24 octobre 2019

### Mesure de position, déplacement et distance

#### Cours:

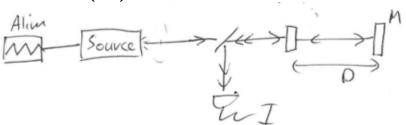
- Méthode encodage binaire / Gray / en quadrature / sinusoïdal [Youtube: « How Rotary Encoder Works and How To Use It with Arduino » <a href="https://www.youtube.com/watch?v=v4BbSzJ-hz4">https://www.youtube.com/watch?v=v4BbSzJ-hz4</a>]
- Mesure de déplacement sub- $\lambda$  dans un interféromètre : Mesure de phase
- Mesure de déplacement absolu dans un interféromètre : [Youtube : « Modern Interferometry
  Quadrature Counting 2Advanced Lab » <a href="https://www.youtube.com/watch?v=6apQajSUks1">https://www.youtube.com/watch?v=6apQajSUks1</a>]
  Comptage de franges
- Mesure de distance absolu : Méthode par modulation de fréquence (FM)

### **Exercice 1 : Codeur rotatif optique**

On considère un codeur rotatif optique avec codage binaire à 2 bits. Le temps de réponse des photodiodes est  $\tau$ . Le codeur tourne avec période de rotation  $T_0$ .

- a) Proposer une limite supérieure sur  $T_0$  par rapport à  $\tau$ .
- b) Calculer  $\omega_0$  la fréquence de rotation maximale corréspondante à  $T_0$ .
- c) Proposer un codage alternatif qui permet d'augmenter  $\omega_0$  d'un facteur 2.

Le codage que vous avez proposé en (c) s'appele "encodage en quadrature" ou bien "encodage de Gray 2-bit".


- d) S'il y a un leger désalignement des détecteurs PIN, quel codage est le plus robuste encodage binaire ou encodage en quadrature?
- e) Proposer un codage qui donne précision arbitraire en angle.

# Exercice 2 : Mesure de déplacement dans un interféromètre de Michelson

Une onde monochromatique polarisée rectilignement à 45° par rapport à l'horisontal est injectée dans un interféromètre de Michelson. Les longueur des deux bras sont L et  $(L+\delta x)$  respectivement. Une lame l/8 orienté à 0° dans le deuxième bras déphase la composante horisontale de  $\pi/4$  à chaque passage. À la sortie de l'interféromètre se trouve une séparatrice de polarisation qui sépare les composantes horisontale et verticale; la composante vertical est incidente sur PIN1, la composante horisontale sur PIN2.

- a) Trouver les expression des photocourants  $i_1$  et  $i_2$ .
- b) Mesure sub- $\lambda$  de déplacement: Montrer comment trouver  $\delta x$  à partir de  $i_1$  et  $i_2$ .
- c) Mesure de déplacement absolu: Montrer comment mettre en oeuvre un encodage en quadrature à partir de  $i_1$  et  $i_2$ .

## Exercice 3: Mesure de distance (FM)



On met en œuvre une mesure de distance absolue. Les paramètres sont comme suit :  $\Delta I_{p-p}=15~\text{mA}$  ;  $\chi=2~\text{GHz/mA}$  ;  $\nu_{m}=90~\text{Hz}$ 

a) On observe  $v_{\text{beat}}$  = 1800 Hz. Calculer la distance D corréspondante.