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Abstract. We survey the classical theory of stability for rational maps and give a new
proof based on potential and ergodic theoretic tools. We then exploit this approach to
present a generalization of this theory which is valid in any dimension. This text is
partially based on the lectures given by the first author at IMPAN during the Simons
Semester Dynamical Systems held in Banach Center.

In these lectures we will discuss stability and bifurcation phenomena for holomorphic
families of rational maps and, more generally, of endomorphisms of Pk. More precisely, we
will describe the classical results independently obtained by Lyubich and Mañé, Sad and
Sullivan about the stability of rational maps and then present a new approach leading to
their generalization in any dimension.

The four first lectures all deal with the case of P1. In the first lecture we briefly introduce
the framework and present the tools which will be used. The second lecture is devoted
to the classical proof of Lyubich-Mañé-Sad-Sullivan theorem and emphasizes the aspects
which fail in higher dimension. In the third lecture we present an alternative proof of the
Lyubich-Mañé-Sad-Sullivan theorem which is based on pluripotential and ergodic theories.
This approach is the one we will follow in the higher dimensional setting and we discuss
which are the difficulties related to that generalization. We also introduce in that lecture
the notion of bifurcation current by means of Lyapunov exponents. The fourth lecture is
a digression on some possibilities offered by the bifurcation currents techniques.

The remaining lectures deal with a generalization of Lyubich-Mañé-Sad-Sullivan theo-
rem to Pk which has been obtained by C. Dupont and the authors of these notes. This
generalization is based on new methods and ideas which, at least partially, have already
been explained in the special case of P1 in the third lecture. In the fifth lecture, we first
introduce some tools and, in particular, some concepts to deal with holomorphic motions
of Julia sets, we then describe the main result and present a general strategy for its proof.
In the two next lectures, admitting a fundamental lemma concerning Misiurewicz param-
eters, we prove how to obtain stability (holomorphic motions) of Julia sets from stability
of repelling cycles. The eighth lecture is devoted to the proof of the fundamental lemma.
In the last two lectures we cover some related aspects of our result and present a list of
open questions.

As we have tried to stress the ideas and concepts rather than the technical aspects,
our presentation is mostly informal and our style is that of Notes. In the subsection 3.2
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however, we gather some material for the first time and thus give precise and complete
proofs.

For background on dynamics in several complex variables, we refer to the lecture notes
[DS10] by T.C. Dinh and N. Sibony. For background on bifurcation currents, we refer
to the survey [Duj14] by R. Dujardin or the lecture notes [Ber13] by the first author. In
particular, an extensive bibliography may be found in these three texts.

1. Holomorphic families

1.1. Definitions and examples.

Definition 1.1. A holomorphic family of endomorphisms of Pk is a holomorphic map
f : M × Pk →M × Pk of the form f(λ, z) = (λ, fλ(z)) such that:

(1) M is a complex manifold;
(2) the algebraic degree dega fλ of fλ is constant: dega fλ ≡ d ≥ 2.

We shall say that d is the degree of the holomorphic family f .

Let us recall a few basic facts about holomorphic endomorphisms of projective spaces.
(1) Each fλ can be lifted to Ck+1 through the canonical projection π : Ck+1\{0} → Pk:

Ck+1 \ {0} Ck+1 \ {0}

Pk Pk

π π

Fλ

fλ

Here Fλ is a non-degenerate d-homogeneous polynomial map, i.e., F−1
λ {0} = {0}

and Fλ(tz) = tdFλ(z), ∀t ∈ C,∀z ∈ Ck+1 where d = dega fλ.
(2) The map fλ : Pk → Pk is a finite ramified covering whose topological degree

degtop fλ is equal to dk.
(3) For every λ0 ∈M , the family f can be lifted to a family

F : Ω× Ck+1 → Ω× Ck+1

(λ, z) 7→ (λ, Fλ(z))

for every sufficiently small ball Ω ⊂M centered at λ0.
The following are basic examples of holomorphic families.
(1) The space Hd(Pk) of all holomorphic endomorphisms of algebraic degree d of Pk.

Actually Hd(Pk) ≈ PNd,k \ Z where Z is an hypersurface in PNd,k and Nd,k =
(k+1)(d+k)!

d!k! .
(2) M is any complex submanifold of Hd(Pk). This is particularly interesting when M

is dynamically defined.
(3) The polynomial quadratic family; k = 1,M = C and fλ(z) = z2 + λ.
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(4) The degree d polynomial family; k = 1,M = Cd−1 and fλ is defined by the
condition: f ′λ is unitary, the critical set Cfλ = {0, λ1, . . . , λd−2} and fλ(0) = λd−1.

1.2. The equilibrium measure of fλ. A reference for this subsection and the next one
is given by the lecture notes [DS10]. Let ω denote the Fubini-Study form of Pk. For each λ,
one has d−1f∗λω = ω + ddcvλ, where vλ is a smooth function on Pk. One may for instance
take vλ(z) = d−1 log ‖Fλ(z̃)‖

‖z̃‖ , where ‖·‖ is the euclidean norm on Ck+1 and π(z̃) = z.
By induction one gets d−n (fnλ )∗ ω = ω + ddcgn(λ, z), where the function gn is given by

gn(λ, z) := vλ + · · ·+ d−(n−1)vλ ◦ fn−1
λ .

It is clear that gn is locally uniformly converging to some function g(λ, z). One thus
gets limn d

−n (fnλ )∗ ω = ω + ddczg(λ, z). One then sets

Tλ := ω + ddczg(λ, z).

This is a positive closed (1, 1)-current on Pk, it is called the Green current of fλ. The
function g(λ, z) is called the Green function of fλ. By construction we have

f∗λTλ = dTλ.

Let us stress that gn → g locally uniformly and that the gn’s are smooth. It turns out that
g is Hölder continuous, a fact which was first proved by M. Kosek [Kos97].

The equilibrium measure µλ of fλ is defined by

µλ := (Tλ)k = Tλ ∧ · · · ∧ Tλ.

By construction µλ is a probability measure on Pk such that

f∗λµλ = dkµλ and (fλ)∗ µλ = µλ.

Two crucial facts about the measure µλ are that it is ergodic and does not give mass to
proper analytic subsets of Pk.

1.3. Two fundamental equidistribution theorems.

Theorem 1.2. Repelling periodic points equidistribute µλ: d−kn
∑

z∈Rn(λ) δz → µλ, where
Rn(λ) := {n-periodic repelling points in Jλ}.

Theorem 1.3. Iterated preimages equidistribute µλ: there exists a proper algebraic subset
E of Pk which is contained in the postcritical set of fλ and such that d−kn

∑
fnλ (z)=a δz → µλ

for all a ∈ Pk \ E.

Note that the exceptional set E is well understood when k = 1. For k ≥ 2, one knows
that E is the largest proper algebraic subset of Pk which is totally invariant by fλ. We
refer to the papers of Briend-Duval [BD99, BD09] and Dinh-Sibony [DS03] for the proofs
and to the papers of Brolin [Bro65], Freire-Lopes-Mañé [FLM83] and Lyubich [Ly83b] for
the one-dimensional case.
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1.4. Goals. In these lectures, we aim to
• study the stability of the ergodic dynamical systems (Jλ, fλ, µλ);
• understand how Jλ depends on λ.

We will first review the classical results in dimension k = 1 and then discuss their
generalization to higher dimension.

2. When k = 1: Lyubich-Mañé-Sad-Sullivan Theorem

2.1. The statement. Here we make the mild assumption that f : M × P1 → M × P1 is
a holomorphic family (of degree d) such that

Cf = Critf = {(λ, cj(λ)) : λ ∈M, 1 ≤ j ≤ 2d− 2},

where the maps cj : M → P1 are holomorphic.

The results obtained by Lyubich [Ly83a] and Mañé, Sad and Sullivan [MSS83] in the
early 80’s are essentially summarized by the next theorem and its corollary.

Theorem 2.1. (Lyubich, Mañé-Sad-Sullivan) For every λ0 ∈M the following asser-
tions are equivalent:

(1) Jλ moves holomorphically on some neighbourhood of λ0;
(1’) Jλ moves continuously on some neighbourhood of λ0;
(2) the repelling cycles of fλ move holomorphically on some neighbourhood of λ0;
(2’) fλ has no unpersistent neutral cycle near λ0;
(3) (fnλ (cj(λ))) is normal at λ0 for all 1 ≤ j ≤ 2d− 2 (stability of the critical orbits).

In view of that, one defines

Stability locus of f := Stab(f) := {λ0 : (1) . . . (3) occur}
Bifurcation locus of f := Bif(f) := M \ Stab(f).

The above theorem has the following fundamental consequence.

Corollary 2.2. Stab(f) is dense in M .

Example: the Mandelbrot set. Consider the quadratic polynomial family which is
given by p : C × P1 → C × P1, where p(λ, z) = (λ, z2 + λ). The Mandelbrot set M2 is
defined as:

M2 := {λ ∈ C : (pnλ(0))n is bounded in C}.
It follows from the above theorem that

λ0 ∈ Bif(p)⇔ (pnλ(0))n is not normal at λ0 ⇔ λ0 ∈ bM2.

We now explain the concepts involved in the above Theorem.
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2.2. Holomorphic motions.

Definition 2.3. A holomorphic motion of K ⊂ P1 over a complex manifoldM and centered
at λ0 ∈M is a map h : M ×K → P1 such that

i) h(λ0, ·) = IdK ;
ii) h(λ, ·) is one-to-one, for every λ ∈M ;
iii) h(·, z) is holomorphic on M , for every z ∈ K.

Remark 2.4. The λ-lemma says that such a motion can always be extended to M × K
and is continuous on M ×K, moreover this extension is unique. We shall later implicitely
give the proof of this simple and basic fact.

It is useful to think about holomorphic motions in terms of laminations.

λ0

P1

M

h(·, z)

K
z1

z2

h(·, z1)

h(·, z2)

Definition 2.5. Let Rn(λ) := {n-periodic repelling points of fλ}. We say that the re-
pelling cycles of fλ move holomorphically over Ω ⊂M if for every n ≥ 1 there exists a set
of holomorphic maps ρj,n : Ω→ P1 such that Rn(λ) = {ρj,n(λ) : 1 ≤ j ≤ Nd(n)}, for every
λ ∈ Ω. Here Nd(n) := Card (Rn(λ)).

Remark 2.6. This is equivalent to say that there exists a holomorphic motion of Rn(λ0)
over Ω and centered at λ0 for every n ≥ 1. The important fact here is that Ω is the same
for all n. Indeed, if n is fixed and Ω is a sufficiently small neighbourhood of λ0, such a
motion of Rn(λ0) always exists by the implicit function theorem.

