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Resumé

La conjecture de Goldbach est 'un des plus vieux problemes non résolus des mathématieques,
qui s’énonce comme suit: Tout nombre entier pair supérieur a 3 peut s’écrire comme la somme de
deux nombres premiers.

En d’autres termes, si n est un nombre naturel et nous posons ( p et g sont des nombres premiers)

gn)= >y 1, (0.1)

ptg=n

alors g(n) # 0 si n est pair. Dans cet article, au lieu d’étudier g(n) directement, nous considérons
une version lisse de g(n):

ro(n) = Z A(m)A(k), (0.2)

m+k=n

ot A(n) est la fonction de Von Mangoldt. Notre principal intérét est la propriété asymptotique de

> ra(n), (0.3)

n<X

Pestimation du terme d’erreur a un lien avec des zéros de fonction de zeta, qui fait le lien entre le
probléeme original avec I’hypothese de Riemann.
En outre, nous considérons le cas général:

re(n) = Z A(mi)A(ms) -+ Almy), (0.4)

mi+...+mr=n

et la propriété asymptotique de >, _  7(n), certains résultats ont été prouvés, mais une généralisation
du cas particulier £ = 2 reste a étudier.

L’auteur tient a remercier le Laboratoire Paul Painlevé, qui offre une bourse pour 'auteur de
Master 2. En particulier, 'auteur remercie Gautami.Bhowmik, qui donnent ce sujet intéressant et
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1 Introduction

In mathematics, one of the most famous and oldest problem is Goldbach’s conjecture, which was
proposed in 1742, during the communications of German mathematician Christian Goldbach and
Leonhard Euler. In the language of modern mathematics, the Goldbach’s conjecture sates that

Every even integer greater than 2 can be written as the sum of two primes. (1.1)

With the help of computers, people verified that for all n less than 4 x 108, Goldbach’s conjecture
is true (in 2014). People believe this conjecture is true, just as Euler replied to Goldbach in 1742:
That ... every even number is a sum of two primes, I consider it as a completely certain

theorem, but I am not able to prove it.
(1.2)

In this article, instead of studying Goldbach counting function g(n) = >° . _ 1, where p and
q are prime numbers, we would like to treat a smooth and moderate increasing version, says the
weighted Goldbach representation function, by using logarithms:

ra(n) = Y A(m)A(k), (1.3)
m+k=n

where A is the Von Mangoldt function to be defined later, we will see that A has logarithmic increase,
and ro(n) behaves very similar to g(n).

Our main work in this article is to give an asymptotic formula like the following form:
Y r2(n) = f(X) +O(9(X)), (1.4)
n<X

two terms f(X) and g(X) are called the main term and the error term respectively. Furthermore,
we will also consider the general case ri(n) = > A(mi1)A(me) - - - A(my), and study some
asymptotic properties of », -y 7x(n).

mi+...+mr=n



In general, main term is easy to obtain, however, if we want to get some good estimates for the error
term, then we must deal with non-trivial zeros of the Riemann zeta function. When we talk about
non-trivial zeros of zeta function, the Riemann Hypothesis is inevitable. This is an interesting
point, it connects two most famous unsolved problems in mathematics, Goldbach’s conjecture and
Riemann Hypothesis, together. Moreover, we will see that some good error term estimates are
equivalent to Riemann Hypothesis, this reveals the connection between these two problems to a
certain extent.

1.1 Definition and Notation
1.1.1 Some notations

Let f, g : RT — C be two functions, we use the notation f = O(g) to mean that there exists a
constant C so that for all z,

|f(@)] < Clg()]. (1.5)

We will also denote f < ¢ to mean that f = O(g).
Similarly, we denote f = o(g) to mean that

TGO (1.6)
v—o0 g()
Moreover, we use the notation
f=y (1.7)
to mean that f < g and g < f simultaneously, and f ~ g is to say that lim,_, ggi)) =1.

1.1.2 Some arithmetic functions

The Von Mangoldt function is the arithmetic function defined by

logp, ifn=p", k> 1, pis prime

Am) = 5P Poi=npep (1.8)
0, otherwise

If we decompose n as sum of two integers n = m + k, then A(m)A(k) # 0 if and only if m and k are
the power of primes, so we get a series ra(n) = > ., A(m)A(k). Moreover, when we consider the
character function p(n) of primes, i.e. p(n) =1 if n is prime and p(n) = 0 otherwise, then Goldbach

counting function g(n) =3, _, 1 can be written as

m-+k=n

We notice that, although not the same thing, the general term A(m)A(k) and p(m)p(k) are very
similar, they are 0 when m or k is not prime. Therefore, if we know some properties of r2(n), then
we can get some informations of g(n). By this idea, in 1937, Vinogradov considered the partial sum

W)= S AG)AGk)AGks),
ki+ko+ks=n

and after an elaborated estimate of r(n), he proved a weak form of Goldbach’s conjecture for large
integers n, now named as Vinogradov’s Theorem:

Theorem 1.1 (Vinogradov). Any sufficiently large odd integer can be written as a sum of three
prime numbers.



For the proof, see Chapter 26 of [1]. However, we would like to explain how Vinogradov recovered
the information of gz(n) = >, ;4 —pn P(k)p()p(m) from r(n). In fact, Vinogradov proved the
following estimate:

r(N) = %G(N)NQ +0A(log4N), (1.9)

where A is any positive integer, and
1 1
a) =TI (1- W) I1(1+ W). (1.10)
p|N ptN

We notice that if N is odd, then G(N) > [ _.,(1 — (p — 1)72) > 0 (For some properties of infinite
product, see [20], Chapter 5.) We call the infinite product Co = 2]] (1 — (p — 1)72) > 0 is the
Twin Prime Constant. Now by Vinogradov’s estimate, we have (IV is odd and p;’s are prime)

N*<r(N)= > logpilogpslogps + > > logpilogpylogps
p1+p2+p3=N (kl,kg,kg);é(l,l,l)p’f1+p’2€2+p’§3:N
<lg’N > 1+ ) Y. logpilogpelogps
p1+p2+ps=N (kl,kz,kg,);é(l#l,l)p’f1+p’2¥‘2+p§3:N
=gs(N)log’ N+ >~ >~ logpilogpslogps.

(klxk27k3)7é(17171) plfl +p§2+p§3:N
(1.11)
For the second term, by symmetry, we may assume k; > 1, we notice that the sum

> > (1.12)

(kl,kz,k3)7ﬁ(1,1,1)p’1€1 +p§2+p§3:N

is finite. Moreover, consider the sum Zpkl <y 1, firstly we must have p < VN, by Prime Number

VN B
log VN
1.1.3). Secondly, if p¥* < N holds, then k; < log, N < log N. Therefore

N
Yol logNL < VN. (1.13)
PPN log VN

Theorem, there are at most such primes (For the prime number theorem, see subsection

According to the above estimate, we get

Z Z log p1 log ps log p3 < N? log® N. (1.14)
(k17k27k3)75(17171) p’fl+p]2c2+p§3=N

This inequality implies g3(N) > N? log > N + O(logy N), which is positive when N sufficiently
large. So any large odd integer can be decomposed as a sum of three primes.

The First Chebyshev function ¥(z) is defined by
d(x) = logp, (1.15)

p<z

and the Second Chebyshev function (z) is defined by the sum of A(n):
() =Y An). (1.16)
n<z

We notice that i(z) = Zpk<x logp = Zp<z[logp x]logp, where k € N\ {0}. Therefore, we have the
following relationship of ¥ and 1): B
1
Y(x) = O(xk), (1.17)

k>1

for each z, the sum is finite because the general term is 0 when 2% > .



1.1.3 Gamma function and Riemann zeta function

We will use zeta function frequently, and in subsection 3.2.1, some properties of complex Gamma
function are necessary, so we give some elementary properties of zeta and Gamma function, all
of these contents can be found in analytic number theory or complex analysis textbook, like the
Chapter 6, 7 of [20], so we omit the proofs and details.

Complex Gamma function In elementary calculus, we have learned the Gamma function

I‘(s):/ 5 te dz, s>0. (1.18)
0

This definition can be extended to {s € C : Re(s) > 0} directly, just notice that the integral
fooo r*~te~dx converges absolutely when Re(s) > 0.
Analytic continuation of I'(s) The definition of I'(s) can be extended to {s € C : Re(s) > 0},
and the integral representation of T'(s) is analytic in this half plane. Moreover, if Re(s) > 0, then
T(s+1) =sI'(s). As a consequence, I'(n+1) = n! forn=0,1,2...

By the identity I'(s + 1) = sI'(s), we can extend I' to a meromorphic function on all of C. For
example, on the half-plane {{(s) > —1}, we define
r 1
Fi(s) = % (1.19)
Since I'(s+ 1) is holomorphic in Re(s) > —1, we see that F} is meromorphic in that half-plane, with
only singularity a simple pole at s = 0 with residue 1. Moreover, if Re(s) > 0, then Fy(s) = I'(s)
by previous theorem. So Fj extends I' to a meromorphic function on the half-plane {Re(s) > —1}.
Similarly, we can extend I'(s) to the half-plane {R(s) > —m} with m € N.

