃An ⊂ [1, Nn] (where for n = 1, 2, · · · , Nn =
dN

1
4
n−1e inductively) of density ≥ δ+nκ0δ

2 which does not contain any x-progression.

Now take n1 = d 1
δκ0
e and M (1) = Nn1 . Then we have the following:

N
1

4n1 ≥ η0δ
−2 implies there exists a subset A(1) of [1,M (1)] of density ≥ δ+n1κ0δ

2 =
δ + d 1

δκ0
eκ0δ

2 ≥ δ + 1
δκ0
κ0δ

2 = 2δ.

We can iterate this sub-process: Take n2 = d 1
2δκ0
e, M (2) = N (1)

n2 Then N
1

4n2 ≥
η0(2δ)−2 implies there exists a subset A(2) of [1,M (2)] of density ≥ 22δ.

Observe that since M (1) ≥ N
1

4n1 , then N
1

4n1+n2 ≥ η0/(2δ)2 =⇒ N
1

4n2 ≥ η0(2δ)−2.
In general, taking nk = d 1

2k−1δκ0
e, M (k+1) = N (k)

nk+1
, we have:

for N1/4n1+···+nk ≥ η0
1

(2δ)k , there exists a subset A(k) of [1,M (k)] of density ≥ 2kδ and
containing no x-progression.

But if we take K = d− log δ
log 2 e then we get a subset A(K) of [1,M (K)] of density 1,

containing no x-progression, which is absurd. Thus the proof of the theorem is
complete. �.
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