Definition 2.7. One says that Jλ moves holomorphically over M if there exists a holo-
morphic motion h of Jλ which is centered at λ0 ∈M and such that hλ := h(λ, ·) conjugates
the dynamics:

Jλ0 Jλ

Jλ0 Jλ

fλ0 fλ

hλ

hλ



6 F. BERTELOOT AND F. BIANCHI

2.3. Continuity in the Hausdorff topology.

Comp∗(P1) := {non-empty compact subsets of P1}.
For K ∈ Comp∗(P1) we set Kε := ε-neighbourhood of K. For a map E : M → Comp∗(P1)
we have the following definitions (by ≈ we mean: sufficently close):

E is upper semicontinuous (usc) at λ0 ⇔ ∀ε > 0 : E(λ) ⊂ (E(λ0))ε for λ ≈ λ0

E is lower semicontinuous (lsc) at λ0 ⇔ ∀ε > 0 : E(λ0) ⊂ (E(λ))ε for λ ≈ λ0

E is continuous at λ0 ⇔ E is ucs and lsc at λ0.

2.4. Proof of Lyubich-Mañé-Sad-Sullivan Theorem. The structure of the proof is
as follows:

(1) (3) (2) (1)

(1′) (2′)

We focus on the proof of (1) ⇒ (3) ⇒ (2) ⇒ (1) and the proof of the Corollary 2.2,
stressing the arguments which cannot be adapted to Pk, with k ≥ 2.

(1) ⇒ (3) Assume that (fnλ (c(λ)))n is not normal at λ0 but Jλ moves holomorphically
near λ0. Then one has the following picture:

λ0

P1

M

fNλ (c(λ))

Jλ ⊂ P1
P1 ⊃ Jλ0

hλ
this is a critical value of fNλ

critical value

Picard-Montel ⇒ fNλ (c(λ))

cuts some leaf

Owing to the

hλ, this is a

1

2

3

conjugacy by

of fNλ0

This argument fails for k ≥ 2 (Jλ too small)

λ

The picture shows that the set of critical values of fNλ0 contains an open piece of Jλ0 :
this is impossible.
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(2)⇒ (1) By assumption we have the following picture for every n.

λ

P1

M

}
graphs of ρj,n

Rn(λ)

λ0

One easily sees (using lifts to C2 \ {0}) that the family {ρj,n : 1 ≤ j ≤ Nd(n), n ≥ 1}
is normal. Since ∪nRn(λ) is dense in Jλ, the idea is to take limits to get the expected
lamination. The only problem is that of uniqueness of limits. The picture below explains
why two distinct limits cannot meet.

If the graphs of
two limits γ1, γ2

meet, then for
ρj,n close to γ1

and ρjn close to
γ1...

ρj,n

M

γ1

P1

γ2
ρj,m

Impossible!

... the graphs
of ρj,n and ρj,m
must meet by
Hurwitz lemma!

Fails when k ≥ 2

(3) ⇒ (2) The idea is as follows. Assume that a repelling cycle of fλ0 does not move
holomorphically over M . Then one finds a holomorphic map ρ : U0 → P1 such that
fn0
λ (ρ(λ)) = ρ(λ), λ0 ∈ U0 and ρ(λ0) is repelling for fn0

λ0
but ρ(λ1) is attracting for fn0

λ1
.

The orbit of a critical point ci(λ) is contained in the basin of attraction of ρ(λ1). In this
situation, (fnλ (ci(λ)))n cannot be normal on U0 as the picture below shows.

λ0

P1

M

ci

ρ

λ

fnλ (ci(λ)

Also fails for k ≥ 2
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2.5. Proof of Corollary 2.2. Let λ0 ∈ Bif(f). After a small perturbation (λ0 → λ1)
one gets fλ1 , which has an attracting cycle of period ≥ 3. Let B(λ) be the basin of that
cycle (exists for λ ≈ λ1). If for some 1 ≤ i ≤ 2d − 2 the family (fnλ (ci(λ)))n were not
normal at λ1, then, using Picard-Montel Theorem, one sees that after a small perturbation
(λ1 → λ2) one has

(
fn0
λ2

(ci(λ2))
)
∈ B(λ2) and thus (fnλ (ci(λ)))n is normal at λ2.

One repeats this argument a finite (≤ 2d − 2) number of times to get λk ∈ Stab(f)
which is arbitrarily close to λ0.

The fact that this argument cannot be extended to Pk, k ≥ 2, is essentially due to the
non-finiteness of Cfλ .

3. When k = 1: a potential theoretic approach to bifurcations

3.1. The main idea explained for polynomials families. We consider here a holo-
morphic polynomial family

p : M × C → M × C
(λ, z) 7→ (λ, pλ(z))

where pλ is a unitary polynomial of degree d ≥ 2. As in the previous lecture, we assume
that the critical set Cp = {(λ, cj(λ)) : 1 ≤ j ≤ d− 1}, where cj : M → C are holomorphic.

The Green function G of p on M × C is defined by

G(λ, z) := lim
n
d−n log+ |pnλ(z)| .

As the convergence is locally uniform, the function G is psh and continuous. Moreover,
one easily sees that

• G(λ, z) = 0⇔ (pnλ(z)) is bounded
• Jλ = b{G(λ, z) = 0}
• µλ = ddczG(λ, z).

The Lyapunov exponent L(λ) of pλ with respect to its equilibrium measure µλ is defined
by

L(λ) :=

∫
log
∣∣p′λ(z)

∣∣µλ(z).

Note that log |p′λ| ∈ L1(µλ), since µλ has a continuous potential.

Proposition 3.1. L(λ) is the exponential rate of growth of (pnλ)′ (z) for µλ-almost every
point z.

Proof. Apply Birkhoff Theorem (µλ is ergodic). For µλ-almost every z,∫
log
∣∣p′λ(z)

∣∣µλ(z) = lim
n

1

n

n−1∑
k=0

log
∣∣∣p′λ(pkλ(z))

∣∣∣ = lim
n

1

n
log
∣∣(pnλ)′ (z)

∣∣ .
�

The following formula [Prz85] relates the Lyapunov exponent with the Green function.
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Theorem 3.2. Przytycki Formula. L(λ) = log d+
∑d−1

j=1 G(λ, cj(λ)).

Proof. Integrate by parts.

L(λ) =

∫
log
∣∣p′λ∣∣µλ =

∫
log

∣∣∣∣∣d∏
j

(z − cj(λ))

∣∣∣∣∣µλ
= log d+

∑
j

∫
log |z − cj(λ)| ddczG(λ, z) = log d+

∑
j

〈
δcj(λ), G(λ, ·)

〉
.

�

Corollary 3.3. The function L(λ) is psh, continuous and bigger than log d.

Applying ddcλ to Przytycki Formula one gets the following fundamental formula:

(1)

ddcλL(λ) =
d−1∑
j=1

ddcλG(λ, cj(λ))

deals with holomorphic
motions of repelling cycles

detects the instability
of the orbit of cj(λ)

Formula (1) offers a possibility to avoid Picard-Montel arguments in the proof of Lyubich-
Mañé-Sad-Sullivan Theorem and, more generally, provides another way to look at stability
questions in dimension one. Although this will be discussed in details in the next subsec-
tion, the proposition below roughly indicates how this is possible for polynomial families.

Proposition 3.4. The following hold:
(1) G(λ, ci(λ)) is pluriharmonic on a ball B ⊂M ⇔ (pnλ(ci(λ)))n is normal on B;
(2) if the repelling cycles of p move holomorphically over U ⊂ M , then L is plurihar-

monic on U .

Proof. (1) Set un(λ) := pnλ(ci(λ)), and recall that d−n log+ |un(λ)| → G(λ, ci(λ)) lo-
cally uniformly.

• (un)n normal onB shrink
===⇒
B

if un
unif−−→∞⇒ G(λ, ci(λ)) is a limit of

pluriharmonic functions on B
if unk

unif−−→ h holomorphic⇒ G(λ, ci(λ) = 0 on B
• Assume G(λ, ci(λ)) is pluriharmonic on B.

First case: G(λ, ci(λ0)) = 0, λ0 ∈ B. Then G(λ, ci(λ)) = 0 on B
(maximum principle) and thus (un(λ))n is uniformly bounded on B.
Second case: G(λ, ci(λ)) > 0 on B. Then pnλ(ci(λ)) → ∞ locally uni-
formly on B.

(2) This is a direct consequence of the approximation formula which will be discussed
in the next lecture.

�
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3.2. A new approach to the Lyubich-Mañé-Sad-Sullivan theory. We aim here to
give a proof of Theorem 2.1 which exploits the ideas described in the former subsection. As
it turns out, this approach can be partially adapted to the higher dimensional setting and
we shall also explain which are the main technical difficulties related to this achievement.

We first recall our notations and introduce some new concepts. Let us consider a holo-
morphic family

f : M × P1 →M × P1

(λ, z) 7→ (λ, fλ(z))

of degree d ≥ 2 and whose critical set Cf is given by the graphs of 2d − 2 holomorphic
maps cj : M → P1 as follows:

Cf = Critf = {(λ, cj(λ)) : λ ∈M, 1 ≤ j ≤ 2d− 2}.

Definition 3.5. A parameter λ0 is said Misiurewicz if there exist integers p0, n0 ≥ 1 and
a holomorphic map σ defined on some neighbourhood of λ0 such that σ(λ) ∈ Rn0(λ) and
σ(λ0) = fp0 ◦ cj(λ0) but σ 6= fp0 ◦ cj for some 1 ≤ j ≤ 2d− 2.

We recall that Rn(λ) = {n-periodic repelling points of fλ} and that the cardinal of
Rn(λ) is equivalent to dn for every λ.

We endow O(M,P1) :=
{
γ : M → P1 : γ holomorphic

}
with the topology of local uni-

form convergence; this is a metric space. The space of interest here is the (possibly empty)
subspace

J :=
{
γ ∈ O(M,P1) : γ(λ) ∈ Jλ,∀λ ∈M

}
.

We have two natural maps. The first one is a self-map on J

F : J → J
γ 7→ F(γ)

defined by F(γ)(λ) = fλ (γ(λ)) and the second one is a projection

pλ : J → P1

γ 7→ γ(λ).

Definition 3.6. An equilibrium web for f is a compactly supported probability measureM
on J such that F∗M =M and (pλ)∗M = µλ for all λ ∈M .

The existence of an equilibrium web is a weak form of holomorphic motion of Julia sets,
it rather means that the measures µλ move holomorphically over M . As we shall see,
the two equidistribution theorems described in Subsection 1.3 combined with the Banach-
Alaoglu compactness theorem will allow us to construct such equilibrium webs.