Theorem 1.2. T'(s) can be extended to a meromorphic function on C whose only singularities are
sitmple poles at the non-positive integers s = 0,—1, —2.... The residue of T at —n is (—1)"/nl.

The Riemann zeta function is the function defined by

C(s) = ni R(s) > 1. (1.20)

n>1

Analytic continuation of ((s) For R(s) > 1, we have

1 /OO u(s/2)71[9(u) — 1]du, (1.21)

w0 (s/2)C05) = 5 |

where 0(t) = >, ., et (t > 0) is the Theta function. Using the Poisson summation formula in
Fourier analysis, we get

0 ( - ) . (1.22)
By this functional equation,

1 1 1 [
1 + 5/ (u_(s+1)/2 + u(S/Z)_l) (0(u) —1)du, R(s)>1. (1.23)
- 1

72 (s/2)((s) =

Notice that the integral above defines an entire function in s, because 6(u) has exponential decay at
infinity. Moreover, the right-hand side above remains unchanged if we replace s by 1 — s, so £(s) =
7=%/2T(s/2)¢(s) has an analytic continuation to C with simple poles s = 0, 1 and £(s) = £(1 — s)
for all s € C.



Now we define
5/2 E(s)
['(s/2)’

then ((s) is an analytic continuation of 3, ., -=. Moreover, by Theorem 1.2, 1/T(s/2) is entire
with simple zeros at 0, —2, —4, ..., so the simple pole of £(s) at 0 is canceled with the simple zero of
I'(s/2) at 0. In conclusion, we have

C(s) = (1.24)

¢(s) has a meromorphic continuation in to C, whose only singularity is a simple pole s = 1.
Moreover ((—2n) =0 for all n € N\ {0}, we say that —2, —4, —6... are the trivial zeros of C.

Prime Number Theorem, Riemann Hypothesis We have known that ¢(—2n) = 0 for all
n € N\ {0}, however, the negative even integers are not the only zeros for (. The Riemann
Hypothesis states that:

1
The real part of every non-trivial zero of ( is 3 (1.25)

Like Goldbach’s conjecture, people believe that the Riemann Hypothesis is true. Using computers,
more than million of non-trivial zeros has been found, and all of them are on the line R(s) = 1/2.
We denote p be the non-trivial zeros of ¢, the summation Y means take sum over all non-trivial
zeros of (. Furthermore, considering the zeros of zeta function, we have

Theorem 1.3. ((s) never vanishes in the half-plane
{s=oc+it:0>1}, (1.26)

and {—2n}p>1 are the only zeros in the half-plane {s = o + it : 0 < 0}. So all non-trivial zeros lies
in the band {s = o + it : 0 € (0,1), t € R}, we call this band the critical band.
Moreover, there exists a constant ¢ > 0, such that ¢ never vanishes in the region (See the figure
below)
c

s=o+it:0>1— ————
{ - log(2 + [t])

I (1.27)
For the proof, see Chapter I1.3 of [21]. A very simple but interesting observation is that non-
trivial zeros are symmetric about the critical line {§(s) = 1/2}, this is obvious from the

functional equation ((s) = 7%/2 F%S)?) and £(s) = (1 — s). Morevover, non-trivial zeros of zeta

function come in conjugate pairs {p, p}, this is due to the following theorem:

Theorem 1.4 (Schwarz reflection principle). Let Q be an open set of C that is symmetric with
respect to the real line, that is
z2€Q ifand onlyif ze€Q (1.28)

Let QF denote the part of Q0 that lies in the upper half-plane and Q= that part that lies in the
lower half-plane. Also, let I = QN R. If f* and f~ are holomorphic functions in QT and Q~
respectively, that extend continuously to I and

fH(x)=f(z) forallxcl, (1.29)
then the function f defined on € by

) zeQt,
fz)=9 fFz)  zel (1.30)
f=(2) z €N~

is holomorphic in €.

The proof of this theorem can be found in many complex analysis textbook, for example, Chapter
2 of [20], so we omit it.



Figure 1: Zero-free region of zeta function in the critical band, notice 1 — -t goes to 1 as |t]
tends to infinity.

If we denote 7(x) be the number of primes less than or equal to z, the Prime Number Theorem
states that:

x
~ ) 1.31
(@) ~ e (1.31)
and it has a more precise form:
There exists a positive constant ¢ > 0, such that ¢(z) = 2 + O(e V1°8®), (1.32)

Finally, we give a functional equation which would be used in the proof of Lemma 4.1 (For the
proof of this equation, see [20], Chapter 7.)

- S A R > 1 (1.33)

summing by parts, we get

O nn~° = oou_s u)=s Oou_s_1 w)du s
fo = S A= [T = [Ta e %6 > 1

Notice that we have connected ((s) with A(n) and (n). As we mentioned before, instead of studying
Goldbach’s counting function >° . _ 1 directly, we would like to deal with 37 ., A(m)A(k).
So by using function A, now we connect Goldbach’s problem with Riemann zeta function. We will
see this point later in the proof of our main theorem.

1.2 Main Results

Theorem 1.5. Let
ro(n) = Z A(m)A(k), (1.35)

m+k=n



then Riemann Hypothesis is true, if and only if the following asymptotic property holds:

T;(TQ(H) = X; +0(X3%/?). (1.36)

Then we consider the general case, assume k > 2 be an integer.

Theorem 1.6. Let
rip(n) = Z A(ma)A(mg) - - Almy), (1.37)

mi+...+mr=n
if Riemann Hypothesis is true, then the following asymptotic property holds:

Xk
Z ri(n) = o + Op(X~1/2+k 10gk X), (1.38)
n<X :

here Oy means that the constant C' in section 1.1.1 is depending on k.

1.3 Further Remarks

Remark 1. We must point out that the main work is on the sum ) _y ri(n), rather than rj(n)
itself. But for rj(n), there are also some estimates can be obtained from the generalized Riemann
Hypothesis of L(s, x), for this point, one may see [5, 14].

Remark 2. Theorem 1.5 has a more precise form:

2 p+1 4
T;(r(n):);—2zp:p();_’_l)+0((XIOgX)3>a (1.39)

the error term was reached by A. Fujii in [6]-[8]. In [3], Bhowmik and Schlage-Puchta improved the
error term to O(X log® X).

Remark 3. Like the case of k = 2, Theorem 1.6 has a more precise form:
Xerkfl

k
;(Tk(n) = % -kY PP ES B + Op(X*11og" X), (1.40)

for this point, see [15], Theorem 1.3.

Remark 4. Theorem 1.6 only consider one direction. The author believe that, just like Theorem
1.5, the converse of Theorem 1.6 is also true. This is to say if we admit the asymptotic formula of
Y n<x e(n) in Theorem 1.6, then the Riemann Hypothesis is true. One may follow the idea in the
section 3, however, some estimates (without Riemann Hypothesis) for

Se(x) =Y ri(n) (1.41)

n<z

is necessary, just like the step 1 in subsection 3.1, and this is not a trivial work, further study for
this is needed and the author is still considering this.

2 Proof of Theorem 1.5, Part 1

In this section, we assume Riemann Hypothesis is always true.



For convenience, we write down the proposition which would be proved in this section:

X? )
Assuming Riemann Hypothesis, then Z ro(n) = - +0(X3/?%). (2.1)
n<X
We use the method in A.Fujii’s paper [6], and complete some details for it. Firstly, it suffices to

consider the case X = N € N. The idea of proving the estimate is not difficult: We decompose the
sum in several parts time after time, and on each small parts, we get estimates of error terms < Ns.
The idea is simple, but some estimates are not so trivial and we need more elaborated work, so we
will proceed these decompositions by several steps.

Step 1: Getting the main term Let
W) =-y+> Aln), y>0. (2.2)

Then
doran) = Am) Y Ak)
n<N m<N k<N-—m
=Y Am)(N-m)+ > Am)R(N —m)— AN - 1).
m<N 2<m<N-2

For the third term, |[A(N — 1)| = O(log N). Summing by parts, we have

Z mA(m) :w(x)x‘iv - /N P(t)de

m<N ' (2.4)

—Ny(N / b(t)

therefore, for the first term, we have

o

N N
3" A(m)(N —m) = Ny(N) — (Nw(N) 7/1 w(t)dt) :/1 B(t)dt = N; +O(N

m<N

), (2.5)

the last equality holds due to the following lemmas:
Lemma 2.1. Let ¢)(x) be the Chebyshev function, then

/ b(t) +0(h), (2.6)

and let 1o(x) = 5(¢(x+0) + 1 (x—0)), then ¥o(x) =1 (x) when x # p™ for some m > 1, moreover,
we have ¢(0)

z/JO(:U):x—z%—w—%log(l—m_Q), x> 1. (2.7)

Nextly we come to the error term estimate, for T > 2, let

M‘H

P p
= Y T 4R@T) (2.8)
PR TR A
where .
R(z,T) < T log? T + log . (2.9)

For the proof, see [18], Chapter VII, Lemma 8.6 and [12], Chapter 12, Theorem 12.1.

