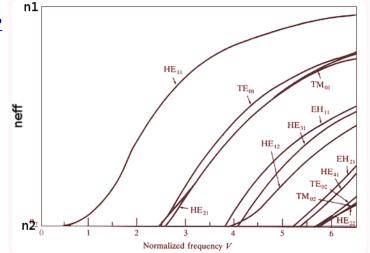

12 décembre 2019


Fibres optiques à réseaux de Bragg

Bibliographie : [Techniques de l'Ingénieur] [Kinet2014] [Schroeder2006] [Lopez-Huigera2011]

Cours 1 : [Techniques de l'Ingénieur]

- Appetizer: https://www.youtube.com/watch?
 v=Yc8O-CxvDKU
- Rappels, fibres optiques
- Notions de couplage entre modes dans les fibres optiques
- Propriétés du RB
- Longueur d'onde de Bragg
- Transducteurs à RB
- Procédés de fabrication de réseaux de Bragg (RB)
- Procédés de fabrication de « long-period gratings » (LPG)

- Méthodes de mesure avec RB
- Application de capteurs à RB: Structural health monitoring (SHM) [Lopez-Huigera2011]
- Application de capteurs à RB: Déformations de pale d'éolienne [Schroeder2006]
- Application de capteurs à RB: Matériaux composites [Kinet2014]

Exercice 1 : Couplage entre modes dans une fibre optique

On dispose d'une fibre monomode a double gaine. Les indices sont comme suit :

$$n = \begin{cases} & 1.447 & r < a_1 \\ & 1.44 & r > a_2 \end{cases}$$

Un réseau de Bragg avec pas Λ inscrit dans le cœur peut avoir plusieurs fonction selon la grandeur de Λ . On suppose longueur d'onde $\lambda = 1.55 \, \mu m$; $a_1 = 4 \, \mu m$.

- a) Montrer que le coeur $(0 \le r \le a_1)$ est mono-mode
- b) Estimer l'indice effective du mode fondamentale dans le coeur
- c) Trouver le pas du réseau de Bragg Λ qui mène à couplage entre ondes contra-propageant dans le cœur
- d) Trouver la gamme de Λ qui mène à couplage entre le mode fondamental du coeur et les modes

Exercice 2 : Transducteur à réseau de Bragg

Vous avez un réseau de Bragg avec pas Λ_1 = 295 nm, inscrit dans une fibre où l'indice effective du mode guidé est de n_{eff} = 1.439; la longueur du réseau de Bragg est L_1 = 1 cm. L'amplitude de la modulation d'indice est Δn = 10^{-4} .

- a) Calculer λ_{B1}
- b) Calculer sa reflectivité R₁
- c) Calculer la largueur spectrale de la reflexion de Bragg $\Delta \lambda_1$

Pour un décalage de la longueur d'onde de Bragg $\Delta\lambda_{\rm B1}$ = 100 pm calculer [utiliser les valeurs théoriques des coefficients a, b, c] :

- d) ΔT , en supposant que seul ΔT change
- e) ϵ , en supposant que seul ϵ change
- f) ΔP , en supposant que seul ΔP change

On considère un deuxième réseau de Bragg avec pas Λ_2 = 452 nm inscrit dans la même fibre.

- g) Calculer λ_{B2}
- h) Calculer la $\Delta \lambda_{B2}$ qu'on observe quand $\Delta \lambda_{B1} = 100$ pm

Maintenant, on laisse ε et ΔT se changer en même temps.

- i) Montrer qu'avec un seul réseau de Bragg, on n'arrive pas à mesurer à la fois ε et ΔT .
- j) Montrer comment c'est possible avec deux réseaux de Bragg placés en ligne, si les deux λ_B sont différentes.
- k) Calculer alors ε et ΔT pour λ_{B1} , λ_{B2} , $\Delta \lambda_{B1}$, $\Delta \lambda_{B2}$ comme ci-dessus.

Une calibration des deux réseaux de Bragg en température et déformation donne les coefficients :

```
K_{\epsilon}^{(1)} = 0.59 +- 3.4 \cdot 10^{-3} \text{ pm/me}; K_{\epsilon}^{(2)} = 0.96 +- 6.5 \cdot 10^{-3} \text{ pm/me}; K_{T}^{(1)} = 6.3 +- 3.7 \cdot 10^{-2} \text{ pm/°C}; K_{T}^{(2)} = 8.72 +- 7.7 \cdot 10^{-2} \text{ pm/°C};
```

1) Refaire le calcul pour retrouver ε et ΔT pour ces coefficients expérimentaux, et pour $\Delta \lambda_{B1} = 100$ pm et $\Delta \lambda_{B2} = 50$ pm.

Exercice 3 : Inscription d'un réseau de Bragg

On dispose d'un laser UV de typ ArF avec λ = 193 nm ; et d'une fibre optique monomode avec n_{eff} = 1.46. On souhaite inscrire un réseau de Bragg avec pas Λ = 0.3 μ m.

- a) Trouver les paramètres experimentaux pour inscrire ce réseau de Bragg par la méthode de holographie transverse
- b) Trouver les paramètres experimentaux pour inscrire ce réseau de Bragg par la méthode de masquage de phase
- c) Trouver les paramètres experimentaux pour inscrire ce réseau de Bragg par la méthode de inscription en ligne sur la tour de fibrage
- d) Quel est la longueur d'onde de Bragg λ_B de ce réseau ?