For each λ ∈M , the Lyapunov exponent of the system (Jλ, fλ, µλ) is

L(λ) :=

∫
log
∣∣f ′λ∣∣µλ.
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One may easily check that it does not depend on the choice of the metric |·| on P1. We
have to generalize Przytycki formula to rational maps. This has been done by DeMarco
[dM03] and a different proof, more in the spirit of integration by part, has been given by
Bassanelli and the first author [BB07] (see also [Ber13]). Applying ddcλ, this formula yields:

Theorem 3.7. ddcL-Formula. ddcλL(λ) = (πM )∗

((
ω + ddcλ,zg(λ, z)

)
∧ [Cf ]

)
.

Recall that ω is the Fubini-Study form on P1, g(λ, z) the Green function of f and [Cf ]
the current of integration on the critical set Cf of f in M × P1.

We shall also use an approximation formula for L which basically says that the Lyapunov
exponent of fλ (with respect to µλ) is the asymptotic limit of the averages of Lyapunov
exponents of repelling n-cycles. This approximation formula was first proved for endomor-
phisms of Pk by C. Dupont, L. Molino and the first author in [BDM08], a simpler proof
adapted to the case of P1 is written in [Ber13], Y. Okuyama [Oku12] has given another
proof.

Theorem 3.8. Approximation Formula. L(λ) = limn d
−n∑

z∈Rn(λ)
1
n log |(fnλ )′(z)|.

We are now ready to state our version of Theorem 2.1. The parameter space M will
be assumed to be simply connected. Note that the equivalence (1) ⇔ (3) is a new result,
it says that either all repelling cycles move holomorphically or they asymptotically all
bifurcate (see [Ber17]).

Theorem 3.9. For λ0 ∈ M and n ∈ N we denote by Nd(n) the number of n-repelling
periodic points of fλ0 and by τ0(n)Nd(n) the number of those which move holomorphically
over M . Then the following assertions are equivalent.

(1) lim supn τ0(n) > 0
(2) f admits an equilibrium webM
(3) all repelling cycles of fλ move holomorphically over M (i.e. τ0(n) = 1, ∀n)
(4) Jλ move holomorphically over M
(5) ddcL(λ) = 0 on M
(6) (fnλ (cj(λ)))n is a normal family for every 1 ≤ j ≤ 2d− 2
(7) there are no Misiurewicz parameters in M .

The next diagram describes the proof of the above Theorem. Continuous arrows indicate
that the corresponding parts of the proof easily adapt in higher dimension, while for
the implications marked with a dashed arrow one would need major modifications of the
argument. Parenthesis indicate that the corresponding property will need to be modified
when dealing with dimension k ≥ 2.
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3 5

1 (4) (6)

2 7

approximation
formula

λ−lemma ddcL formula

equidistribution
of repelling cycles

equidistribution of iterated preimages

Proof. (1) ⇒ (2). By assumption, for every n ∈ N∗ there exists a collection of holomor-
phic maps ρj,n : M → P1 where 1 ≤ j ≤ τ0(n)Nd(n) =: N ′d(n) and such that one has
{ρj,n(λ) : 1 ≤ j ≤ N ′d(n)} ⊂ Rn(λ) for all λ ∈M .

We may thus define a sequence (Mn)n of discrete measures on J by setting

Mn := d−n
N ′d(n)∑
j=1

δρj,n .

Since lim supn |Mn| = lim supn τ0(n)Nd(n) =: τ > 0, Banach-Alaoglu Theorem gives
a subsequence

(
Mnq

)
q
such that Mnq → M and |M| = τ . Since by construction

F∗
(
Mnq

)
=Mnq we get F∗M =M.

Let us now set σλ := pλ∗M for every λ ∈ M . One has |σλ| = |M| = τ and it follows
from pλ ◦ F = fλ ◦ pλ that fλ∗σλ = σλ. Moreover

σλ = pλ∗M = lim
q
pλ∗Mnq = lim

q
d−nq

N ′d(nq)∑
j=1

ρj,nq(λ) ≤ lim
q
d−nq

∑
z∈Rnq (λ)

δz = µλ

where the last equality follows from the Equidistribution Theorem 1.2. Writing now
µλ = τ

(
σλ
τ

)
+ (1 − τ)

(
µλ−σλ

1−τ

)
one deduces from the ergodicity of µλ that σλ = τµλ

for every λ ∈ Ω0. Then 1
τM is an equilibrium web for f .

(2)⇒ (3). Let us first observe that for every (λ0, z0) ∈M×Jλ0 there exists γ ∈ suppM
such that z0 = γ(λ0). Indeed, since Jλ0 = suppµλ0 = supp (pλ0∗M) there exist a sequence
(γk)k in suppM such that γk(λ0)→ z0. Then, asM is compactly supported, we can take
for γ any limit of (γk)k.

Now assume that z0 is a repelling n-periodic point for fλ0 . Then, by the implicit function
theorem, there exists a neighbourhood Vλ0 of λ0 and a holomorphic map w : Vλ0 → P1

such that w(λ0) = z0 and w(λ) is n-periodic for fλ. Let us show that w coincides on Vλ0
with the above map γ. All we shall actually need is that γ(λ0) = w(λ0) and that the
family

(
fpnλ (γ(λ))

)
p

= (Fpn(γ))p is normal. Our argument is local and so we can work on
C. Since z0 is repelling, we can shrink Vλ0 and find A > 1, r > 0 such that

(2) |w(λ)− fnλ (z)| = |fnλ (w(λ))− fnλ (z)| ≥ A|w(λ)− z|
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when λ ∈ Vλ0 and |w(λ)− z| < r. On the other hand, as fpλ(γ(λ)) = (Fp · γ) (λ) andM is
compactly supported and F-invariant, one sees that

(
fpnλ (γ(λ))

)
p
is a normal family. We

can therefore shrink again Vλ0 so that |w(λ)− fpnλ (γ(λ))| < r for every p ≥ 1 and λ ∈ Vλ0 .
Combining this with (2) we obtain r > |w(λ) − fpnλ (γ(λ))| ≥ Ap|w(λ) − γ(λ)| for every
p ≥ 1 and λ ∈ Vλ0 . This implies w(λ) = γ(λ) on Vλ0 since A > 1.

By analytic continuation we have fnλ (γ(λ)) = γ(λ) for every λ ∈M and it thus remains
to see that all n-periodic points γ(λ) are repelling. Let m(λ) denote the multiplier of the
n-cycle to which γ(λ) belongs, the function m is holomorphic on M . From γ ∈ suppM
we immediately deduce that γ(λ) ∈ Jλ and thus |m(λ)| ≥ 1 for every λ ∈M , by the maxi-
mum modulus principle applied to 1/m we must therefore have |µ(λ)| > 1 for every λ ∈M .

(3)⇒ (1). This is obvious.

(3) ⇔ (4). To deduce the existence of a holomorphic motion of Julia sets from that of
repelling cycles one uses the classical λ-lemma which has been discussed in subsection 2.2.
A holomorphic motion of Julia sets conjugates the dynamics (see Definition 2.7) and thus
induces a holomorphic motion of all repelling cycles.

(3) ⇒ (5). By assumption, Rn(λ) = {ρj,n(λ) : 1 ≤ j ≤ Nd(n)} for every n ∈ N∗ and
every λ ∈ M , the maps ρj,n : M → P1 being holomorphic. Thus, by the Approximation
Formula (Theorem 3.8), we have L(λ) = limn d

−n∑
1≤j≤Nd(n)

1
n log |(fnλ )′(ρj,n(λ))| where

the convergence is pointwise. The sequence on the right-hand side is a locally bounded
sequence of pluriharmonic function on M . Then the convergence actually occurs in L1

loc
and L is pluriharmonic on M (i.e. ddcL = 0).

(5) ⇒ (6). For simplicity we assume that M is one dimensional. Since the problem
is local we can replace M by any small disc D of C. Let us set un,j(λ) := fnλ ◦ cj(λ)
and ϕj,n(λ) := (λ, un,j(λ)). We have to show that the families (un,j(λ))n are normal on
D. Since |fn∗ [Cf ]|D×P1 =

∑2d−2
j=1

∫
D ϕ
∗
j,n

(
ω + ddc|λ|2

)
=
∑2d−2

j=1

∫
D dd

c|λ|2 +u∗n,jω one sees
that it suffices to show that |fn∗ [Cf ]|D×P1 is uniformly bounded. A different proof will be
given in the next subsection.

We will actually establish the estimate |fn∗ [Cf ]|D×P1 = dn
∫
D dd

cL + O(1) and then
conclude by the ddcL-Formula 3.7. We first note that the functorial relation fn∗λ Tλ = dnTλ
seen in subsection 1.2 can be rewritten as fn∗(ω+ ddcλ,zg) = dn(ω+ ddcλ,zg) which implies
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that fn∗ω = dn(ω + ddcλ,zg)− ddcλ,z(g ◦ fn). Then

|fn∗ [Cf ]|D×P1 =

∫
D×P1

[Cf ] ∧ fn∗(ω + ddc|λ|2)

= dn
∫
D×P1

[Cf ] ∧ (ω + ddcλ,zg) +

∫
D×P1

[Cf ] ∧
(
ddc|λ|2 − ddcλ,z(g ◦ fn)

)
= dn

∫
D
ddcL+

∫
D×P1

[Cf ] ∧ ddc|λ|2 −
∫
D×P1

[Cf ] ∧ ddcλ,z(g ◦ fn)

=

∫
D×P1

[Cf ] ∧ ddc|λ|2 −
∫
D×P1

[Cf ] ∧ ddcλ,z(g ◦ fn)

where the third equality comes from the ddcL-Formula and the last one from our assump-
tion that ddcL vanishes on D.

To conclude it remains to check that
∫
D×P1 [Cf ] ∧ ddcλ,z(g ◦ fn) is uniformly bounded.

This follows from the fact that the function g is bounded and can be seen using integration
by parts.

(6) ⇒ (7). Assume that λ0 is a Misiurewicz parameter. Then, by definition, there
exist a critical map cj and a holomorphic map σ defined on some neighbourhood V0 of λ0

such that σ(λ) is n0-periodic and repelling for every λ ∈ V0 and fp0λ0 (cj(λ0) = σ(λ0) but
fp0 ◦ cj 6= σ. In that situation, the family (fn+p0 ◦ cj)n cannot be normal at λ0. Indeed,
we have shown in (2)⇒ (3) that fp0 ◦cj would coincide with σ if (fn+p0 ◦cj)n were normal.

(7) ⇒ (2). We will show that for every parameter λ0 ∈ M there exists a small ball
B0 ⊂ M centered at λ0 and an equilibrium web for the restriction of f to B0 × P1. This
will imply that the repelling cycles of f move holomorphically on B0 (recall that we already
know that (2) and (3) are equivalent). The holomorphic motion of repelling cycles over M
then follows since M is simply connected. Again, as (2) and (3) are equivalent, we get the
existence of an equilibrium web over M .