10



Using the first estimate of Lemma 2.1,

d ran) =Y Am)(N-m)+ > Am)R(N —m)— AN —1)

n<N m<N 2<m<N-2

_N? +O(N2)+ > A(m)R(N —m) (2.10)

Notice that we have finished the first decomposition and get the main term N?2/2 and the error term
O(N %) Nextly, according to our idea, now we decompose the last term as some parts, with each
parts < N 3

Step 2: The estimate of I < Nv/N Write the last term I as

Z A(N — m)R(m) = Z A(N—m)(—m+¢(m))a (2.11)

2<m<N -2 2<m<N-2

and using the error term estimate of Lemma 2.1, we get

I= Z A(N — m)( - Z m? + O(% logQ(mT)) + O(logm))

2<maN-—2 (o)<t P
=— Z A(N —m) Z m? + Z mA(N —m) O(l logQ(NT)> + (N —2)O(log N)
p T
2<m<N—2 IS(p)|<T 2<m<N—2
—— Y AN-m) Y L o(2 2(NT))+ON1 N
- (N =m L ro(Fe (Nlog V),
2<m<N -2 3(p)I<T

(2.12)
the last equality holds because we use Prime Number Theorem v (z) ~ z, and the following
estimates:

ST mAN —m) :0( S mAN - m)) - 0(/2N w(t)dt> = O(N72>, (2.13)

2<m<N-2 m<N
In conclusion, we write I =3 o, - n o AN — m)< —m+ z/J(m)) as the form

2
I+ O(N? 1og2(NT)) +O(NlogN), (2.14)

where [} = — Z2Sm§N—2 A(N —m) Zlﬁ(p)\ST mTp. Here we finished the decomposition second time,

with two error term < N3 for some T to be chosen.

Step 3: estimate of [y < NvVN Now we continue our decomposition third time for /3. From
now on, not only in this step, we always assume that 1 < T < N. By Riemann hypothesis,
we can write p = % + i, then

mi
Li=— > VmAN-m) > +—
2<m<N-2 v <T 2 Ty
iy iy
2%{ S VmAWN -m) Y m }+0< > VmAN-m) Y m2>
2<m<N-—2 0<~<T v 2<m<N-—2 0<~y<T v

= —23(L) + O(I3).

11



We consider I3 at first, summing by parts, and using va + 1 — v/a = (\/a + 1+ \/6)71

S VN —mA(m) =Y \/M(w(m) —w(m—1))

m<N m<N

= Z Y(m)(VN —m — VN —m —1)
m<N-1 (2.16)

P(N)
<< -
mgzN:fl N—m

<P(N)VN = O(NVN).

For the part ZO<'y<T %;7 we need a lemma about the number of zeros of ((s) in a prescribed
domain. o

Lemma 2.2. For T > 1, denote N(T) be the number of zeros of ((x + iy) in the rectangle
{(z,y) e C: 2 €(0,1), y € (0,7}, (2.17)

then the following estimate holds

T T T
log — — — + O(logT). (2.18)

N(T)=—
() 2 2 27

In fact, we have a more elaborated estimate:

T T T 7 1 1 1
NT)=logo — —+ L4 2 (f dj (7). 2.19
(1) = grloe g —or T T 7asd(3 +1T)+0(7 (2.19)
For the proof, see Chapter IX of [22]. We would like to give some explanation about the term
arg C(% —l—iT), which is defined by continuity along the polygonal £ joining the point 2, 2+iT, %—HT.

According to this lemma, if we denote {p, = B, + ivn}n be the zeros of ( in critical band with
vn > 0, and enumerate it with the increasing order v; < 7s..., then

2mn
n ™~ . 2.20
™ ogn (2.20)
So _ )
m" log“n
d. €T <o (2.21)
0<y<T n
We can also derive this estimate by Lemma 3.2.
Combining these two estimates, we get I3 = O(Nv/N). Nextly, we deal with the term Is.
Step 4: Estimate of Is < N 2 We write down I, again for convenience
mb7
L= > VmAN-m) > (2.22)
2<m<N-2 0<~<T v
Firstly, using Lemma 2.2, we have
1 log’Y log(2 > S(t 1+ log(2 T [t
yo L _le ¥ los(2m) 10gY—|—/ (1) gy . 1 1o8Cm) +—+/ 10 4+ B(y)
oeqey Y 47 2m 1t 2 8 1t (2.23)

—A(Y) + B(Y)

12



where S(t) = L arg ((3 +it), n(t) varifies n(t) = O(%) for t > ¢y, and

B(Y):‘@—/}/w?dt+@—/ifwrigf)dt (2.24)
Secondly, let u be an integer, if 1 < u < N, then
§<j¢ﬁA<N ;lf/\ —n) + VuA(N —u)
- NHKZHSNA VN —nA(n) + VuA(N — u) (2.25)
= NNul VN —yd(y + R(y)) + Vuh(N — u),

here we use the Riemann-Stieltjes integral, integrating by parts, we get:

N-1 N—-1 1 N-1 R(y)
VN —ydR(y —\/N—yRy‘ + = dy
n/Nfu ( ) ( )N—u 2 N—u \/N_y

(2.26)
N-1
:R(N—l)—\/ﬂR(N—u)—i—%/N_ \/};fL_)ydy,
therefore, N
> VRA(N —n) = VN —ydy+ R(N — 1) — VuR(N — u)
nsu o (2.27)
N-1
We put N
cw=[ N—ydy= §<u 1)
Now L (2.28)
D(u) :R(N—1)+\/E<A(N—u)—R(N—u)) +§/N7 N(y)ydy.

If u > N, similarly

S VRAY ) / VN pdy + VN T4+ ROV - 1) / oy (2

n<u

again, we put

Clw) = St - 1)
2 3 3 1 Nt R(y) (2.30)
D(u):g((N—l)f—uf)+m+R(N—1)+§/l N_ydy.

Now, by Riemann-Stieltjes integral, we write I as

T pN
T rlogN
:/1 /0 eltwd(C(ew) + D(ew))d(A(t) i B(t))

— /1 ! /0 1OgN—ei%lc(ew)olA(t)+ /1 ' /O logNeide’(e"”)d(A(t)+B(t)) (231)
+/1T /OlogNeimd(C(ew)+D(ew))dA(t)+/1T /OlogNeit‘”dD(e‘”)dB(t)

=4+ I+ Is + I7.
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We deal with I, I and Ig at first, I7 is more difficult, so we put it in the next step. Firstly, I is
T loeN ogt —log(2m) 4, - s (T logt ,
_/ / (”52—2g<7f)emegxdxdt < N%/ U8l ar < NE, (2.32)
u 1

Secondly, I5 is

T log N ) (1
/ / edC(e”)d(A(t) + B(t)) N2 (t
1 0

<N2.

/ 2. _1dt> (2.33)

0<v<t 0<y<t

Finally, by Fubini’s theorem, we write I as

[ e ey - [ [ et B e + pe. @3
0 1

Then, by the following estimate

T J—
/ eitmwdt << mln( 1og T) (235)
1 27t
I is bounded by
1 log N 5
/ log? Td(C(e™) + D(e")) + / La(0(e) + D(e)) < N (2.36)
0 1

Step 5: Estimate of I; < N3 We use the result in [9] (see [9], Lemma 1)

I < Tlog N max, (/OlogN (D(e*?) — D(ey))Qdy);</lT (B(t+ (2log N) ) — B(t))zdt>%,

0<s< A

(2.37)
we denote the two integrals in the right-hand site as Is and Iy. Iy is easy, we just notice that by the
definition of B(y)

t+(2logN)™" S(y) +nly)

t+(2log N) HR1e N gy 4 n(y
B(y)t , _/t Mdy. (2.38)

t y2

t+(2log N)~!