Let z0 be a n0-periodic repelling point for fλ0 . By the implicit function theorem, there
exist a ball B0 centered at λ0 and a holomorphic map σ : B0 → P1 such that σ(λ0) = z0

and σ(λ) is n0-periodic for fλ. By assumption, there are no Misiurewicz parameters and
thus the graph Γσ of σ cannot meet the post-critical set ∪p≥1f

p(Cf ) unless one of the maps
cj satisfies a relation of the form fp0+n0 ◦ cj = fp0 ◦ cj on M which means that cj(λ) is
pre-periodic for every λ ∈ M . As Cf is the union of the (2d − 2) graphs of the maps cj ,
we are sure to find a periodic repelling point z0 for which Γσ ∩ (∪p≥1f

p(Cf )) = ∅.
Now, as fn :

(
B0 × P1

)
\ f−n (∪1≤p≤nf

p(Cf )) →
(
B0 × P1

)
\ (∪1≤p≤nf

p(Cf )) is a cov-
ering of degree dn, there exist dn holomorphic graphs Γσj,n such that fn

(
Γσj,n

)
= Γσ.

Note that by the invariance of Julia sets all the σj,n are in J and that Fn · σj,n = σ by
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construction. Moreover it is a classical fact that the family (σj,n)j,n is normal. Let us set

Mn :=
1

dn

dn∑
j=1

δσj,n .

Then F∗Mn+1 =Mn and, by the Equidistribution Theorem 1.3, we have

lim
n
pλ∗Mn = lim

n

1

dn

dn∑
j=1

δσj,n(λ) = lim
n

1

dn

∑
fnλ (z)=σ(λ)

δz = µλ

for every λ ∈ B0. It follows that every limit M of (Mn)n is a compactly supported
probability measure on J such that pλ∗M = µλ for every λ ∈ B0. IfM were F invariant
then it would be an equilibrium web for f |B0×Pk . In order to get equilibrium webs, it
suffices to replaceMn by the Cesaro average 1

n

∑
1≤k≤nMk. �

We will now describe the main difficulties which appear when adapting the above proof
to the higher dimensional setting. We follow the same organization and do not discuss the
implications which are easy to adapt.

(2)⇒ (3). The proof follows the same lines but a serious difficulty appears for showing
that all n-periodic points γ(λ) are repelling. One has to use some linearization argument
and thus have to deal with delicate problems of resonances. This is why we work in di-
mension k = 2 or assume that M = Hd(Pk).

(3)⇒ (4). One of the main difficulties appears here. The λ-Lemma fails because of the
lack of Hurwitz theorem. We rather show that any equilibrium webM somehow contains
a measurable holomorphic motion of J . This is done by studying the dynamical system
(J ,F ,M). The sections 6 and 7 are devoted to a description of that proof.

(7)⇒ (2). The proof follows the same lines but it is not at all obvious that one can find
a graph Γσ which is not contained in ∪p≥1f

p(Cf ). We have to use a delicate entropy argu-
ment here. This point is not discussed in these notes (see also the Question A in Section 10).

(5) ⇒ (7). We have to argue directly here since the normal family arguments fail and
we cannot follow the route (5) ⇒ (6) ⇒ (7). We rather show directly that Misiurewicz
parameters belong to the support of ddcL by using a dynamical rescaling argument. This
is discussed in section 8. Note however that the computation given in the above proof of
(5)⇒ (6) is valid in any dimension and yields some estimate on the growth of the volume
of fn(Cf ).

3.3. The bifurcation current. Let us still consider a holomorphic family

f : M × P1 →M × P1

(λ, z) 7→ (λ, fλ(z))
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whose degree is d ≥ 2. It follows immediately from the results of the above subsection that
the support of ddcL(λ) is precisely the bifurcation locus Bif(f). This was first proved by
DeMarco [dM03] who defined the bifurcation current Tbif of the family f by

Tbif := ddcλL(λ).

As shown by the ddc-formula (Theorem 3.7), the current Tbif is a (1, 1)-current onM which
is positive and closed.

We will now decompose the bifurcation current Tbif as a sum of closed positive currents
Ti, each of them detecting the instability of the critical orbits (fnλ (ci(λ))n or, in other
words, the activity of the critical points ci. These currents are called activity currents.

For every 1 ≤ i ≤ 2d − 2 we denote by [Ci] the current of integration on the graph of
ci (note that this graph is also an hypersurface in M × P1) and define a closed positive
(1, 1)-current Ti by

Ti := (πM )∗
((
ω + ddcλ,zg(λ, z)

)
∧ [Ci]

)
.

By the ddcL- formula (Theorem 3.7) we have

Tbif =
2d−2∑
i=1

Ti.

Let us show that (fnλ (ci(λ))n is normal when Ti = 0 (it will then be clear that the converse
is also true). This is a local problem so we can replace M by any small ball Ω ⊂ M on
which the family f can be lifted to a family F of d-homogeneous non-degenerate polynomial
maps on Ck+1:

F : Ω× Ck+1 → Ω× Ck+1

(λ, z) 7→ (λ, Fλ(z)).

We may also assume that the maps cj can be lifted to maps ĉj : Ω → Ck+1 \ {0}. Let
us consider the Green function G(λ, ·) of Fλ. This is a plurisubharmonic and continuous
function on Ω× Ck+1 which is defined by

G(λ, z) := lim
n
d−n ln ‖Fnλ (z)‖.

We stress that G satisfies the following homogeneity property: G(λ, tz) = ln |t| + G(λ, z)
for every t ∈ C and every (λ, z) ∈ Ω× Ck+1 (see [Ber13] for details).

A straightforward computation shows that Gλ(ĉi(λ)) is a potential for Ti which means
that ddcGλ(ĉi(λ)) = Ti, the vanishing of Ti thus means that the function Gλ(ĉi(λ)) is
pluriharmonic on Ω. We shall see that this implies the normality of the family (fnλ (ci(λ)))n
(we proved a similar fact in Proposition 3.4 for polynomial families).

The function Gλ(ĉi(λ)) being pluriharmonic, there exists a non-vanishing holomorphic
function hi on Ω such that Gλ(ĉi(λ)) = ln |hi| which, owing to the homogeneity property
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of Gλ, can be rewritten as Gλ
(
ĉi(λ)
hi(λ)

)
= 0. After replacing ĉi by

ĉi(λ)
hi(λ) we thus have

{Fnλ (ĉi(λ)) : n ∈ N, λ ∈ Ω} ⊂ ∪λ∈ΩG
−1
λ {0}.

After shrinking Ω the set ∪λ∈ΩG
−1
λ {0} becomes a relatively compact subset in C2 and

Montel’s theorem then tells us that the family (Fnλ (ĉi(λ)))n is normal on Ω. It follows that
(fnλ (ci(λ)))n is normal on Ω too.

4. When k = 1: application of the bifurcation currents techniques

We consider here a holomorphic family f : M ×P1 →M ×P1, (λ, z) 7→ (λ, fλ(z)) of de-
gree d rational maps on P1. Our aim is to use bifurcation current techniques to prove that
certain parameters in M (for a sufficently “big” parameter space M) can be accumulated
either by hyperbolic parameters or by parameters for which fλ has the maximal number
of distinct neutral cycles (i.e. 2d − 2 by the Fatou-Shishikura inequality). Let us recall
that a parameter λ is hyperbolic if and only if fλ has 2d − 2 distinct attracting cycles.
A parameter for which fλ has 2d − 2 distinct neutral cycles will be called a Shishikura
parameter. The results discussed in this section have been obtained by Bassanelli and the
first author [BB07].

Let us recall that the equilibrium measure of fλ is denoted by µλ. The Lyapunov
exponent L(λ) of (Jλ, fλ, µλ) is given by L(λ) =

∫
P1 log |f ′λ|µλ. It follows from the Mañé-

Manning ([Man84],[Mañ88]) formula dimH µλ =
htop(fλ)
L(λ) and the Misiurewicz-Przytycki

inequality htop(fλ) ≥ log d that L(λ) ≥ log d
2 .We shall use here the Approximation formula

(see Theorem 3.8).
Let us consider the following subsets of the parameter space M :

Pern(w) := {λ ∈M : fλ has a n-cycle of multiplier w} .
One may show that Pern(w) is a (singular) hypersurface in M . More precisely, there ex-

ists a collection of functions pn(λ,w) which are unitary polynomials of degreeNd(n) ∼ dn

n in
w and whose coefficients are holomorphic function in λ, such that Pern(w) = {pn(·, w) = 0}
for w 6= 1 (the case w = 1 is more delicate).

According to the Poincaré-Lelong formula, the integration current [Pern(w)] on the hy-
persurface Pern(w) is given by

[Pern(w)] = ddcλ log |pn(λ,w)| .
We are interested in comparing the limits of d−n [Pern(w)] and the bifurcation current
Tbif = ddcλL(λ).

4.1. Averaging the multipliers. We aim here to establish the following formula for the
bifurcation current.

Theorem 4.1. For every r ≥ 0 one has Tbif = limn
d−n

2π

∫ 2π
0

[
Pern(reiθ)

]
dθ.
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Proof. Set Lrn(λ) := d−n

2π

∫ 2π
0 log

∣∣pn(λ, reiθ)
∣∣ dθ, for r ≥ 0. Denoting the roots of pn(λ, ·)

by wn,j(λ), 1 ≤ j ≤ Nd(n) (taken with mutiplicity) we get

Lrn(λ) =
d−n

2π

∫ 2π

0
log

∣∣∣∣∣∣
Nd(n)∏
j=1

(
reiθ − wn,j(λ)

)∣∣∣∣∣∣ dθ
=
d−n

2π

Nd(n)∑
j=1

∫ 2π

0
log
∣∣∣(reiθ − wn,j(λ)

)∣∣∣ dθ
= d−n

Nd(n)∑
j=1

log max (r, |wn,j(λ)|) dθ.

By Fatou Theorem, there exists n(λ) ∈ N such that all n-cycles of fλ are repelling for
n ≥ n(λ). Thus, for 0 ≤ r ≤ 1 and n ≥ n(λ) , we obtain

Lrn(λ) = d−n
Nd(n)∑
j=1

log |wn,j(λ)| = d−n
∑
Rn(λ)

1

n
log
∣∣(fnλ )′(z)

∣∣
and by the approximation formula limn L

r
n(λ) = L(λ).

When r > 1 we have (always for n ≥ n(λ))

Lrn(λ) = d−n
Nd(n)∑
j=1

log |wj,n(λ)|+ d−n
∑

1≤|wj,n(λ)|<r

log
r

|wj,n(λ)|

and therefore 0 ≤ Lrn(λ) − L0
n(λ) ≤ d−nNd(n) log r. As d−nNd(n) ∼ 1

n , we get again
limn L

r
n(λ) = L(λ). Since the sequence (Lrn(λ))n is a sequence of psh functions which is

locally uniformly bounded from above (easy to check), the convergence actually occurs in
L1
loc(M). Taking ddc we thus have Tbif = ddcL = limn dd

cLrn = limn
d−n

2π

∫ 2π
0

[
Pern(reiθ)

]
dθ.
�

4.2. Perturbation of Lattès examples. We aim here to use the above formula and
simple potential theoretic arguments to show that rigid Lattès examples are accumulated
by hyperbolic parameters or by Shishikura parameters. Let us recall that a Lattès map is
a rational function f which is induced on the Riemann sphere from a dilation on a complex
torus D : T → T by mean of some elliptic function p : T → P1.

T T

P1 P1

p p

D

f
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Such maps are of course very rare. They have been characterized by A. Zdunik [Zdu90]
by the minimality of their Lyapunov exponent.

Theorem 4.2. fλ is a Lattès example ⇔ L(λ) = log d
2 .

For simplicity, we consider the moduli space of quadratic rational maps which (accord-
ing to Milnor [Mil93]) can be considered as a family f : M × P1 → M × P1 parametrized
by M = C2.

We shall use the Monge-Ampère measure associated to the psh function L. By definition
this positive measure is given by ddcL ∧ ddcL. The fact that this product of two closed
positive current is well defined follows from the continuity of L. Indeed, for any closed
positive current S, the function L is integrable with respect to the trace measure of S and
therefore the current LS is well defined. One then set ddcL∧ S := ddc (LS) (recall that S
closed means that ddcS = 0).

The bifurcation measure of the family f has been introduced by Bassanelli and the first
author who gave its first properties. It is defined by

µbif :=
1

2
ddcL ∧ ddcL.

It is an elementary property that the strict minima of L belong to the support of
ddcL ∧ ddcL. Since degree two Lattès example are rigid, they correspond to isolated
parameters in M . The theorem of Zdunik thus tells us that they belong to the support
of the bifurcation measure. This is also true for all Lattès example as it has been proved
by X. Buff and T. Gauthier [BG13]. To achieve our goal it remains to show that any
parameter λ0 in the support of the bifurcation measure µbif can be accumulated either by
hyperbolic parameters or by Shishikura parameters. This is actually a direct consequence
of the following approximation formula which is obtained from Theorem 4.1 by mean of
elementary potential theoretic arguments:

µbif = lim
n

2−(n+k(n))

2(2π)2

∫
[0,2π]2

[Pern(reiθ1)] ∧ [Perk(n)(re
iθ2)] dθ1dθ2.

In the above formula, k(n) is a suitable increasing sequence of integers. The choice of
0 < r < 1 shows that the support of µbif is accumulated by hyperbolic parameters while
the choice r = 1 shows that it can be accumulated by Shishikura parameters.

What we have proved is actually an equidistribution statement for the bifurcation mea-
sure. Full details on the content of this section are given in [Ber13]. Sharp equidistribution
results for the bifurcation measure have recently be obtained by T. Gauthier, Y. Okuyama
and G. Vigny [GOV17].
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5. When k ≥ 1: extension of Lyubich-Mañé-Sad-Sullivan Theorem

We consider here a holomorphic family

f : M × Pk →M × Pk

(λ, z) 7→ (λ, fλ(z))

whose degree is d ≥ 2. Recall that, for every λ ∈M , we have an ergodic dynamical system
(Jλ, fλ, µλ), where µλ is the equilibrium measure of fλ (see Lecture 1). The sum of the
Lyapunov exponents of (Jλ, fλ, µλ) is given by the following expression:

L(λ) :=

∫
Pk

log
∣∣det f ′λ(z)

∣∣µλ(z).

Our aim in this lecture is to describe a recent result which extends Lyubich-Mañé-Sad-
Sullivan theorem in higher dimension and is due to C. Dupont and the authors [BBD15].

5.1. A substitute to the notion of holomorphic motions of Julia sets. Let us recall
a few notations and concepts which have been introduced in subsection 3.2 for families of
rational maps. We endow O(M,Pk) :=

{
γ : M → Pk : γ holomorphic

}
with the topology

of local uniform convergence; this is a metric space. The space of interest here is the
(possibly empty) subspace

J :=
{
γ ∈ O(M,Pk) : γ(λ) ∈ Jλ, ∀λ ∈M

}
.

We have two natural maps. The first one is a self-map on F : J → J which is defined by
F(γ)(λ) = fλ (γ(λ)) and the second one is a projection pλ : J → Pk which is defined by
pλ(γ) = γ(λ).

Definition 5.1. An equilibrium web for f is a compactly supported probability measureM
on J such that F∗M =M and (pλ)∗M = µλ for all λ ∈M .

λ

Pk

M

µλ graphs Γγ of γ ∈ SuppM

µλ =

∫
J
δγ(λ)dM(γ) = (pλ)∗M

Interpretation:
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The existence of suchM somehow means that the equilibrium measures µλ’s are “holo-
morphically glued” over M . It is also possible to associate to M a web current in the sense
of Dinh: WM :=

∫
J [Γγ ] dM(γ). This allows the use of “calculus”.

The support of an equilibrium webM is a quite wild object; we seek for a cleaner one:

Definition 5.2. An equilibrium lamination for f is an F-invariant subset L of J such
that:

- Γγ ∩ Γγ′ = ∅,∀γ 6= γ′ ∈ L;
- µλ ({γ(λ) : γ ∈ L}) = 1, ∀λ ∈M ;
- Γγ ∩GO(Cf ) = ∅, ∀λ ∈ L;
- F : L → L is dk-to-1.

Here GO(Cf ) denotes the grand orbit (by f) of the critical set Cf of f .

Before stating our main result, let us precise a definition. The repelling J-cycles of fλ
are the repelling cycles of fλ which belong to Jλ. This is not automatic when k ≥ 2, note
however that in the Briend-Duval equidistribution Theorem 1.2 in Lecture 1, the repelling
J-cycles of fλ equidistribute µλ.

Theorem 5.3. Let M be an open and simply connected subset of Hd(Pk). Then the
following assertions are equivalent:

(1) the repelling J-cycles of fλ move holomorphically over M ;
(2) ddcL ≡ 0;
(3) f admits an equilibrium lamination.

Although the proof of this result will be given in the next sections, we start with a
description of it.

5.2. Strategy of the proof and tools. We shall only prove (1)⇒{(2) and (3)} and we
shall briefly discuss (3) ⇒ (1).

Recall that (1) means:

λ

Pk

M

}
graphs of γj,n

Rn(λ)

λ0

where γj,n ∈ J and {γj,n(λ), j} = Rn(λ) := {n− periodic repelling points of fλ in Jλ}.
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• The implication (1) ⇒ (2) is obtained by using a generalization of the approximation
formula seen in Lecture 4 due to C. Dupont, L. Molino and the first author [BDM08]:

L(λ) = lim
n
d−kn

∑
Rn(λ)

1

n
log
∣∣det (fnλ )′ (z)

∣∣ .
In our situation this yields L(λ) = limn d

−kn∑Nd(n)
j=1

1
n log |det (dfnλ ) (γj,n(λ)| and shows

that L is a pointwise limit of pluriharmonic functions. Since these functions are locally
uniformly bounded from above, the convergence occurs in L1

loc and thus L is pluriharmonic.
We shall see in Lecture 9 another proof of this fact.

• The implication (1) ⇒ existence of an equilibrium web M can be proved by applying
Banach-Alaoglu Theorem to Mk := d−kn

∑
δγj,n and using the equidistribution theorem

for repelling orbits seen in Lecture 1.

• To deduce the existence of an equilibrium lamination from the existence ofM is much
harder. Its proof exploits the dynamical properties of the system (J ,F ,M). In particular,
we need first prove thatM is acritical and then replace it with a new web which is both
acritical and ergodic.

Definition 5.4. A webM is said to be acritical ifM ({γ ∈ Γγ : Γγ ∩GO(Cf ) 6= ∅}) = 0.

The fact thatM is acritical is proved by using the

Fundamental Lemma: ddcL ≡ 0⇒ No Misiurewicz parameters in M

Definition 5.5. A parameter λ0 is said Misiurewicz if there exist integers p0, n0 ≥ 1 and
a holomorphic map σ defined on some neighbourhood of λ0 such that σ(λ) ∈ Rp0(λ) and
Γσ ∩W 6= ∅ but Γσ *W for some irreducible component W of fn0(Cf ).

λ0 M

σ

Pk

σ holomorphic near λ0 and σ(λ) ∈ Rp0(λ)

}
irreducible component of fn0(Cf )

An argument of extremality based on Choquet’s decomposition theorem then allows to
replaceM by an acritical and ergodic equilibrium web.

• (3) ⇒ (1). The proof here follows an idea which works well in dimension one: if a
repelling cycle does not move holomorphically then a Siegel disc must appear and this
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obviously creates a discontinuity of λ→ Jλ in the Hausdorff topology, in particular this is
not compatible with the holomorphic motion of Jλ.

In Pk≥2, a Siegel k−polydisc would also create a discontinuity but when a repelling cycle
does not move holomorphically one simply obtains a Siegel disc, that is a one dimensional
object. Is is however possible to show that this is an obstruction to the existence of an
holomorphic motion of Julia sets. The question of the discontinuity of λ → Jλ in the
Hausdorff topology remains open.

Although this strategy seems quite natural, one has to face several technical difficulties
to implement it in higher dimension. In particular we must deal with possible persistent
resonances in the holomorphic family which is considered. This is exactly why, at least
when k ≥ 3, our result is given for the full family Hd(Pk).

To end this description, let us stress that the technical (and potential theoretic) part of
the proof is concentrated in the Fundamental Lemma and relies on the following general-
ization of the Przytycki-De Marco formula (see Lecture 3) due to Bassanelli and the first
author:

ddcL = (pM )∗

((
ddcλ,zg + ω

)k ∧ [Cf ]
)
.

The remaining lectures will be devoted to the proof of the above results. In Lecture 6
we will construct an acritical and ergodic equilibrium web from holomorphic motions of
repelling J -cycles (assuming the Fundamental Lemma). In Lecture 7, we will explain how
to extract an equilibrium lamination from an acritical and ergodic equilibrium web. In
Lectures 8 and 9 we will respectively prove the Fundamental Lemma and the density of
Misiurewicz parameters in Supp ddcL (see Theorem 9.4).

6. From motion of cycles to acritical equilibrium webs

We assume here that a family f : M × Pk → M × Pk enjoys the property that its
repelling J-cycles move holomorphically over M . Our aim is to show that f admits an
ergodic acritical equilibrium web.

6.1. Proof of (1) ⇒ the existence of an equilibrium web M. We argue here ex-
actly like in dimension k = 1 (see the subsection 3.2). The holomorphic motion of re-
pelling J-cycles means that for every n ∈ N∗ we have a subset {γj,n : 1 ≤ j ≤ Nd(n)} of
J such that Rn(λ) = {γj,n(λ) : 1 ≤ j ≤ Nd(n)} for all λ ∈ M . Recall that Rn(λ) :=
{n-periodic repelling points of fλ in Jλ}.