Notice that S(y) + n(y) = O(1), so B(y) < 1, hence Iy < flT &dt = O(1).

t

For Ig, we need a more finer estimate than Iy, because the expressions of D(u) are different in
when v < N and u > N. When y € (0,log N), e¥ € (1,N), so we needn’t pay much attention
on D(e¥). However, if we solve the inequality e?*® < N, then y < log N — 6, this suggests us to

log N—§ N
decompose Ig as f o8 + flogN—a = I1og + I11, where

log N—§6 \/7 s 1 N-—eY R() 2
Iy = YR(N —e¥) — VeVt R(N — e¥ Jr d d
w= | TRV ")~ VerBR(N — o) 5 | ) 4y

2

qu/logN 2((1\7_1)3/2—e?’<1~1+5>/2)+1 T _Bw ————du+ VN -1+ VevR(N —¢¥) | dy.
5\ 3 2)i VN-u

(2.39)
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We deal with I;; firstly, I;g is more difficult so we put it in the next step. There is an integral
term fl " in 111, which may cause troubles, so we try to control it firstly. We notice that N —e¥ €
(0 N(l—e 5)) when y € (log N — §,1og N), moreover, by the inequality e* > 1 —z and § < 1/T,
we have 1 —e™® < § < 1/T, hence N — e¥ < N/T. Remember R(u) = t)(u) — u, we obtain

N—e? 3
(u) / (N/T)>
du < — u du L —, 2.40
/ \/ —u /N — N/T VN (2.40)
we use Lemma 2.1 in the last equality.
Therefore, we have (Using (a + b+ ¢)? < a® + b* + ¢?)
S Ly — 2
Iy <</ §<(N —1)%/2 e3(y+5)/2> v, + 1+ VeVR(N —ev) | dy
log N—6 (241)
1 /N3 N?
= + =log*N
<<T<T2 + T og >,

log N

some explanation for the last term fl eyRQ(N — e¥)dy is necessary, after a change of variable,

it’s N(l e )RQ( t)dt, and then we use the estimate R(t) = O(t2 log®t), see Lemma 2.3 for this
pomt

Step 5: Estimate of ;g < N2 Firstly, we write veVR(N —e¥) — VeU o R(N — e¥*9) as following
VEeVR(N —¢e¥) — VeYR(N — ¥ %) + VeV R(N — ¥ 1) — Vev+o R(N — e¥19)

(2.42

=\/e7/(R(N —¢Y) = R(N — ey+5)) — R(N — ¥+ (Veuts — /ev). )

Moreover, Veytd —y/eV = \/ey(e% —1) < vVeY(exp ﬁ —1), and we have e* — 1 <  when z is small,
hence

Vievt+s — /ey <<£ (2.43)

Then using the inequality (a + b+ ¢)? < a® + b% + ¢?, we get

log N—§ 2 log N—¢ N—e? R(u) 2
110<</ eV(R(N —e¥) — R(N — e¥*?) dy+/ ———_du | dy
T e (mv - e - v -0 g+ | )
log N—¢ oY oo

We denote
log N—§ 2
I :/ e (R(N —e¥) — R(N — ey+5)) dy,
0

: 2
log N—§ N—eY R(u)
Tia = —— _du | dy, (2.45
13 /0 < Nwts VN —u Y )
log N—¢ oY oo
114 :/0 ﬁR(N—ey ) dy

115 is more difficult, so we put it in the next step. To deal with I;3 and I14, firstly, we need a
lemma concerning the growth of R(u).

Lemma 2.3. Let 0 € [§,1) fized, then
Y(z) =z + O(2f log? z) (2.46)

if and only if
C(s) #£0, forall R(s) > 0. (2.47)
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For the proof, one may see [12], Chapter 12, Theorem 12.3. In particular, this lemma shows that
the Riemann Hypothesis is equivalent to

Y(z)=o+ O(x% log® z), (2.48)

however, this will never be easier than proving the original form of Riemann Hypothesis.
Using this lemma, I13 and ;4 can be estimated directly:

2
log N—d N—eY 1 2
I < / / Vulogtu, g,
0 N—eyts \/N —Uu

4 log N—¢6 N—eY du 2
<N lo N/ ——| d
& 0 N—evt+s N —u 4

(2.49)
log N—§ 2
=N log* N/ (\/ eyt — @) dy
0
Nlog* N [losN=0 N?log* N
# eVdy <« S8
T T2
After a change of variable,
1 N*Cé
Il4 :ﬁ/ RQ(t)dt
o (2.50)
<<—1 / o tlog* tdt <« N?log” N
7268 |, & 27
Step 6: Estimate of [, < N2 After a change of variable,
N-1 2
Ii» :/ (R(ye5 + N — N¢&?) — R(y)) dy
N(1—e—9)
N—-1 2 N-1 2
< / (R(ye’ = N(e = 1)) = R(ye’))) "dy + / (Rye’) — R(y)) dy  (251)
N(1—e—9%) N(1—e=9)
(N—1)e® 2 N-1 2
- / (R = N = 1) = R(z)) do + / (R(ve’) ~ R(y)) dy.
N(ed—1) N(1—e—9)

8
the last two integrals f ]S;E[e;i)le) and f ]i,v(;;_é) have been treated in Goldston and Montgomery’s

article, see [10, 19]. Hence

91 N21og2N

s < N? max dlog” = < 2.52
12 0558t g 5 T ( )
Conclusion Until now, we have proved Ig = I1g + I11 = I11 + I12 + I13 + I14, where
1 /N3 N2 N2log? N
[11 <5 7+710g4N ) Il2 < Oiga
T\T? T T
. . (2.53)
NZ?log* N N?log* N
I3 <<T, Iy < Ta
S0 3 2 2
N oy N= o oy
Ig<<ﬁ+ﬁlog N—l—Tlog N. (2.54)
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In step 5, we have proved Iy = O(1), and I; = Tlog N maxg s 1 VIg - /Iy, hence

N: N N
I; < TlogN(T—;—l-?logQN—l—ﬁlogN). (2.55)
2

In step 4, we decompose I5 as I4 + I + Ig + I7, and we have also proved Iy, I, I < N%, SO

I, < I, + N, (2.56)
In step 3, we write I; = —23(I5) + O(I3) and prove I3 < N2, so

I <I; + N2, (2.57)
In step 2, we write I = I + O(NTZ log? (NT)) + O(Nlog N), and notice that T < N, therefore

N2 5 N: N N
I < 2 1002(NT) + N3 + T1 N( Y og? N 4 1 N) 2.58
<<Tog( )+ N2 4+ Tlog T%+T0g +\/T0g , ( )

now let T'=+vNlog? N, then 1 < T < N and I < N3, Finally, we get

2
> ra(n) =Y ra(n) = N7 + O(N3/2), (2.59)

n<X n<N

3 Proof of Theorem 1.5, Part 2

3.1 Proof of Theorem 1.5, Part 2
We recall the part 2 of Theorem 1.5:

X2
Assuming Z ro(n) = - + O(X?/?), then Riemann Hypothesis is true. (3.1)
n<X

Step 1 To prove part 2, we need an asymptotic formula of S(z) =", .. r2(n)

x? 2Pl
S(x) =5 - > FeES)) + E(z), (3.2)

p

2+4B

where B = sup{Rp : {(p) = 0}, E(z) = O(z3 log4(2x)). We have known that B <1 by Theorem
1.3, and B > 1/2 is already known, because there does exist zeros on the line {R(s) = 1/2}, if we
consider the positive imaginary parts, then the first non-trivial zero on that line has imaginary parts
approximately 14.135.

Step 1 a little bit technical, so we put it in the subsection 3.2.

Step 2 Assuming step 1, we define the corresponding Dirichlet series of ro(n)

F(s)=)_ # (3.3)
we notice that
() = 3 AmIAE) < nlogn. (3.4)
m-+k=n

so when R(s) > 2, the series converges uniformly and absolutely and F(s) has the integral form

F(s) = 5/100 S(u)u="du, (3.5)
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therefore, F'(s) is analytic in {s € C: R(s) > 2} and by step 1

- rip)s s h r(u)u™ " du 1 r(p)
F(8)72(8—2)Jr;(p—kl)(s—p—&—l)Jr /1 Er(u)u=>"1d +2+;p—|—1

3.6
_ + Z rie) + s/oo Er(u)u™*"'du + (1 + Z r(p) ) 0
5—2 p s—p—1 1 2 p p+1/°
where r(p) = —%. We must point out that due to Lemma 3.2, the series Ep ;(Tp% is convergent.
Moreover, F(s) can be extended meromorphically to the half plane {s € C: R(s) > %}, this
is because Er(u) < u*s" log* (2u).
Step 3 If B <1, then
3 1
1+ B =inf{og > 7" F(s) — — 5 is analytic on R(s) > o¢}. (3.7)

Denote the set on the right hand is «/. By step 2, inf &/ is at most 2+34B, however, B < 1, so
inf.o/ < 228 < B41.

For the inverse inequality B + 1 < inf .o/, we know that this is trivially true when B = 1/2,

because og > %, so we may assume that 1/2 < B < 1. Now max{ 2+34B, %} < 1+ B, there exist an

€ > 0 such that max{ 2+§B, %} < 14 B — ¢, by the definition of B, there exists a non-trivial zero p

with £ < B — e < R(p). By the formula of F(s), in the half plane

{SE(C:SCE(S)>1+B—€>;} (3.9)

F has a pole at p 4+ 1 with residue —%, and we conclude that

1
1+ B —¢e<inf{og > g 1 F(s) — 5 is analytic on R(s) > 0¢}, (3.9)

finally, let € — 0.

Step 4 Now we let D(z) =}, ., r2(n) — %2, then D(z) <, z31¢ for all € > 0. Consequently

1 00 s 1
F(s) — =s D(u)u™* "du+ 3
1

— = R(s) > 2, (3.10)

where the right hand side is analytic on {s € C : R(s) > 2}, since D(u) <, uzte. So we conclude
B < % by step 3, hence the Riemann Hypothesis holds.

Step 5 Notice that in Step 3, we assume that B < 1, however we only have B < 1 by Theorem
1.3, so we need to exclude the case B = 1. For this, we need a lemma:

Lemma 3.1. If for some 0 < 6 < 1, the following asymptotic formula holds:

X2
S(X) =5+ O(X%79), (3.11)
then there exists 0 < 6’ < 1 such that for all non-trivial zeros p of ¢ function, p satisfies
R(p) <1-4". (3.12)
The proof of this Lemma will be treated in subsection 3.3. By our assumption:
> ra(n) = X; +0(X3/?), (3.13)

n<X

just let § = 1, then there exists a ¢’ such that R(p) < 1 — ¢’ < 1, so we exclude the case B = 1.
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3.2 Proof of Step 1 in Theorem 1.5

We follow the method in [4]. [4] considers the general case of S(x) for L(s, x), but we only need to
deal with ¢, so some proofs in [4] can be simplified. In order to prove the asymptotic formula of
S(x), we need some estimates for the non-trivial zeros of zeta function.

Lemma 3.2. Let p = B+ iy be non-trivial zeros of ((s), then

(i) ForanyT >1

1
Z — < log?(27T). (3.14)
MST| | .
(i) ForanyT >1
Z 1 < log(2T)
> @19

particularly, >, = < 0.

p \p\

Proof. (1). We may use Lemma 2.2 N(T') ~ ¢T'log T with ¢ > 0, remove finite zeros with 0 < vy < 1,

we have ) Io
Z H Z Z 1ol < Z 5L < 1ogX(T), (3.16)

1<vy<T 1<n<T n<y<n+1 1<n<T

so (i) is true by the fact that non-trivial zeros of zeta function come in conjugate pairs.
(ii). Similarly, (ii) is followed by

lon loT
YooY X oae) ar< @)

|y|>T n>T n<y<n+1 n>T

Recall that S(z) = 3_, ., r2(n), so we can write S(z) as

=> Az —1), (3.18)

<z

however, () =& — 315, <7 “’—: + O(% log? ), where T < z (see Lemma 2.1 or 2.3), hence

=Y "Au (xl Z )+ZA (

<z IS(p)|<T 1<z

log?(z — l)) (3.19)
For the second term,

ZA ( ) log?(z — l)) log o:ZA < —log x. (3.20)

1<z <z

For the first term, we denote

Zl ZA x—l

<z
"y (3.21)
s-Yan Y 2
<z [3(p)I<T
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then the first term is 31 — 3o, by Fubini’s theorem, it’s easy to verify that
¥ = / P(u)du. (3.22)
0

Once again, by ¥(z) =2 — 35, <1 % +O(F log® z), we have

¥ uf u
21:/0 {u— Z —|—O(T10g2u>}du

P
[S(p)|IST
1,2 Z xp+1 $2 ) (3.23)
S 1oL 10g? ).
D 1 T
sioer PP 1)

Yo is much more difficult than 31, we change the double sum at first, then

= > ZA )z —1)° (3.24)

|\r(p)|<T 1<z

for the general term % > 1< M) (z — 1)P, by Riemann-Stieltjes integral

1 ,
,;A ;/o(x_U) dyp(u)
(3.25)
:% /0 (z — u)”d(A(u,T) + B(u,T)),

where A(u, T') = u — 35, <r %> and B(u,T') = O(%log® u). Then

;/Om(xu)pdw(u) :% /Ow(xu)pdu; /Ow(xu)pupllduqti/ow(mu)de(u,T)

[S(p")I<T

=I — I + I3,

(3.26)
where 1
L=
p(p+1)
- ¥ LT o’
(1

s@ier TE+P+7) (3.27)

uU=x

1
Is =—(z —u)’B |
3 P (x —uw)’B(u,T) o

+ /Ox(x —u)? ' B(u, T)du
<<O<ﬂ?log x) +/0$(x—u)p_1B(u,T)du.

Here, T'(p) is the complex Gamma function, we would like to say something about calculating Is.
After a change of variable u — xv,

x 1
/ (x — u)”u”/_ldu = gt / (1- v)pvpl_ldv = x”"’p/B(p’,p +1). (3.28)
0 0
B(p',p + 1) is the Beta Function defined by
1
B(z,y) = / 711 —t)vldt Rz, Ry > 0. (3.29)
0
Furthermore, we have the following relationship:
L(@)T(y)
B(z,y) = , 3.30
(@) = T (3.30)
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SO

D A e S AL L
P |a(ni<r 0 si<r P pe
Therefore,
ZL"D+1 ) ’
SR R
(1
wlner?® ) ofoieriadier “’“7)
R (3.32)
+ Z (/ (z — u)"" ' B(u, T)du+0< v log x))
(o)< \ 70 ol
However, 35,y <r O(%% log? ;1:) = O(% log? z) by Lemma 3.2 and T < z. If we denote
R S S L
1+p+p
IS (p) \<T\\f(5 )IST (3.33)
¥y = Z / (z —u)’"'B(u, T)du.
(o)< 0
Then o )
P x 4
S(z) -2 Z oD 23—E4+O(Tlog x) (3.34)

\\S(p)\<T

Consider the sum 3 g, <7 p“(p

(o1 We can replace > |s(p)|<T by 2=, without changing the error
term O(z2log* /T), in fact:

i x? log(2T) o
> st S > pEST T (3.35)
[S(p)|>T IS(p)|>T
log(2T) 2 ¢ 2250t
Consequently > g,y <1 = 2p — Zis(p)>7 < r° < % log” x, when T' < . So
x2 xl)"rl IZ 4
Sle)="%5-2) ——=+83 -5 +0(1 :

We will prove the following two estimates later:

Y3 K 22872 log* z,
2 (3.37)
Yy < % log .

Now we have ) )

z . 2Bl 4 z 4
S(x) <<?—22p:m+w Tz log a:Jr?log x, (3.38)
choosing z*PT1/2 = 22/T, ie. T = x*1=B)/3 gince B > 1, we have T' < z, so

a? aPtl (244B) /37, 4
P
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3.2.1 Estimate for 35 < 22872 log? z

The difficult point of estimate of X3 is %, to deal with this, we need the the complex

Stirling’s formula for Gamma function, recall the classical result for n € N:
n
eV (2 (14— +0m ). (3.40)
e 12n

Lemma 3.3 (Complex Stiriling’s formula). Let 6 >0, and Rs ={z € C: |s| > ¢, |args| < 7w =4},
then
[(s) = V2rs*~ Y275 (1 + O(1/|s])). (3.41)

For the proof, see [17] Appendix C.

We come back to the estimate of 5. We firstly assume that |y| < |9/|, where p = 8 + iy,
p' =B +1v, by Stirling’s formula ( See [17], Appendix C, (C.19))

D(s) = (|t| +1)7 V2= s =5 1it, 0 €[0,3], |t| > 1. (3.42)

Case 1. |y| < |9¥/| <1: In this case, [T(1+p+p')| <1, so

L(p)T(p')

< -1, 71—1
Ta+r+0) ol 1p'l

1, _ 3.43
<TH || o] (3.43)

T2y
Case 2. |y| <1< |y/|: Using Stirling’s formula to I'(p’) and T'(1 + p + p’), we get

L(p)L(p')
IF(1+p+p)

|y/|f' =1/ 2e=(x/2)1Y']
A+ [ + 7 )PrE 1726 G+
o
<lp| 17!

<pI™!

(3.44)
<T2 || /|
T3~

Case 3-1. 1 <|y| < || < T, sgn(y) = sgn(y’): Similarly,

L(p)L(p') |y[8=1/2e= (/D |/ |8'=1/2¢=(n/2)17'|
L(l+p+p) (|y + 4| + 1)B+B'+1/2e= (/D Iv+7'] 7

(3.45)

in thls Ca‘se7 "‘y + ’)//| frd |’y| + "‘y/" SO e_(Tr/Q)l’Yle_(ﬂ'/Q)lfyl‘ — e_(ﬂ'/2)|"/+7/|, Consequently

I'(p)L(p') |y|P=1/2 )| -1/
P(Ltp+p) (v +o/| + 1)FHa+1/2
e o

|’Y + r}//‘ﬁ+ﬁl+1/2
[y|P~1/2

[y/[B+L

< (3.46)

<

We have assumed that || < |v'],so [y%/|7/|? < 1, hence |v|?~1/2/|y/|P+! < |y|~Y/?|+/|~!, moreover,
by assumption |y| < T, so |v|~Y/2|y/|~* < T'z|y|~*|y/|~!. In conclusion,

F(P)F(Pl) L1 -1
— K T2 3.47
Titptp) VY (3.47)
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Case 3-2. 1 < |y| < || £ T, sgn(y) = —sgn(v'): Notice that we have assumed that |y| < |7/],

so |y +9'| =¥ = |yl, and
o= (/2 o= (1/2)17|

e—(m/2) v+

=Nl (3.48)
Nextly, we estimate the term (|y +~/| +1)~#=F'=1/2_it’s
hg— —p-g—12( 1+ 1Vl
1+ " _ B=p 1/2:1_|_ ! B—B 1/2(7
L+ =) 1+ L+

e (et .
L+ =i
SR i (R oD

)*ﬂ*ﬁ'*l/Q

the last inequality can be verified directly: 1+ |v/| < (1 + [4))(1 + |¥| = |7]), because || < |¥/].
Notice that 8,8’ < 1,s0 B+ 5 +1/2<2.5 <7, and

(L [y NP2 4 ) < (L4 [y )2 (4 ) (3.50)
By the inequality e > 1 + z, we have (1 + ™ < ¢™l. In conclusion, we get
v
L+ 1| = )2 < (L4 [y ) e (3.51)
once again
L(p)T () |y|P=1/2e=(m/D 1l |/ |B'=1/26=(m/2)1|
PA+p+p) = (ly+ 7]+ 1) 2e (/2]
e o
(v +~+ 1)B+5’+1/ze
S i e e (e I (3.52)
P12y
B

B-1/2
el
T

=7l

so we come back to the case sgn(y) = sgn(v’).