λ

Pk

M

}
graphs of γj,n

Rn(λ)

λ0
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Set Mn := d−kn
∑Nd(n)

j=1 δγj,n . This is a sequence of discrete probability measures on
J (actually |Mn| ∼ 1). Moreover, ∪n SuppMn is relatively compact (a simple Montel
normality argument using local lifts of f to M × Ck+1 explains that). Then, by Banach-
Alaoglu Theorem we get: Mni → M. M is clearly a compactly supported measure on
J . Moreover F∗M = limiF∗Mni = limiMni = M and (pλ)∗M = limi (pλ)∗Mni =

limi d
−kni∑

j δγj,ni (λ) = limi d
−kni∑

z∈Rn(λ) δz = µλ where the last equality comes from
Briend-Duval equidistribution Theorem 1.2. M is thus an equilibrium web of f .

6.2. The equilibrium webM is acritical. As a first step we will show thatM satifies
the following key property

(3) Γγ ∩ C+
f 6= ∅ ⇒ Γγ ⊂ C+

f , ∀γ ∈ SuppM.

Recall that C+
f = ∪m≥0f

m(Cf ). According to the former subsection and the Fundamental
Lemma, there are no Misiurewicz parameter in M . In other words: Mnk satisfy (3) for all
k. By Hurwitz: M = limkMnk also satisfies (3).

As a second step we show thatM(Js) = 0, where Js := {γ ∈ Γ: Γγ ∩GO(Cf ) 6= ∅}.
First of all,

by (3)

M
({
γ ∈ J : Γγ ∩ C+

f 6= ∅
})
≤M

({
γ ∈ J : Γγ ⊂ C+

f

})
=M

({
γ ∈ J : γ(λ0) ∈ C+

fλ0

})
= µλ0

(
C+
fλ0

)
= 0

∀λ0 ∈M (pλ0
)?M = µλ0

where the last equality is due to the fact that µλ0 does not give mass to pluripolar sets.
ThenM(Js) = 0 follows from the F-invariance ofM.

6.3. Existence of acritical ergodic webs. LetM0 be an acritical equilibrium web for
f (constructed in the above step) and let K := SuppM0. Recall that K is compact in the
metric space J . We consider the spaces

Pweb(K) := {equilibrium webs of f supported in K}
∩

Pinv(K) := {F − invariant probability measures supported in K} .
Note that these are compact metric spaces for the weak?-topology.

The ergodic F-invariant probability measures on K are precisely the extremal points of
Pinv(K). It thus suffices to check that:

(1) extremality in Pweb(K)⇒ extremality in Pinv(K);
(2) there exists an acritical web in Pweb(K) which is extremal.
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(1) follows easily from the fact that (pλ)?M = µλ for everyM∈ Pweb(K) and that the
µλ’s are ergodic.

(2) follows from Choquet Decomposition Theorem applied toM0:

M0 =

∫
Ext(Pweb)

Edν0(E)

where ν0 is a probability measure for which Ext(Pweb) has full measure.
Then 0 = M0(Js) =

∫
Ext(Pweb) E(Js)dν0(E) implies that ν0-almost all E in Ext(Pweb)

are actually acritical.

7. From ergodic acritical equilibrium webs to equilibrium laminations

We assume here that a family f : M × Pk → M × Pk admits an ergodic and acritical
webM. Our goal is to explain how the support ofM can be “cleaned” in order to get an
equilibrium lamination L for f . We refer to the lecture 5 for definitions. The manifold M
is supposed to be simply connected.

7.1. A dynamical system associated to M. Let us recall that M is a compactly
supported probability measure on J such that µλ =

∫
J δγ(λ)dM(γ) and which is invariant

by the map
F : J → J F(γ)(λ) = fλ(γ(λ)).

γ 7→ F(γ)

Let K be the support ofM and X := K\Js where, as before, Js is the subset of elements
γ in J whose graphs Γγ do not meet the grand orbit GO(Cf ) of the critical set Cf of
f . Saying that M is acritical means that M(Js) = 0 and thus that X has full measure.
Using the fact that M is simply connected, one easily sees that F : X → X is onto. To
summarize:

(X ,F ,M) is an ergodic dynamical system and the map F : X → X is onto.

We will now transform the dynamical system (X ,F ,M) into an invertible one by means
of the classical construction of natural extension. The natural extension X̂ of X is the set
of all possible “histories” for points γ ∈ X :

X̂ := {γ̂ := (. . . , γ−j , γ−j+1, . . . , γ−1, γ0, γ1, . . . , γj , . . . ) : γj ∈ X and F(γj) = γj+1} .

We have projections πj : X̂ → X , γ̂ 7→ γj which are onto for all j ∈ Z.
The shift F̂ : X → X is clearly invertible and satisfies π0 ◦ F̂ = F ◦ π0. It is a classical

result that there exists a probability measure M̂ on X which is F̂-invariant and such that
(πj)∗ M̂ = M for all j ∈ Z. Moreover, M̂ is ergodic when M is ergodic. We have thus
transfered our problem to the

invertible and ergodic dynamical system
(
X̂ , F̂ ,M̂

)
.
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In the following, in order to keep the notation as light as possible, we shall continue to
use the system (X ,F ,M). The arguments above show that we can actually think that our
system is invertible.

7.2. Contraction and conclusion. The following lemma gives the key estimate that
will allow us to recover an equilibrium lamination out of the support of our ergodic and
acritical equilibrium webM. As explained in the previous subsection, we can think that
our system (X ,F ,M) is invertible.

Lemma 7.1. Contraction Lemma. There exist a measurable function η : X →]0, 1] and
a positive constant A such that forM-almost every γ ∈ X the following hold:

(1) f−n is defined on a tubular neighbourhood T (γ, η(γ)) of Γγ; and
(2) f−n (T (γ, η(γ))) ⊂ T (F−nγ, e−nA).

Pk

M

F

Γγ

T (F−nγ, e−nA)

ΓF−1γ

ΓF−jγ

T (γ, η(γ))

Fn

ΓF−nγ

...

...

We can now show how to cut out a set of zero measure from the support ofM in order
to recover a set of non-intersecting graphs. Let us fix a small ball B ⊂ M . We define the
ramification RB(γ) over B of an element γ ∈ X as

RB(γ) = sup
γ′∈SuppM,Γγ∩Γγ′ 6=∅

sup
B
d(γ(λ), γ′(λ)).

Fix now a α > 0 and consider the set of elements {γ : RB(γ) > α}. Notice that, by the
Contraction Lemma 7.1, we have RB(F−nγ)→ 0 as n→ +∞. Then, Poincaré recurrence
Theorem (applied to the inverse system

(
X ,F−1,M

)
) implies that {γ : RB(γ) > α} has

zeroM-measure for every α > 0. So,M ({γ : RB(γ) > 0}) = 0 and we can thus consider
the full-measure subset L+ of graphs with zero ramification. It is then not difficult to build
the desired lamination L starting with the set L+.

We are thus left with proving the Contraction Lemma 7.1. This is the content of the
next subsections.
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7.3. Proof of the contraction Lemma 7.1: reduction to some estimate. Let us
start describing the general philosophy of the proof. We exploit a method, developed by
Briend-Duval, which proves the analogous statement at a fixed parameter. Namely, given
an endomorphism g of Pk of algebraic degree d, almost every point x (with respect to the
equilibrium measure µ) is contained in a ball B(x, η(x)) where the inverse g−n is defined
for every n and satisfies the contraction property g−n(B(x, η(x))) ⊂ B(g−n(x), e−nχ1).
Here χ1 denotes the smallest Lyapunov exponent of the system

(
Pk, g, µ

)
, which is known

[BD99] to be greater that log d
2 .

The main steps of the method are as follows.
• An asymptotic estimate of

∥∥dg−1(·)
∥∥ over the inverse orbit {g−j(x)} of a point x

yields an estimate of the radius of a ball centered at x where g−n is defined, for
every n, and of the asymptotic rate of contraction of g−n on this ball.
• The asymptotic estimate of

∥∥dg−1
∥∥ is obtained from

for µ− a.e. x ∈ Pk : lim
n→∞

1

n

n−1∑
j=0

log
∥∥dg−1(g−j(x))

∥∥ =

∫
Pk

log
∥∥dg−1(x)

∥∥µ(x)

where the equality comes from the ergodicity of µ and Birkhoff Theorem. Since

1

k

∫
log
∥∥∥dg−k∥∥∥→ −χ1,

up to replacing g by a sufficiently high iterate we can assume that the above integral is
≤ −χ1

2 < 0.

In our setting, the same method reduces the problem to prove that

forM− a.e. γ ∈ X : lim
n→∞

1

n

n−1∑
j=0

log max
λ

∥∥df−1
λ (F−jγ(λ))

∥∥ < 0.

AsM is ergodic, we still know that the limit equals
∫
X log maxλ

∥∥df−1
λ (γ(λ))

∥∥M(γ). So,
we only need to prove that this integral is negative. In order to get this, we show that

(4) lim
n→∞

1

n

∫
X

log max
λ

∥∥df−nλ (γ(λ))
∥∥M(γ) < 0

and then get the desired estimate after replacing our system by a suitable high iterate fN .

7.4. Proof of the contraction Lemma 7.1: the estimate (4). Let us introduce some
notations.

Notation 7.2. We set
• un(γ, λ) = log

∥∥df−nλ (γ(λ))
∥∥; and

• ûn(γ, λ) = log maxλ
∥∥df−nλ (γ(λ))

∥∥.
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Notice that the functions un(γ, ·)’s are psh (this will be useful in the sequel). With these
notations, (4) becomes

(5) lim
n→∞

1

n

∫
X
ûn(γ)M(γ) < 0.

In order to establish (5), we shall need the following two facts:

Fact 7.3. ForM-almost every γ ∈ X the following holds:
1
nun(γ, λ)→ −χ1(λ), for almost every λ ∈M.

Proof. First of all recall that, by Oseledec Theorem, for every λ ∈M the set

Jλ,1 :=

{
x ∈ Jλ :

1

n
log
∥∥df−nλ ∥∥→ −χ1(λ)

}
has full µλ-measure. So, since (pλ)∗M = µλ, we have that

∀λ ∈M : 1
nun(γ, λ)→ −χ1(λ) forM-almost every γ ∈ X .

We can then consider the subset E of the product space X ×M given by

E :=

{
(γ, λ) ∈ X ×M :

1

n
un(γ(λ))→ −χ1(λ)

}
.