Combining these cases and the symmetry of p and p’, we have for all non-trivial zeros p, p’ with
[v], 17| < T, the estimate

L(p)l'(p') 1 =11
KT 3.53
T+ p+ ) aleil (3.53)

always holds.
Moreover, we notice that 8 € (0,1) when p is a non-trivial zero, so |p| < 1+|y| < |y|. Therefore:

L(p)T'(p")

1
— T p T 3.54
T+ p+7) ol 1P (3.54)
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Using this estimate, we get

(¥) ptp’
-2 2 +p+p)x+

[S(PIST S )|<T

€ X S whrpe

ST [S(p")|I<ST

1 _ _
<a®PT7 Y I (3.55)

[S(PIST [S(p)IST

2
<a®PTH( 3D o)
IS(p)I<T

<2?BT log*z, when T < z,

the last < comes from Lemma 3.2.

3.2.2 Estimate for ¥, < & log x

We give a lemma at first, it would be used during our estimate. The proof can be found in [11, 13].

Lemma 3.4. [Gonek-Landau Formula] In 1911, the German mathematician E.Landau proved the
following estimate: for all x, T > 1, p= B + iy be non-trivial zeros of ((s)

T
p— _
Z P = 27rA(ac) + O(logT). (3.56)
0<~y<T
This estimate was improved by S.M.Gonek in 1993, now named as Gonek-Landau formula:

Z P = —zA(:c) + O(zlog 22T loglog 3x) + O<logzmin {T, i} )
0<y<T 2m () (3.57)

+0(log 2T min{T,log ™' z}),

where A(z) = 0 when x ¢ N, and (x) is the distance from x to the nearest prime power other than

x itself, i.e.
(z) = min{|z — p*| : p prime, k > 1, p* # x}. (3.58)

Particularly,

Z xf = —ZA(x) + O(xlog 22T log log 3x) + O(logwmin {T, —} )
T
[v|<T

+0(log 2T min{T, log " z})

since non-trivial zeros of zeta function come in conjugate pairs {p, p}.

Now we come back to the proof of ¥y <« & log x. For convenience, we write down ¥, again

¥, = Z / (z —u)P~ ' B(u, T)du
S (p)I<T 70

. (3.60)
u
- Z / uwP ' 'B(x —u,T)du, Bu,T)< TlogZu.
19(p)|<T 70
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We write the integral as [ = f03 + [, . For the first part, notice that p = 8 + iy with 8 < 1, so

3 3
/up_lB(x—u,T)du<< Z %long/ u’~du

1S(p)|<T ” 0 1S(p)|<T 0

Lo 2
<<T log”™ x Z
IS(p)IST

. (3.61)
3

Now we denote p = 3+ iy to be a non-trivial zero with |y| < T, then 1 — p is also a non-trivial zero

|S(1 — p)| = | — | < T (See the paragraph before Theorem 1.4), by this observation, we can write
Yjs(pI<T 5 28 ,
Z 1— . (362)
[S(p)|<T g

By Theorem 1.3, if 8 4 iy is a non-trivial zero, then

c
f<]l— ————, 3.63
loa (2 + 1) (3.65)
therefore,
1
Z -3 < Z log(2 + |7])
IS(p)IST IS(p)|IST
<log(2+T) Y 1 (3.64)
[S(p)I<T
<log(2+T)TlogT,
the last < comes from Lemma 2.2. In conclusion, we get
S 1B T)du < = log? !
Ou (x — u, )u<<fogx Z 3
[S(p)I<T [S(p)I<T
T (3.65)
<<T log“x x TlogTlog(2+1T)
<z logt z,
the last < holds because we have assumed that T < x.
For the second part
/ uP ' B(x — u, T)du :/ ( > upfl)B(x —u,T)du, (3.66)
IS(p)I<T ? 3 s(p)I<T
by Gonek-Landau’s formula, when 3 <u <z, T <z,
Z u” < ulog(uT)loglogu + Tlogu < ulog”z + zlogx, wu¢N. (3.67)

[S(pI<T

Furthermore, N has Lebesgue measure 0 in R, so f[3 o] = f[3 A\N and

A

By a direct calculation:

T —

u
T log?(z — u)du. (3.68)

up_l)B(x —u, T)du < / u (ulog? z + zlog )
IS(p)I<T °

z2logt

1 2 x
o8 T / (2= u) log* (v — w)du < “—2-, (3.69)
3

/ ru log? zlog?(z — u)du <
3 T
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and integral by parts, we get

T _ 1 x 21 4
/ ulgZ =Y log  log?(z — u)du = Tost / uH(z — u)log?(z — u)du < w, (3.70)
: T T/ T
combining these two estimates, we get
x 2 1 4
/ ( Z up71>B(x —u, T)du < #. (3.71)
5 Is(p)IsT
Finally,
x 3 T
5, = / (2 — u)*~ B(u, T)du = / +/ , (3.72)
O 1s(p)I<T o 78
with f03 < zlog* x and f; < %, so we get (Remember that by our assumption 7' < z)
22,
Ya K T log™ x. (3.73)
3.3 Proof of Lemma 3.1
We use the method in [2], recall the condition:
X2
S(X) = -5+ O(X?7%), for some 6 € (0,1), (3.74)
and our goal is to find a ¢’ € (0,1) such that for all p,
R(p) <1—10" (3.75)
Let |z| < 1, consider the power series:
F(z) =Y A(n)z". (3.76)
n>1
We have F(z) is analytic in the disc |z| < 1, because A(n) < logn, moreover,
F?(2)
2 _ n _ n
Fo(z) = ZW(”)Z , and 1-. Z S(n)z", (3.77)

n>1 n>1

recalling the definition of S(z) in step 1: S(x) =3, . r2(n).
By our assumption: -

Z S(n)z" = Z (%2 + O(nZ_‘S))z” = Z %z" + O(Z n2_5\z|”). (3.78)

n>1 n>1 n>0 n>0
Using i =142+ 2%+ ..., an easy calculation gives
S ot LRI (3.79)
T (1_23 — 2 — ) .
=2 (1-2) 2(1—=2) 2(1—=2)

For the error term, we need an asymptotic formula for I' (See [17], Appendix C)

nn!
r = li . .
(o) nl—)H;OCX(Oé+1)"'(Oé+7’L)’ a>0 (3.80)
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Let a =2 —§, we get

1 n2=9n!

F(2_6)N2—(5X(3—5)~-~(n—.|—2—(5)’ (3:81)
which implies (Using sI'(s) =T'(s + 1))
(3—6)-(n+2—9) n2-" 2
n! T 2=o0r2=% TB-9) (3.82)
So we have 5 s 5 s
Sone e« S BT A2 gy (3.59)

the equality comes from the power series expansion.

Now we get

> 50" =7 ~ = t =g * T )
= (3.84)

~i= =+ O la=)

the second equality holds because |1 —z| > 1 —|z|, and 3 — 4 > 2. So

F(z)?=(1-2)) S(n):" = a 1Z +O((1_1|_Z|;,|”). (3.85)

— ~)2
n>1 )

We consider the circle |z] = R =1—1/N, where N is a large positive integer, and rewrite F? as

1
F(z)?=(1=-2)) S(n)z" = Tt O(|1 — 2|N379). (3.86)
n>1
We introduce the kernel function K (z):
N

then K(z) < [1 — 27" when |z| = R(We use lim, (1 + )" = e). Moreover, we have (by direct
calculation)

P(N) :% /|Z_RF(z)K(z)dz .
N+ % - (F(z) -3 i z)K(z)dz.

Case 1. If |1 —z| < N5 then |1 — 2| N3 < |(1 — 2)|~2, and taking square root we obtain
1
F(z) = — +0(1 - 2|AN379). (3.89)
-z

Set {|z| = R} N {|1 — z| < N5'} is a minor arc, we denote it as [, then

/|ZI—R N /l+/l (3.90)
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1%

Figure 2: The minor arc and major arc

and

1 a
/I(F(z) - )K(2)dz <</l|1 — 2*N39|K (2)| d2|

1—=z
<</|1—Z|N3*5d|z| (3.91)
l .

25

<N?77 length(l)
<N'73,

we use | K (z)| < |1 —z|~! in the second <, and for the third <, we use |1 — z| < N5~! when z € .

Case 2. If|1—2z| > N3-1, then by Cauchy-Schwarz inequality:

/14 (P() - 1iz)K(z)dz < (/l F(z) - 1_12’2d|z|> </l |K(z)2d|z|>. (3.92)

For the first integral, we recall the definition of F, and using the power series of (1 — z)~!:

J

FE) = [l < [ ) - D(aem) - DR

1\2n (3.93)

- 17(1- )

Ty (A(n) —1)*(1 N

n>1
=O(NlogN).
For the second integral, we have:
1

K(2)]*d|z g/ ————d|z|, 3.94
/l“| ()l |z|=R, [1—z|>N3/6-1 11— 2|2 ( )
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if we let 2 = Re'® and |1 — Relto| = N®/3=1_ then
1 At

. _d)| :2/ e

/|z|_R,|1z>N3/51 11— z? to |1 — Reit|2

. t
|1 — Re''|? = (1 — R)* + 4R sin? 3

On the arc [¢, we have

Recall that R =1 —1/N, so we have
t t
(1= R)® +4Rsin® 2 < N72 4 dsin 5 < N 72+ 2,

and
2

t ot
1— R)?> 4+ 4Rsin? = > —.
( ) +4Rsin 5> 3

2/ S — <</ t72dt <ty < N17/3,
to |1 — Relt|? to

Therefore,

as a consequence, [,. |K(z)|?d|z| < N179/3,

Now we have

-

(f

Combining the estimates [, + [,., we have

»(N) — N = N*=9/610g% N.

We can choose ¢’ = 6/6 by Lemma 2.1.

4 Proof of Theorem 1.6, Part 1

4.1 Proof of the main theorem
We recall the part 1 of Theorem 1.6: Let
re(n) = Y A(ma)A(ma) - A(my),
mi+...+mr=n
and assuming Riemann Hypothesis, then

X* —1/24k |k
Zrk(n)zﬁ—i—Ok(X log" X).
n<X :

1 1
1 2 2 2
F(z) — :‘ d|z|> (/l |K(z)|2d|z|> < N'=9/6]og3 N.

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(4.1)

(4.2)

Similarly, we only need to consider the case X = N € N. We may proceed by induction in k,

when k = 2, it is nothing but

_ N 3/27 42
Z ro(n) = 5 + O(N?/=log” N).
n<N

Now assuming the asymptotic formula is ture for 2, ...,k — 1, then for k&

Sy = Y Am)A(ma) - A(my),

n<N mi+..+mp<N

29
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if we let mq +mo + ... + mp_1 = m’, then

k)= > Alm) > A(ma)A(ma) - A(mg_q). (4.5)

n<N mi <N m/<N—my
We notice that by assumption:

(N — mk)k_l

> Ama)A(my) - A(myy) = k-1

m/<N—my

4Oy ((N — )32 R logh L (N — mk)>,

(4.6)
therefore
Z rp(n) = Z A(m )M +0 ( Z A(mg) (N —my,) 732+ logh Y (N —m ))
k k =) k—1 k k k) )
k<N mp <N mp <N
(4.7)
We denote ( it
N — )~
1= A(i
> 20 G
= (4.8)
II :o( 3 AG)N — i) 2 g (N — i)).
i<N
Step 1: Estimate of II We deal with I7 firstly. In fact, we have
A(i) <log N, and log" ' (N —i) < log" ™' N, (4.9)
since ¢« < N. Consequently,
Z A (N — )32 Flog" I (N — i) < Z(N — i) 732 R ogh N
i<N i<N
<N . N73/2+kjogh N (4.10)
=N~V 1ok N,
Therefore 1T < N~Y/2+k]og% N
Step 2: Estimate of I Let
1 .
¥i(@) = 5 X (@ = myA(m), (4.11)
" m<z
we need a lemma on 1;:
Lemma 4.1. For j > 1, v; has the asymptotic property:
Tt xPtI ¢'(0) 27 3
i) = ——7 — S — 052’7 1). 4.12
5() (G +1)! Zp:p(pﬂ)---(pﬂ) ¢(0) st i) (412)

We will prove the above lemma in the next subsection, assuming this lemma, let j = k£ — 1 and
r = N, we get

B NpTk-1 ¢'(0) Nk—1 s
R e s R N (413)
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Notice that we have assumed Riemann Hypothesis is true, so |[NPTF=1| = N=1/2+k  therefore

Nk N—1/2+k
I<%T+X%(AJ) (+klﬂ+0W“U+WN“ﬂ
S P r (4.14)
Nk
:F + O(N71/2+k).
We must point out that the series o Wl(pﬂc—l)l is convergent, just notice that when p = %—HB ,
and j =1,2..., k—1, we have |p+j| =|1/2+j +1i8]| < 1/2+ j + |8| < |p| + |8, theorefore
lp(p+1) - (p+ k=1 = ol (Iol + 1) -~ (Io] +k—1) > |p[%, (4.15)
and finally, >° |p| =2 is convergent by Lemma 3.2.
Combining step 1 and 2, we get
_ _ ]\j —1/2+k 1.k
Z rp(n) =1+11 = X + Or(N log” N). (4.16)

n<N

4.2 Proof of the Lemma 4.1

Recall that 1;(z) = %ngm(m‘ —m)7A(m), we consider the simplest case 17 at first, which can be
expressed by the following integral:

Integral representation of ¢; For all ¢ > 1,

o =5 [ (- ) 1

here the integral is over the vertical line R(s) = c.

To prove this proposition, we need a lemma of contour integral:

Lemma 4.2. Ifc > 0, then

1 fetie s 0 if 0<a<l1,
a { / R (4.18)

Tﬂj c—ioco S<S+1) 1_1/0’ Zf(lZl

Proof. We notice that |a®| = a®, so the integral converges. Firstly we assume that a > 1, and let

f(s) = ; (4.19)

then ress—of = 1 and ress—=—_1f = —1/a. For T' > 1+ ¢, consider the contour I'(T") shown in the
Figure. The contour consists of the vertical segment S(T") from ¢ —iT to ¢+1iT, and of the left-hand
half-circle C(T') centered at ¢ of radius T. Since T'> 1+ ¢, 0 and —1 are contained in the interior
of T'(T), by the residue formula:

1
30 /F(T) f(s)ds=1-1/a. (4.20)
Since
/ f(s)ds = (s)ds + / f(s)ds, (4.21)
(T) S(T) a(T)
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(T S(T)

Figure 3: The contour T'(T")

it suffices to prove that the integral over C(T) tends to 0 when T goes to infinity. Notice that if
s =0 +it € C(T), then for large T we have

T2
s> 2 (122)
moreover, |e?*| < eP¢ because o < c. Therefore
C
f(s)ds| < 27T — 0 as T — oo. (4.23)
c(T) T

The case 0 < a < 1 is similar, we only need to change C(T) to be the right-hand half-circle, and
notice that there are no poles in the interior of I'(T). O

Now we come to the proof of the integral representation of 11, just recall — CC,((;) =>,An)n=°,

—

and observe (with a = z/n)
1 [efioe gstl ¢'(s) s 1 et (z/n)
sl ) =2 Ay [t

—z i Am)(1-2)

=1 (x),

(4.24)

In the first equality, we change the integral fccjii;o and the sum > 7 |, this is because Y., A(n)n~*

n=1’
converges to —% uniformly when R(s) = ¢ > 1.
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Now we have found an integral representation of 1, furthermore, notice that for all j > 1,

Vit / Y;(u (4.25)

c+ioco 5+1 Cl(s)
/ 27r1/c s(s+1) < (s))deu
c+ioco S x ]
:%/c_m (5+1 ( 5 )/0 wHduds (4.26)
B 1 c+ioco r5+2 /(5)
‘Zﬁlqm 4&+U@+m<“qﬁ>d&

and [;. In fact, when R(s) = ¢, | = ('(s)/¢(s)] < 30 A . o

n nc

So

Here we change two integrals fc .

is uniformly bounded in s, and one can verify easily that
c+ioco / x [e7e] c+1

( C(S))dsdu <<C/ / - dt du
o— $+1 C(S) 0 0 (t+0)(t+0+1)

xT oo
< | wuett /
/0 o 1+1t2

Therefore, by Fubini’s theorem, two integrals | etico ) C+f§ exist and are the same.