By Tonelli Theorem, we have (denoting by Leb the Lebesgue measure on M):

(M⊗ Leb) (E)∫
MM ({γ ∈ X : (γ, λ) ∈ E})︸ ︷︷ ︸

=1∀λ∈M

Leb(λ)
∫
X Leb ({λ ∈M : (γ, λ) ∈ E})︸ ︷︷ ︸

=Leb(M) for M−a.e.γ∈X

M(γ)

⇒

= =

�

Fact 7.4. Let V0 bW0 bM . Then
(1) un

n (γ, ·) are locally uniformly bounded on V0, forM-a.e. γ ∈ X ;
(2) ûn ∈ L1(M).

This fact is crucial for the proof of (5). Its proof is elementary but quite technical and
we shall therefore only sketch it. We shall make use of the following elementary fact about
holomorphic functions from the unit disk D to D∗:

Compactness statement: there exists 0 < α ≤ 1 such that supV0 |φ| ≤ |φ(λ)|α for every
λ ∈ D(0, 1/2) and every holomorphic function φ : D→ D∗.

Idea of proof of Fact 7.4. Notice that un(γ, λ) = log
(

1
δ(dfnλ (γ(λ)))

)
, where we denote by

δ(A) the smallest singular value of a matrix A. Moreover, notice that all the matrices
that we are considering satisfy δ(A) 6= 0. If the function δ were holomorphic, the above
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statement and the compactness of V0 and SuppM would imply that for every n the function
un(γ, n) satisfy the estimate

(6) δ
(
dfnλ

(
γ(λ′)

))
≤ cn(1−α)δ (dfnλ (γ(λ)))α ,

holding for any two points λ, λ′ ∈ V0, where c = maxγ,λ δ(dfλ(γ(λ))). The difficulty is
overcome as follows. For every matrix A involved, c1 |detA|k ≤ δ(A)k ≤ |detA| for some
constant c1. So, even if δ is not a holomorphic function, it is bounded above and below by
two such functions, for which we can find estimates as above.

Once we have established (6), we can transfer all the estimates we have to do with a
variable λ to a single suitable one (given by the Fact 7.3), and thus apply the analogous
(known) results in the fixed-parameter setting in order to conclude. �

We can now explain why the limit in (5) is negative. Since
(1) the sequence ûn is subadditive (i.e., ûn+m ≤ ûn + ûm ◦ Fn),
(2) ûn ∈ L1(M), and
(3) M is ergodic

we can apply the ergodic version of Kingman Subadditive Theorem and thus get the
existence of an L such that

(a) 1
n

∫
X ûn(γ)M(γ)→ L; and

(b) forM-a.e. γ ∈ X : 1
n ûn(γ)→ L.

In particular, this proves that the limit in (5) exists and that we can compute it on almost
every element γ ∈ X . We are thus left with proving that L < 0. In order to do so, we
consider a γ ∈ X with the following properties:

(1) 1
n ûn(γ)→ L (from (b));

(2) 1
nun(γ, ·) is uniformly bounded on V0 bM (from Fact 7.4); and

(3) 1
nun(γ, λ)→ −χ1(λ) for Leb-a.e. λ ∈ V0 (from Fact 7.3).

We then claim that L ≤ − log d
2 . Suppose to the contrary that L > − log d

2 . Pick U0 b V0.
Recall that ûn(γ) = maxλ un(γ, λ). Up to extracting a subsequence, one finds points
λn ∈ U0 and a positive ε such that un(γ,λn)

n ≥ − log d
2 + ε. Up to extracting another

subsequence, we can assume that λn → λ0 ∈ U0. Now, there exists an r such that
B(λn, r) ⊂ V0 for every n, and, since every un(γ, ·) is psh, the submean inequality for each
of them at λn yields

− log d

2
+ ε ≤ un(γ, λn)

n
≤ 1

|B(λn, r)|

∫
B(λn,r)

un(γ, λ)

n
.

Since by (3) the sequence un(γ,λ)
n converges to χ1(λ) for almost every λ and is uniformly

bounded (by (2)), the Lebesgue dominated convergence Theorem gives:

− log d

2
+ ε ≤ 1

|B(λ0, r)|

∫
B(λ0,r)

−χ1(λ).

Since χ1(λ) ≥ log d
2 , this gives the desired contradiction.
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8. Proof of the fundamental lemma

Let f : M × Pk → M × Pk be a holomorphic family of degree d ≥ 2. Let L(λ) :=∫
Pk log |det f ′λ(z)|µλ(z) be the sum of the Lyapunov exponents of the system (Jλ, fλ, µλ).
The Fundamental Lemma, stated in Subsection 5.2, says that Misiurewicz parameters
belong to the support of ddcL. Our aim in this lecture is to prove it.

We will follow the proof given in [BBD15]. An alternative and more geometric proof,
which is also valid in more general settings, is given in [Bi16a].

Recall that µλ = (ddczg(λ, z) + ω)k and g = limn gn (locally uniformly on M × Pk) with
gn smooth (see Lecture 1).

We shall use the formula (see Lecture 5)

(7) ddcL = (pM )∗

((
ddcλ,zg + ω

)k ∧ [Cf ]
)
.

The function L is psh and continuous on M .

8.1. Step 1: Simplifications. In our computations, we will assume that g is smooth.
This is possible since

f∗ (ddcg + ω) = d (ddcg + ω)

f∗ (ddcgn+1 + ω) = d (ddcgn + ω)

where the gn are smooth and locally uniformly converging to g.

We assume that the parameter space M is a disc centered at the origin 0 in C and
replace Pk by Ck. The assumption that 0 is a Misiurewicz parameter is then summarized
by the following picture.

0

Dε

fn0(Cf )

Ck

M = C

z1

}
Br

• fλ(z1) = z1,∀λ ∈ Dε and z1 ∈ Jλ
and repelling;

• ∃A > 1 such that
‖fλ(z)− fλ(z′)‖ ≥ A ‖z − z′‖,
∀λ ∈ Dε, z, z

′ ∈ Br;

• (λ, z1) ∈ fn0(Cf ) ∩ (Dε ×Br) ⇒
λ = 0.
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8.2. Step 2: Lower bound for 〈ddcL, 1Dε〉 using (7). Pick (0, z0) ∈ Cf such that
fn0(z0) = z1. After shrinking, we have that fn0 : U → Dε ×Br is proper.

0

Dε ×Br

fn0

Ck

M = C

z1

Uz0 Note that 1U ≤ 1Dε ◦ pM ,
where

pM : M × Ck →M

(λ, z) 7→ λ.

We now compute:

by (7)

〈ddcL, 1Dε〉 =

〈 positive measure︷ ︸︸ ︷
(ddcg + ω)k ∧ [Cf ], 1Dε ◦ pM

〉
≥
〈

(ddcg + ω)k ∧ [Cf ] , 1U

〉
=
〈

1U [Cf ] , (ddcg + ω)k
〉

1U ≤ 1Dε ◦ pm think g smooth

=
〈

1U [Cf ] , d−n0k (fn0)∗ (ddcg + ω)k
〉

=
〈
d−n0kfn0

∗ (1U [Cf ]) , (ddcg + ω)k
〉

≥ d−n0k
〈

[fn0 (Cf )] 1Dε×Br , (dd
cg + ω)k

〉
.

fn0 : U → Dε ×Br proper

Setting A0 := 1Dε×Br [fn0 (Cf )] we have proved that

〈ddcL, 1Dε〉 ≥ d−n0k
∥∥∥A0 ∧ (ddcg + ω)k

∥∥∥ .
8.3. Step 3: Transfer from the dynamical space {0}×Pk to the parameter space
via a dynamical rescaling. Define inductively Ap by Ap+1 := 1Dε×Brf∗(Ap), one may
check that
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Ap → m [{0} ×Br] for some m ≥ 1.

f f . . . (0, z1)z1

Dε ×Br
0

0 0

A0
A1 A2

fn0(Cf )

Claim:
∥∥∥Ap ∧ (ddcg + ω)k

∥∥∥ ≤ dpk ∥∥∥A0 ∧ (ddcg + ω)k
∥∥∥

Conclusion:

〈ddcL, 1Dε〉 ≥ d−n0k
∥∥∥A0 ∧ (ddcg + ω)k

∥∥∥ ≥ d−(n0+p)k
∥∥∥Ap ∧ (ddcg + ω)k

∥∥∥ .
Step 1 Claim

This implies that 〈ddcL, 1Dε〉 > 0 since∥∥∥Ap ∧ (ddcg + ω)k
∥∥∥→ 〈

m [{0} ×Br] , (ddcg + ω)k
〉

= mµλ0(Br) > 0.

µλ0 = (ddczg(0, z) + ω)k z1 ∈ Jλ0

Proof of the Claim: (again think g smooth)∥∥∥Ap+1 ∧ (ddcg + ω)k
∥∥∥ =

〈
1Dε×Brf∗(Ap), (dd

cg + ω)k
〉

=
〈
Ap, f

∗
(

1Dε×Br (ddcg + ω)k
)〉

=
〈
Ap, (1Dε×Br ◦ f) dk (ddcg + ω)k

〉
≤ dk

〈
Ap, (dd

cg + ω)k
〉

= dk
∥∥∥Ap ∧ (ddcg + ω)k

∥∥∥ .
�

9. Density of Misiurewicz parameters in the support of ddcL

We consider a family f : M × Pk →M × Pk as in the last lecture. Our aim is to prove
tha Misiurewicz parameters are dense in Supp ddcL.
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9.1. A general condition for the vanishing of ddcL.

Theorem 9.1. If f admits an equilibrium webM such that

∀γ ∈ SuppM : Γγ ∩ Cf 6= ∅ ⇒ Γγ ⊂ Cf

then ddcL ≡ 0 on M .

Proof. 1) To simplify we consider a lifted family F : B × Ck+1 → B × Ck+1 where B
is a (small) disc in C. Note that in this case SuppM ⊂ O(B,Ck+1). Set Jac (λ, z) :=
det dfλ(z). We associate toM the web current WM :=

∫
[Γγ ] dM(γ). It is a result due to

Pham [Pha05] that the current log |Jac |WM is well defined. Moreover, Pham has given a
generalized version of the ddcL formula (7) of the last lecture which yields:

0 ≤ ddcL ≤ (pB)∗ (ddc (log |Jac |WM)) .

It thus suffices to show that log |Jac |WM is ddc-closed.
2) A formal computation.

test form〈
log |Jac |WM, ddc φ

〉
= 〈WM, log |Jac | ddcφ〉

=

∫
〈[Γγ , log |Jac | ddcφ]〉 dM(γ)

=

∫
dM(γ)

(∫
C

log |Jac (λ, γ(λ))| ddc(φ ◦ γ)

)
︸ ︷︷ ︸

=0 if Γγ∩{Jac =0}=∅

= 0.

3) To make the above computation rigorous, one uses the following estimate:

M ({γ : Γγ ∩ {|Jac | < ε} 6= ∅}) . ετ .

Let us set Sε := {γ ∈ SuppM : Γγ ∩ {|Jac | < ε} 6= ∅}. Let λ0 ∈ B fixed.