CcC—100 c—1

(4.27)

By induction in j, we obtain

i(x) = L e ztd o ¢'(w) w
Y ( )_27Ti/c—ioo w(w—|—1)...(w+j)< C(w)>d ) (4.28)

where ¢ > 1 is fixed.
Similar to the proof of Lemma 4.2, we choose a rectangle Rct(T'), with the vertices ¢ £ iT and
—3/4 £iT. However, we may need some conditions on 7. Notice that by Lemma 2.2:

N(T+1) = N(T —1) < logT. (4.29)

If [3(p) — T| > 1, then |3(p) — T| > 1> log™ ' T. Conversely, if |3(p) — T| < 1, then there are at
most O(logT') such zeros. So among the imaginary parts $(p) of these zeros, there must be a gap
of length > log_1 T. Hence by varying T by a bounded amount less than 1, we can assume that

IS(p) = T| > log™* T, for all p. (4.30)
2t ¢ (w)

~ SGiT(orj)c@y Which lie in the interior of Ret(T) are 0, 1 and
non-trivial zeros p with |S(p)| < T. We have the following cases:

The singularities of w —

Case 1: When w = p, we denote ord(p) be the order of p. Then near p, ¢ can be written as
C(w) = (w — p)°rP) h(w), where h(w) is holomorphic and never vanishes near p, therefore

) = ord(p) + W (w) near p, (4.31)

(W) w=p hw)

pwti
w(w+1)-+(w+7)

on the other hand w +— — is analytic at p, therefore

] " B xw+j</(w) _ xp+jord(p)
s (9 G e ) R 3
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-3/4 c

Ret(T)

Figure 4: The contour Rct(T)
@t
w(w+1)--(w+7)

L aeg(w) _ (o
T€8w=0 (w ~ ww+1) - (w +J)C(W)) SO

Case 2: When w =0, {'(w)/{(w) is analytic at 0, and w — —
therefore

has a simple pole at 0,

(4.33)

Case 3: When w = 1, {(w) has a simple pole at 1. Like case 1, we write ((w) = %, and obtain

2 (w) > _ o (4.34)

resw_1(w*—>w(w+1)...(w+j)C(w) G+t

Combining these cases and using the residue theorem, we get

1 T < C’(w)) Tl xPtI ¢’'(0) a2
L RSO S __{O
2mi Jpery ww + 1) (wH+ i)\ (W) GHDY e o) o +) C(0) 5!

(4.35)
here the sum Zp, S(p)<T takes multiples into account, so ord(p) doesn’t appear in the sum.

We write the contour integral as

cHiT —3/4+HiT —3/4—iT c—iT
T R I U (4.36)
Ret(T) e—iT cHiT —3/4-HT —3/4—iT

and denote I; = ff;éfl“T, I, = fcg/i:‘f_iT, now we prove Iy, I> goes to 0 as T tends to infinity. We

need two estimates. (Remember we have assumed that [3(p) — T| > log™' T for all p.)
Estimate 1: If w = 0 +iT with o € [—1, 2], we have:

wlw+1) - (w+ ) > T (4.37)
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Estimate 2: If w = 0 £iT with o € [—1, 2], then
¢'(w)
((w)

Estimate 1 is almost obvious so we omit it, for estimate 2, see [12], Chapter 12, (12.20). Combining
these two estimates, we obtain

< log?T. (4.38)

_3/44iT wtj /
112/ - - (—C(w))dw
T ww+1)- (w+7j) ((w)
c $G+J
< / T log? Tdo (4.39)
log T
0( o )

Similarly, after change T to —1, we also have I = O (?%i?)

c+iT —3/4—iT 1 2T
( / / ) ( o ) (4.40)
2mi Ret(T) 27 3/AHT 1

Now we have

and - i (0 a9
1 x? P 0) «/
2mi BES R S s e R O ik (4.41)
Ret(T) C pIS(I<T '
Let T — oo and recall ¢; = 55 fccilozo, we get
it Lt ¢ i
Vi(x) =" — ~ — =(0)—
AR Zp:p(erl)---(pH) ¢
4 _ (4.42)
1 —3/4+ico ’JJw+J C/(w)
B . < - >dw.
211 J_g/4—ice W(w+ 1)+ (w+ ) ((w)
To handle the integral [~ 33//44t;(>:, we need an estimate of ¢’/¢ on the line £(s) = —3/4.
Estimate 3: Let w = —3/4 +it, then for all ¢ € R, we have
¢'(w)
< log(|t| + 2). 4.43
S < loa(lt +2) (4.4
Estimate 4: Let w = —3/4 + it, then for all ¢ € R, we have
ww+1) (w+7) > (|t +2)/ T (4.44)
For estimate 3, see [1], Chapter 13. Estimate 4 is almost obvious so we omit the proof.
Using these estimates, we obtain
—3/4+ic0 ) oo 10g(|t| +2)
< :cﬂ*3/4/ Tl dt = 0, (273, (4.45)
/3/4100 —o00 (|t| + 2)j+1
and finally,
It xPtI ¢'(0) 27 3
¥z . — +0;(’71). 4.46
() = (G + 1! Zp: (p+1)---(p+35) <(0) j! i) (4.46)

35



References

[10]

[11]

[12]

H, Davenport (2000). Multiplicative Number Theory (3rd. ed). Berlin: Springer.

G, Bhowmik; I, Z, Ruzsa (2018). Average Goldbach and the Quasi-Riemann Hypothesis, Analysis
Mathematica, 44 (2018), 51-56.

G, Bhowmik; J, -C, Schlage-Puchta (2010). Mean representation number of integers as the sum
of primes, Nagoya. Math. J, 200 (2010), 27-33.

G, Bhowmik; K, Halupczok; K, Matsumoto; Y, Suzuki (2019). Goldbach Representation inn
Arithmetic Progressions and zeros of Dirichlet L-functions, Mathematika, 65 (2019), 57-97.

J, B, Friedlander; D, A, Goldston (1997). Sums of Three or More Primes, Trans. Amer. Math.
Soc. 349 (1997), 287-310.

A, Fujii (1991). An additive problem of prime numbers, Acta. Arith 58 (1991), 173-179.

A, Fujii (1991). An additive problem of prime numbers II, Proc. Japan Acad. Ser. A Math. Sci,
67 (1991), 248-252

A, Fujii (1991). An additive problem of prime numbers III, Proc. Japan Acad. Ser. A Math. Sci,
67 (1991), 278-283.

P, X, Gallagher (1989). A double sum over primes and zeros of the zeta function, Number
Theory, Trace Formula and Discrete Groups (1989): 229-240.

D, A, Goldston; H, L, Montgomery (1987). Pair correlation of zeros and primes in short inter-
vals, Analytic Number Theory and Diophantine Problems (1987), 183-203.

S, M, Gonek (1993). An explicit formula of Landau and its applications to the theory of the zeta
function, Contemp. Math 143 (1993), 395-413.

A, Tvié (1985). The Riemann zeta function: Theory and Applications. Mineola, New York:
Dover Publications, INC.

E, Landau (1911). Uber die Nullstellen der Zetafunction, Math. Ann. 71 (1911), 548-564.

A, Languasco; A, Zaccagnini (2012). Sums of many primes, Journal of Number Theory 132
(2012), 1265-1283.

A, Languasco; A, Zaccagnini (2012). The number of Goldbach Representations of an integer,
Proc. Am. Math. Soc 140 (2012), 795-804.

A, Martin; Z, Gunter (2009). Proof from THE BOOK (4th. ed). Berlin, New York: Springer-
Verlag.

H, L, Montgomery; R, C, Vaughan (2006). Multiplicative Number Theory. Vol I. Cambridge
Studies in Advanced Mathematics. Cambridge University Press.

K, Prachar (1957). Primzahlverteilung. Berlin, Gottingen, Heidelberg: Springer-Verlag.

B, Saffari; R, C, Vaughan (1977). On the fractional parts of x/n and related sequences, Ann.
Inst. Fourier(Grenoble) 27 (2) (1977), 1-30.

E, Stein; R, Shakarchi (2003). Complex Analysis. Princeton University Press.

G, Tenenbaum (2015). Introduction to Analytic and Probabilistic Number Theory (3rd. ed).
Graduate Studies in Mathematics, Volume 163. American Mathematical Society.

E, C, Titchmarsh; D, R, Heath-Brown (1986). The Theory of the Riemann zeta-function (revised
2nd. ed). Oxford: Clarendon Press.

36



	Introduction
	Definition and Notation
	Some notations
	Some arithmetic functions
	Gamma function and Riemann zeta function

	Main Results
	Further Remarks

	Proof of Theorem 1.5, Part 1
	Proof of Theorem 1.5, Part 2
	Proof of Theorem 1.5, Part 2
	Proof of Step 1 in Theorem 1.5 
	Estimate for 3x2BT12log4x
	Estimate for 4x2Tlog4x

	Proof of Lemma 3.1

	Proof of Theorem 1.6, Part 1
	Proof of the main theorem
	Proof of the Lemma 4.1