Claim: Sε ⊂
{
γ : γ(λ0) ∈

(
CFλ0

)
Aεa

}
, for some A, a > 0.

The estimate above follows from the Claim:

M(Sε) ≤ µλ0
((

CFλ0

)
Aεa

)
. ετ

(pλ0)∗M = µλ0 µλ0 has Hölder potentials

To prove that claim:
i) γ ∈ Sε and Γγ * {Jac = 0} ⇒ γ ∈ Sε and Γγ ∩ {Jac = 0} = ∅. Then, as B 3 λ 7→

Jac (λ, γ(λ)) ∈ ∆R \ {0} contracts the Kobayashi distances we get |Jac (λ0, γ(λ0))| < εα,
for some 0 < α ≤ 1. By compactness of SuppM, the estimate is uniform in γ.

ii) The claim then follows from a Łojasiewicz inequality. �
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Remark 9.2. The above theorem also provides another proof of the fact that the holomor-
phic motion of repelling J-cycles implies the vanishing of ddcL (implication (1) ⇒ (2) in
Lecture 5).

9.2. Density of Misiurewicz parameters. We aim here to prove the following Lemma.

Lemma 9.3. Let λ0 ∈ M and B be a ball centered at λ0 with no Misiurewicz parameters
inside. Then λ0 does not belong to the support of ddcL.

Note that combining this Lemma with the Fundamental Lemma proved in Lecture 8,
we get:

Theorem 9.4. Supp ddcL = {Misiurewicz parameters}.

Proof. After shrinking B, we find γ0 : B → Pk holomorphic such that γ(λ0) ∈ Jλ and
γ0(λ) is repelling and n0-periodic for all λ. It is not clear at all that the graph of such a γ0

is not included in C+
f . We claim that one can actually find γ0 in such a way that Γγ0 * C+

f .
The proof of this fact is not elementary and will not be discussed here.

Since there are no Misiurewicz parameters in B and Γγ0 * C+
f we have Γγ0 ∩ C+

f = ∅.
We may thus lift γ0 by fn:

B × Pk

B B × Pk

λ (λ, γ0(λ))

fn
(λ, γn,j(λ))

Let us set Mn := d−kn
∑

j δγn,j . Using Banach-Alaoglu Theorem and the theorem of
equidistribution of iterated preimages we find an equilibrium webM for f such that

Mni →M.

Since by construction Γγ ∩ Cf = ∅ for all γ ∈ SuppMni , Hurwitz Theorem shows that
Γγ ∩Cf = ∅ or Γγ ⊂ Cf for all γ ∈ SuppM. By the above theorem we thus have ddcL ≡ 0
on B. �

10. Further results and open questions

The goal of this last section is to present some related results which appeared after the
Simons Semester at IMPAN and list a few open questions.

10.1. Further results. Let us start by comparing more closely the one dimensional The-
orem 2.1 and its generalization, Theorem 5.3. As we said above, condition 3 in Theorem
5.3 can be seen as an analogue of the holomorphic motion of the Julia sets in dimension one
(and thus of the first condition in Theorem 2.1). In both Theorems we have a condition on
the repelling cycles contained in the Julia sets and, in both cases, the (pluri)harmonicity
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of the Lyapunov function is equivalent to the other notions of stability (see Lecture 3 for
the dimension one). The following result (see [BBD15, Bi16a]) can be seen as a higher-
dimensional analogue of the fact that the stability is equivalent to the normality of the
critical orbits (condition 3 in Theorem 2.1), by interpreting the normality as a volume
growth condition (this also gives a replacement of the property 6 in Theorem 3.9 valid in
any dimension).

Theorem 10.1. Let f be a holomorphic family of endomorphisms of Pk of algebraic degree
d. Then

ddcL 6= 0⇔ lim sup
n→∞

1

n
log ‖(fn)∗ Cf‖ > log dk−1.

Let us mention that this result is at the heart of the alternative geometric approach
given in [Bi16a] to the proof of the Fundamental Lemma (see Lecture 8). It is also one of
the crucial points in the generalization of the theory of stability explained in these notes
to the more general setting of polynomial-like maps of large topological degree, see [Bi16b]
for complete details.

Two main questions are thus left open after the analysis above:
(Q1) is the Hausdorff continuity of the Julia sets equivalent to the other notions of

stability (as in dimension one, see Theorem 2.1)?
(Q2) is the stability locus dense (as in dimension one, see Corollary 2.2)?

Before adressing the above two questions, we remark that Theorem 5.3 applies only for
the study of the family of all endomorphisms of Pk of a given degree, and not to a generic
subfamily (although the equivalence of all the conditions but the one on the motion of
repelling cycles holds on every family, see [BBD15]). Nevertheless, in [Bi16a] a slightly
weaker condition than the holomorphic motion of all the repelling cycles is stated and
proved to be equivalent to all the others for any arbitrary family. The condition and the
result are as follows.

Definition 10.2. Let f be an arbitrary holomorphic family of endomorphisms of Pk of a
given degree d ≥ 2, with parameter space M . We say that asymptotically all J-cycles move
holomorphically on M if there exists a subset P = ∪nPn ⊂ J such that

(1) every γ ∈ Pn is n-periodic; and
(2) for every M ′ bM , asymptotically every element of P is repelling, i.e.,

Card { repelling cycles in Pn}
CardPn

→ 1.

Theorem 10.3. Let f be an arbitrary holomorphic family of endomorphisms of Pk of
degree d ≥ 2. Assume that the parameter space is simply connected. Then the following
are equivalent:

(1) asymptotically all J-cycles move holomorphically;
(2) there exists an equilibrium lamination for f ;
(3) the Lyapunov function is pluriharmonic;
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(4) there are no Misiurewicz parameters.

Thus, it makes sense to talk about stability and bifurcation loci for arbitrary families of
endomorphisms of Pk. The following Theorem from [BT17] gives an example of a family
of endomorphisms of P2 for which the answer to both the above questions (Q1) and (Q2)
is negative.

Theorem 10.4 (Bianchi, Taflin). The family of endomorphisms of P2 given by

fλ =
[
−x(x3 + 2z3) : y(z3 − x3 + λ(x3 + y3 + z3)) : z(2x3 + z3)

]
with λ ∈ C∗ satisfies the following properties:

(1) the Julia set of fλ depends continuously on λ, for the Hausdorff topology;
(2) the bifurcation locus coincides with C∗.

The family above is called the elementary Desboves family and these maps were pre-
viously studied by Bonifant-Dabija [BD02] and Bonifant-Dabija-Milnor [BDM07]. Notice
that the above result does not imply the existence of an open set in the bifurcation locus
for the family Hd(Pk) (a robust bifurcation). The existence of such an open set was proved
by Dujardin [Duj16], who presents two mechanisms leading to robust bifurcations.

Theorem 10.5 (Dujardin). The bifurcation locus has non empty interior in the space
Hd(Pk) for every k ≥ 2 and d ≥ 2.

Let us now focus on the case k = 2. The methods by Dujardin give open sets in the
bifurcation locus near maps of the form (z, w) 7→ (p(z), q(w)), where p is a bifurcating
polynomial in the family of degree d polynomials Pd(C), and q has a rather specific form.
This means that these maps are in the closure of the interior of the bifurcation locus of
Hd(Pk). He then asks whether any product map of the form (z, w) 7→ (p(z), q(w)) (where
p or q is bifurcating in Pd(C)) is contained in the closure of the interior of the bifurcation
locus of Hd(P2). This question was positively answered by Taflin [Taf17].

Theorem 10.6 (Taflin). Let f(z, w) = (p(z), q(w)) be a product of two polynomial maps
of degree d in C. Then if p or q belongs to the bifurcation locus in Pd(C), f belongs to the
closure of the interior of the bifurcation locus in Hd(P2).

The Hausdorff dimension of the bifurcation locus can also be studied for generic fami-
lies. Let us recall the fundamental result of Shishikura [Shi98] stating that the Hausdorff
dimension of the boundary of the Mandelbrot set (which is the bifurcation locus of the
quadratic family, see Lecture 2) is equal to 2. From this one can deduce [McM00, Tan98]
that the Hausdorff dimension of the bifurcation locus is always maximal for every family
of rational maps. For families of endomorphisms of Pk, in [BB16] the authors prove an
estimate for the Hausdorff dimension which depends on the values of the Lyapunov expo-
nents. In particular, this dimension is always maximal near (higher-dimensional) isolated
Lattès examples.

Theorem 10.7. Let f be any holomorphic family of endomorphisms of Pk, parametrized
by M . Assume that λ0 ∈ M is such that fλ0 is a Lattès example, and λ0 is accumulated
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by parameters λ for which fλ is not a Lattès example. Then the Hausdorff dimension of
the bifurcation locus is maximal at λ0.

This is coherent with a conjecture in [Duj16], which states that Lattès maps should be
contained in the closure of the interior of the bifurcation locus of Hd(Pk). A step towards
the settling of this conjecture in dimension 2 has been recently proved by Biebler.

Theorem 10.8 (Biebler). For every Lattès map L of degree d on P2 there exists an integer
n0 = n(L) such that for every n ≥ n0 the iterate Ln belongs to the closure of the interior
of the bifurcation locus of the family Hdn(P2).

10.2. Open questions.
(A) Is it possible to give an elementary proof of the following fact? If for a family

f there are no Misiurewicz parameters in some open subset Ω of the parameter
space M then there exists a holomorphic map γ : Ω→ Pk whose graph avoids the
postcritical set ∪p≥0f

p(Cf ). Note that γ ∈ J is not necessary in the proof of Thm
9.4.

(B) Is Theorem 5.3 true for any holomorphic family (it is proved for dimension k = 2
or when k ≥ 2 and the parameter space M is an open subset of Hd(Pk)) ? The
difficulty here is with resonances phenomena in the proof of implication (3)⇒ (1).

(C) Is it possible to find natural holomorphic families f : M × Pk → M × Pk (with
k ≥ 2) for which the bifurcation locus is not empty but has empty interior?

(D) Are stability and Hausdorff continuity of Julia sets equivalent for skew-products
families?

(E) Is it possible to better understand bifurcations within skew-products families (see
for instance [AB18])?

(F) What do the exterior powers ddcL∧ddcL∧· · ·∧ddcL detect for holomorphic families
f : M × Pk →M × Pk with k ≥ 2?

(G) Is it possible to establish equidistribution results similar to those discussed in sub-
section 4.1 for higher dimensional holomorphic families (this is related to the ap-
proximation formula for the sum of Lyapunov exponents proved in [BDM08])?

(H) When does a true holomorphic motion of Julia sets exist? Do counter-examples
exist for stable families?

(I) What can be said about the set of elements of Hd(Pk) which belong to some one-
dimensional holomorphic family on which the bifurcation locus has empty interior?
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